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Chapter 1

Introduction

Contents

1.1 Pervasive sensors and data deluge . . . . . . . . . . . . 1

1.2 Distributed sensing: synchronization and localization 5

1.3 Scope and context of this thesis . . . . . . . . . . . . . 8

1.4 Summary of results and outline of the thesis . . . . . . 11

1.5 List of publications and other contributions . . . . . . 16

1.1 Pervasive sensors and data deluge

Every day, we are generating data in the order of a billion gigabytes.!is mas-
sive volume of data comes fromomnipresent sensors used inmedical imaging
(e.g., breast or fetal ultrasound), seismic processing (e.g., from oil or gas #eld
exploration), environmentalmonitoring (e.g., pollution, temperature, precip-
itation sensing), radio astronomy (e.g., from radio telescopes like the square
kilometre array), power networks (e.g., tomonitor wind farms or other distri-
bution grids), smart infrastructures (e.g., to monitor the condition of railway
tracks or bridges), localization and surveillance platforms (e.g., security cam-
eras or drones, indoor navigation), and so on.

!e acquired data samples are stored locally and then transported to a
central location (e.g., a server or cloud) to extract meaningful information
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(that is, for inference). Due to an unprecedented increase in the volume of
the acquired data, it is becoming increasingly challenging to locally store and
transport all the data samples to a central location for data/signal process-
ing. !is is because the amount of the sampled data quickly exceeds the stor-
age and communication capacity by several orders of magnitude. Since the
data processing is generally carried out at a central location with ample com-
puting power, mainly the sensing, storage and transportation costs form the
main bottleneck. To alleviate these bottlenecks, most of the data is blindly
discarded without even being examined in order to limit the memory and
communication requirements, causing a serious performance loss.

In this era of data deluge, it is of paramount importance to gather only
the informative data needed for a speci#c task. If we had some prior knowl-
edge about the task we want to perform on the data samples, then just a small
portion of that data might be su.cient to reach a desired inference accuracy,
thereby signi#cantly reducing the amount of sampled and transported data.
!at is to say, if the inference task is known beforehand, less data needs to be
acquired. !us, the memory and bandwidth requirements can be seriously
curtailed. In addition, the cost of data collection (or sensing) can be signi#-
cantly reduced, where the major factors that determine the sensing costs are
the number of physical sensors (and their economical and energy costs) and
the physical space they occupy when installed. So, it is evident that there is
an urgent need for developing unconventional and innovative sensing mech-
anisms tailored for speci#c inference tasks to extract as much information as
possible yet collecting fewer data. !is leads us to the #rst question:

Q1. How can task-cognition be exploited to reduce the costs of sensing as well
as the related storage and communications requirements?

!is is di/erent from the classical big data setting in which the data is already
available and the question is how to mine information from that large-scale
data. Our problemhas close similarities to sampling, and is on the other hand
only related to model information, where the data is not yet available. Given
the central role of sampling in engineering sciences, answering this question
will impact a wide range of applications. !e basic question of interest for
such applications is, how the sensing systems should be designed to mini-
mize the amount of data acquired yet reach a desired inference performance.
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Access point

Figure 1.1: Illustration of an indoor localization setup. We show the 0oor plan of a
building (e.g., museum) with candidate locations for installing the access points. !e
restriction on installing the access points in only certain areas might be for security
or ambience purposes.

In particular, the design questions that should be answered are related to the
optimal sensor placement in space and/or time, data rate, and sampling den-
sity to reduce the sensing cost as well as to reduce the storage and commu-
nications requirements. We next illustrate two speci#c examples of sensor
placement for indoor localization and temperature sensing.

Example 1.1 (Target localization). Indoor localization is becoming increasingly
important in many applications. Some examples include: locating people in-
side a building for rescue operations, monitoring logistics in a production plant,
lighting control, and so on. In such environments, global positioning system
(GPS) signals are typically unavailable.!us, other types of measurements such
as visual, acoustic or radio waves revealing information about range, bearing,
and/or Doppler are used. !ese measurements are gathered by access points,
like cameras, microphones, radars, or wireless transceivers. One such scenario
is illustrated in Figure 1.1, where we show an indoor localization setup for navi-
gating a visitor inside a building. An interesting question is, instead of installing
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Figure 1.2: Heatmaps of a 32KBdata cache (a) without and (b) with a hot spot. Black
circles (○) denote the candidate temperature sensor locations— these are the areas
with less or no active logic.

many such costly access points randomly, how can we minimize the number of
access points (hence, the amount of data), by optimizing their characteristics
(e.g., their spatial position, sampling rate) in such a way that a certain localiza-
tion performance can be guaranteed.

Example 1.2 (Field detection). Consider amulti-core processor with a hot spot.
A historical question of interest is to estimate the thermal distribution, for in-
stance, by interpolating noisy measurements. In some applications, though, a
precise estimation of the temperature #eld might not be required, instead, de-
tecting the hot spots (i.e., the areas where the temperature exceeds a certain
threshold) would be su$cient for subsequent control actions. Such a scenario is
illustrated in Figure 1.21, where the image on the right (le&) shows a 32 KB data
cache with (no) hotspots. An important question of interest for such detection
problems then is, how to design spatial samplers (i.e., sensor placement [Memik
et al., 2008]) by exploiting the knowledge of the underlyingmodel, physical space

1We would like to thank Sumeet Kumar for the heatmaps [Kumar et al., 2015] .
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and processing limitations.

Such optimally designed sensing systems can be used to perform a num-
ber of inference tasks. In the next section, we will introduce sensor networks
as a spatial sampling device and discuss some related signal processing appli-
cations.

1.2 Distributed sensing: synchronization and localiza-
tion

Over the past decade, advances in wireless sensor technology have enabled
the usage of sensors to connect almost everything as a network. !is so-
called internet of things (IoT) is used for di/erent purposes related to sensing,
monitoring, and control. Such networks #nd applications ranging frommon-
itoring natural ecosystems to buildings, industrial equipments, and vehicles,
from military to civil localization applications, to name a few.

Due to the inherent discrete nature of the sensors—spatially localized ob-
jects, a sensor network performs sampling in space [Gastpar et al., 2006]. For
many cases thatwe frequently encounter, a sensor network can be designed to
faithfully represent distributed signals (e.g., a spatially varying phenomenon
such as a temperature #eld). In addition, the distributed signals can bemulti-
dimensional, that is, they can exist in space and time. To acquire spatiotempo-
ral variations of such distributed signals, we need to sample over both space
and time, where the temporal sampling is achieved using analog-to-digital
converters (ADCs) or time-to-digital converters (TDCs), for example. Each
sensor has an independent sample clock, and its stability essentially deter-
mines the alignment of the temporal sampling grid across the sensors. !is
temporal sampling grid is perfectly aligned if all the sensors share a common
clock. However, when the clocks are uncommon, the sample clocks dri" from
each other due to imperfections in the clock oscillator, aging and other envi-
ronmental factors (e.g., temperature variation, vibration). We illustrate two
sample clocks dri"ing from an ideal (or a reference) clock in Figure 1.3. !is
dri" will result in the misalignment of the temporal sampling grid across the
sensors. !erefore, we need to align them from time to time. In other words,



6 Chapter 1. Introduction

sample clock A

sample clock B

ideal clock

L
o
ca
lt
im

e
[s
]

Global time [s]

Figure 1.3: Illustration of two sample clocks dri"ing from each other with respect to
an ideal clock.

we need to devise a mechanism to distribute the sample clock wirelessly. !is
brings us to the second question:

Q2. How can wireless communications be exploited to synchronize spatially
separated sample clocks?

Answering this question impacts a range of other sensor network appli-
cations that demand for a common time frame for the entire network, such
as sleep and wake-up coordination, time-based channel access, among oth-
ers [Freris et al., 2010].

A vast number of the applications that use sensor networks rely on a fun-
damental aspect of either associating the location information to the data that
is acquired by spatially distributed sensors (e.g., air quality measurements), or
the acquired data is solely used to localize a target/source (e.g., indoor local-
ization). One way to do this is to equip each sensor node with a GPS receiver,
however, in many applications of interest the operating environment is harsh
with GPS signals either being impaired or unavailable. Moreover, sensors
are usually battery powered making GPS a less viable option. To facilitate
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low-power and e.cient localization solutions especially in GPS-denied en-
vironments, there exists a plethora of algorithms based on two localization
paradigms: absolute or relative localization. In absolute localization, the aim
is to estimate the absolute position of the sensor(s) using a few reference nodes
whose absolute positions are known. Hence, these reference nodes are com-
monly referred to as anchors. Absolute localization problems are typically
solved using measurements related to the propagation of radio or acoustic
waves, e.g., time of arrival (TOA), time di/erence of arrival (TDOA), received
signal strength (RSS), or angle of arrival (AOA), to list a few [Patwari et al.,
2005,Gezici et al., 2005,Gustafsson and Gunnarsson, 2005]. Localization can
also be relative, in which case the aim is to estimate the constellation of the
sensors or the topology of the network, and determining the location of a
sensor relative to the other sensors is su.cient. Classic solutions to relative
localization are based on multi-dimensional scaling (MDS) using squared-
range measurements [Cheung and So, 2005, Costa et al., 2006]. For relative
localization, anchors are not needed.

!e use of sensor networks to remotely monitor hazardous environments
that are beyond human reach (e.g., leakage in oil pipes, surveillance of nu-
clear plants, or health of industrial machines) is gaining strong interest. Such
tasks are generally performed using robots or drones (more generally, a sens-
ing platform) with a number of sensors mounted on them. Consequently we
now have to localize more than one sensor or even localize the whole sens-
ing platform, and typically we know beforehand the sensor placement on the
platform. Such a setting creates a need to solve the following problem:

Q3. How can we extend the classical localization paradigm to localize a sens-
ing platform by exploiting the knowledge of the sensor placement on the
platform?

Wenext illustrate the aforementioned problems (i.e., Q2 andQ3) with the
following scenario.

Example 1.3 (Sensors on a platform). Consider a number of sensors mounted
on a moving platform as shown in Figure 1.4. !ese autonomous sensors collect
data related to di+erent physical phenomena, like temperature, vibration, pres-
sure, and so on. !is data has to be shipped to a central location (having several
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Anchor
Sensor

Sensing platform

Fixed World

Figure 1.4: Illustration of distributed sensing with sensors mounted on a (moving)
sensing platform. !e sensor data has to be shipped to a central locationwith possibly
multiple receivers mounted on a #xed world.

wireless transceivers —anchors) on a #xed platform. !is is a typical setup in
industrial machines or robots, where we generally know the sensor placement
on the platform. However, the absolute position of the platform might not be
known. Now the questions of interest are: can we use the availablewireless links
between the sensors and anchors to (A) synchronize the sample clocks and (B)
localize such rigid platforms?

In the next section, we will discuss the context of this thesis and also pose
the urgent questions that are addressed in this thesis.

1.3 Scope and context of this thesis

!e research for this thesis was generously sponsored by the following two
NWO/STW projects:

• VICI-SOWN: !e VICI project on signal processing for self-organizing
wireless networks (SOWN) aims at developing new mathematical sig-
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nal processing tools for energy-e.cient distributed information pro-
cessing, spectral sensing, and localization in large sensor networks.

• FASTCOM:!e reliable and fast wireless communication for lithography
machines (FASTCOM) project aims to connect a sensor network on
a moving platform to a control unit using high-speed links with low
latency. To realize such a network, accurate sample clock synchroniza-
tion and optimal sensing design to collect as little data as possible are
needed.

Within the framework of the above two projects, we next pose the sub-
questions related toQ1, Q2, andQ3 thatwe have answered in this thesis.!ese
subquestions are of general interest (impacts current hot topics like big data
analytics, compressive sensing, internet of things) and goes far beyond the
scope of VICI-SOWN and FASTCOM.

In order to reduce the sensing and other related costs, it is crucial to tailor
the sensing mechanism for the speci#c inference task that will be performed
on the acquired data samples. !e tool that we will exploit in this thesis to
reduce the cost of sensing is sparse sensing, which consists of an optimally de-
signed structured and deterministic sparse (i.e., with many zeros and a few
nonzeros) sensing function that is used to acquire the data in order to reach
a desired inference performance. Here, the number of nonzeros determines
the amount of data samples acquired (thus determines the amount of data
reduction). !is naturally leads to a number of questions related to the def-
inition of the inference task and the related performance metric, which we
pose as the following subquestions of Q1:

Q1.1. How do we model sparse sensing functions to carry out fundamental
signal processing tasks, like estimation, #ltering, and detection?

Q1.2. What are the reasonable inference performance metrics for the above
tasks?

Q1.3. Can we e.ciently optimize (e.g., using a polynomial time algorithm)
such inference performance metrics to obtain the sparse samplers of
interest?
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We will answer the above subquestions under the assumption that the data
(i.e., actualmeasurements) is not yet available and that themodel information
is perfectly known.

Next, for a network comprising of several sensor nodes with indepen-
dent clock oscillators, we aim to distribute the clock signal wirelessly. In other
words, we address the problem of synchronizing the sample clocks of the sen-
sor nodes in a network. !e assumption is that there are several sensor units
at known relative locations (absolute locations are, however, not known) and
one sensor unit at an unknown location. !e sensors have unreliable and un-
common clocks, except for one of them, which has a relatively stable clock.
!e goal is to estimate the clock deviations using time-of-0ightmeasurements
of messages. To this end, we pose the following subquestions of Q2:

Q2.1. What is a reasonable parametric representation for the clock devia-
tions?

Q2.2. How can we fully exploit the broadcast nature of the wireless channel
for clock synchronization?

Q2.3. Is there an e.cient estimator (e.g., unbiased and linear) to resolve the
clock parameters and what are the theoretical limits on the variation of
the estimates, that is, what is the Cramér-Rao bound (CRB)?

Finally, we consider the problem of localizing a sensing platform using
sensor networks. !e assumption is that the #xed world has several trans-
ceivers with known locations (anchors) and the sensing platform has several
sensor units at known relative locations, and the platform is rigid; cf. Fig-
ure 1.4. !e aim is to localize, that is, to estimate the position and orientation
of the rigid platform using distance measurements. We refer to this problem
as rigid body localization.!e related subquestions of Q3 are:

Q3.1. Is there a parametric representation for the rigid body localization prob-
lem?

Q3.2. What are the theoretical limits (e.g., CRB) on the variation of the posi-
tion and orientation estimates computed using distancemeasurements?
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Q3.3. Can we solve the rigid body localization problem if the known sensor
topology is perturbed, that is, if the body is not fully rigid?

In the next section, we will discuss the main results and organization of
this thesis.

1.4 Summary of results and outline of the thesis

!is thesis is organized into three parts. In the #rst part of this thesis (i.e., in
Chapters 2—6), the theory and algorithms of sparse sensing are discussed in
depth. In particular, we address subquestions Q1.1-Q1.3. In the second part
of this thesis (i.e., in Chapter 7 and Chapter 8), applications of distributed
sensing,more speci#cally, wireless clock synchronization and localization of a
rigid platformare studied (here, we address subquestionsQ2.1-Q2.3 andQ3.1-
Q3.3). Finally, the thesis concludes with the third part (i.e., Chapter 9), where
we pose some interesting open problems for future research. !e content of
Chapters 3—8 is published as papers, however with some new subtopics. !e
relation between these chapters and the publications is depicted in Table 1.1,
while the list of publications is provided in §1.5.

Chapter 2 on sparse sensing fairly forms the backbone of the #rst part of this
thesis. In this chapter, we will model the sparse sensing function as a
linear projection operation, where the sensing function is parameter-
ized by a sparse vector. !is vector is basically a design parameter that
is used as a handle to trade the amount of acquired data samples with
the inference performance. We refer to this sparse sensing scheme as
discrete sparse sensing, as the continuous observation domain is #rst
discretized into grid points and we select (using the sparse vector) the
best subset out of those grid points. To harness the full potential of
sparse sensing, we need to sample in between the grid points and take
samples anywhere in the continuous observation domain. We refer to
such sensing mechanisms as continuous sparse sensing. We will discuss
some applications of the proposed sparse sensing mechanisms and also
list major di/erences with the state of the art in data reduction, that is,
compressed sensing. Although the inference task is kept abstract in
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Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8

J1 •
J2 •
J3 •
J4 •
J5 •
C1 • • •
C2 •
C3 •
C4 •
C5 •
C6 •
C7 •
C8 •
C9 •

Table 1.1: Connection between the papers and chapters.

this chapter, the obtained novel unifying view allows us to jointly treat
sparse sensing mechanisms for di/erent inference tasks considered in
Chapters 3—6.

Chapter 3 focuses on discrete sparse sensing for a general nonlinear estima-
tion problem. In particular, we solve the problem of choosing the best
subset of observations that follow known nonlinear models with arbi-
trary yet independent distributions. We also extend this framework to
nonlinear colored Gaussian observations as it is more suitable when
the observations are subject to external noises or interference. !e
data is acquired using the discrete sparse sensing function, which is
guided by a sparse vector. !e CRB is used as an inference perfor-
mance metric and we derive several functions of the CRB that include
the sparse vector. To compute the sparse samplers, we propose con-
vex relaxations of the derived inference performance metric and also
develop low-complexity solvers. In sum, the discrete sparse samplers
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for nonlinear inverse problems can be computed by solving a convex
program.

Chapter 4 extends the theory developed in Chapter 3 to nonlinear #ltering
problems, that is, the focus will be on the design of discrete sparse
sensing functions for systems that admit a known nonlinear state-space
representation. In particular, we solve the problem of choosing the best
subset of time-varying observations based on the entire history ofmea-
surements up to that point. !e posterior CRB is used as the inference
performance metric to decide on the best subset of observations. Al-
though this framework is valid for independent observations that fol-
low arbitrary distributions (e.g., non-Gaussian), we also extend it to
colored Gaussian observations. Further, we introduce some additional
constraints to obtain smooth sensing patterns over time. Finally, we
devise sparse sensing mechanisms for structured time-varying obser-
vations (e.g., for time-varying sparse signals). In all these cases, the
discrete sparse samplers can be designed by solving a convex program.

Chapter 5 is dedicated to discrete sparse sensing for statistical detection.
Speci#cally, the aim is to choose the best subset of observations that
are conditioned on the hypothesis, which belongs to a binary set. Nat-
urally, the best subset of the observations is the one that results in a
desired global error probability. Since the numerical optimization of
the error probabilities is di.cult, we adopt simpler costs related to dis-
tancemeasures between the conditional distributions of the sensor ob-
servations. We design sparse samplers for the Bayesian and Neyman-
Pearson setting, where we respectively use the Bhattacharyya distance
and Kullback-Leibler distance (and J-divergence) as the inference per-
formance metric. For conditionally independent observations, we give
an explicit solution, which is optimal in terms of the error exponents.
More speci#cally, the best subset of observations is the one with the
smallest local average root-likelihood ratio and largest local average
log-likelihood ratio in the Bayesian and Neyman-Pearson setting, re-
spectively. We supplement the proposed framework with a thorough
analysis for Gaussian observations, including the case when the sen-
sors are conditionally dependent, and also provide examples for other
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observation distributions. One of the results shows that, for nonidenti-
cal Gaussian sensor observationswith uncommonmeans and common
covariances under both hypotheses, the number of sensors required to
achieve a desired detection performance reduces signi#cantly as the
sensors become more coherent.

Chapter 6 contrasts with the discrete sparse sensing mechanisms that have
been considered in Chapter 3 to Chapter 5, where the sparse sensing
functions are parameterized by a discrete sparse vector that needs to be
optimally designed. !is basically means that the continuous observa-
tion domain is #rst discretized into grid points andwe have to select the
best subset out of those grid points. However, this discretization might
be very coarse because of complexity reasons, preventing the system
to achieve the best possible compression rates for the considered in-
ference task.!erefore, in this chapter, we introduce continuous sparse
sensing (or o/-the-grid sparse sensing), where it is possible to sample in
between the grid points and take samples anywhere in the continuous
observation domain. !e basic idea is to start from a discretized sam-
pling space and to model every sampling point in the continuous sam-
pling space as a discrete sampling point plus a perturbation. !en, the
smallest set of possible discrete sampling points is searched for, along
with the best possible perturbations, in order to reach the desired infer-
ence performance. Wewill demonstrate this approach for linear inverse
problems, that is, for linear estimation problemswith additiveGaussian
noise.

Chapter 7 addresses subquestions of Q2 related to distributed sampling. In
particular, this chapter is dedicated towireless clock synchronization. To
realize this, we assume an a.ne clock model, that is, we approximate
the clock deviations using phase o/set (or clock o/set) and frequency
o/set (or clock skew), where we ignore the higher order terms like the
frequency dri" and so forth. In other words, we approximate the sam-
ple clock curves in Figure 1.3with a piecewise straight line (within each
observation interval) having slope and o/set equal to the clock skew
and clock o/set, respectively. !e assumption is that there are several
anchor nodes with known relative locations and one sensor node with
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an unknown position. Further, all the nodes have unreliable and un-
common clocks, except for one node that has a relatively stable clock
(that is, one of the nodes has no clock o/set and a clock skew equal
to one). We estimate these clock parameters using time-of-0ight mea-
surements of messages. To fully harness the broadcast nature of the
wireless medium, we allow all the nodes to passively listen to the mes-
sages and record time stamps. By doing so, we collect a signi#cant
amount of extra measurements, which we solve using a least squares
estimator. Speci#cally, we solve for all the unknown clock skews and
clock o/sets along with the pairwise distances (i.e., ranges) of the sen-
sor to each anchor. !e proposed estimator is shown to be e.cient,
asymptotically meeting the theoretical CRB.

!e proposed framework can be extended to jointly resolve unknown
clock parameters and locations (instead of ranges) — a problem perti-
nent to time-based sensor network localization; see C8 for the related
results and the CRB.!ese results are, however, excluded in this thesis
for the sake of conciseness.

Chapter 8 provides a framework for joint position and orientation estima-
tion of a rigid platform. We consider a setup in which a few sensors
are mounted on a rigid body. !e absolute position of the rigid body
is not known. However, we know how the sensors are mounted on the
rigid body, i.e., the sensor topology is known. !e rigid body is lo-
calized using noisy distance measurements between the sensors and a
few anchors (nodes with known absolute positions), andwithout using
any inertial measurements. Wemodel the rigid body localization prob-
lem using an unknown rotation matrix and a translation vector that
uniquely determine the orientation and position of the rigid platform,
respectively. We propose a least squares, and a number of constrained
least squares estimators, where the constrained estimators solve an op-
timization problem on the Stiefel manifold. As a benchmark, we derive
a unitarily constrained CRB. Finally, the known topology of the sensors
can be perturbed during fabrication or if the body is not entirely rigid.
To take these perturbations into account, constrained total least squares
estimators are also proposed.
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We can further track the position and orientation of the rigid body us-
ing a state-space representation and a (constrained) Kalman #lter; see
C9 for details. !e results on tracking are, however, excluded here for
the sake of conciseness.

Chapter 9 contains the conclusions and outlines a number of directions for
future research along with some open problems.

1.5 List of publications and other contributions

!e research work done for this thesis has resulted in the following journal
papers, conference papers, and internal reports.
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2.1 Introduction

In this chapter we provide the theory of sparse sensing. !is includes model-
ing aswell as designing the sensing function that is used for gatheringdata (or
sensing) to carry out a speci#c signal processing task. !e sensing functions
are designed knowing beforehand the inference task we want to perform on
the data. !e inference task could be as general as estimation, #ltering, or de-
tection, which are fundamental to statistical signal processing. !e main aim
of sparse sensing is therefore to exploit the knowledge of the inference task to
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y(t) = ∑K
m=1 x(τm)δ(t − τm)

w(t) = ∑K
m=1 δ(t − τm),K = 3

x(t)

τ1 τ2

τ3

τ1 τ2 τ3

Figure 2.1: Continuous sparse sensing scheme. Here, we show an illustration, where
we acquire K = 3 samples of a one-dimensional signal x(t).

be performed on the acquired data in order to signi#cantly reduce the sens-
ing cost as well as reduce the storage and communications requirements yet
assuring a desired inference quality.

We discuss two 0avors of sparse sensing, namely, continuous and discrete
sparse sensing in this chapter. We also present some applications and bene#ts
of sparse sensing, and list the major di/erences of sparse sensing with com-
pressed sensing—a popular tool for sensing cost reduction.

2.2 Sparse sensing model

Let x(t) be a continuous-domain signal, where t ∈ [0, T] denotes the sam-
pling domain. !e sampling domain can be space, time, or space-time and
can be even of higher dimensions. For example, t could be p-dimensional,
where p = 4 represents a (three-dimensional) spatio-temporal sampling do-
main.

We assume that the observation signal x(t) follows a knownmodel, which
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relates the observation to the state of nature (e.g., through a parametricmodel
or conditional distributions under di/erent hypotheses) that we want to infer
along with its statistical dependence on noise, if any.

In practice, the inference problem is typically solved in a digital fashion,
that is, using a sampled version of the observation process. In this context,
we are interested in the following fundamental question:

What are the best indices {τm} to optimally sample x(t) to form {ym =
x(τm)} such that a desired inference performance is achieved?

!is is tantamount to applying a continuous-domain sparse sensing function
(hence the name) w(t), modeled as a sum of Diracs

w(t) = K

∑
m=1

δ(t − τm) (2.1)

that we apply on x(t) to acquire
y(t) = w(t)x(t) = K

∑
m=1

x(τm)δ(t − τm), (2.2)

where we jointly design the unknown indices {τm}, and the number of sam-
ples K, required in order to reach a desired inference performance. We label
such a sensing mechanism as continuous sparse sensing; see the illustration
in Figure 2.1. !e sensing operation w(t) is designed keeping in mind the
known inference task that needs to be performed, and is related to it.

A way to design the continuous-domain sparse w(t) is to discretize the
sampling domain, and to assume that the indices {τm}Km=1 lie on a discrete
grid. In otherwords, we assume a set ofM ≫ K candidate sampling locations{tm}Mm=1, and we alternatively model y(t) as

y(t) = M

∑
m=1

wmx(tm)δ(t − tm), (2.3)

where wm = (0)1 indicates whether sample x(tm) is (not) selected.
!e vector w obtained by collecting {wm}Mm=1 as

w = [w1 ,w2, . . . ,wM]T ∈ {0, 1}M
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y

=

Φ(w) = diagr(w) x

Figure 2.2: Discrete sparse sensing scheme. Here, a white (black) and colored square
represents a one (zero) and an arbitrary value, respectively.

is used to construct a sensing matrixΦ(w) = diagr(w), which is then applied
to the discrete signal x = [x(t1), x(t2), . . . , x(tM)]T , to obtain a discrete-
domain counterpart of (2.3) given as

y = Φ(w)x = diagr(w)x , (2.4)

where y = [y(t1), y(t2), . . . , y(tM)]T . We term such a sensing mechanism as
discrete sparse sensing; see the illustration in Figure 2.2. !us, the design of
a sparse function w(t), can be simpli#ed to the design of a sparse vector w.
Formally, we pose the question:

What is the sparsestw to optimally sense x to form y such that a desired
inference performance is achieved?

Sparse sensing does not necessarily mean that the sensing matrix should
itself be sparse. !at is, sparse sensing can be used to pick the best subset of
rows of some matrix H that are applied to the signal x. In other words, the
signal x is acquired using a sensing function diagr(w)H. For example, the
rows ofH can represent di/erent receive beamformers,#lters, or (sparsifying)
basis functions that are selected using a sparse w.
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Sparse sensing guided by a sparse vector has several interesting proper-
ties:

1. Linearity:!e compression is linear, however the sampling is typically
nonuniformor irregular (as in [Marziliano andVetterli, 2000,Marvasti,
2001,Vaidyanathan, 2001], for instance).

2. Deterministic and structured samplers: Sparse sensing is close to tra-
ditional sampling. !e samplers are easier to implement as compared
to sampling via random projections (as in [Drineas et al., 2006,Candès
andWakin, 2008], for instance), which is o"entimes not practical.

3. Distributed sampling: In contrast to a nonsparse linear compression,
the construction of the sensingmatrixΦ(w) enables a fully distributed
sampling scheme, which is fundamental to distributed signal process-
ing.

4. Controllable: Naturally, as with any subsampling scheme, sparse sens-
ing also results in a reduction of the signal-to-noise ratio, by the com-
pression factor, and leads to a loss in the inference performance. How-
ever, with sparse sensing, there exists a handle to trade this loss with
the compression rate.

Other sub-optimal and trivial alternatives to the proposed sparse sensing
mechanism are, for example,

1. Uniform sensing: A common practice is to use equally-spaced sam-
pling indices denoted by tm = (m − 1)∆, m = 1, 2, . . . ,K, with a sam-
pling interval of ∆ = T/K.

2. Random sensing: Another approach would be to instead pick K in-
dices uniformly at random, i.e., tm ∼ U[0, T],m = 1, 2, . . . ,K .

!ese sensing schemes are suboptimal as they ignore the inference task at
hand andmight not always guarantee a desired inference performance or lim-
its the compression rate.
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2.3 Applications

Many real-world applications like #eld (temperature, pollution, precipitation,
sound) inference, target localization and tracking, radar and sonar systems,
video surveillance, imaging, spectral sensing, seismology, control, to list a
few, are carried out using sensor networks. For such applications, sensor
placement, sensor selection, and sensor scheduling are some of the key de-
sign issues.

Choosing the best subset of sensors (or spatial locations) from a large set
of candidate or available sensors (or spatial locations) such that a desired in-
ference performance is achieved is referred to as sensor selection (placement).
Interpreting the entries of x as the observations from di/erent sensors (or
spatial locations), sensor selection/placement can be achieved through sparse
sensing. Sparse sensing can also be used to select temporal samples or to
schedule space-time sensor activations (e.g., antenna thinning). Sparse sens-
ing can be used for source placement—a dual problem of sensor placement.
Source placement can be interpreted as the problem of choosing the best sub-
set of source (e.g., heater) locations from a large set of candidate source loca-
tions in order to generate a desired #eld (e.g., temperature).

Applications such as radar (or indoor localization) systems can bene#t
from sparse sensing since the number of antennas (or access points) as well
as their sampling rates can be signi#cantly reduced for a given target detection
probability or a given bearing/speed accuracy. Also radio astronomy systems
can be improved in the sense that the antenna layouts can be optimized for
the task at hand and the communications overhead in the network can be
reduced. Similarly, seismic data acquisition systems can be improved by op-
timally placing the sensors for microseismic event detection/localization or
for more general underground imaging applications. In sum, the proposed
sparse sensing schemes can be used to optimally gather data for a wide range
of signal processing problems.

2.4 Bene+ts

In this section, we will list the bene#ts of sparse sensing and answer the fol-
lowing questions: why and when is sparse sensing important?



2.5. Contrast with compressive sensing 27

1. Economical constraints (hardware costs): In many of the practical
applications such as environmental monitoring, radio astronomy, lo-
calization services, the sensing devices (including communications and
signal processing hardware; their maintenance) are expensive. In such
cases, it is of paramount importance to minimize the number of sens-
ing devices itself yet achieving the best possible inference performance.

2. Storage and physical space: If the data is not acquired smartly, then
theremight not be su.cientmemory to store the acquired data for sub-
sequent processing. In some applications, the physical space available
for sensor placement might also be very restrictive and limited. For ex-
ample, in thermal management of microprocessors there is not much
physical space available for temperature sensor placement.

3. Communications bandwidth: O"en the data acquired from the dis-
tributed sensors have to be transported to a central processing unit or
a server. !is consumes spectral resources, energy related to transmis-
sion and reception, and creates a need for a high data rate commu-
nication link. !e communications requirements can be signi#cantly
reduced through sparse sensing.

4. Processing and inference costs: !e data acquired has to be optimally
processed to solve a speci#c interference task. Solving the inference
problembecomesmore andmore di.cult (e.g., increased latency,more
computational capacity is required) as the data volume increases. Hence,
through sparse sensing the processing requirements can be seriously
diminished.

2.5 Contrast with compressive sensing

Sparse sensing di/ers from the broad research area of compressive sensing
—state of the art in the#eld of sensing cost reduction [Donoho, 2006b,Candès
andWakin, 2008]. Compressive sensing is an elegant protocol for sensing and
compressing data simultaneously. Although compressive sensing also aims at
gathering fewer samples or measurements, there are a number of major dif-
ferences with sparse sensing.
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1. Sparsity and signal processing task: In compressive sensing, the sig-
nal of interest x(t), is always considered sparse in some domain and
the main goal is sparse signal reconstruction. On the other hand, for
sparse sensing, the underlying signal does not necessarily have to be
sparse andmore general signal processing tasks can be considered. !is
can include sparse signal reconstruction, which we will discuss more in
detail in Chapter 4, but is not limited to it.

2. Samplers and compression: !e theory developed under the classi-
cal compressive sensing framework advocates random compression,
which is essential to provide recovery algorithms, reconstruction guar-
antees, and performance analyses. Although random compression in-
troduces robustness, it is di.cult to realize in practice, particularly for
applications requiring spatial sampling such as source localization, #eld
estimation, imaging, and cognitive radio sensing, to list a few. Sparse
sensing, on the other hand, is a deterministic type of data compression,
where the sparse vector w inside the sensing function gives a handle
on the compression factor that can be used for optimally designing the
sensing process.

3. Inference quality: !e inference quality in compressive sensing, i.e.,
the reconstruction quality is generally characterized by a probabilistic
measure on the space of random compression matrices. !is means
that the sensing function has to be constantly changed to achieve a de-
sired result. In contrast, in sparse sensing we use a #xed sensing func-
tion, which is designed based on the probabilistic nature of the noise.
!us, it is practically more meaningful.

!ese di/erences are summarized in Table 2.1.

2.6 Sparse sensing design

To design the optimal sensing operator (characterized by the vector w), we
need to know themodel of the physical world, and the de#nition of the infer-
ence task that we are trying to solve from the acquired data.!esemodels de-
scribe the uncertainty about the state of nature through a probability measure
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Compressed sensing Sparse sensing

Sparse x(t) needed not needed

Signal process-
ing task

sparse signal reconstruc-
tion

any statistical inference
task

Samplers random structured and deter-
ministic

Compression robust, but not always
practical

practical and control-
lable

Table 2.1: Relation to compressive sensing.

for the noise. !is uncertainty is captured by an inference performance met-
ric or a (task-speci#c) statistical risk denoted by a function f ∶ {0, 1}M → R,
which quanti#es the inference performance. Depending on the de#nition of
the inference task, the statistical risk can either be the estimation error, pre-
diction error, or detection probability, for example. Further, the risk can be
ensemble (thus data independent), where the average is computed under the
noise pdf or the risk can be instantaneous (thus data dependent) leading to
model-driven or data-driven sparse sensing, respectively.

In model-driven sparse sensing, the sensing function is designed to guar-
antee an average inference performance. Such risk functions can be com-
puted o2ine. !at is, the actual measurements (hence expensive hardware
equipments) are not needed and only the model information is used. On the
other hand, data-driven sparse sensing is appropriate for compressing already
available data, e.g., sketching or censoring [Rago et al., 1996,Msechu and Gi-
annakis, 2012]. !is requires actual measurements (along with the model in-
formation) to compute the sensing function, thus, it incurs a sensing cost.
In data-driven sparse sensing, the sensing function has to be designed for
each data realization, which is more suitable for handling model mismatch
and outliers. Since the assumption in this thesis is that the data is not yet
available, we will restrict ourselves to model-driven sparse sensing through-
out Chapters 3—6.
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We are interested in the design of the lowest-cost sensing structures that
guarantee a desired inference performance. Generally, this corresponds to
a sparsest w for a #xed statistical risk. Mathematically, it is a constrained
cardinality minimization problem:

argmin
w∈{0,1}M

∥w∥0
s.to f (w) ≤ λ, (P0)

where the !0-(quasi) norm refers to the number of non-zero entries in w,
i.e., ∥w∥0 ∶= ∣{m ∶ wm ≠ 0}∣ and the threshold λ speci#es the inference
accuracy. Clearly, λ controls the sample size (and, hence the related sensing
cost). Equivalently, the optimization problem in (P0) can also be formulated
as

argmin
w∈{0,1}M

f (w)
s.to ∥w∥0 = K ,

(P1)

where K is the desired number of samples. !e design problems (P0) and
(P1) are equivalent in the sense that with some threshold say λ∗, K samples
can be selected. !e problemof the form (P0)might be appropriate for certain
designs where the number K, is not known, in which case λ should be known.
Inmany applications, the number K might be known beforehand.!is might
happen, for example, when the sensors have already been purchased and we
would want to use all of them. When K is a priori known, then the problem
of the form (P1) is the obvious choice.

An optimal solution to (P0) and (P1), respectively, requires a combina-
torial search over all the 2M and (MK) possible combinations. !is quickly
becomes computationally intractable for modest values of M and K. For ex-
ample, withM = 100 candidate sensors, there are in the order of 1030 possible
choices whose direct enumeration is clearly impossible. !is is essentially due
to the Boolean constraint on the design variablew. In addition, the cardinal-
ity function ∥w∥0 is nonconvex in w.

Depending on the shape of the statistical risk f , with respect to the se-
lection variables, the above nonconvex Boolean optimization problem can be
solved in the following two ways as discussed next.
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2.6.1 Convex risk

!e discrete combinatorial problems (P0) and (P1) can be approximately solved
via convex optimization techniques assuming that there exists a risk f (⋅) that
is a convex function of its argument. A convex function is formally de#ned
as follows.

De+nition 2.1 (Convex function). Given a convex set W , the function f ∶
W → R is said to be convex, if it satis#es

f (tw1 + (1 − t)w2) ≤ f (tw1) + (1 − t) f (w2)
∀w1 ,w2 ∈W and 0 ≤ t ≤ 1.

In order to solve (P0) and (P1) via convex optimization, we use standard
convex relaxations: the discrete Boolean constraint w ∈ {0, 1}M is relaxed
to a continuous set (also its convex hull) 0 ≤ wm ≤ 1,m = 1, 2, . . . ,M, and
the !0-(quasi) norm can be approximated with the !1-norm, its best convex
approximation. By doing so, we can simplify the combinatorial problems (P0)
and (P1) to the convex optimization problems

argmin
w

∥w∥1
s.to f (w) ≤ λ,

0 ≤ wm ≤ 1,m = 1, 2, . . . ,M ,

(R0)

and
argmin

w
f (w)

s.to ∥w∥1 = K ,
0 ≤ wm ≤ 1,m = 1, 2, . . . ,M ,

(R1)

respectively. An approximate Boolean solution can then be recovered from
the solution of the above convex optimization problemeither by simple thresh-
olding or randomized rounding. Alternatively, the !0-(quasi) norm can be
approximated using the sum-of-logs ∑M

m=1 ln (wm + δ) with δ > 0, which
results in an iteratively weighted !1-norm optimization problem. Typically,
log-based heuristics result in a sparser solution, and thus better approximate
the !0-(quasi) norm.
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Speci#c instances of relaxed problem (R1) have been proposed in [Joshi
and Boyd, 2009] for estimation with linear and additive white Gaussian mod-
els. In this thesis, we provide a unifying theory and related algorithms for
more complicated (nonlinear) inference tasks. More speci#cally, we will seek
statistical risk functions f (w) that are convex functions on w ∈ [0, 1]M for
fundamental statistical inference problems like estimation, #ltering, and de-
tection.

2.6.2 Submodular risk

An alternative way to solve (P0) and (P1) is to look for a risk function that is
submodular in nature.!e notion of submodularity is based on the property
of diminishing returns. !at is, for example, adding an observation to a set
X bene#ts less than or the same as adding the same observation to one of the
subsets of X . Mathematically, submodularity can be de#ned as follows.

De+nition 2.2 (Submodular function). Given two sets X and Y such that for
every X ⊆ Y ⊆M and s ∈M/Y , the set function f ∶ 2M → R de#ned on the
subsets ofM is said to be submodular, if it satis#es

f (X ∪ {s}) − f (X ) ≥ f (Y ∪ {s}) − f (Y).
Further, if the submodular function is monotone nondecreasing, that is,

f (X ) ≤ f (Y) for all X ⊆ Y ⊆ M and normalized (i.e., f (∅) = 0), then
a greedy maximization of such a function is near-optimal and has a deter-
ministic approximation factor of (1 − 1/e), where e is the Euler’s number
[Nemhauser et al., 1978]. Hence, submodular risks are very useful to solve
(discrete) combinatorial optimization problems using low-complexity greedy
algorithms (see e.g., [Krause, 2008]). Some examples of submodular func-
tions that are used in sensing optimization for estimation and #ltering prob-
lems are frame potential [Ranieri et al., 2014], mutual information [Krause,
2008], and entropy [Krause, 2008].

Let us de#ne an index set X that is related to the sparse vector w as

X = {m ∣wm = 1,m = 1, 2, . . . ,M}.
!us, the setX is analogous (and maps uniquely) to the sparse vector w. As-
suming that there exists a submodular (task-speci#c) risk f (⋅), we can solve
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Algorithm 2.1 Submodular sensing [Krause, 2008]

1. Require X = ∅,K.
2. for k = 1 to K
3. s∗ = argmax

s∉X
f (X ∪ {s})

4. X ← X ∪ {s∗}
5. end
6. Return X

the sparse sensing problem of the form (P1) using a greedy algorithm, which
iteratively adds elements such that the uncertainty is reduced the most start-
ing from an empty set; see Algorithm2.1. Solving problems of the form (P0),
i.e., minimizing the number of samples subject to a performance constraint is
a straightforward adaptation of Algorithm 2.1, where the elements are added
starting from an empty set until a desired performance is achieved.

Submodular sensing is useful for discrete optimization problems, thus
only applicable for discrete sparse sensing and not for continuous sparse sens-
ing. Moreover, many inference performance metrics are not readily mono-
tone submodular, and their submodular surrogates (when available) do not
always lead to a reasonable inference performance. On the other hand,convex
optimization techniques can be used to design discrete as well as continuous
sparse sensing mechanisms. For these reasons, the focus will be on sparse
sensing design with convex risk functions.

2.7 Discussion

In this chapter we have kept the de#nition of the signal processing task and
hence the risk function (i.e., the inference performance metric) abstract. We
shall discuss more speci#cally di/erent risk functions f (w) for estimation,
#ltering, and detection in Chapter 3, Chapter 4, and Chapter 5, respectively.
We will provide algorithms to solve the continuous sparse sensing problem in
Chapter 6. In Chapters 3 till 6, the assumption is that the model information
is perfectly known and the data is not yet available. We design sparse sensing
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functions to acquire data in order to reach a desired average inference perfor-
mance. !erefore, the sparse sensing functions can be designed o2ine (i.e.,
actualmeasurements are not needed) using only the availablemodel informa-
tion. Once the sensing functions are designed, solving the inference problem
is not novel by itself and is based on classical signal processing tools.
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3.1 Introduction

Discrete sparse sensing mechanisms enable the design of sparse space-time
samplers that guarantee a desired estimation accuracy. Such problems are
encountered, for example, in sensor placement (or selection), where the best
subset of sensor locations (or measurements) are to be selected from a large
set of candidate sensor locations (or measurements) subject to a speci#c per-
formance constraint. Sensor selection/placement is pertinent to various sen-
sor network and data analysis applications like networkmonitoring, location-
aware services (e.g., target localization and tracking), #eld (e.g., heat, sound)
estimation, and environmental (e.g., climate, precipitation) monitoring, to
list a few. In such applications, we essentially solve an inverse problem, where
the goal is to infer the parameters that describe the underlying physical phe-
nomenon from a set of noisy measurements.!ese unknown parameters are
related to the measurements through a model. In this chapter we are inter-
ested in designing sparse sensing mechanisms to gather only the most infor-
mative data being aware of the data model as well as the estimation task. In
particular, the focus will be on nonlinear measurement models and develop-
ing risk functions that quantify the estimation accuracy.

3.1.1 Related prior works

A large volume of literature exists on sensor selection [Joshi and Boyd, 2009,
and references therein]. !e sensor selection problem is o"en formulated as
an optimization problem based on some well-known performance measures
from the optimal design of experiments [Ford et al., 1989, Pukelsheim, 1993].
For parameter estimation problems, the performancemeasures are related to
the error covariance matrix denoted by E = E{(θ − θ̂)(θ − θ̂)T}, and they
are optimized with respect to the selection variables. Here, θ and θ̂ denote
the unknown parameter and its estimate, respectively. Some of the popular
choices for the performance measures are:

1. A-optimality: sum of eigenvalues of E, i.e., tr{E}.
2. E-optimality: maximum eigenvalue of E, i.e., λmax{E}.
3. D-optimality: determinant of E, i.e., det{E}.



3.1. Introduction 37

All the abovemeasures are equally reasonable, although neitherof themcom-
pletely characterizes the error covariance. !ere is no general answer to the
question of how does one performance metric compare with the other.

Sensor selection for additive Gaussian linear models has been solved via
convex relaxation techniques in [Joshi and Boyd, 2009], where the matrix E
can be expressed in closed form (thus can be optimized). However, this is not
true in general (e.g., for nonlinear or non-Gaussian measurement models).
!e solution from [Joshi and Boyd, 2009] has also been applied to sensor
placement for power grid monitoring in [Kekatos et al., 2012].

Alternative greedy approaches exploiting the submodularity of the objec-
tive function [Krause et al., 2008b, Krause and Guestrin, 2007, Krause et al.,
2008a, Shamaiah et al., 2010, Yao et al., 1993, Ranieri et al., 2014] are also pro-
posed to solve the sensor selection for estimation [cf. §2.6.2 of Chapter 2].

Sensor selection for dynamical systems o"en referred to as sensor polling
or scheduling, is studied in [Masazade et al., 2012,Carmi, 2010,Fu et al., 2012].
All the above literature (in general) deals with measurements that are related
to additive Gaussian linearmodels. In [Kekatos and Giannakis, 2011], reliable
sensor selection based on the actual measurements to identify the outliers is
presented. A di/erent problem, yet related to sensor selection, is the problem
of identifying source-informative sensors, which is studied in [Schizas, 2013].

3.1.2 Contributions

We consider general scenarios where the measurements of the unknown pa-
rameter follow anonlinearmodel (unlike [Joshi andBoyd, 2009] for instance).
Nonlinear measurement models are frequently encountered in applications
like source localization, #eld estimation, or phase retrieval, to list a few. !e
error covariance matrix for nonlinearmodels is not always available in closed
form, andmore importantly it depends on the unknown parameter. Our #rst
contribution in the context of sensor selection is to leverage the additive prop-
erty of the inverse Cramér-Rao bound (CRB) or the Fisher information ma-
trix (FIM) for independent observations, and thus to express the performance
requirement as a convex set. !e CRB is a rigorous performance measure for
optimality, and it generalizes very well for nonlinear measurement models
(not necessarily in additive Gaussian noise). Although the #rst part of this
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chapter focuses on independent observations, we also extend the framework
to the case of nonlinear measurements in additive correlated Gaussian noise.
In order to design the sensing mechanism of interest, we do not need the ac-
tual measurements, and hence, our framework is also well-suited for solving
o2ine design problems (as it is data independent, but model driven).

!e proposed sensor selection framework is generic and can be applied
to any nonlinear estimation problem (linear being a special case). !e selec-
tion problem is formulated as the design of a sparse selection vector, which
is an !0-(quasi) norm nonconvex Boolean optimization problem. !e non-
convex sensor selection problem is relaxed using standard convex relaxation
techniques that can be e.ciently solved in polynomial time.

A sparsity-enhancing concave surrogate for the !0-(quasi) norm is also
proposed for sensor selection as an alternative to the traditional best convex
relaxation. !is is particularly advantageous when there are multiple (nearly)
identical sensor measurements.

To cope with large-scale problems, we further present a projected sub-
gradient algorithm. It is worth mentioning that the projected subgradient
algorithm allows a very easy distributed implementation. In essence, we seek
a sparse vector (i.e., a vector with many zeros and a few nonzero entries) that
determines the sensing pattern. Sparse sensing leads to energy-e.cient sam-
pling schemes. We illustrate the sensor selection problem using examples of
sensor placement for source localization.

3.2 Sensing nonlinear observations

We consider a generic nonlinear measurement model

xm = hm(θ , nm), m = 1, 2, . . . ,M , (3.1)

where xm is the mth spatial or temporal sensor measurement, θ ∈ RN is the
unknown parameter, {nm}Mm=1 describe the noise components, and the re-
gressors {hm(⋅, ⋅)}Mm=1 are (in general) nonlinear functionals. Let the vector
x = [x1 , x2, . . . , xM]T ∈ RM collect the measurements. !e likelihood of the
measurements p(x; θ) is the probability density function (pdf) of x param-
eterized by the unknown vector θ. Similarly, the likelihood of the measure-
ment pm(x; θ) is the pdf of xm parameterized by the unknown vector θ.
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We acquire the data x via the discrete sparse sensing mechanism that was
introduced in Chapter 2. !at is, we acquire data as

y = diagr(w)x = Φ(w)x ,
where Φ(w) = diagr(w) ∈ {0, 1}K×M is the sensing matrix characterized by
the selection vector

w = [w1 ,w2, . . . ,wM]T ∈ {0, 1}M .

Here, the variable wm = (0)1 indicates whether the mth sensor is (not) se-
lected. Note thatwe are interested in cases whereK ≪ M andK is not known.
!e reduced dimension data vector y ∈ RK is used instead of x ∈ RM to solve
the estimation problem.

Our goal is now to select the best subset (≥ N) of the M available (or
candidate) sensors, that is, to design the entries ofw as sparse as possible, such
that a certain accuracy on the estimate θ̂ is guaranteed. For nonlinear inverse
problems, the risk functions f (w) that quantify the estimation accuracy are
discussed next.

3.3 f (w) for estimation

For nonlinear estimation problems, the error covariance matrix does not ad-
mit a closed-form expression or their expressions might not be suitable for
numerical optimization, in general. !erefore, we will discuss a simpler and
weaker surrogate, which can be optimized instead of the error covariancema-
trix. More speci#cally, we will use the CRB as a substitute for the error covari-
ance matrix, however, we will not restrict ourselves to any speci#c estimator.
!e motivation behind using the CRB is twofold:

1. !eCRB is ameasure for the (local) identi#ability of the problem. More
speci#cally, a nonsingular FIM implies (local) solvability and a unique
estimate of θ, however, the converse is not necessarily true [Rothen-
berg, 1971]. !e sensor selection problem presented in this chapter
seeks a subset of sensors for which the FIM has full rank in some do-
main such that the solvability of the problem in that domain is always
ensured.
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2. Typically, the subset of selected sensors that yields a lower CRB also
yields a lowerMSE, and thus improves the performance of any practical
system.

!e CRB also has a very attractive mathematical structure resulting in a se-
lection problem that can be e.ciently solved using numerical optimization
techniques. Before we formally introduce the CRB, we make the following
assumption:

Assumption 3.1 (Regularity condition). !e log-likelihood of the measure-
ments satis#es the regularity condition, that is, E{∂ ln p(y; θ)/∂θ} = 0.

!e regularity condition in general holds for observations that belong to
the family of exponential pdfs, and it already includes a large number of dis-
tributions. !us, the proposed sparse sensing framework is valid as long as
the above assumption is true.

Under Assumption 3.1 —a well-known condition for the CRB to exist
[Kay, 1993], the covariance of any unbiased estimate θ̂ ∈ RN of the unknown
parameter satis#es the well-known inequality (also called the Cramér-Rao
lower bound) [Kay, 1993]

E{(θ − θ̂)(θ − θ̂)T} ≥ C(w , θ) = F−1(w , θ),
where the Fisher information matrix (FIM) is given by [Kay, 1993]

F(w , θ) = −E⎧⎪⎪⎨⎪⎪⎩
∂2

∂θ
( ln p(y; θ)

∂θ
)T⎫⎪⎪⎬⎪⎪⎭

= E
⎧⎪⎪⎨⎪⎪⎩(

∂ ln p(y; θ)
∂θ

)(∂ ln p(y; θ)
∂θ

)T⎫⎪⎪⎬⎪⎪⎭ ∈ R
N×N ,

(3.2)

and C(w , θ) is the CRB matrix.
We now introduce another assumption.

Assumption 3.2 (Independent observations). "e observations {xm}Mm=1 are
a sequence of independent random variables, which depend on the unknown
parameter θ, i.e., we have a class of pdfs that satisfy the relation p(x ; θ) =
∏M

m=1 pm(x; θ).
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Under Assumption 3.2, the selection variable wm modi#es the log-likeli-
hood of the selected measurements as

ln p(y; θ) = ln M∏
m=1

pm(x; θ)wm =
M∑
m=1

wm ln pm(x; θ), (3.3)

where the pdf of the selected measurements is of reduced dimension, i.e., it
does not include the measurements that are set to zero. Using (3.3) in (3.2),
the FIM F(w , θ), can be explicitly expressed as a linear function of w as

F(w, θ) = M∑
m=1

wmFm(θ), (3.4)

where

Fm(θ) = −E
⎧⎪⎪⎨⎪⎪⎩
∂2

∂θ
( ln pm(x; θ)

∂θ
)T⎫⎪⎪⎬⎪⎪⎭

= E
⎧⎪⎪⎨⎪⎪⎩(

∂ ln pm(x; θ)
∂θ

)(∂ ln pm(x; θ)
∂θ

)T⎫⎪⎪⎬⎪⎪⎭ ,
(3.5)

is theN×N FIMof themth (local) measurement. In otherwords, (3.4)means
that every independentmeasurement contributes to the informationmeasure
and we use the Boolean selection parameter to choose the most informative
sensors (or measurements). Note that the FIM for nonlinearmodels depends
on the unknown vector θ.

One speci#c example that o"en occurs in practice is the case where the
observations {xm}Mm=1 , are related through the following additive Gaussian
nonlinear model given by

xm = hm(θ) + nm , m = 1, 2, . . . ,M , (3.6)

with nm ∼N (0, σ2m). It is easy to verify that for (3.6) the FIM (3.5) simpli#es
to

Fm(θ) = 1

σ2m
(∂hm(θ)

∂θ
)(∂hm(θ)

∂θ
)T .
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Remark 3.1 (Additive Gaussian linear model).
As a special case, when the measurement process is linear, we have xm = hTmθ +
nm ,m = 1, 2, . . . ,M, i.e., hm(θ , nm) ∶= hTmθ + nm with hm ∈ RN being the
regressor and nm ∼ N (0, σ2m). "e computation of the FIM for a linear model
is straightforward, and is given by

F(w) = M∑
m=1
(wm/σ2m)hmhTm .

"e CRB for linear models in additive Gaussian noise is equal to the mean
squared error (MSE), and more importantly it is independent of the unknown
vector θ.

In what follows, we will develop several scalar risk functions f (w) to-
gether with the corresponding accuracy threshold λ that can be used in (P0)
to design the sparse sensing operator as discussed in Chapter 2.

We constrain the estimation error ε = θ̂ − θ to be within an origin-
centered circle of radius Re with a probability higher than Pe , i.e.,

Pr(∥ε∥2 ≤ Re) ≥ Pe , (3.7)

where the values of Re and Pe de#ne the accuracy required and are assumed
to be known. A higher accuracy level is obtained by reducing Re and/or in-
creasing Pe . !is metric is used in several occasions as an accuracy measure
(e.g., see [Cover and!omas, 2012,Gustafsson and Gunnarsson, 2005,Wang
et al., 2009]). We next discuss two popular performance measures from the
design of experiments that satisfy the above requirement.

Trace constraint

!e risk function that satis#es the accuracy requirement in (3.7) is

f (w) ∶= tr{C(w, θ)} = tr⎧⎪⎪⎨⎪⎪⎩(
M∑
m=1

wmFm(θ))
−1⎫⎪⎪⎬⎪⎪⎭

with a su.cient condition (see Appendix 3.A)

tr
⎧⎪⎪⎨⎪⎪⎩(

M∑
m=1

wmFm(θ))
−1⎫⎪⎪⎬⎪⎪⎭ ≤ λtr = (1 − Pe)R

2
e . (3.8)
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!is measure is related to the A-optimality or the average-variance criterion,
which restricts the sum of the semi-axes of the con#dence ellipsoid to λtr.

Minimum eigenvalue constraint

Another risk function that satis#es the accuracy requirement in (3.7) is

f (w) ∶= λmax{C(w , θ)}
with a su.cient condition

λmin{F(w , θ)} ≥ λeig = N

R2
e

( 1

1 − Pe ) ,
where λeig is derived in [Wang et al., 2009] (see also Appendix 3.A).!is mea-
sure is related to the E-optimality or the worst-case error, which restricts the
semi-major axis of the con#dence ellipsoid to λeig. !e inequality constraint
λmin{F(w , θ)} ≥ λeig can be equivalently expressed as the following linear
matrix inequality (LMI):

M∑
m=1

wmFm(θ) − λeigIN ⪰ 0N . (3.9)

In other words, we put a lower bound on each eigenvalue of the matrix F .
!e above performance measures depend on the unknown parameter

θ. In practice, the unknown parameter θ has a physical meaning and takes
values within a certain domain denoted by U . For example, in the case of
direction-of-arrival estimation, U is the sector where the source is expected
or for target localization it is the surveillance area where the target resides.
Since the FIM for nonlinear models depends on the unknown θ, we propose
to constrain every point within the domain U .

Remark 3.2. "e trace constraint, which can also be represented by LMIs, has a
larger feasible set as compared to the minimum eigenvalue constraint. However,
the resulting sensor selection problem is computationally less attractive com-
pared to the minimum eigenvalue constraint (as we show later on in §3.5.5).

For the aforementioned reason, we focus on the minimum eigenvalue
(LMI) constraint from now on. However, either one of the two performance
constraints can be used.
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3.4 Problem statement

Having introduced the risk functions we can now formally state the problem.

Problem 3.1 (Discrete sparse sensing for estimation).
Given the likelihoods of the measurements, pm(x; θ), m = 1, 2, . . . ,M, and a
desired inference performance λeig , #nd a sparsest vectorw ∈ {0, 1}M that selects
the minimum number of most informative sensors satisfying the performance
measure∑M

m=1wmFm(θ) − λeigIN ⪰ 0N , ∀θ ∈ U .
Mathematically, the discrete sparse sensing problem (P0) introduced in

Chapter 2 for estimation task specializes to

w⋆ = argmin
w

∥w∥0 (3.10a)

s.to
M

∑
m=1

wmFm(θ) − λeigIN ⪰ 0N ,∀θ ∈ U , (3.10b)

w ∈ {0, 1}M . (3.10c)

!e threshold λeig imposes the accuracy requirement. !e threshold λeig is
also the sparsity-inducing parameter, where λeig → 0 implies a sparser solu-
tion. Alternatively, the sensor selection problem can also be expressed as (P1)
described in Chapter 2 when K is known.

Suppose the domain U consists of D points, obtained by gridding the en-
tire domain (where the parameter is expected) at a certain resolution. !e re-
sulting multiple LMI constraints can then be stacked together as a single LMI
constraint. Let us consider the domain U = {θ1 , θ2, . . . , θD} with ∣U ∣ = D.
!e constraints in (3.10b) can then be equivalently expressed as a single LMI
constraint written as∑M

m=1wmFm − λeigIDN ⪰ 0DN , where

Fm = diag(Fm(θ1), Fm(θ2),⋯, Fm(θD)) ∈ SDN

for m = 1, 2, . . . ,M. Note that the FIM a"er gridding is independent of θ.
Henceforth, we denote this simply by Fm (not explicitly as a function of θ).
!e computational complexity of the resulting solvers depends on the number
of grid points, which is due to the fact that we do not exactly know where the
true parameter is located and because we are dealing with a nonlinear system
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model. We make the following remarks to indicate some scenarios where the
computational burden due to gridding can be reduced.

Remark 3.3 (Worst-case constraints).
If for every θ ∈ U , there exists some θ̃ ∈ Uworst ⊂ U such that

λmin{F(w, θ̃)} ≤ λmin{F(w , θ)}, ∀w ∈ {0, 1}M ,

then it is su$cient to constrain the performance for only the worst-case set
Uworst instead of U . "is property can be used as a guideline for gridding.

Remark 3.4 (Bayesian CRB constraint).
In a Bayesian setting, when prior information of the unknown parameter θ is
available, this additional knowledge can be incorporated in the CRB. "e re-
lated informationmatrix is o&en called the Bayesian informationmatrix (BIM)
[Van Trees, 2004], and it is independent of the unknown parameter (hence,
gridding is not needed). "e BIM is given by

FB(w) = Jp +Eθ{F(w , θ)},
where Jp is the prior information matrix Jp = −Eθ { ∂

∂θ ( ln p(θ)
∂θ )T} with the

(log) prior ln p(θ), and the expectation Eθ{⋅} is under the pdf p(θ). "e LMI
constraint in (3.9) for the Bayesian setting will then be

Jp + M

∑
m=1

wmEθ{Fm(θ)} ⪰ λeigIN . (3.11)

"e prior information typically comes from the dynamics, previous measure-
ments, or combining other available measurements.

In order to optimize the Bayesian CRB, we need to know the distribution
of the unknown parameter.

3.5 Solvers

As discussed in Chapter 2, the optimization problem (3.10) that is of the form
(P0) is nonconvex in w. We next present a number of solvers based on the
relaxed convex problem (R0) presented in Chapter 2, which can be solved
e.ciently in polynomial time.
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3.5.1 Convex approximation based on !1-norm

A computationally tractable (suboptimal) solution is to use the traditional
best convex surrogate for the !0-(quasi) norm, namely, the !1-norm. !e !1-
norm is known to represent an e.cient heuristic for the !0-(quasi) norm
optimization with convex constraints especially when the solution is sparse
[Polyak et al., 2013]. Such relaxations are well-studied for problems with lin-
ear constraints in the context of compressed sensing (CS) and sparse signal
recovery [Donoho, 2006a]. !e nonconvex Boolean constraint in (3.10c) is
further relaxed to the convex box constraint [0, 1]M . !e constraint (3.10b) is
convex on w ∈ [0, 1]M .

!e relaxed optimization problem is given as the following problem

ŵ = argmin
w ∈RM

∥w∥1 (3.12a)

s.to
M

∑
m=1

wmFm − λeigIDN ⪰ 0DN , (3.12b)

0 ≤ wm ≤ 1, m = 1, 2, . . . ,M . (3.12c)

Due to the positivity constraint, the objective function ∥w∥1 will simply be
an a.ne function 1TMw. !e optimization problem in (3.12) is a standard
semide#nite programming (SDP) problem in the inequality form, which can
be e.ciently solved in polynomial time using interior-point methods [Boyd
and Vandenberghe, 2004], for instance. An implementation of the interior-
point method for solving SDP problems in the inequality form is typically
based on Newton’s method using an approximating barrier function. A brief
description of the projected Newton’s method is provided in Appendix 3.B,
which we use to analyze the computational complexity of the relaxed convex
problem (3.12).

Remark 3.5 (Complexity per iteration).
"e computational cost involved during each iteration is as follows [Boyd and
Vandenberghe, 2004, p. 619]. "e matrices {Fm}Mm=1 have a block-diagonal
structure with D blocks. Forming the matrix S = ∑M

m=1wmFm − λeigIDN costs
O(DMN2)2ops. Computing S−1F i via Cholesky factorization costsO(MDN3)
2ops (for each i); the Hessian matrix is computed via the inner product of the
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matrices S−1F i and S
−1F j, which costsO(DM2N2) (for each i , j pair). Finally,

the Newton step is computed via Cholesky factorization costingO(DM3) 2ops,
and the projection costsO(M) 2ops. Assuming that M ≫ N, the overall com-
putational complexity per iteration of the projected Newton’s algorithm is then
O(DM3).

Implementations of the interior-point methods are easily available in the
formofwell-known toolboxes like YALMIP [Lo3erg, 2004], SeDuMi [Sturm,
1999], and CVX [Grant and Boyd, 2012].

3.5.2 Projected subgradient algorithm

!e second-order Newton’s method [cf. Appendix 3.B] is computationally
intensive when the number of candidate sensors is very large (M ≫ 1000, for
example). To circumvent this problem, we propose a subgradient algorithm.
!e projected subgradient algorithm is a #rst-order method that is attractive
for large-scale problems as each iteration is much cheaper to process.

!e subgradientmethod is typically used for optimizations involving non-
di/erentiable functions [Boyd et al., 2003, Bertsekas, 1999]. !e subgradient
method is a generalization of the gradient method for nonsmooth and non-
di/erentiable functions, such as, the !1-norm and the minimum eigenvalue
constraint functions. We next derive the projected subgradient algorithm.

!e relaxed sensor selection problem in (3.12) can be equivalently ex-
pressed as

argmin
w

1TMw (3.13a)

s.to feig(w) ≥ λeig, (3.13b)

w ∈W , (3.13c)

where feig(w) ∶= λmin{∑M
m=1wmFm} is the constraint function in (3.12b), and

the set
W = {w ∈ RM ∣ 0 ≤ wm ≤ 1,m = 1, 2, . . . ,M}

denotes the box constraints in (3.12c).
!e objective 1TMw is a.ne, so a subgradient of the objective is the all-

one vector 1M . Let gk ∈ ∂ feig(wk) denote a subgradient of the constraint
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function feig(w) evaluated at w = wk . Here, the set ∂ feig(wk) denotes the
subdi/erential of feig(w) towards w evaluated at w = wk . To compute gk , we

express the constraint function feig(wk) as
feig(wk) = inf

∥v∥2=1
vT ( M

∑
m=1

wk
mFm)v .

!e computation of a subgradient is straightforward, and is given by

gk = [(vkmin)TF1v
k
min,⋯, (vkmin)TFmv

k
min]T ∈ ∂ feig(wk), (3.14)

where vkmin is the eigenvector corresponding to the minimum eigenvalue of

∑M
m=1w

k
mFm. !e minimum eigenvalue and the corresponding eigenvector

can be computed using a low-complexity iterative algorithm, for example, the
power method (see Appendix 3.C) or using the standard eigenvalue decom-
position [Golub and Van Loan, 1996]. Let the projection of a point onto the
setW be denoted by the operator PW(⋅), which can be expressed element-
wise as

[PW(w)]m =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if wm ≤ 0,
wm if 0 < wm < 1,
1 if wm ≥ 1.

(3.15)

!e projected subgradient algorithm then proceeds as follows:

wk+1 =
⎧⎪⎪
⎨
⎪⎪⎩

PW(wk − αk1M) if feig(wk) ≥ λeig ,PW(wk + αkg k) if feig(wk) < λeig .
(3.16)

In other words, if the current iterate wk is feasible (i.e., feig(wk) ≥ λeig), we
update w in the direction of a negative objective subgradient, as if the LMI
constraints were absent; if the current iterate wk is infeasible (i.e., feig(wk) <
λeig), we updatew in the direction of a subgradient gk associatedwith the LMI
constraints. A"er the update is computed, the iterate is projected onto the
constraint setW usingPW(⋅). When the kth iterate is feasible, a diminishing
nonsummable step size αk = 1/√k is used. When the iterate is not feasible
Polyak’s step size αk = ( feig(wk) + α0)/∥gk∥22 is used, where we adopt the
optimal value for α0 ∶= 1TMw⋆when ∥w∥0 is known (i.e., the number of sensors
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Algorithm 3.1 Projected subgradient algorithm

1. Initialize iteration counter k = 0, wk = 1M , g
k = 0, kmax,

α0, and λeig.
2. for k = 0 to kmax

3. compute feig(wk) = λmin{∑M
m=1w

k
mFm}

4. update
5. if feig(wk) ≥ λeig
6. wk+1 = PW(wk − (1/√k)1M)
7. elseif feig(wk) < λeig
8. compute gk according to (3.14)

9. wk+1 = PW(wk + feig(wk)+α0
∥g k∥22

gk)
10. end
11. end
12. ŵ = wkmax

to be selected is known). If this is not known, then we approximate it with
α0 ∶= f kbest + γ, where γ = 10/(10 + k), and f kbest = min{ f k−1best , 1

T
Mw

k} [Boyd
et al., 2003]. !e algorithm is terminated a"er a speci#ed maximum number
of iterations kmax. Finally, the estimate is denoted by ŵ = wkmax .

!e convergence results of the subgradient method for the constrained
optimization (i.e., without the projection step) are derived in [Boyd et al.,
2003]. Since the projection onto a convex set is nonexpansive [Bertsekas,
1999], it does not a/ect the convergence.!e projected subgradient algorithm
is summarized as Algorithm 3.1.

Remark 3.6 (Complexity per iteration).
We #rst form the matrix∑M

m=1wmFm , which costsO(DMN2) 2ops. "e min-
imum eigenvalue and the corresponding eigenvector can be computed using
the power method at a cost of O(DN2) 2ops [Golub and Van Loan, 1996].
Forming the vector g costs O(DMN2) 2ops, computing its norm costs O(M)
2ops, and the update and projection together cost O(M) 2ops. Assuming that
M ≫ N as earlier, the computational cost of the projected subgradient algo-
rithm isO(DMN2), which is much lower than the complexity of the projected
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Newton’s method.

A distributed implementation of the projected subgradient algorithm is
very easy. A simple distributed averaging algorithm (e.g., [Xiao and Boyd,
2004]) can be used to compute the sum of matrices ∑M

m=1wmFm. !e min-
imum eigenvalue and the corresponding eigenvector can then be computed
using power iterations at each node independently. !e update step (3.16),
the subgradient vector g, and the projection are computed coordinatewise
and are already distributed.

Subgradient methods are typically very slow compared to the interior-
point method involving Newton iterations, and subgradient methods typi-
cally require a few hundred iterations. Newton’s method typically requires in
the order of ten steps. On the other hand, unlike the projected subgradient
method, Newton’smethod cannot be easily distributed, and incurs a relatively
high complexity per iteration due to the computation and storage of up to
second-order derivatives. Depending on the scale of the problem and the re-
sources available for processing one could choose between the subgradient or
Newton’s algorithm.

3.5.3 Concave surrogate based on sum-of-logarithms

!e !1-norm is customarily used as the best convex relaxation for the !0-
(quasi) norm. However, the intersection of the !1-norm ball (or an a.ne sub-
space) with the positive semi-de#nite cone (i.e., the LMI constraint) is not
always a unique point as shown in the following!eorem.

-eorem 3.1 (Uniqueness). "e projection of a pointw ∈ [0, 1]M onto a convex
LMI constraint set ∑M

m=1wmFm − λeigIDN ⪰ 0DN under the !1-norm is not
always unique.

Proof. !e proof follows from the fact that the !1-norm is not strictly convex,
and from the linearity of the constraint set. Let us consider an example with
M = 2 (w.l.o.g.), and F1 = F2 ⪰ λeigIDN . In other words, the observations are
identical. In this case, the extreme points of the !1-norm ball, i.e., ŵ1 = [1, 0]T
and ŵ2 = [0, 1]T are two example solutions. Moreover, since the solution set
of a convexminimization problem is convex, τŵ1+(1−τ)ŵ2 is also a solution
for any 0 < τ < 1, which gives an in#nite number of solutions to the relaxed
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optimization problem (3.12). For such cases, the !1-norm relaxation might
not result in a sparse solution.

To improve upon the !1-norm solution due to its nonuniqueness following
from!eorem 3.1, we propose an alternative approximation to the !0-(quasi)
norm which also results in fewer selected sensors. Instead of relaxing the !0-
(quasi) norm with the !1-norm, using a nonconvex surrogate function can
yield a better approximation. It is motivated in [Candès et al., 2008] that the
logarithm of the geometric mean of its elements can be used as an alternative
surrogate function for linear inverse problems in CS. Adapting this to our
sensor selection problem, we arrive at the optimization problem

argmin
w ∈RM

M

∑
m=1

ln (wm + δ) (3.17a)

s.to
M

∑
m=1

wmFm − λeigIDN ⪰ 0DN , (3.17b)

0 ≤ wm ≤ 1, m = 1, 2, . . . ,M , (3.17c)

where δ > 0 is a small constant that prevents the cost from tending to−∞.!e
cost (3.17a) is concave, but since it is smooth w.r.t. w, iterative linearization
can be performed to obtain a local minimum [Candès et al., 2008]. !e #rst-
order approximation of ln (wm + δ) around wm[i − 1] + δ results in

ln (wm + δ) ≤ ln (wm[i − 1] + δ) + wm −wm[i − 1]
wm[i − 1] + δ .

Here, i denotes the iteration index. Instead of minimizing the original cost,
themajorizing cost (second term on the right-hand side of the above inequal-
ity) can be optimized to attain a local minimum. More speci#cally, the opti-
mization problem (3.17) can be iteratively driven to a local minimum using
the iterations

ŵ[i] = argmin
w ∈RM

M

∑
m=1

wm

ŵm[i − 1] + δ (3.19a)

s.to
M

∑
m=1

wmFm − λeigIDN ⪰ 0DN , (3.19b)

0 ≤ wm ≤ 1, m = 1, 2, . . . ,M . (3.19c)
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Algorithm 3.2 Sparsity-enhancing iterative algorithm

1. Initialize the iteration counter i = 0, the weight vector
u[0] = [u1[0], u2[0], . . . , uM[0]]T = 1M , δ, and imax.

2. for i = 0 to imax

3. solve

ŵ[i] = argmin
w ∈RM

u[i]Tw (3.18a)

s.to
M

∑
m=1

wmFm − λeigIDN ⪰ 0DN , (3.18b)

0 ≤ wm ≤ 1,m = 1, 2, . . . ,M . (3.18c)

4. update um[i + 1] = (δ + ŵm[i])−1, for each m =
1, 2, . . . ,M.

5. end
6. ŵ = ŵ[imax].

!e iterative algorithm is summarized as Algorithm 3.2. Each iteration in
(3.19) solves a weighted !1-norm optimization problem. !e weight updates
force the small entries of the vector ŵ[i] to zero and avoid inappropriate sup-
pression of larger entries. !e parameter δ provides stability, and guarantees
that the zero-valued entries of ŵ[i] do not strictly prohibit a nonzero esti-
mate at the next step. Finally, the estimate is given by ŵ = ŵ[imax], where
imax is the speci#ed maximum number of iterations.

Remark 3.7 (Sparsity-enhancing projected subgradient algorithm).
"e projected subgradient algorithm can be adapted to #t into the sparsity-
enhancing iterative algorithm as well. "e optimization problem (3.18) is then
replaced with the following update equations:

wk+1[i] = ⎧⎪⎪⎨⎪⎪⎩
PW(wk[i] − αku[i]) if feig(wk[i]) ≥ λeig ,PW(wk[i] + αkg k[i]) if feig(wk[i]) < λeig ,

where we solve a number of iterations (inner loop) of the projected subgradient
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Algorithm 3.3 Randomized rounding algorithm

1. Generate L candidate estimates of the form wm,l = 1 (l =
1, 2, . . . , L) with a probability ŵm (or wm,l = 0 with a prob-
ability 1 − ŵm) for m = 1, 2, . . . ,M.

2. De#new l = [w1,l , . . . ,wM,l]T and the index set of the can-
didate estimates satisfying the constraints as

Ω ≜ {l ∣ λmin{F(w l , θ)} ≥ λeig,∀θ ∈ U , l = 1, 2, . . . , L}.
3. If the set Ω is empty, go back to step 1.
4. !e suboptimal Boolean estimate is the solution to the op-

timization problem

ŵbp = argmin
l∈Ω

∥w l∥1.

algorithm within the ith iteration (outer loop) of Algorithm 3.2. Here, the kth
iterate of the inner loop in the ith outer loop is denoted as (⋅)k[i].

From the solution of the relaxed optimization problem, the approximate
Boolean solution can be obtained using randomization techniques, as de-
scribed next.

3.5.4 Randomized rounding

!e solution of the relaxed optimization problem is used to compute the sub-
optimal Boolean solution for the selection problem. A straightforward tech-
nique that is o"en used is the simple rounding technique, inwhich the Boolean
estimate is given by round(ŵm), m = 1, 2, . . . ,M , where we de#ne ŵ =[ŵ1 , ŵ2, . . . , ŵM]T , and the round(⋅) operator rounds its arguments towards
the nearest integer. However, there is no guarantee that the Boolean estimates
obtained from the rounding technique always satisfy the performance con-
straints. Hence, we propose a randomized rounding technique, where the
suboptimal Boolean estimates are computed based on random experiments
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guided by the solution from the SDP problem (3.12) or the iterative version in
(3.19). !e randomized rounding technique is summarized as Algorithm 3.3.

3.5.5 Trace and determinant constraints

In this section, we will discuss the relaxed sensor selection problem based on
the optimization criteria related to A-optimality and D-optimality.

Trace constraint

!e relaxed sensor selection problem with the scalar trace constraint is given
as follows

argmin
w ∈RM

∥w∥1
s.to tr

⎧⎪⎪⎨⎪⎪⎩(
M

∑
m=1

wmFm(θ))
−1⎫⎪⎪⎬⎪⎪⎭ ≤ λtr, ∀θ ∈ U ,

0 ≤ wm ≤ 1, m = 1, 2, . . . ,M .

(3.20)

!e trace constraint in (3.20) is convex on w ∈ [0, 1]M ; this is easier to verify
when the above trace constraint is expressed as an LMI [Boyd and Vanden-
berghe, 2004, p. 387]. !e optimization problem (3.20) is a convex problem,
and can be cast as an SDP:

argmin
w∈RM , x∈RN

∥w∥1
s.to [ ∑M

m=1wmFm(θ) en
eTn xn

] ⪰ 0N+1 , n = 1, 2, . . . ,N , ∀θ ∈ U ,
1TNx ≤ λtr ,
xn ≥ 0, n = 1, 2, . . . ,N ,

0 ≤ wm ≤ 1, m = 1, 2, . . . ,M ,

(3.21)

where x = [x1 , x2, . . . , xN]T ∈ RN is the auxiliary variable and en is the nth
unit vector in RN .
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In addition to the box constraints, the optimization problem (3.21) has N
LMI constraints (of size N + 1) for every point in U and N + 1 inequality con-
straints, while (3.12) has only one LMI constraint (of size N) for every point inU . Hence, solving (3.21) is computationally more intense than solving (3.12).

Determinant constraint

Another popular scalar performance measure that quanti#es the estimation
accuracy is the determinant (product of eigenvalues) constraint. !is mea-
sure is related to the D-optimality. !e relaxed sensor selection problemwith
the determinant constraint is given as follows

argmin
w ∈RM

∥w∥1
s.to ln det{ M

∑
m=1

wmFm(θ)} ≥ λdet,∀θ ∈ U ,
0 ≤ wm ≤ 1, m = 1, 2, . . . ,M ,

(3.22)

where the threshold λdet speci#es the desired mean radius of the con#dence
ellipsoid (see Appendix 3.A). !e log-determinant constraint is a concave
function of w ∈ [0, 1]M . Note that although the constraint

ln det{ M

∑
m=1

wmFm(θ)} ≥ λdet
is an indication of the performance of the estimator, it is not a su.cient con-
dition for (3.7).

!e relaxed sensor selection problem with the scalar (trace or determi-
nant) constraints can be solved with either one of the two proposed approxi-
mations of the cardinality cost, i.e., the !1-norm or log-based concave surro-
gate.

3.6 Numerical example: sensor placement

Localization is an important and extensively studied topic in wireless sen-
sor networks (WSNs). Target localization can be performed using a plethora
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of algorithms [Gustafsson and Gunnarsson, 2005,Gezici et al., 2005, Patwari
et al., 2005] (and references therein), which exploit inter-sensor measure-
ments like time of arrival (TOA), time di/erence of arrival (TDOA), angle
of arrival (AOA), or received signal strength (RSS). !e performance of any
location estimator depends not only on the algorithm but also on the place-
ment of the anchors (sensors with known locations). Sensor placement is a
key challenge in localization system design, as certain sensor constellations
not only deteriorate the performance, but also result in ambiguity or identi-
#ability issues [Chepuri et al., 2013b].

!e sensor placement problem can be interpreted as the problem where
we divide a speci#c sensor areaS intoM grid points and select the best subset
of locations from these grid points. Here, the selected sensors are deemed the
best, if they guarantee a certain prescribed accuracy on the location estimates
for a target within a speci#c target area U . We consider a two-dimensional
network with one target located in the target area U and M possible sensors
located at theM grid points.

!e absolute positions of the sensor grid points are known, hence, the
considered sensors are commonly referred to as anchor nodes. Let the co-
ordinates of the target and the mth anchor be denoted by the 2 × 1 vectors
θ = [θ1, θ2]T and am = [am,1 , am,2]T , respectively. Here, θ is assumed to be
unknown, but known to be within U . We next illustrate the developed theory
with an example.

Let the pairwise distance between the target and the mth anchor be de-
noted by dm = ∥θ − am∥2. In practice, the pairwise distances are obtained
using time of arrival measurements of the ranging signals and they are noisy.
!e rangemeasurements typically follow an additive Gaussian nonlinearmo-
del (see [Wang et al., 2009, § II-B], for example), as given by

ym = dm + nm , m = 1, 2, . . . ,M , (3.23)

where nm ∼N (0, σ2m) is the noise with σ2m = σ
2/d−ηm . Here, σ2 is the nominal

noise variance, and η is the path-loss exponent. We can now write the FIM
for the localization problem asC−1 = F(w, θ) = ∑M

m=1wmFm(θ), where using
(3.5) we can compute

Fm(θ) ∶= (θ − am)(θ − am)T
σ2m∥θ − am∥22 .
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We apply the proposed sensor selection problem to sensor placement de-
sign for target localization. To test the proposed algorithms, we use CVX
[Grant and Boyd, 2012]. CVX internally calls SeDuMi [Sturm, 1999], a MAT-
LAB implementation of the second-order interior-point methods.

We consider the scenario shown in Figure 3.1(a) with M = 80 sensors
to illustrate the sensor placement problem. Recall that the problem here is
to choose the best sensor positions out of M = 80 available ones, such that
a certain speci#ed localization accuracy is achieved. We grid the target (or
surveillance) area of 15 × 15 m2 uniformly with a resolution of 1.75 m along
both horizontal and vertical directions as shown in Figure 3.1(a) to obtain the
set U containing D = 81 points.

!e original nonconvex optimization problem is relaxed to an !1-norm
optimization problem. Alternatively, a concave surrogate function can be
used to further enhance the sparsity. !e optimization problemwith the con-
cave surrogate cost function is iteratively solved by a.nely scaling the ob-
jective based on the solution from the previous iteration. For the sparsity-
enhancing iterative Algorithm 3.2, we use imax = 10 and δ = 10−8.!e number
of randomizations used in the randomized roundingAlgorithm 3.3 is L = 100.
As observed in the simulations, a solution is typically found in the #rst batch
itself, and a few tens of candidate entries are su.cient. We use the following
parameters for the simulations: η = 2, σ2 = 1.78 × 10−5, and Pe = 0.9.

Figure 3.1 shows the sensor selection for the distance (range) measure-
ment model. !e thresholds are computed with Re = 20 cm and Pe = 0.9.
!e selection shown in Figure 3.1(a) is based on Algorithm 3.2 with random-
ized rounding to recover the approximate Boolean solution. !e selection
results based on the !1-norm cost with the minimum eigenvalue constraint is
shown in Figure 3.1(b). Figure 3.1(b) also shows that the solution based on
the concave surrogate cost function with theminimum eigenvalue constraint
leads to a sparser solution. !e selection results based on the trace constraint
obtained by solving (3.20) are illustrated in Figure 3.2. !e sensors from the
same region (close to the #lled boxes in Figure 3.1(a)) are selected with either
one of the two constraints. !e su.cient trace constraint has a larger feasible
set compared to the stronger su.cient minimum eigenvalue constraint. As a
result, for the considered scenario, the minimum eigenvalue constraint leads
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Figure 3.1: Sensor placement for target localization with M = 80 candidate sensor
positions. !e thresholds are computed using Re = 20 cm and Pe = 0.9. (a) Selec-
tion based on sparsity-enhancing iterations with minimum eigenvalue constraints.
!e Boolean solution is recovered using randomized rounding. (b)Minimum eigen-
value constraints with !1-norm and concave surrogate based relaxations. Random-
ized rounding is applied on the concave surrogate based solution.
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Figure 3.2: !1-norm based selection with the trace and eigenvalue constraints. !e
thresholds are computed using Re = 20 cm and Pe = 0.9.

to a slightly larger !1-norm compared to the trace constraint. Nevertheless,
for the considered example, the obtained solutions (i.e., samplers) are sparse
in nature. Note that solutions from [Joshi and Boyd, 2009, Masazade et al.,
2012] cannot be directly applied to such nonlinear models without an explicit
linearization.

!e optimization problem (3.12) is also solved using the projected sub-
gradient method summarized in Algorithm 3.1 with kmax = 1000 iterations.
!e solution of the projected subgradient is shown in Figure 3.3(a).

!e convergence of the projected subgradient algorithm with respect to
the solution from SeDuMi denoted by fopt is shown in Figure 3.3(b). Even
though the convergence of the projected subgradient algorithm is very slow,
the estimated support a"er a few hundred iterations can be used along with
randomized rounding to further re#ne the solution.!e computation time on
the same computer for the projected subgradient algorithm that solves (3.12)
is around 8.84 seconds for 1000 iterations while SeDuMi takes around 4.03
seconds to solve the SDP problem in (3.12).

A practical estimator does not meet the CRB in some cases (for instance
at low signal-to-noise ratios or #nite data records). !erefore, the sensors se-
lected with a speci#c Re would lead to an underestimate of the desired MSE.
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Figure 3.3: (a)!e projected subgradient algorithm used to solve (3.12). (b) Perfor-
mance of the projected subgradient algorithm. !e thresholds are computed using
Re = 20 cm and Pe = 0.9.

We can account for this gap by choosing Re appropriately. To this end, we give
the entire solution path of the selected sensors for di/erent values of Re in
Figure 3.4(a). !e solution path can be e.ciently computed by increasing Re .
!e sensors corresponding to some Re can then be used to meet the desired
MSE requirement.!e nonlinearmodel in (3.23) is solved in the least-squares
sense iteratively using Gauss-Newton’s method with 10 iterations [Kay, 1993].
!e maximum root-MSE (RMSE), maximum root-CRB, average RMSE, and
average root-CRB of the location estimates of a target within the target area
using the selected sensors (as shown in the solution path) for di/erent val-
ues of Re are shown in Figure 3.4(b). For the considered scenario, both the
maximum and average root-CRB satisfy the performance constraint which
is given by the inequality in (3.31). !e performance constraint is shown as a
solid line in Figure 3.4(b). !e maximumRMSE does not satisfy the accuracy
requirement speci#ed by a certain Re , and this can be corrected by using an
appropriate (lower) Re . Moreover, for the considered scenario, the gap be-
tween the average RMSE and the performance constraint is still reasonable.
We also show the maximum RMSE on top of Figure 3.4(a).
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Figure 3.4: (a) Solution path of the sensors selected for di/erent values of Re and
Pe = 0.9. Maximum RMSE based on selected sensors can be seen on the top of this
plot. (b) Maximum and average RMSE of the location estimates based on Gauss-
Newton’s method, the corresponding maximum and average root-CRB, and the per-
formance constraint in (3.31) for di/erent values of Re , and Pe = 0.9.
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!e proposed framework can be applied to a variety of signal processing
problems (e.g., direction-of-arrival, frequency and delay estimation) as long
as Assumption 3.1 and Assumption 3.2 are valid and all the model parame-
ters are perfectly known. !is is illustrated in [Chepuri and Leus, 2015b] for
di/erent target localization models based on bearingmeasurements, received
signal strength, and energy measurements.

Although the illustrated example is related to passive sensing, we under-
line that the proposed sensor selection framework is not limited to passive
sensors.

Remark 3.8 (Active sensor selection).
"e sensor selection problem can also be formulated for active sensing. In active
sensing, the sensors transmit probing signals (e.g., radar, sonar, remote sensing).
"e selection parameter wm for active sensing is a so& parameter used for joint
selection and resource allocation [Chepuri et al., 2013b], i.e., wm ∈ [0, 1] is a
resource (e.g., transmit energy) normalized to the maximum prescribed value,
and hence, it is dimensionless."e relaxed active sensor selection problem takes
the same form as in (3.12). In fact, minimizing the !1-norm in active sensor
selectionminimizes the overall network resources (e.g., overall transmit energy).

3.7 Dependent observations

!roughout this chapter so far, we have assumed that the observations are a
sequence of independent random variables. !is assumption is reasonable if
the sensors are solely responsible for the noisy observations, for example, due
to the internal thermal noise. If the observation signal itself is stochastic in na-
ture or if the observations are subject to external noises or interference, then
Assumption 3.2 will be too idealistic. As a consequence of relaxing Assump-
tion 3.2, the FIM will not be linear (or convex) in w anymore. Nevertheless,
the FIMwill still be a function ofw and sparse samplers can be designed using
nonlinear and o"en nonconvex optimization techniques. In some cases, the
solution can be computed using convex optimization techniques as illustrated
in the following example.

Suppose the unknown vector θ ∈ RN is related to the observations ac-
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cording to
x ∼N (h(θ), Σ) ,

where h(⋅) ∶ RN → RM is a nonlinear function and Σ ∈ RN×N is the noise
covariance matrix. As before, we acquire the data using the sparse sensing
function Φ(w) to obtain y = Φ(w)x .

Using (3.2), we can compute the FIM, and it is given by

F(w , θ) = [Φ(w)J(θ)]T Σ−1(w) [Φ(w)J(θ)] , (3.24)

where J(θ) = ∂h(θ)/∂θT ∈ RM×N is the Jacobian matrix and

Σ(w) = Φ(w)ΣΦT(w) ∈ RK×K

is the submatrix of Σ, which includes only the entries corresponding to the
selected measurements. Clearly, the FIM (3.24) is no more additive or linear
in w. Consequently, the constraint λmin{F(w , θ)} ≥ λeig in its current form
is not convex inw. !is is also true for the trace and determinant constraints.

Inwhat follows, wewill provide some steps to express theminimumeigen-
value constraint as a convex constraint on w. Firstly, we write the noise co-
variance matrix Σ as

Σ = aI + S , (3.25)

where a nonzero a ∈ R is chosen such that S ∈ RM×M is invertible and well
conditioned. Using (3.25) in (3.24), we obtain

F(w , θ) = JT(θ)ΦT(w)(aI +Φ(w)SΦT(w))−1Φ(w)J(θ).
We now state the following property.

Property 3.1. Using the fact that ΦT(w)Φ(w) = diag(w), we have
ΦT(w)(aI +Φ(w)SΦT(w))−1Φ(w) = S−1

− S−1 [S−1 + a−1diag(w)]−1 S−1 . (3.26)

Proof. Applying the matrix inversion lemma [Kay, 1993]

C(B−1+CTA−1C)−1CT = A− A(A+ CBCT)−1A,
with C = ΦT(w), B−1 = aI, and A = S−1, it is easy to verify (3.26).
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!erefore, from Property 3.1, we can equivalently express F(w , θ) as
F(w , θ) = JT(θ)S−1J(θ)

− JT(θ)S−1 [S−1 + a−1diag(w)]−1 S−1JT(θ), (3.27)

where by de#nitionΦT(w)Φ(w) = diag(w). In contrast to (3.24), the design
parameter w appears only once in (3.27), which makes the problem much
easier. Using the Schur complement, the constraint λmin{F(w , θ)} ≥ λeig
can now be equivalently expressed as an LMI:

⎡⎢⎢⎢⎢⎢⎣
S−1 + a−1diag(w) S−1J(θ)

JT(θ)S−1 JT(θ)S−1J(θ) − λeigIN
⎤⎥⎥⎥⎥⎥⎦
⪰ 0M+N , (3.28)

which is linear (thus convex) in w. !e above LMI is of size M + N and
it is larger than the size-N LMI (3.9), which is related to the independent
observation case. Note that the constraint (3.28) also depends on the un-
known parameter vector θ. We remark here that for linear measurement
models, the above constraint is independent of the unknown parameter vec-
tor θ. In other words, in that case, J(θ) will be independent of θ and will
simply be the regression matrix itself. Furthermore, because of (3.28) the
matrix S−1+a−1diag(w) should be positive de#nite.!is can be achieved, for
example, by choosing a such that it satis#es the condition 0 < a < λmin{Σ},
since wm ≥ 0 for m = 1, 2, . . . ,M.

3.7.1 Convex relaxation

!e discrete sparse sensing design problem for nonlinear dependentGaussian
observations is obtained by replacing the LMI constraint (3.10b) with (3.28).
!e resulting nonconvex optimization problem can then be relaxed to a con-
vex optimization problem along similar lines as explained in §3.5.1 or §3.5.3.
For example, the sparsity-enhancing iterations, i.e., the re-weighted !1-norm
optimization problem [cf. (3.19) and Algorithm 3.2] for the dependent case is
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given by

ŵ[i] = argmin
w ∈RM

M

∑
m=1

wm

ŵm[i − 1] + δ

s.to

⎡⎢⎢⎢⎢⎢⎣
S−1 + a−1diag(w) S−1J(θ)

JT(θ)S−1 JT(θ)S−1J(θ) − λeigIN
⎤⎥⎥⎥⎥⎥⎦
⪰ 0M+N ,

∀θ ∈ U ,
0 ≤ wm ≤ 1, m = 1, . . . ,M .

(3.29)
In what follows, we will illustrate the sparse sensing design for dependent

Gaussian observations applied to sensor placement for source localization.

3.7.2 Numerical example

We consider a similar setup as in §3.6, but with another popular measure-
ment model as detailed next. In applications related to #eld estimation, (ac-
tive/passive) radar, and sonar, it is important to estimate the location of a
point source that emits or re0ects energy. Suppose that there are M candi-
date sensors that can be placed at locations {am ∈ R2}Mm=1, and that measure
the energy generated by a point source at location θ ∈ R2. !e measurements
are given as

ym = hm(θ) + nm , m = 1, 2, . . . ,M , (3.30)

where hm(⋅) is an isotropic exponential attenuation function that is given by
hm(θ) =√eβ/(β + d2m) with dm = ∥θ − am∥2. Here, e is the known #eld
intensity emitted or re0ected by the point source, β ≥ 0 is the gain, and nm is
the noise. In this case, we have

h(θ) = [h1(θ), h2(θ), . . . , hM(θ)]T
and n = [n1 , n2, . . . , nM]T with n ∼ N (0, Σ). !e noise covariance matrix Σ
might not be diagonal due to the multi-path e/ects, for example. Using the
above model parameters, we have to choose the best subset of sensor loca-
tions out of M available locations such that a desired estimation accuracy for
estimating θ is achieved.



66 Chapter 3. Sparse Sensing for Estimation

We consider the scenario shown in Figure 3.5 with M = 80 sensors. We
assume that the noise correlation matrix is of the form

Σ = [ Σhorz 0
0 Σvert

] ∈ RM×M ,

where Σhorz is the noise correlation matrix corresponding to the horizontally
located candidate sensors (denoted by (◇) in Figure 3.5) and Σvert is the noise
correlation matrix corresponding to the vertically located candidate sensors
(indicated by (◻) in Figure 3.5). We further assume that

Σhorz = σ2e [(1 − ρ)I + ρ11T]
with correlation coe.cient ρ and nominal noise variance σ2e , and Σvert = σ2e I.
!at is, the vertically located candidate sensors are uncorrelated while the
horizontally located candidate sensors are equally correlated.

We use the following simulation parameters: e = 1, β = 1 and σ2e = 2×10−5,
Re = 20 m, ρ = 0.5, and Pe = 0.9. Figure 3.5(a) shows the sensor placement
obtained by solving Algorithm 3.2, but with (3.18) replaced with (3.29) and
with imax = 10 and δ = 10−6. Here, we use deterministic rounding. Fig-
ure 3.5(b) shows the selected sensor index.

We underline the following observations. Firstly, the sensors from the
same region are selected as in Figure 3.1(a). !is is due to the structural sim-
ilarity of the FIMs corresponding to the models (3.23) and (3.30). Secondly,
to achieve the desired performance requirement we see that fewer number of
correlated sensors are selected as compared to the number of selected uncor-
related sensors. Finally, as we observed in the simulations (not shown here),
for this particular numerical example, the !1-norm based solution does not
result in a sparse selection.

3.8 Discussion

In this chapter we discussed discrete sparse sensing for nonlinear parame-
ter estimation problems. In particular, we focussed on observations having
arbitrary yet independent distributions and colored Gaussian observations.
!e assumption is that the model parameters are perfectly known. We used
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Figure 3.5: Sensor placement for #eld estimation. Here, the uncorrelated and cor-
related sensors are denoted by squares (◻) and diamonds (◇), respectively. !e
source domain is indicated by circles (○), while the selected sensors are indicated by(∗). (a) Illustration of a #eld generated by a unit amplitude point source at location
θ = [25, 25]T m according to (3.30). Out of M = 80 available sensors 14 sensors are
selected. (b) Sensor selection is solved using log-based heuristics. !e thresholds are
computed using Re = 20m, and Pe = 0.9. We use e = 1, β = 1 and σ 2

e = 2 × 10−5.

a number of scalar functions related to the Cramér-Rao bound to design the
sparse sensing function. !e Cramér-Rao bound was used as a weaker sur-
rogate for the error covariance matrix, which for nonlinear models does not
admit a closed-form expression. !e original nonconvex optimization prob-
lem is relaxed using convex relaxation techniques, which can then be e.-
ciently solved in polynomial time. To handle large-scale problems, we have
also presented a projected subgradient algorithm. !e proposed framework
is applied to sensor placement design for localization.

3.A Performance thresholds

Trace and minimum eigenvalue constraints

We can relate the accuracy requirement and CRB using Chebyshev’s inequal-
ity [Cover and!omas, 2012]

Pr(∥ε∥2 ≥ Re) ≤ tr{C}/R2
e



68 Chapter 3. Sparse Sensing for Estimation

which can be equivalently expressed as Pr(∥ε∥2 ≤ Re) ≤ 1 − tr{C}/R2
e . Com-

bining this inequality together with Pr(∥ε∥2 ≤ Re) ≥ Pe in (3.7) results in the
following su.cient condition

tr{C} ≤ λtr = (1 − Pe)R2
e . (3.31)

Each eigenvalue of C−1 is greater than λmin(F), and as a result, tr{C} ≤
Nλ−1min(F). Hence, a stronger su.cient condition (with a smaller feasible set)
is Nλ−1min(F) ≤ (1 − Pe)R2

e , or equivalently [Wang et al., 2009]

λmin(F) ≥ λeig = N

R2
e

( 1

1 − Pe ) .
Determinant constraint

!e determinant constraint is related to the volume or the mean radius of
the con#dence ellipsoid that contains ε = θ − θ̂ with probability Pe . Such a
con#dence ellipsoid can be expressed as

E = {ε ∣ εTF−1ε ≤ ξ},
where ξ is a constant that depends on Pe. Assuming F has ordered eigenvalues
λmax ≥ λ2⋯ ≥ λmin, the length of the nth semi-axis of the ellipsoid E will be√
ξ/λn. !e geometric mean radius of the con#dence ellipsoid E is given by

R̄e =
√
ξ/(det{F})1/2N ,

which gives a quantitative measure of how informative the observations are.
For the estimates to bewithin the con#dence ellipsoid E ,we use the constraint

ln det{F} ≥ 2N ln

√
ξ

R̄e
= λdet,

where R̄e and
√
ξ specify the required accuracy, and are assumed to be known.

A typical choice for ξ is ξ = F−1
X 2

N
(Pe). Here, F−1X 2

N
is the cumulative distribu-

tion function of a chi-squared random variable with N degrees of freedom.
!is performance measure is related to the D-optimality.
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3.B Projected Newton’s method

In order to analyze the complexity of the interior point methods, we brie0y
describe the projected Newton’s method. !e Newton’s method for an SDP
problem in the inequality form is adapted to suit our problem [Boyd andVan-
denberghe, 2004, p. 619].

!e optimization problem in (3.12) can be approximated using the log-
determinant barrier function which is given as

argmin
w∈[0,1]N

ψ(w) = t1TMw − ln det{ M

∑
m=1

wmFm − λeigIDN},
where t > 0 is a parameter to tune the approximation.!e projected Newton’s
update equation is given by

wk+1 = PW (wk − αkH−1ψ (wk)gψ(wk)) , (3.32)

where the (i , j)th entry of the Hessian matrix is given by

[Hψ(wk)]i, j = ∂2ψ(w)
∂wi∂wj

∣
w=wk

= tr{S−1F iS
−1F j},

and the ith entry of the gradient vector is given by

[gψ(wk)]i = ∂ψ(w)
∂wi

∣
w=wk

= t + tr{S−1F i}.
Here, we have introduced the matrix S = ∑M

m=1wmFm − λeigIDN , and recall

the projection operator PW(⋅) de#ned in (3.15). !e step length αk is chosen
by line search.

3.C Power iterations

We brie0y describe the power iterations [Golub and Van Loan, 1996] to com-
pute the minimum eigenvalue of a matrix F ∈ SN . Assuming F has ordered
eigenvalues λmax ≥ λ2⋯ ≥ λmin, the power iterations

vk+1 =
Fvk

∥Fvk∥2 , and λk+1 =
(vk+1)TFvk+1
∥vk+1∥2 ,
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converge to the maximum eigenvector vmax and maximum eigenvalue λmax,
respectively, as k → ∞. Here, we use v0 = [1, 0TN−1]T . By forming a matrix
F̄ = λmaxIN −F which has the dominant eigenvalue λmax− λmin, we can apply
the above power iterations on F̄ to compute λmax − λmin and vmin, and thus
the minimum eigenvalue of F and it’s corresponding eigenvector.
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4.1 Introduction

In this chapter we will extend the discrete sparse sensing framework for es-
timation introduced in Chapter 3 to nonlinear #ltering problems. !e pro-
posed framework is useful for a variety of applications related to target or
bearing tracking, dynamic #eld estimation, and nonlinear #ltering in gen-
eral, where the sensors (or measurements) are scheduled or activated parsi-
moniously to increase their battery lifetime as well as to reduce the communi-
cations and inference costs. !e time-varying state parameters are described
through a state-space model, which is assumed to be known. Given the state-
space model, we will design sparse sensing mechanisms and develop the as-
sociated risk functions that quantify the #ltering accuracy.

Over the past decade, sensor scheduling/polling problems for state esti-
mation of linear dynamical systems (i.e., linear #ltering problems) have been
extensively studied with di/erent 0avors, such as di/erent optimization cri-
teria from experiment design, myopic (one-step ahead) and nonmyopic (a
longer time horizon) scheduling, heuristic (submodular, convex, among oth-
ers) algorithms, and budget constraints; see [Hernandez et al.,2004,Zuo et al.,
2007,Krause, 2008, Joshi and Boyd, 2009, Fu et al., 2012, Jiang et al., 2013, Liu
et al., 2014, Zhan et al., 2010]. For example, [Joshi and Boyd, 2009] proposed
convex relaxation techniques, whereas [Krause, 2008] proposed greedy algo-
rithms using submodular cost functions for sensor scheduling. In [Liu et al.,
2014], the design of optimal periodic sensor scheduling (over an in#nite time
horizon) with restrictions on the total number of sensor activations was stud-
ied for additive linear Gaussianmodels.!e optimal experiment design prob-
lems are well-studied for observations that follow a linear model with uncor-
related noise components for which the error covariance matrix has a known
closed form. However, it is in general di.cult to compute the error covari-
ance matrix in closed form for nonlinear dynamical systems. !erefore, the
above methods cannot be used directly.

We organize this chapter into three parts discussing sparse sensingmech-
anisms for: independent observations, dependent observations, and struc-
tured state sequences. To begin with, we focus on nonlinear state-space mod-
els with independent observations. In [Masazade et al., 2012], sensor selec-
tion for target tracking based on extended Kalman #ltering has been pro-
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posed, in which the selection is performed by designing a sparse gain matrix.
Moreover, [Masazade et al., 2012] focuses on an additive Gaussian nonlinear
model, that is linearized around the (noisy) past state estimate. !is chapter,
on the other hand, deals with general nonlinear models, without an explicit
linearization. For a general nonlinear #ltering problem, we use a number
of scalar measures (from experiment design) of the posterior Cramér-Rao
bound matrix. We saw in Chapter 3 that for nonlinear estimation problems
the risk functions based on the Cramér-Rao bound depend on the true pa-
rameter. Similarly, for nonlinear #ltering problems the risk functions based
on the posterior Cramér-Rao bound depend on the current as well as the pre-
vious true state parameters. !e sensing patterns are time-varying, and we
do not need actual measurements to design them (i.e., they are data indepen-
dent, but model driven). However, running a nonlinear #lter in parallel and
incorporating the entire history of (actual) measurements up to that point
signi#cantly simpli#es the design problem. We further model the evolution
of the sensing pattern in time to control its smoothness. !is is bene#cial
for mobile sensing (e.g., sensing with sensors mounted on bicycles or auto-
mobiles), for instance. Next, we extend the framework to include nonlinear
additive Gaussian models with correlated measurements.

We also study discrete sparse sensing for time-varying structured signals.
In particular, we will illustrate this framework with time-varying sparse sig-
nals with possibly time-varying sparsity patterns and/or order. !is has re-
ceived a lot of attention in the recent past through compressive sensing (CS)
[Baraniuk, 2007]. Time-varying sparse signal reconstruction has been stud-
ied in the past leading to various forms of sparsity-aware #lters [Vaswani,
2008, Angelosante et al., 2009, Carmi et al., 2010,Malioutov et al., 2010], and
are applied to problems like visual surveillance [Warnell et al., 2012] and target
localization [Farahmand et al., 2014]. We study the design of sensingmatrices
for such problems; however, the focus will not be on the signal recovery itself.

Sensing matrix design for sparse recovery has been studied in various
forms. For example, in [Eldar andKutyniok, 2012, Ch. 6], [Haupt et al., 2009]
the variance of the distribution fromwhich the (random) sensingmatrices are
generated is designed such that the average information gain is maximized.
!e Bayesian CS framework [Ji et al., 2008] allows to quantify the sparse re-
construction error through the so-called error bars, which again allows to
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adaptively design the sensing matrices. Both [Haupt et al., 2009] and [Ji et al.,
2008] use experiment design techniques with performancemeasures like dif-
ferential entropy to adaptively learn the sensing matrix starting from a ran-
dom matrix. In [El Badawy et al., 2014], a greedy algorithm based on a sub-
modular performance measure has been proposed for sensing operator de-
sign for a signal lying in the union of subspaces. However, the sensing design
schemes discussed above are mostly limited to time-invariant signals and/or
systems without any state-space representation. Hence, they are not adap-
tive in the true sense, and are not meant for tracking the signal variation over
space and/or time. On the other hand, the proposed sensing matrix is de-
signed at each time step based on the entire history of measurements and
known dynamics described through a state-space model. Towards the end,
we will also discuss a few extensions of the proposed framework to include
general structured signals, such as group sparse and smooth signals.

4.2 Sensing time-varying observations

We consider a nonlinearmeasurementmodel for observing an unknown dy-
namic parameter θk ∈ RN×1 at time k:

xk,m = hk,m(θk , nk,m),m = 1, 2, . . . ,M , (4.1)

where hk,m(⋅, ⋅) is a nonlinear functional of the unknown vector θk and the
noise component nk,m . !e spatial (and/or temporal) measurements at tem-
poral block k, {xk,m}Mm=1, are stacked in the measurement vector xk = [xk,1 ,
xk,2 , . . . , xk,M]T ∈ RM×1.

!e unknown parameter is assumed to obey the dynamical model:

θk+1 = Akθk + uk , (4.2)

where Ak ∈ RN×N is the state transition matrix and uk ∈ RN×1 is the pro-
cess noise that accounts for any unmodeled dynamics. Here, we model uk ∼N(0, Σu), where Σu ∈ RN×N represents the state noise covariance matrix.

At each time instance k, we acquire the data xk via the discrete sparse
sensing mechanism that was introduced in Chapter 2. Speci#cally, we acquire
data as

yk = diagr(wk)xk = Φk(wk)xk
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where Φk(wk) = diagr(wk) ∈ {0, 1}K×M is the sparse sensing matrix whose
entries are determined by the time-varying selection vector

wk = [wk,1 ,wk,2 , . . . ,wk,M]T ∈ {0, 1}M .

Here, the time-varying variable wk,m = (0)1 indicates whether xk,m is (not)
selected.

We are interested in cases where K ≪ M and K is not known. !e
reduced dimension data vector yk ∈ RK is used instead of xk ∈ RM to-
gether with (4.2) to solve the nonlinear #ltering problem. !erefore, our aim
is to design, for each k, a sparsest wk (and, hence a sequence of matrices{Φk(wk), k ∈ N}) based on the entire history of measurements up to that
point {y1, y2, . . . , yk−1}, such that a desired accuracy on the (a posteriori) es-
timate of θk is guaranteed. For such nonlinear #ltering problems, the risk
function f (wk) that quanti#es the #ltering accuracy is discussed next.

4.3 f (w) for +ltering

For general nonlinear#ltering problems, it is di.cult to compute the pos-
terior error covariance matrix in closed form that is suitable for optimization.
!erefore, along the lines of §3.3 of Chapter 3, we will discuss a weaker sur-
rogate that can be optimized instead of the posterior error covariance.

We now recall Assumption 3.1 from Chapter 3 as:

Assumption 4.1 (Regularity condition). "e log-likelihood of the measure-
ments satis#es the regularity condition, i.e., E{∂ ln pk(y; θk)/∂θ} = 0, for all
k, where pk(y; θk) is the probability density function (pdf) of yk at time in-
stance k parameterized by the unknown vector θk.

Under the above assumption, the a posteriori estimate of θk denoted by
θ̂k∣k satis#es thewell-known posterior Cramér-Rao bound (PCRB) inequality
given by

E{(θ̂k∣k − θk)(θ̂k∣k − θk)T} ≥ Ck = F−1k , (4.3)

where Ck is the PCRB matrix, Fk is the posterior Fisher information matrix
(FIM), and the notation θ̂k∣l denotes the estimate of θk based on data up to
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point l . !e posterior FIM is given by the following recursion [Tichavsky
et al., 1998]:

Fk(wk , θk , {θκ−1}kκ=1) =
Fprior ,k−1({θκ−1}

k
κ=1)GHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHIHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHJ(Σu + AkF

−1
k−1({θκ−1}kκ=1)AT

k )−1
+ Fobs,k(wk , θk) ∈ RN×N ,

(4.4)

with the FIM related to the observations at time instance k given by

Fobs,k(wk , θk) = E
⎧⎪⎪⎨⎪⎪⎩(

∂ ln pk(y; θk)
∂θk

)(∂ ln pk(y; θk)
∂θk

)T⎫⎪⎪⎬⎪⎪⎭ ∈ R
N×N . (4.5)

!e #rst termof (4.4) is the prior information related to the history up to time
instance k − 1.

We now introduce the independence assumption.

Assumption 4.2 (Independent observations). "e observations {xk,m}Mm=1 at
time k are a sequence of independent random variables, which depend on the
unknown parameter θk.

Under Assumption 4.2, the information measure from each observation
is additive in the variables {wk,m}Mm=1, which is intuitive as each independent
measurement contributes some information (we have seen this property be-
fore in Chapter 3). Using this property, we can further simply (4.4) to arrive
at

Fk (wk , θk , {θκ−1}kκ=1) = Fprior,k−1({θκ−1}kκ=1) + M

∑
m=1

wk,mFk,m(θk), (4.6)

where

Fk,m(θk) = E
⎧⎪⎪⎨⎪⎪⎩(

∂ ln pk,m(x; θk)
∂θk

)(∂ ln pk,m(x; θk)
∂θk

)T⎫⎪⎪⎬⎪⎪⎭ ∈ R
N×N

with pk,m(x; θk) being the pdf of xk,m at time instance k parameterized by
the unknown vector θk .!e posterior FIM (4.6) depends on the true state θk
at time k as well as all the previous states.
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Remark 4.1 (Additive Gaussian linear state-space models).
For a linear measurement model: xk,m = h

T
k,mθk + nk,m ,m = 1, 2, . . . ,M, (i.e.,

hk,m(θk , nk,m) ∶= hTk,mθk + nk,m) where hk,m ∈ RN is the regressor. Assuming
that the noise components {nk,m}Mm=1 are i.i.d. Gaussian with variance σ2, the
posterior FIM for linear #ltering is given by

Fk(wk) = (Σu + AkF
−1
k−1A

T
k )−1 + 1

σ2

M

∑
m=1

wk,mhk,mh
T
k,m . (4.7)

"e PCRB for linear state-spacemodels in additiveGaussiannoise is equal to the
posterior error covariance, and it is independent of the unknown state vectors.

As a performance measure, we constrain the posterior estimation error
εk = θ̂k∣k − θk to be within an origin centered circle of radius Re with a prob-
ability higher than Pe , i.e.,

Pr(∥εk∥2 ≤ Re) ≥ Pe , (4.8)

where Re and Pe are speci#ed to achieve a desired accuracy. !is accuracy
constraint is satis#ed by the two popular experiment design criteria [cf. §3.3
of Chapter 3]:

1. Trace constraint, which is related to the A-optimality measure. A suf-
#cient condition for (4.8) is (see Appendix 3.A)

f (wk) ∶= tr{(Fk(wk , θk , {θκ−1}kκ=1))−1} ≤ λtr = (1 − Pe)R2
e .

2. Minimum eigenvalue constraint, which is related to the E-optimality
measure. A su.cient condition for (4.8) related to the eigenvalue con-
straint is (see Appendix 3.A)

f (wk) ∶= λmin {Fk (wk , θk , {θκ−1}kκ=1)} ≥ λeig = N

R2
e

( 1

1 − Pe ) .
!e above inequality can be alternatively expressed as the following lin-
ear matrix inequality (LMI):

Fprior,k−1({θκ−1}kκ=1) + M

∑
m=1

wk,mFk,m(θk) ⪰ λeigIN . (4.9)
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We underline here that the determinant constraint similar to §3.5.5 of Chap-
ter 3 can also be used as a reasonable performance measure. Unless the pro-
cess noise is zero (e.g., a deterministic trajectory), the true states are not known.
However, in practice θk takes values within a certain domain denoted by the
set Uk . !erefore, we constrain (4.9) for all θκ ∈ Uκ , κ = 0, 1, 2, . . . , k.

As discussed in Chapter 3, the trace constraint, which can also be repre-
sented by LMIs, has a larger feasible set as compared to the minimum eigen-
value constraint. However, the resulting optimization problem is computa-
tionally less attractive compared to the minimum eigenvalue constraint (as
we show later on in §3.5.5). For this reason, we focus on theminimum eigen-
value (LMI) constraint from now on.

4.4 Problem statement

!e adaptive discrete sparse sensing (or adaptive sensor selection) problem
can be interpreted as the problem of choosing the best subset of sensors out
of theM available sensors to acquiremeasurements for time step k such that a
certain accuracy on the estimate θ̂k∣k is guaranteed. !us, the adaptive sensor
selection problem can be formally stated as follows.

Problem 4.1 (Adaptive discrete sparse sensing). Given the state-space model
(4.1) and (4.2), at each time step k, based on the entire history of measurements
up to that point #nd a sparsest wk ∈ {0, 1}M , which satis#es the accuracy con-
straint Fprior,k−1({θκ−1}kκ=1) + ∑M

m=1wk,mFk,m(θk) ⪰ λeigIN , ∀θκ ∈ Uκ , κ =
0, 1, 2, . . . , k.

At each time step, the above design problem is a specialization of the dis-
crete sparse sensing problem (P0) introduced in Chapter 2, that is,

argmin
wk

∥wk∥0 (4.10a)

s.to Fprior,k−1({θκ−1}kκ=1) + M

∑
m=1

wk,mFk,m(θk) ⪰ λeigIN ,
∀θκ ∈ Uκ , κ = 0, 1, 2, . . . , k , (4.10b)

wk ∈ {0, 1}M . (4.10c)
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!is is a nonconvex Boolean optimization problem. Clearly, the number of
LMI constraints (4.10b) depends on ∣Uk ∣ and this increases with k, that is,
the number of LMI constraints is ∑k

κ=0 ∣Uκ ∣. For example, if ∣Uκ ∣ = D,∀κ,
then at time step k, the optimization problem (4.10) will have Dk size-N
LMI constraints. To reduce the computational complexity, the prior Fisher
Fprior,k−1({θκ−1}kκ=1) can be simply evaluated at the past estimates

θ̃k−1 ∶= θ̂k−1∣k−1 ,
obtained by solving any nonlinear #lter (e.g., extended or unscented Kalman
#lter, or particle #lters). !at is, we approximate Fk(wk , θk , {θκ−1}kκ=1) as

Fk(wk , θk) ≈
Fprior,k−1(θ̃ k−1)GHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHIHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHJ(Σu + AkF

−1
k−1(θ̃k−1)AT

k )−1 + Fobs,k(wk , θk) ∈ RN×N ,

!erefore, running an extended Kalman #lter in parallel (and incorporating
the history of actual measurements) signi#cantly reduces the number of con-
straints. Henceforth, we will not write the prior FIM Fprior,k−1(θ̃k−1) as an
explicit function of θ̃k−1, i.e., we will simply write it as Fprior,k−1 . As a conse-
quence, (4.10) simpli#es to

argmin
wk

∥wk∥0 (4.11a)

s.to Fprior,k−1 + M

∑
m=1

wk,mFk,m(θk) ⪰ λeigIN ,∀θk ∈ Uk , (4.11b)

wk ∈ {0, 1}M . (4.11c)

!e posterior error covariance matrix and the prediction computed in the ex-
tended Kalman #lter algorithm (see Appendix 4.A) can be used as a guideline
to determine Uk (we will discuss this with an example in §4.6).

4.5 Solvers

In this section we provide an algorithm to solve the proposed optimization
problem. In addition, we also model the evolution of wk in time, which is
useful to control the transient nature of the sensing patterns.
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4.5.1 Convex approximation based on !1-norm

!e optimization problem in (4.10) is nonconvex due to the !0(-quasi) norm
cost function and the Boolean constraint. We use the traditional best convex
surrogate for the !0(-quasi) norm based on the !1-norm heuristic, and the
Boolean constraint is relaxed to the convex box constraint [0, 1]M . Due to
this box constraint, the !1-norm will simply be the a.ne function 1TMwk . !e
relaxed optimization problem is of the form (R0) introduced in Chapter 2,
and is given as

ŵk = argmin
wk

1TMwk (4.12a)

s.to Fprior,k−1 + M

∑
m=1

wk,mFk,m(θk) ⪰ λeigIN , ∀θk ∈ Uk , (4.12b)

0 ≤ wk,m ≤ 1,m = 1, 2, . . . ,M , (4.12c)

where the LMI constraint (4.12b) is convex on wk ∈ [0, 1]M .
!e relaxed optimization problem is a standard semide#nite program-

ming problem that can be solved e.ciently in polynomial time using o/-the-
shelf solvers like SeDuMi [Sturm, 1999] or the projected subgradient algo-
rithm developed in §3.5.2 of Chapter 3. Further, a concave surrogate based
on the sum-of-logarithms can be used to approximate the !0(-quasi) norm
to obtain sparsity enhancing iterations as discussed in §3.5.3 of Chapter 3.
An approximate Boolean solution can then be recovered by randomization
rounding as explained in §3.5.4 of Chapter 3.

4.5.2 Smooth sensing

We now model the evolution of wk in time. A smooth evolution of the selec-
tion vector is important for mobile sensing to control the transient nature of
a mobile sensor—a spatial sampling device. In other words, smoothness in
the selection vector ensures an easy hand-o/ between the selected sensors.

!e evolution of the selection vector is modeled as a linear recursion

wk+1 = Bkwk + νk , (4.13)

where Bk ∈ RM×M could be a banded matrix and νk ∈ RM is the process
noise vector. !e smoothness depends on the construction of the matrix Bk .
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In order to incorporate the smoothing e/ect on the sensing pattern between
subsequent time instances, we use the sparse estimate ŵk−1,sm instead ofwk−1
(here, the subscript sm denotes smoothness). !e optimization problem tak-
ing into account the smoothness is given as

ŵk ,sm = argmin
w k

1TMwk + µ ∥wk − Bk−1ŵk−1,sm∥22 (4.14a)

s.to Fprior,k−1 + M∑
m=1

wk ,mF k ,m(θk) ⪰ λIN ,∀θk ∈ Uk , (4.14b)

0 ≤ wk ,m ≤ 1,m = 1, 2, . . . ,M , (4.14c)

where µ is the smoothness controlling parameter.

4.6 Numerical example: sensor scheduling

Wenowapply the developed theory of adaptive sparse sensing to sensor sched-
uling for target tracking based ondistancemeasurements.!e sensor schedul-
ing problem can be interpreted as the problem of polling (or activating) the
best subset of sensors from a large pool of available sensors, such that a de-
sired tracking accuracy is achieved. Sensor scheduling is typically used to
increase the lifetime of battery powered sensor nodes, but also to reduce the
communications and inferring costs.

At each time step k, the selected sensors are used to estimate the state vec-
tor θk = [pTk , ṗTk ]T ∈ R4×1, where pk ∈ R

2×1 is the target position vector and
ṗk ∈ R

2×1 is the velocity vector. We assume that M sensors are, respectively,
located at known two-dimensional positions {am}Mm=1. !ey are each capable
of measuring the distance to the target (e.g., from time of arrival measure-
ments of the ranging signals). !at is, we assume the measurement model

xk,m = ∥pk − am∥2 + nk,m
= dk,m + nk,m , m = 1, 2, . . . ,M ,

where nk,m ∼ N(0, σ2k,m) with σ2k,m = σ2/d−2k,m and σ2 is the nominal noise

variance. We use σ2 = 2 × 10−5.
We consider an area of 60× 60 square meter withM = 49 equally spaced

sensors as shown in Figure 4.1(a). We use the following parameters for simu-
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lations [Moon and Stirling, 2000]:

Ak =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 τs 0
0 1 0 τs
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Σu = 10−2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ3s
3 0

τ2s
2 0

0
τ3s
3 0

τ2s
2

τ2s
2 0 τs 0

0
τ2s
2 0 τs

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

with sampling time τs = 2.5 s. !e dynamic model is initialized with p0 ∼N(12, 2.778I2) and ṗ0 ∼N(212, 0.01I2) to emulate a target heading towards
the north-east direction. We also run an extended Kalman #lter in parallel
and it is initialized with θ̂0∣0 = 0, and P0∣0 = 1000I2. For the sake of com-
pleteness, we have summarized the extended Kalman #lter algorithm in Ap-
pendix 4.A. !e stochastic matrix Bk is designed such that the transition to
the one-hop sensor grid points and staying in the current state takes equal
probabilities. In other words, in Figure 4.1(a), the corner most grid point has
3 one-hop neighbors, hence, it can move to any of these one-hop neighbors
each with a probability of 1/4 or stay in the current state with a probability
of 1/4. !e parameters determining the accuracy are set to Re = 25 cm and
Pe = 0.90 to compute λeig.

We do not make velocity measurements, hence, we constrain only the
FIM related to the distance measurements. Assuming that the FIM is com-
posed of the following submatrices

Fk(wk , θk) = [ Fk,pp Fk,pṗ

Fk, ṗp Fk, ṗ ṗ
] ,

then using the Schur complement, the a posteriori position estimate p̂k∣k satis-

#es the following PCRB inequality E{(p̂k∣k−pk)(p̂k∣k−pk)T} ≥ F̃−1k (wk , θk),
where

F̃k(wk , θk) = Fk,pp − Fk,pṗF
−1
k, ṗ ṗFk, ṗp

assuming F−1k, ṗ ṗ exists. Similarly, assume that the prior FIM is also composed
of the following submatrices

Fprior,k(θk) = [ Fprior,k,pp Fprior,k,p ṗ

Fprior,k, ṗ p Fprior,k, ṗ ṗ
] .
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Using the Schur complement and some straightforward matrix proper-
ties, we can show that

F̃k(wk , θk) = F̃prior,k−1 + M

∑
m=1

wk,mFk,m(pk) ∈ R2×2,

where we de#ne

F̃prior,k = Fprior,k,pp − Fprior,k,p ṗF
−1
prior,k, ṗ ṗFprior,k, ṗp .

!erefore, for the case when only a part of the state parameters are measured,
the LMI constraints in (4.10b) should be modi#ed to

F̃prior,k−1 + M

∑
m=1

wk,mFk,m(pk) ⪰ λeigI2, ∀θk ∈ Uk .

For a practical implementation of the algorithm, we construct Uk based
on the predicted estimate θ̂k∣k−1 and the covariance matrix Pk∣k−1 (see Ap-
pendix 4.A). More speci#cally, Uk is designed to have points within a circle
of radius 5

√
tr{Pk∣k−1} centered around θ̂k∣k−1. Since θ̂k∣k−1 ∼N(θk , Pk∣k−1),

the true state lies within a circle of radius 5
√
tr{Pk∣k−1}with an overwhelming

probability.
Here, we discretize Uk with 25 points as shown in Figure 4.1(a) and Fig-

ure 4.1(c) (indicated as the target area). For the sake of easy visibility, we plot
the results in the time interval (3τs , 10τs), as the target area is very large for
initial estimates. Even though the predicted estimates are not necessarily on
top of the true state, the true location will be within the target area with an
overwhelming probability. Due to the assumed path-loss model, the sensors
close to the target area are selected. !e sensor activation time pattern with-
out (µ = 0) and with (µ > 0) smooth sensing is shown in Figure 4.1(b) and
Figure 4.1(d), respectively. An approximate Boolean solution is obtained by
simply rounding all the nonzero entries of ŵ to one. !e number of selected
sensorswith µ = 0.5 is larger as compared to the casewith µ = 0. However, the
sensors stay active for a longer duration ensuring a smooth hand-o/ between
the selected sensors.



84 Chapter 4. Sparse Sensing for Filtering

0 20 40 60
0

10

20

30

40

50

60

 

 

x-coordinates [m]

y-
co
or
d
in
at
es

[m
]

Target area

Selected sensors
Predicted state

True state
Candidate sensors

(a)

2 3 4 5 6 7 8 9 10 11

5

10

15

20

25

30

35

40

45

se
n
so
r
in
d
ex

time step k

(b)

0 10 20 30 40 50 60
0

10

20

30

40

50

60

x-coordinates [m]

y-
co
or
d
in
at
es

[m
]

(c)

2 3 4 5 6 7 8 9 10 11

5

10

15

20

25

30

35

40

45

se
n
so
r
in
d
ex

time step k

(d)

Figure 4.1: Sensor scheduling for target tracking based on range measurements for
the time interval (3τs , 10τs). (a) and (c) trajectory of the true state for a certain real-
ization, predicted estimate from the extended Kalman #lter, and the target area Uk .
(b) and (d) sensor activation time pattern for µ = 0 (without smoothing) and µ = 0.5
(with smoothing), respectively.
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4.7 Dependent observations

So far we have assumed that the observations are mutually independent ran-
dom variables. If we relax Assumption 4.1, thenwe can accommodate a much
larger class of observation models, for example, to include ambient noises or
stochastic state variables. However, by relaxing Assumption 4.1, the FIM in-
formationmatrix related to the observations Fobs,k(wk , θk), will not be linear
in wk , which makes the optimization over wk much harder (i.e., nonconvex
and nonlinear, in general). In this section, we will extend the results devel-
oped for sparse sensing for estimation with dependent Gaussian nonlinear
measurements in §3.7 of Chapter 3 to #ltering tasks.

Suppose the measurements (4.1) at time instance k are of the form

xk = hk(θk) + nk ,

where hk ∶ RN → RM is a nonlinear functional of the unknown vector θk

and nk is zero-mean Gaussian noise with variance Σk ∈ RM×M . For the above
model, the FIM related to the observations [cf. (4.5)] will be

Fobs,k(wk , θk) = [Φk(wk)Jk(θk)]T Σ−1k (wk) [Φk(wk)Jk(θk)] , (4.15)

where Jk(θk) = ∂hk(θk)/∂θTk ∈ RM×N and

Σk(wk) = Φk(wk)ΣkΦ
T
k (wk) ∈ RK×K

is a submatrix of Σk that includes only the entries corresponding to the se-
lected measurements.!e FIM (4.15) is no more additive or linear in wk .

Let us express the noise covariance matrix Σk as

Σk = akIM + Sk , (4.16)

where any scalar ak ∈ R is chosen such that Sk ∈ RM×M is invertible and well
conditioned. Using Property 3.1 from Chapter 3, we can equivalently express
Fobs,k(wk , θk) as
Fobs,k(wk , θk) = JTk (θk)S−1k Jk(θk)

− JTk (θk)S−1k [S−1k + a−1k diag(wk)]−1 S−1k JTk (θk), (4.17)
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where in contrast to (4.15), the design parameterwk appears only once in (4.17),
which makes the problem much easier to solve.

Finally, using the Schur complement, the constraint λmin{Fk(wk , θk)} ≥
λeig can now be equivalently expressed as a size-M + N LMI:

⎡⎢⎢⎢⎢⎢⎣
S−1k + a−1k diag(wk) S−1k Jk(θk)

JTk (θk)S−1k Fprior,k−1 + JTk (θ)S−1k Jk(θk) − λeigIN
⎤⎥⎥⎥⎥⎥⎦
⪰ 0M+N .

(4.18)
!e constraint (4.18) also depends on the unknown parameter vector θk , whi-
ch otherwise would be independent of θk for additive linear Gaussian mea-
surement models. For the dependent noise case, we also solve (4.10), but by
replacing the size-N LMI in (4.10b) with the size-M + N LMI (4.18). Fur-
thermore, because of (4.18) the matrix S−1k + a−1k diag(wk) should be positive
de#nite. !is can be achieved, for example, by choosing ak such that it satis-
#es the condition 0 < ak < λmin{Σk}, since wk,m ≥ 0 for m = 1, 2, . . . ,M.

4.8 Structured signals

In this section, we will discuss sparse sensing mechanisms for #ltering prob-
lems involving structured signals (more generally, #ltering with equality con-
straints on the state variables). In particular, we will illustrate sparse sensing
for state sequences that are sparse in nature.

Suppose the time-varying vector of interest θk ∈ RM at time k follows a
linear model corrupted by additive noise:

xk = Hkθk + nk , (4.19)

where θk ∈ RM (in contrast to the rest of this chapter, without loss of general-
ity, here we assume M = N) has just a few nonzero coe.cients, i.e., ∥θk∥0 ≪
M andHk denotes some known linear basis of sizeM×M.!e additive noise
vector nk ∈ RM is assumed to be zero-mean Gaussian with covariance matrix
Σ = σ2IM .

Under the assumption that the parameter vector θk is sparse, CS theory
asserts an exact recovery of θk from observations which are typically much
smaller than M, i.e, signals acquired via a linear compression matrix. We
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now demonstrate that discrete sparse sensing mechanisms can be used for
designing time-varying compression matrices as well as determining the op-
timal compression rate to reach a desired information gain or mean squared
error. More speci#cally, we designΦk(wk) ∈ {0, 1}K×M to acquire the data as
before, i.e.,

yk = Φk(wk)xk . (4.20)

For K ≪ M, the sampling matrix will be a compression matrix, and the mea-
surement vector will be much shorter than xk . Note that the sampling matrix
Φk and sparsity pattern (including the sparsity order) of the vector θk can
both be time-varying.

One way to model the evolution of time-varying sparse sequences (more
generally, states with structural constraints) is through the so-called pseudo-
measurement formulation [Julier and LaViola, 2007], [Carmi et al., 2010],
[Farahmand et al., 2014], where it is assumed that θk evolves according to
the following model

dynamics: θk+1 = Akθk + uk ; (4.21a)

pseudo-measurement: 0 = g(θk) + ek , (4.21b)

where Ak is an M ×M state-transition matrix, uk ∈ RM is the process noise,
g(θk) is a structure-constraining function, and ek is (without loss of general-
ity) zero-mean unit-variance noise. !e basic idea behind such a formulation
is to view the structural constraints as additional measurements whose out-
puts are always zero, and the pseudo-measurement noise variance speci#es
the amount of constraint violation. In this way, the state estimate (e.g., of the
extended Kalman #lter) conforms to the structural constraints as well.

To model sparse states, any one of the well-known approximations of the
!0(-quasi) norm can be used for g(⋅), e.g., the !1-norm function (γk∥θk∥1)1/2,
the inverse Gaussian function (γk∑M

m=1(1 − exp(−θ2k,m/2σ2g)))1/2 with shape
parameter σ2g , or the sum-of-logarithms function (γk∑M

m=1 log(∣θk,m ∣ + δ))1/2
with δ > 0. Here, γk is the tuning parameter and θk,m denotes themth entry
of θk . With the square root in each of these functions, the extra least-squares
error term for the pseudo-measurement will be equivalent to the sparsity-
inducing regularizer. Note that this formulation also accommodates a much
richer class of structured signals as discussed later on in §4.8.3.
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In the considered adaptive sparse sensing problem,we are basically replac-
ing the random measurement operation traditionally used in the CS frame-
work with a deterministic and structured sensing operation, which is more
favorable for practical implementation. In what follows, we will develop risk
functions that accommodate such structural constraints.

4.8.1 Risk function

!e linear system (4.20) and (4.21a) can be solved using the celebratedKalman
#lter algorithm [Kay, 1993]. We now recall Remark 4.1, where the posterior
FIM (equal to the inverse of the posterior error covariance matrix) for the
state-space equations (4.20) and (4.21a) without the pseudo-measurement
was given by (4.7), that is,

Fk(wk) = (Σu + AkF
−1
k−1A

T
k )−1 + 1

σ2

M

∑
m=1

wk,mhk,mh
T
k,m ,

where hk,m ∈ RM×1,m = 1, 2, . . . ,M , are the rows of Hk .
Due to the compression (K ≪ M), the conventional Kalman #lter is less

meaningful (especially for sparse recovery), unless the inherent sparsity of the
state sequence is taken into account. We do this through an (independent)
extra pseudo-measurement (4.21b). For the state-space equations (4.20) and
(4.21), the additional measurement modi#es the posterior FIM to

Fk(θk ,wk) = (Σu + AkF
−1
k−1A

T
k )−1 + ∂g(θk)∂g(θk)T

+ 1

σ2

M

∑
m=1

wk,mhk,mh
T
k,m ,

(4.22)

where ∂g(θ) ∈ RM is the (sub)gradient of g(θ) towards θ evaluated at θk .
In fact, the above expression is the inverse of the posterior error covariance
of the extended Kalman #lter, when the true state θk in (4.22) is replaced
with the prediction θ̂k∣k−1 = Ak θ̂k−1∣k−1 , where the past estimate can be com-
puted using any of the favorite sparse recovery algorithms or using an iterative
extended Kalman #lter [Carmi et al., 2010, Farahmand et al., 2014, Vaswani,
2008].
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As before, we could use either one of the constraints discussed in §4.3,
i.e., use

f (wk) ∶= tr{(Fk(θk ,wk))−1} ≤ λtr
or

f (wk) ∶= λmin{Fk(θk ,wk)} ≥ λeig
with Fk(θk ,wk) in (4.22) in place of (4.12b) to solve (4.12).

4.8.2 Example: CS-based target tracking

In this section, we illustrate the developed theory with the following target
tracking example. Let pk = [pk,x , pk,y]T ∈ R2 denote the position of the target
at time instance k and am ∈ R2 denote the position of themth sensor. Let us
assume that there areM such locations wherewe can place these sensors. !e
sensors are capable of measuring the signal strength as

hk,m(pk) = βs

β + ∥pk − am∥22 ,m = 1, 2, . . . ,M , (4.23)

with a constant β > 0. Here, s denotes the signal strength. We linearize (4.23)
aroundM grid points {gm}Mm=1, where the target could be potentially located.
As a result, we arrive at the linear grid-based model given by

xk,m = h
T
k,mθk + nk,m ,m = 1, 2, . . . ,M ,

where hk,m = [hk,m(g1), hk,m(g2), . . . , hk,m(gM)]T ∈ RM is time-invariant,
but θk is time-varying. All the entries of the vector θk ∈ RM are equal to zero
except for themth entry, θk,m , which is equal to the target signal strength s at
time k if and only if the target is located at themth grid point, i.e., for pk = gm.
Note that the number of grid points can be much larger than the number of
(selected) sensors.

We are interested in tracking a target moving along the grid points gm =[m,m]T for m = 0, 1, . . . , 29 as shown in Figure 4.2(a). !is can be modeled
as

θk+1 = Aθk + uk ,
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where the entries of the initial vector θ0 are all zero except for the #rst entry
θ1,1 = s. Here, the state-transition matrix is a shi"matrix, i.e.,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 ⋯ 0
1 0 ⋯ 0⋮ ⋱ ⋱ ⋮
0 ⋯ 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ RM×M .

In scenarios like the one considered here, compression via random lin-
ear projections would still need all the M sensors with no reduction in the
sensing and communications cost. On the contrary, sparse sensing enables a
completely decentralized sensing, and it needs only K ≪ M sensors.

In this example, the sparsity pattern is time-varying, but the sparsity or-
der is #xed. We stress here that the proposed framework is not limited to
signals with a #xed sparsity order. We use the following parameters in the
simulations: !e number of grid points/candidate sensors M = 30, K = 5,
β = 100, s = 10, and σ = 10−3. !e sensors are deployed uniformly at random
within a 30 × 30m2 surveillance area as shown in Figure 4.2(a).

We use fk(wk) ∶= tr{(Fk(θk ,wk))−1} and λtr is chosen such that N = 5
sensors are selected at each time step. We evaluate Fk(θk ,wk) at the predic-
tion θ̂k∣k−1 = Aθ̂k−1∣k−1 , where the past estimate is obtained by solving the
following !1-norm regularized least squares:

θ̂k∣k = argmin
θk

∥θ̂k∣k−1 − θk∥2P−1
k∣k−1

+ ∥yk −Φk(wk)Hθk∥2Σ−1 + g2(θk),
(4.24)

with g(θk) = √2γk∥θk∥1 (here, ∥θk∥1 = 1Tθk as the entries of θk are all
nonnegative), Pk∣k−1 = APk−1∣k−1A

T + Σu , and

Pk∣k = (P−1k∣k−1+ γk
2∥θk∥1 11

T

+ 1

σ2
∑

M
m=1 hk,mh

T
k,m)

−1

.

Here, γk is a tuning parameter. We initialize θ̂0∣0 = 1M , P0∣0 = IM , Σu =
0.01IM , and we compute γk using themethod described in [Farahmand et al.,
2014].
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Figure 4.2: Tracking a target using a grid-based model withM = 30 and K = 5. (a) A
target is moving along the straight line px ,k = py ,k = k, i.e., it moves with a constant

velocity of
√
2 m/s. !e selected sensors shown correspond to k = 25 s. (b) !e

solution path illustrating the selected rows of the dictionary Hk for k = 1, 2, . . . , 25 s.

!e relaxed optimization problem is solved using SeDuMi [Sturm, 1999].
Figure 4.2(b) illustrates the solution path for k = 1, 2, . . . , 25 s. !e Boolean
solution is recovered using deterministic rounding. !e sensors selected for
time step k = 25 s are also shown in Figure 4.2(a). In this example, the same
subset of sensors are selected for k > 10 because the matrices H and A, and
the sparsity order are not changing with time. In other words, the selected
sensors optimize the average error, averaged over the entire track.

4.8.3 Extensions to other structured signals

In this section, we highlight some important generalizations of the proposed
framework for structured signals, which are o"en studied together with the
CS framework.!e sparsity prior can be extended to a much broader class of
structured signals, including structured sparse signals (or block-sparse sig-
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nals) [Friedman et al., 2010], smooth (i.e., sparsity of the coe.cients and also
sparsity of their di/erences) [Tibshirani et al., 2005], to list a few. Depending
on the structure of the state, the g(θk) has to be modi#ed accordingly. More
speci#cally, for structured sparse signals we use a regularizer that accounts
for block sparsity, i.e.,

g(θk) ∶= (γk G

∑
i=1

∥θk,i∥2)
1/2

,

where the state vector θk is grouped into G subvectors each of length N/G as

θk = [θTk,1 , θTk,2 , . . . , θTk,G]T .
Similarly, for signal smoothness, we use the regularizer

g(θk) ∶= (γk,1∥θk∥1 + γk,2 M−1

∑
m=1
∣θk,m − θk,m−1 ∣)

1/2

,

where γk,1 and γk,2 are tuning parameters.

4.9 Discussion

In this chapter we have discussed discrete sparse sensing for state estimation
in nonlinear dynamical systems. In particular, we have focused on #ltering
problems of three types: independent observations, additive Gaussian depen-
dent observations, and structured state sequences. For designing sparse sens-
ing patterns, we have used scalar measures related to the posterior Cramér-
Rao bound, which depend on the previous as well as the current true states.
!e sensing patterns are designed one step ahead in time, hence can be com-
puted o2ine.

4.A Extended Kalman +lter

For the sake of completeness, we provide the steps involved in the Extended
Kalman #lter, which is used for state estimationwith nonlinear additive Gaus-
sian models; see [Kay, 1993] for more details.
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Given the state-space equations

xk = hk(θk) + nk ,

θk+1 = Akθk + uk ,

where hk(⋅) ∶ RN → RM is a nonlinear function of the unknown state pa-
rameter vector θk ∈ RN , Ak ∈ RN×N is the state-transition matrix, and nk ∼N(0, Σ) and uk ∼ N(0, Σu) are the measurement and process noise vectors
of lengthM × 1, respectively.

Suppose that the estimate θ̂k−1∣k−1 and its covariance matrix Pk−1∣k−1 are
available from the previous time step. At current time step k, the prediction
and its covariance are given as

θ̂k∣k−1 = Ak θ̂k−1∣k−1 ,

Pk∣k−1 = AkPk−1∣k−1A
T
k + Σu .

!e update equations include the posterior estimate and posterior covariance
matrices, which are computed using:

θ̂k∣k = θ̂k∣k−1 + Pk∣k−1H
T
k∣k−1[Hk∣k−1Pk∣k−1H

T
k∣k−1 + Σ]−1[xk − hk(θ̂k∣k−1)],

Pk∣k = Pk∣k−1 − Pk∣k−1H
T
k∣k−1(Hk∣k−1Pk∣k−1H

T
k∣k−1 + Σ)−1Hk∣k−1Pk∣k−1 ,

where hk(⋅) is linearized around the prediction to obtain

Hk∣k−1 =
∂hk(θ)
∂θT

∣
θ=θ̂k∣k−1

∈ RM×N .
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5.1 Introduction

In this chapter we will study the discrete sparse sensing framework for an-
other important statistical inference problem, that is, detection. Statistical
detection is pertinent to applications in sensor networks, radar and sonar sys-
tems, wireless cognitive radio networks, biometrics, social networks, imaging
platforms, to list a few. We assume that the #eld is sampled by (spatially or
temporally) distributed sensors, and these samples are delivered to a central
unit. !e central unit then makes a single global decision as to the true hy-
pothesis using binary hypothesis testing. More speci#cally, the observations
at each sensor are related to the state of nature H, where the random vari-
ableH is drawn from a binary alphabet set {H0 ,H1}. In the Bayesian setting,
we assume that the prior probabilities π0 = Pr(H0) and π1 = Pr(H1) are
known, whereas in the Neyman-Pearson setting, the prior probabilities are
not known.

5.1.1 Related earlier works

!e minimum error probability criterion is a standard performance measure
for design problems related to statistical detection such as signal design [Gret-
tenberg, 1963, Kadota and Shepp, 1967, Kailath, 1967], censoring [Rago et al.,
1996], sampling design [Yu and Varshney, 1997], and so on. However, in most
cases, optimizing the error probabilities is very di.cult. !is may be because
these error probabilities do not admit a known closed form or their expres-
sion is too complicated for numerical optimization. !erefore, weaker perfor-
mance criteria that are easier to evaluate and optimize are o"en used. A num-
ber of measures related to the distance between the conditional probabilities
are widely used in the design of experiments as proxies for the error prob-
ability [Kailath, 1967, Rago et al., 1996, Yu and Varshney, 1997, Bajovic et al.,
2011, Chamberland and Veeravalli, 2007]. Some of the prominent distance
measures that are o"en used are the Kullback-Leibler distance, J-divergence,
Cherno/ information, and Bhattacharyya distance.

A related topic in the context of energy-e.cient distributed detection is
data censoring, wherein the uninformative sensor observations are not trans-
mitted to the central unit [Rago et al., 1996, Appadwedula et al., 2008, Blum
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and Sadler, 2008]. However, in censoring, data still has to be acquired in order
to choose informative sensors, thus, it incurs a sensing cost.!at is, censoring
schemes are data dependent as opposed to the proposed data-independent
sparse sensing schemes that can be designed o2ine. In other words, the ac-
tual measurements are not needed and only model information is used.

5.1.2 Main results

We focus on both the Bayesian as well as the Neyman-Pearson setting for
binary hypothesis testing. !e sparse sensing operation is designed based on
a number of distance measures that belong to the general class of Ali-Silvey
distances [Ali and Silvey, 1966].

!e main question addressed in the chapter is similar to that of [Cam-
banis and Masry, 1983, Bahr and Bucklew, 1990, Yu and Varshney, 1997, Ba-
jovic et al., 2011, Quan et al., 2009, Sung et al., 2005], but with the following
di/erences. Firstly, the proposed framework is general, that is, it is not lim-
ited to Gaussian observations, especially for conditionally independent ob-
servations. Secondly, we propose a sparsity-promoting cost function to de-
sign structured samplers to achieve the lowest sensing cost as compared to
the previously adopted periodic, regular, or random samplers. !e main con-
tributions of this chapter that broaden the existing literature are listed below.

• For conditionally independent observations, the best subset of sensors
is the one with the smallest local average root-likelihood ratio and largest
local average log-likelihood ratio in the Bayesian and Neyman-Pearson
setting, respectively. !is leads to an explicit solution for the sensing
design problem that is optimal in terms of the error exponents. As a
special case, for Gaussian observations with common covariances and
uncommonmeans under both hypotheses, the selected sensors are also
optimal in terms of the error probabilities (initial results for the Gaus-
sian case were reported in [Chepuri and Leus, 2015a]). !e computa-
tional complexity of the proposed solvers is independent of the number
of candidate sensors, and is as low as O(K), where K is the number of
selected sensors (or sampling locations).
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• For conditionally dependent observations, we focus on the Gaussian
setting. When the mean vectors are uncommon and the covariance
structure is common under both hypotheses, the sensing design prob-
lem can be relaxed to a convex optimization problem. Although this
leads to a suboptimal solution, we propose a randomized rounding
technique that further improves the solution. Moreover, in this case, for
nonidentical sensor observations, we show that the number of sensors
required to achieve a prescribed detection performance decreases sig-
ni#cantly as the correlation among them increases (i.e., when the sen-
sors become more coherent), which is in complete contrast to the case
of identical sensor observations. When the covariances are uncommon
and themeans are common under both hypotheses, the sensing design
problem remains nonconvex, except for the J-divergence optimization
(this also holds for a more general case with uncommon means).

5.2 Sensing conditionally distributed observations

Consider a networkwithM candidate sensors. !ese candidate sensorsmight
represent temporal, spatial, or even spatio-temporal samples. !e observa-
tions are related to the following model

H0 ∶ xm ∼ pm(x∣H0), m = 1, 2, . . . ,M , (5.1a)

H1 ∶ xm ∼ pm(x∣H1), m = 1, 2, . . . ,M , (5.1b)

where the probability density function (pdf) of the observation at the mth
sensor, xm, conditioned on the state of natureH is denoted by pm(x∣Hi) for
i = 0, 1. Further, the observations are collected in x = [x1, x2, . . . , xM]T ∈
RM . !e pdf of x under H0 and H1 is denoted by p(x∣H0) and p(x∣H1),
respectively.

We acquire the data x via a linear sensing operation, where the sensing
task is modeled through a vector whose entries belong to a binary alphabet,
i.e., through

w = [w1,w2, . . . ,wM]T ∈ {0, 1}M ,
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where the variable wm = (0)1 indicates whether the mth sensor is (not) se-
lected. More speci#cally, we de#ne the sensing matrix Φ(w) = diagr(w) ∈{0, 1}K×M , to acquire the data as

y = diagr(w)x = Φ(w)x ,
where K is not assumed to be known. Note that we are interested in cases
where K ≪ M. !e reduced dimension data vector y ∈ RK is used instead
of x ∈ RM to solve the detection problem. In this chapter we seek a sparsest
w, i.e., a vector with many zeros and just a few nonzero entries, such that a
prescribed global detection performance is achieved.

5.3 Problem statement

Let Ĥ denote an estimate of the state of nature H, based on a certain deci-
sion rule. In the Neyman-Pearson setting, the optimal detector minimizes
the probability of miss detection (type II error),

Pm = Pr(Ĥ ≠H1∣H1)
for a #xed probability of false alarm (type I error),

Pf = Pr(Ĥ =H1∣H0).
!is is the well-known Neyman-Pearson detector. In the Bayesian setting,
given the prior probabilities πi = Pr(Hi) for i = 0, 1, the optimal detector
minimizes the Bayesian error probability,

Pe = Pr(Ĥ ≠H) = π0Pf + π1Pm ,
or more generally, the detector minimizes the Bayes’ risk. Having introduced
the data model, we now formally state the design problem of interest.

Problem 5.1 (Sparse sampler design). Given the data model (5.1), design a
sparsest Boolean vector w that results in a prescribed

(i) Bayesian probability of error, Pe, in the Bayesian setting, or
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(ii) probability of miss detection, Pm, for a #xed probability of false alarm, Pf ,
in the Neyman-Pearson setting.

Mathematically, the sparse sensing problem for distributed detection can
be formulated as

P-B ∶ argmin
w∈{0,1}M

∥w∥0
s.to Pe(w) ≤ e; (5.2a)

P-N ∶ argmin
w∈{0,1}M

∥w∥0
s.to Pf (w) ≤ α , and Pm(w) ≤ β, (5.2b)

where e, α and β are, respectively, the desired Bayesian probability of error,
maximum false-alarm rate and maximum miss-detection rate. Here, Pe(w),
Pf (w), and Pm(w) denote the error probabilities due to the selected sensor
subset indicated by the nonzero entries of w. When prior probabilities are
available, we solve P-B (P denotes problem and B denotes Bayesian), oth-
erwise in the Neyman-Pearson setting we solve P-N (N denotes Neyman-
Pearson).

In order to ease the design, we next discuss some performance measures
that can substitute the error probabilities in the above optimization problems.

5.4 f (w) for detection

!e error probabilities Pe , Pm or Pf might not admit a known closed-form
expression or their expressions might not be favorable for numerical opti-
mization. In this section, we will discuss several weaker and simpler substi-
tutes, which can be optimized instead of the error probabilities. !ese substi-
tutes are based on the notion of distance (closeness or divergence) between
the two distributions of the observations under test. !ey lead to tractable,
if not always optimal (in terms of the error probabilities) design procedures
for sampler design. Nevertheless, optimizing the distancemeasures improves
the performance of any practical system.
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Let the likelihood ratio of the two hypotheses under test be de#ned as

l(y) = p(y∣H1)
p(y∣H0) .

In what follows, we consider a number of distance measures that belong to
the general class of Ali-Silvey distances [Ali and Silvey, 1966], which are of
the form

ψ (E∣Hi
{ϕ [l (y)]}) ,

where ψ(⋅) is an increasing real-valued function, ϕ[⋅] is a continuous convex
function on (0,∞), and the notation E∣Hi

{ϕ [l(y)]} indicates that ϕ [l(y)]
is averaged under the pdf p(y∣Hi) for either i = 0 or i = 1.
5.4.1 -e Bayesian setting

!e Bayes detector minimizes Pe , and makes a decision based on comparing
the optimal statistic to a threshold:

log l(y) = log p(y∣H1)
p(y∣H0)

H0

≶
H1

log
π0
π1

.

In the Bayesian setting, our goal is to choose the best subset of sensors that
results in a prescribed Bayesian probability of error Pe . !e best achievable
exponent in the Bayesian probability of error is parameterized by theCherno/
information (sometimes also referred to as theCherno/distance) [Cover and
!omas, 2012, Cherno/ ’s theorem], and it is given by

C(H1∥H0) = − log min
0≤n≤1

∫ [p(y∣H1)]n[p(y∣H0)]1−ndy
= − log min

0≤n≤1
E∣H0
{[l(y)]n}. (5.3)

Due to the involved minimization over n, the Cherno/ information in (5.3) is
di.cult to optimize over w. !erefore, we use a special case of the Cherno/
information called the Bhattacharyya distance as the optimization criterion,
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where the Bhattacharyya distance is obtained by #xing n = 0.5 in (5.3). !e
Bhattacharyya distance is given by

B(H1∥H0) = − log ρ, (5.4)

where the Bhattacharyya coe$cient [Kailath, 1967] or the Hellinger integral
[Kadota and Shepp, 1967], ρ, is given by

ρ = ∫
√
p(y∣H1)p(y∣H0)dy = ∫ p(y∣H0)

MNNO p(y∣H1)
p(y∣H0)dy

= E∣H0
{√l(y)} .

(5.5)

It is easy to verify from (5.5) that the Bhattacharya distance is symmetric,
which means B(H1∥H0) = B(H0∥H1). More importantly, the upper and
lower bounds for the Bayesian probability of error can be obtained using
the Bhattacharyya coe.cient. !e bounds are given as follows [Kadota and
Shepp, 1967, Appendix A], [Kailath, 1967]:

1

2
min(π0, π1)ρ2 ≤ Pe ≤√π0π1ρ. (5.6)

!erefore, in place of the Bayesian error probability, we minimize the Hellin-
ger integral, or equivalently, maximize the Bhattacharyya distance.

Furthermore, when ∫ [p(y∣H1)]n[p(y∣H0)]1−ndy is symmetric in n and
the observations are independent and identically distributed, the Bhattacha-
ryya distance is exponentially the best [Kailath, 1967], i.e.,

Pe
as.= exp (−B(H1∥H0)) for Pe → 0.

We now introduce the following assumption:

Assumption5.1 (Conditional independence). "e sensor observations are sta-
tistically independent, conditioned on the hypothesisH.

Under Assumption 5.1, the likelihood ratio simpli#es to

l(y) = p(y∣H1)
p(y∣H0) =

M

∏
m=1
[lm(x)]wm
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where lm(x) = pm(x∣H1)/pm(x∣H0) is the local likelihood ratio related to
themth sensor, and pm(x∣Hi) for i = 0, 1 are the conditional pdfs of x for the
mth sensor. Here, the conditional pdf of the selected sensors is of reduced
dimension, i.e., it does not include the measurements that are set to zero.

Besides being a reasonable measure, the Bhattacharya distance is much
simpler to optimize under Assumption 5.1 because of the following result:

Proposition 5.1 (Linearity of the Bhattacharyya distance). "e considered
sparse sensing mechanism preserves the additivity of the Bhattarcharyya dis-
tance under Assumption 5.1, i.e., we can express

fB(w) ∶= B(H1∥H0) = M

∑
m=1

wmBm(H1∥H0), (5.7)

where Bm(H1∥H0) = − logE∣H0
{√lm(x)}. (5.8)

Proof. See Appendix 5.A

!us, Proposition 5.1 enables us to optimize fB(w) over w (subscript B
denotes Bayesian). We underline here that fB(w) assumes only the knowl-
edge of the data model and does not need actual measurements, hence the
sensing operation can be designed o2ine. We also remark that the Cherno/
information (5.3) is not additive for conditionally independent observations,
unlike the Bhattacharyya distance.

Before discussing the optimization criterion for theNeyman-Pearson set-
ting, we end this subsection with the following remark that generalizes the
sampling design in the Bayesian setting.

Remark 5.1 (Bayes risk). Let Ci j be the cost if we decideHi when H j is true.
A generalization of the minimum Pe detector, is to minimize the Bayes risk

R = 1

∑
i=0

1

∑
j=0

Ci jPr(Hi ∣H j)Pr(H j),
where we arrive at a special case of R = Pe for C00 = C11 = 0,C10 = C01 = 1.
"is results in the sensing design problem

argmin
w∈{0,1}M

∥w∥0 s.to R(w) ≤ er ,
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where R(w) denotes the Bayes risk due to the selected sensor subset indicated
by the nonzero entries of w, and er is the desired Bayes risk.

"e bounds in (5.6) can be generalized to [Kobayashi and"omas, 1967]

R0 +R2ρ
2 ≤R ≤R0 +√R1ρ,

where R0 = π0C00 + π1C11, R1 = π0π1(C11 − C01)(C00 − C10), and R2 =R1/(π0(C00−C10)+π1(C11−C01)). "erefore, maximizing the Bhattacharyya
distance (or minimizing the Hellinger integral) is a reasonable optimality crite-
rion also for a more general minimum Bayes risk detector.

5.4.2 -e Neyman-Pearson setting

When the prior probabilities are not known, we solve the Neyman-Pearson
problem, where one of the error probabilities (Pf , for example) is #xed while
the second error probability, Pm is minimized. More speci#cally, the decision
is based upon the log-likelihood ratio test

log l(y) = log p(y∣H1)
p(y∣H0)

H0

≶
H1

γ, (5.9)

where γ is the threshold obtained by setting Pf = α. In what follows, we
discuss two distance measures that we can optimize in the Neyman-Pearson
setting.

Kullback-Leibler distance

For a Neyman-Pearson problem, the best achievable error exponent in the
probability of error (Pm , for example) is given by the relative entropy orKullb-
ack-Leibler distance K(H1∥H0) [Cover and !omas, 2012, Stein’s lemma].
!at is, for a #xed value of Pf ,

log Pm
as.= −K(H1∥H0) for Pm → 0.

!e Kullback-Leibler distance is the average log-likelihood ratio, and is given
by [Kullback, 1959]

K(H1∥H0) = E∣H1
{log l(y)}

= ∫ log l(y)p(y∣H1)dy. (5.10)
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A lower bound on Pm for a #xed Pf , say α (0 ≤ α ≤ 1) can be obtained us-
ing [Kullback, 1959, pp. 74-75 and tables in pp. 378-379]

K(H1∥H0) ≥ α log( α

1 − Pm )
+ (1 − α) log (1 − α

Pm
) = g(Pm).

(5.11)

Since g(Pm) is a strictly monotonic function (for values of α that are of prac-
tical interest), we can write

Pm ≥ g−1(K(H1∥H0)). (5.12)

For example, a very small (close to zero) α simpli#es (5.12) to Pm ≥ exp( −
K(H1∥H0)). !e following theorem gives an upper bound on Pm.

-eorem 5.1 (Upper bound on Pm). If the variance of the log-likehood ratio is
v2, then

Pm ≤
1

1 + (K(H1∥H0)−log γ)
2

v2

, (5.13)

where the threshold γ corresponds to a desired Pf = α.

Proof. See Appendix 5.B.

!e bounds in (5.12) and (5.13) make the maximization of K(H1∥H0) a
reasonable optimality criterion. We stress here that the above bounds (5.12)
and (5.13) are valid even when Assumption 5.1 is not true.

!e following property of the Kullback-Leibler distance further allows its
easy numerical optimization.

Proposition 5.2 (Linearity of the Kullback-Leibler distance). "e considered
sparse sensing mechanism preserves the additivity of the Kullback-Leibler dis-
tance under Assumption 5.1, i.e., we can express

fN,1(w) ∶= K(H1∥H0) = M

∑
m=1

wmKm(H1∥H0), (5.14)
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where Km(H1∥H0) = ∫ log lm(x)pm(x∣H1)dx
= E∣H1

{log lm(x)} (5.15)

with lm(x) = pm(x∣H1)/pm(x∣H0) being the local likelihood ratio that was
de#ned earlier.

Proof. See Appendix 5.C

!erefore, Proposition 5.2 allows us to maximize fN,1(w) over w (sub-
script N denotes Neyman-Pearson).

Remark 5.2. For the problem that minimizes the probability of false alarm Pf

for a #xed probability of miss detection Pm, the Kullback-Leibler distance

K(H0∥H1) = −E∣H0
{log l(y)}

= −∫ log l(y)p(y∣H0)dy (5.16)

has to be optimized. Note that the Kullback-Leibler distance is not symmetric,
i.e., K(H0∥H1) ≠ K(H1∥H0). Furthermore, Proposition 5.2 holds with the 0
and 1 subscripts interchanged in equations (5.14) and (5.15), which leads to the
cost function

fN,2(w) ∶= M

∑
m=1

wmKm(H0∥H1). (5.17)

J-divergence

!e symmetric form of the Kullback-Leibler distance, J-divergence, is another
frequently used criterion in the design of experiments. !e J-divergence is
de#ned as D(H1∥H0) = K(H1∥H0) +K(H0∥H1). (5.18)

A lower bound on (Pf + Pm)/2 can be obtained using [Kullback, 1959]

D(H1∥H0) ≥ 2[Pf + Pm
2

log( (Pf + Pm)/2
1 − (Pf + Pm)/2)

+(1 − Pf + Pm
2
) log( 1 − (Pf + Pm)/2(Pf + Pm)/2 )] ,
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and the results from !eorem 5.1 can be generalized to arrive at an upper
bound.

Remark 5.3. "e J-divergence is also a reasonable measure in the Bayesian set-
ting with π0 = 0.5 as the Bayesian error probability Pe = (Pf + Pm)/2 can be
both upper and lower bounded by D(H1∥H0). However, for other prior prob-
abilities an upper bound on Pe can be obtained in terms ofD(H1∥H0) only for
Gaussian observations [Kadota and Shepp, 1967].

!e J-divergence is also additive for conditionally independent observa-
tions, i.e.,

fN,3(w) ∶= D(H1∥H0) = M

∑
m=1

wmDm(H1∥H0),
where

Dm(H1∥H0) = Km(H1∥H0) +Km(H0∥H1). (5.19)

!e additive property of the J-divergence is straightforward to verify, and it
follows directly from Proposition 5.2.

Note that all the distance measures introduced in this section admit a
closed-formexpression irrespective of the observation distributions.!e solv-
ers for designing the sensing operation based on the developed performance
measures are presented next.

5.5 Solvers

!e performancemeasures derived in §5.4 greatly simplify the sensing design
problems P-B and P-N, which are otherwise di.cult to solve. !e simpli#ed
problem is stated as follows.

Problem 5.2 (Simpli#ed sparse sensing design). Under Assumption 5.1, given
M candidate sensors characterized by the conditional pdfs {pm(x∣Hi)}Mm=1 for
i = 0, 1, design a sparsest vector w such that a desired

(i) Bhattacharyya distance in the Bayesian setting, or
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(ii) Kullback-Leibler distance (or J-divergence) in the Neyman-Pearson set-
ting,

is achieved.

!ese sampling design problems are, respectively, expressed as the fol-
lowing cardinality minimization problems

S-B ∶ argmin
w∈{0,1}M

∥w∥0 s.to fB(w) ≥ λB; (5.20a)

S-N ∶ argmin
w∈{0,1}M

∥w∥0 s.to fN(w) ≥ λN, (5.20b)

where λB and λN specify the required Bhattacharyya distance and Kullback-
Leibler distance (or J-divergence), respectively. !e optimization problems
S-B and S-N (S denotes simpli#ed problem) are Boolean linear programming
problems. In place of fN(w) in (5.20b), either one of the three performance
measures fN,1(w), fN,2(w), or fN,3(w) can be used; however, there is no gen-
eral answer to the question of how does one performance metric compare
with the other.!ese problems are of the form (P0) introduced in Chapter 2.

For the sake of brevity, we collect the local distances {Bm(H1∥H0)}Mm=1 ,{Km(H1∥H0)}Mm=1, {Km(H0∥H1)}Mm=1 , or {Dm(H1∥H0)}Mm=1 in a common
vector denoted by d ∈ RM. !e optimization problems in (5.20) can then be
expressed in a general form as

argmin
w∈{0,1}M

∥w∥0 s.to dTw ≥ λ, (5.21)

where the threshold corresponds to λ ∶= λB or λ ∶= λN for the Bayesian or
Neyman-Pearson setting, respectively, with 0 ≤ λ ≤ 1Td. Boolean linear pro-
gramming problems are in general hard to solve. However, S-B and S-N are
some of the few special cases of a Boolean linear program that have an ex-
plicit solution. We give the solution to the considered o2ine sampling design
problem in the following theorem.

-eorem 5.2 (Sparse sampler for distributed detection). Assuming the entries
of d are (pre-)sorted in descending order and the entries ofw are sorted accord-
ingly. "e optimal solutionw to (5.21) has entries equal to 1 at the #rst K̂ entries
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corresponding to the largest entries in d, where

K̂ =min{i ∈ {1, 2, . . . ,M}∣d1 + d2 +⋯di ≥ λ}. (5.22)

Proof. !e proof is straightforward, thus, not detailed.

In essence, the integer program (5.21) has an explicit solution and it is op-
timal for (5.21). !e solution can be interpreted as follows: recalling K̂ from
(5.22), the best subset of sensors out of the M candidate sensors are those
K̂ sensors having the smallest local average root-likelihood ratio and largest
local average log-likelihood ratio in the Bayesian and Neyman-Pearson set-
ting, respectively.!is result on ordering the sensors based on the local Bhat-
tacharyya distance also holds for a general Bayes detector that minimizes the
Bayes risk [cf. Remark 5.1].

!e appeal of the proposed solution lies in its simplicity. Computation-
ally, the proposed solver is very attractive, for example, with a complexity ofO(M logM), which is essentially the complexity of the involved sorting al-
gorithm [Papadimitriou, 2003]. A parallel implementation on di/erent pro-
cessors (i.e., still in an o2ine centralized setting) of the ordering algorithm
further reduces the complexity to O(K̂) using a back-o/ mechanism as de-
tailed next: !e distance measure dm is made available to the central unit
a"er a time c/dm, where c is a known positive constant, and the central unit
computes the sum of the received values. If the accumulated sum exceeds the
desired threshold λ, the central unit declares a transmission stop1. !us, only
the K̂ largest distance values are gathered at the central unit.

In many applications, we might know the number of sensors to select
(e.g., we might have already purchased the hardware and we want to use all
of them). !at is, for a #xed sampler size K, the sensing design problem can

1If more than one distance is made available at the same time, we randomly pick as many
as we need.
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be expressed as

E-B ∶ argmin
w∈{0,1}M

Pe(w) s.to ∥w∥0 = K; (5.23a)

E-N ∶ argmin
w∈{0,1}M

Pm(w)
s.to Pf (w) ≤ α ,
∥w∥0 = K ,

or

argmin
w∈{0,1}M

Pf (w)
s.to Pm(w) ≤ β,∥w∥0 = K ,

(5.23b)

where E-B (E-N) represents the equivalent Bayesian (equivalent Neyman-
Pearson) problem, and α and β are, respectively, the maximum false-alarm
rate andmaximummiss-detection rate to be satis#ed. By appropriately choos-
ing the thresholds e, α and β in (5.2), we can obtain the optimal objective
value of (5.2) equal to K, for which P-B (P-N) and E-B (E-N) are equivalent.

We can also simplify E-B and E-N using the Bhattacharyya andKullback-
Leibler distance (or J-divergence) as proxies for the error probabilities, re-
spectively, to arrive at a general form given by

argmax
w∈{0,1}M

dTw s.to ∥w∥0 = K , (5.24)

where it is straightforward to verify that the optimal objective value is given
by the sum of the K largest entries of d.

We underline that the proposed solver is valid as long as Assumption 5.1
holds, and the observations need not necessarily be Gaussian distributed.

5.6 Illustrative examples

In this section, we illustrate the developed theory of o2ine sampling design
for binary hypothesis testing with a few examples. !e sensing operation is
designed such that a desired detection performance determined by the Bhat-
tacharyya distance, Kullback-Leibler distance, or J-divergence is achieved.
We begin with some examples of Gaussian observations and later on extend
it to exponential observation distributions.
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5.6.1 Gaussian observations

Uncommon means and common covariances

Detecting signals inGaussian noise is awell-studied problem in detection the-
ory. In particular, it #nds applications in spectrum sensing, target detection,
and communications, to list a few. For binary signals in Gaussian noise, that
is, observations with uncommon means and common covariance structure
under both hypotheses, the conditional distributions are given by

H0 ∶ x ∼N (θ0 , Σ)
H1 ∶ x ∼N (θ1 , Σ), (5.25)

whereN (θ , Σ) denotes a Gaussian distribution with mean vector θ and co-
variance matrix Σ, the mean vectors θ i = [θ i,1 , θ i,2 , . . . , θ i,M]T ∈ RM for
i = 0, 1 as well as the covariance matrix Σ = diag(σ21 , σ22 , . . . , σ2M) ∈ RM×M are
assumed to be perfectly known. !e error probabilities admit the following
expressions [Moon and Stirling, 2000, pg. 475]

Pf (w) = Q⎛⎝
γ + s(w)/2√

s(w)
⎞
⎠ ;

Pm(w) = 1 −Q⎛⎝
γ − s(w)/2√

s(w)
⎞
⎠ ,

(5.26)

where γ is the threshold de#ned in (5.9),

s(w) = (θ1 − θ0)Tdiag(w)Σ−1(θ1 − θ0) (5.27)

is the signal-to-noise ratio (sometimes referred to as the de0ection coe.cient),
andQ is the complementary Gaussian cumulative distribution function

Q(x) =
∞

∫
x

1√
2π

exp(−y2/2)dy.
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Note that the signal-to-noise ratio (5.27) is also linear in w. !e Bayesian
error probability is given by [Moon and Stirling, 2000, pg. 494]

Pe(w) = π0Q⎛⎝
γ′ + s(w)/2√

s(w)
⎞
⎠

+ π1
⎡⎢⎢⎢⎢⎣1 −Q

⎛
⎝
γ′ − s(w)/2√

s(w)
⎞
⎠
⎤⎥⎥⎥⎥⎦ ,

(5.28)

where γ′ = log (π0/π1) is the threshold in the Bayesian setting.
For the detection problem (5.25), the local Bhattacharrya distance, Kullback-

Leibler distance, and J-Divergence can be computed respectively as

Bm(H1∥H0) = 1

8σ2m
(θ0,m − θ1,m)2,

Km(H1∥H0) = Km(H0∥H1) = 1

2σ2m
(θ0,m − θ1,m)2,

Dm(H1∥H0) = 1

σ2m
(θ0,m − θ1,m)2 .

We next remark the following interesting observation. All the three dis-
tance measures are equal to the signal-to-noise ratio up to a constant.!at is,B(H1∥H0) = s(w)/8, K(H1∥H0) = s(w)/2, and D(H1∥H0) = s(w). How-
ever, these relations are not universal (e.g., they do not hold for non-Gaussian
observations). !is fact allows us to state the following fundamental result in
sampling design for Gaussian observations with common covariance.

-eorem 5.3. For Gaussian observationswith uncommonmeans and common
covariance structure under both hypotheses, maximizing the signal-to-noise ra-
tio over all the possible sampler choices is optimal for P-B and P-N.

Proof. !e proof is straightforward. It can be derived based on results from
[Cambanis and Masry, 1983] and the monotonicity of theQ function. !us,
it is omitted.

As an example, consider the sinusoidal detection problem with M = 15
candidate sensors. !emeans are θ0,m = 0 and θ1,m = cos 2π f mwith f ∶= 0.33
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for m = 1, 2, . . . ,M. Furthermore, we use Σ = IM , π0 = 0.3, π1 = 0.7, and
α = 0.01. In this example, we use a smaller dimension for M to compare
the results with the optimal solution of (5.23). Nevertheless, the proposed
solvers based on ordering easily scale to higher dimensional problems. We
solve (5.23) using exhaustive search over all the (MK) combinations for di/er-
ent values of K such that the error probabilities (5.26) and (5.28) are opti-
mized. !is is labelled as “Neyman-Pearson/Bayesian optimal” in Figure. 5.1.
For this particular example, due to!eorem 5.3, the simpli#ed sensing design
problem can be solved optimally also in terms of error probabilities. !is is
evident from Figure. 5.1, where the solution based on ordering the distance
measures (labelled as “Neyman-Pearson/Bayesian simpli#ed, sorting”) is on
top of the optimal solution obtained from exhaustive search. !e shaded re-
gions in Figure. 5.1 indicate the error probabilitieswith theworst to best subset
of K sensors (including any possible subset of K sensors) for di/erent num-
bers of selected sensors. In particular, the error probabilities with random
sampling (or any other sub-optimal sampling), for example, [Cambanis and
Masry, 1983, Sung et al., 2005], would span the shaded region.

Remark 5.4 (Choosing λ). For a desired Pm, say β, and #xed Pf , say α, the
threshold λ ∶= λN (for a desired signal-to-noise ratio) can be computed us-
ing (5.26). Speci#cally,

λN = (Q−1(α) −Q−1(1 − β))2.
When λ does not admit a closed form (e.g., with other distributions), the solution
path can be used as a guideline to choose λ that results in a desired error proba-
bility (o&en needs to be computed numerically); for example, see Figure. 5.2 to
compute λ ∶= λB, where we solve (5.21) with the same simulation parameters as
before.

Uncommon covariances and commonmeans

Detecting a change in variance is also frequently encountered in practice, for
example, whilemeasuring a physical phenomenonwith di/erent sensors each
characterized with di/erent noise levels both across the sensors and under
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Figure 5.1: !e probability of error (i.e., Pe or Pm) for (5.25) with di/erent numbers
of selected sensorsK out ofM = 15 sensors for independent observations. !e shaded
regions indicate the performance with the worst to best subset of K sensors.

both hypotheses.!e conditional distributions in this case are given by

H0 ∶ x ∼N (θ , Σ0)H1 ∶ x ∼N (θ , Σ1) , (5.29)

where θ is the known mean vector and Σi = diag(σ2i,1 , σ2i,2 , . . . , σ2i,M) for i =
0, 1 is the known diagonal covariance matrix. !e local log-likelihood ratio is

log lm(x) = 1

2
log

σ20,m
σ21,m
+ x2 ( 1

2σ20,m
− 1

2σ21,m
) .

Quantifying the performance of the detector, i.e., expressing Pm, Pf , and Pe
in a known closed form is more di.cult than before, as the pdf of l(x) can
be obtained only by numerical integration [Moon and Stirling, 2000]. How-
ever, the proposed performance measures admit known expressions as given
next.!e local Bhattacharyya distance between the conditional distributions
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in (5.29) is given by

Bm(H1∥H0) = 1

2
log (σ20,m + σ21,m

2σ0,mσ1,m
) , (5.30)

the local Kullback-Leibler distance is given by

Km(H1∥H0) = 1

2
( σ21,m
σ20,m
− 1 − log σ21,m

σ20,m
) , (5.31)

and Km(H0∥H1) is obtained by interchanging the subscripts 0 and 1 in the
above equation. Finally, the J-divergence is given by

Dm(H1∥H0) = 1

2
( σ21,m
σ20,m
+ σ20,m
σ21,m
− 2) . (5.32)

Assume that

Σ0 = [ 0.1 0
0 0.01

] and Σ1 = [ 0.5 0
0 0.25

]
and that we want to #nd the best sensor out of M = 2 candidate sensors (K =
1). A quick calculation shows that d2 > d1 for all distances (i.e., the local
distance measure of the second sensor is larger than that of the #rst sensor).
!us, the solution to the S-B (and S-N) will bew = [0, 1]T . !is is intuitive as
the conditional variance of the second sensor has a larger gap as compared to
that of the #rst sensor, hence the second sensor is more informative.

5.6.2 Exponential observations

Exponentially distributed observations occurwhile detecting a complexGaus-
sian signal at the output of a noncoherent receiver. !e conditional distribu-
tions for exponentially distributed observations form = 1, 2, . . . ,M , are given
by H0 ∶ xm ∼ µ0,m exp (−µ0,mx)

H1 ∶ xm ∼ µ1,m exp (−µ1,mx) , (5.33)
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Figure 5.2: !e solution path illustrates the Bayesian error probability for di/erent
values of the threshold λB. We use M = 15. !e number of selected sensors K̂ for a
speci#c value of the threshold is also shown.

where x ∈ [0,∞). !e local log-likelihood ratio is

log lm(x) = log µ1,m
µ0,m

+ x(µ0,m − µ1,m).
Using (5.8), the local Bhattacharyya distance can be computed as

Bm(H1∥H0) = − log
√
4µ0,mµ1,m

µ0,m + µ1,m .

Similarly, the local Kullback-Leibler distance Km(H1∥H0) can be computed
as

Km(H1∥H0) = log µ0,m
µ1,m
+ µ1,m
µ0,m

− 1,
the local Kullback-Leibler distanceKm(H0∥H1) is obtained by interchanging
the subscripts 0 and 1 in the above equation, and the local J-divergence is given
as

Dm(H1∥H0) = 2 log µ1,m
µ0,m

+ µ20,m − µ21,m
µ0,mµ1,m

.
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!ese measures can be directly used in the proposed solvers to design
sparse samplers.

5.7 Dependent observations

!roughout most of this chapter so far, we have assumed that the observa-
tions are conditionally independent.!is assumption is generally valid if the
sensors are responsible for the noise in the observations (i.e., receiver noise).
However, if the sensors are subject to external noise or if the signal itself is
stochastic in nature, then Assumption 5.1might not be reasonable anymore.
Consequently, the additive property of the considered distance measures is
also no more valid.

!e simpli#ed design problem for this general case (i.e., without any in-
dependence assumption), again consists of #nding a sparsestw that results in
a prescribed distance measure, where we express the Bhattacharyya distance,
Kullback-Leibler distance, or J-divergence in terms of w. !e solution to the
above generic problem is hard, nevertheless, we can solve it using standard
nonlinear and o"en nonconvex optimization techniques for a given problem
instance (see the example in §5.7.2). However, in some cases, a solution can
be computed e.ciently. As an example, the Gaussian observation case with
uncommon means is detailed next.

5.7.1 Gaussian observations with uncommon means

Let us consider the case of binary signal detection in Gaussian noise, and
assume the related conditional distributions are given by

H0 ∶ x ∼N (θ0 , Σ)
H1 ∶ x ∼N (θ1 , Σ), (5.34)

where the mean vectors θ0 and θ1 as well as the covariance matrix Σ ∈ RN×N

are assumed to be perfectly known. Note that thismodel is a generalization of
(5.25) with a nondiagonal covariance matrix. !e results from !eorem 5.3
generalize to dependent observations. !us, the error probabilities in (5.2)
[or (5.23)] can without loss of optimality be replaced with the signal-to-noise
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ratio (which is also related to the considered distance measures up to a con-
stant)

s(w) ∶= [Φ(w)m]T Σ−1(w) [Φ(w)m] , (5.35)

where we use m = θ1 − θ0 and
Σ(w) = Φ(w)ΣΦT(w) ∈ RK×K

is a submatrix of Σ that includes only the entries corresponding to the selected
measurements. More speci#cally, we want to solve the problem

argmin
w∈{0,1}M

∥w∥0 s.to s(w) ≥ λ, (5.36)

where λ is the desired signal-to-noise ratio (or distance measure, or error
probability). However, in this case, the simpli#ed problem does not admit
an explicit solution. !e optimal sampling scheme maximizes s(w) in (5.35)
over all possible w ∈ {0, 1}M such that w is as sparse as possible. !is incurs
a combinatorial search over all the 2M possible combinations. For example,
withM = 100 candidate sensors, a performance evaluation of about 1030 pos-
sible choices is needed whose direct enumeration is clearly impossible.

!e sampling design w for (5.34) depends on the #rst and second order
moments of the observations. In particular, it depends on θ0, θ1, and Σ.

Wenext propose some simpli#cations to solve this problem sub-optimally
in polynomial time, yet with a performance that is comparable to the optimal
one. Firstly, we write the covariance matrix Σ as

Σ = aI + S , (5.37)

where a nonzero a ∈ R is chosen such that S ∈ RM×M is invertible and well
conditioned. Using (5.37) in (5.35), we obtain

s(w) = mTΦT(w) [aI +Φ(w)SΦT(w)]−1Φ(w)m. (5.38)

Using Property 3.1 from Chapter 3, we can equivalently express s(w) as
s(w) = mTS−1m

−mTS−1 [S−1 + a−1diag(w)]−1 S−1m.
(5.39)
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Note that in contrast to (5.38), the design parameter w only shows up at one
place in (5.39), which makes the problemmuch easier. Using the Schur com-
plement, the performance constraint in (5.36), i.e.,

mTS−1 [S−1 + a−1diag(w)]−1 S−1m ≤ λ′
with λ′ ∶= λ − mTS−1m can be equivalently expressed as a linear matrix in-
equality in w, i.e.,

[ S−1 + a−1diag(w) S−1m
mTS−1 λ′

] ⪰ 0, (5.40)

and therefore, it is convex in w. !e parameter a should be chosen such that
S is invertible and well-conditioned. Furthermore, because of (5.40) the ma-
trix S−1 + a−1diag(w) should be positive de#nite. !is can be achieved, for
example, by choosing a such that it satis#es the condition 0 < a < λmin{Σ},
since wm ≥ 0 for m = 1, 2, . . . ,M. Although the constraint (5.40) is convex
onw, the optimization problem (5.36) is still not a convex problem due to the
!0-(quasi) norm cost function and the Boolean constraint.

Convex relaxation

!e Boolean constraint set is relaxed to its convex hull, i.e., 0 ≤ wm ≤ 1,
m = 1, 2, . . . ,M , andwe also relax the ∥w∥0 constraint in (5.36) to its best con-
vex approximate 1Tw. !us, the relaxed convex problem, more speci#cally, a
semide#nite programming problem, is given as [cf. (R0) from Chapter 2]

argmin
w

1Tw

s.to [ S−1 + a−1diag(w) S−1m
mTS−1 λ′

] ⪰ 0,
0 ≤ wm ≤ 1,m = 1, 2, . . . ,M .

(5.41)

For a #xed K, the equivalent problem of the form (5.24) can be relaxed to

argmax
w

s(w)
s.to 1Tw = K ,

0 ≤ wm ≤ 1,m = 1, 2, . . . ,M ,
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which simpli#es to

argmin
w

mTS−1 [S−1 + a−1diag(w)]−1 S−1m
s.to 1Tw = K ,

0 ≤ wm ≤ 1,m = 1, 2, . . . ,M .

(5.42)

Here, only the second term of (5.39), which depends onw is optimized (min-
imization is due to its negative sign). Writing (5.42) in the epigraph form
[Boyd and Vandenberghe, 2004], we obtain

argmin
w ,t

t

s.to 1Tw = K ,

[ S−1 + a−1diag(w) S−1m
mTS−1 t

] ⪰ 0,
0 ≤ wm ≤ 1,m = 1, 2, . . . ,M ,

(5.43)

with auxiliary variable t ∈ R.
Subsequently, the selected sensors (i.e., an approximate Boolean solu-

tion) can be computed using randomization techniques based on the solution
from (5.41) or (5.43) as described in Algorithm 5.1. !e relaxed convex prob-
lem can be solved using o/-the-shelf so"ware, for example, SeDuMi [Sturm,
1999].

Numerical example

To illustrate sparse sensing with dependent observations, we recall the sim-
ulation parameters from §5.6.1, but instead of independent noise, we use an
autoregressive correlation matrix Σ, which is a Toeplitz matrix of the form

Σ = σ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ρ ρ2 ⋯ ρM−1

ρ 1 ρ
ρ2 ρ 1 ⋮⋮ ⋱

ρM−1 ⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.44)
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Algorithm 5.1 Randomized Rounding

1. Given the solution w⋆ of (5.41) or (5.43) and a number of
randomizations L.

2. for l = 1 to L
3. generatewm,l = 1 with a probability w⋆m

(or wm,l = 0 with a probability 1 −w⋆m)
for m = 1, 2, . . . ,M, where w⋆m = [w⋆]m.

4. end
5. de+new l = [w1,l , . . . ,wM,l ]T and the index set of the can-

didate estimates satisfying the constraints as

Ω ≜
⎧⎪⎪⎪⎨⎪⎪⎪⎩
{l ∣ s(w l) ≥ λ, l = 1, 2, . . . , L}, for (5.41)

{l ∣ ∥w l∥0 = K , l = 1, 2, . . . , L}, for (5.43).

6. If the set Ω is empty, go back to step 2.
7. output approximate solution w⋆round = w l⋆ , where

l⋆ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
argmin

l∈Ω
∥w l∥0 , for (5.41)

argmax
l∈Ω

s(w l), for (5.43).

with a known correlation coe.cient ρ ∈ [0, 1] and variance σ2 = 1. Such a Σ
is useful for modeling correlations between distributed sensors; for example,
it can represent a spatially decaying correlation function. !e convex relaxed
problem (5.43) is solved using SeDuMi [Sturm, 1999].

!e probability of error, i.e., Pm in the Neyman-Pearson setting and Pe
in the Bayesian setting for di/erent numbers of selected sensors is shown in
Figure. 5.3. We underline the following observations. !e solution with ran-
domized rounding (L = 50) is shown in Figure. 5.3 for ρ = {0.25, 0.75} with
a = 0.11 in (5.37). For low values of the correlation coe.cient, ρ, the convex
relaxation with deterministic rounding is very close to optimal. For larger
values of ρ, the solution of the relaxed problem with randomized rounding
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(d) ρ = 0.75, α = 0.01
Figure 5.3: Error probabilities for (5.34) with di/erent numbers of selected sensors
K out ofM = 15 sensors. !e shaded regions indicate the performance with the worst
to best subset of K sensors.

is still very close to optimal for large values of K, but less optimal for small
values of K. As observed in the simulations, for L = 50 ≪ 215, the sensing
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design with randomization is near-optimal in terms of the error probability.

Correlation versus number of selected sensors

In this subsection, we focus on the number of sensors required to achieve a
certain detection performance when the sensors become more coherent, i.e.,
as the correlation coe.cient ρ approaches 1. To illustrate this, let us consider
the numerical example introduced in §5.6.1 with f ∈ {0, 0.33}, but with an
equi-correlated covariance matrix of the form

Σ ∶=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 ρ ⋯ ρ
ρ 1 ⋯ ρ⋮ ⋮ ⋱ ρ
ρ ρ ⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= (1 − ρ)IM + ρ1M1TM , (5.45)

with a known correlation coe.cient ρ ∈ [0, 1]. Note that for such a covariance
matrix, any a ≠ 1 − ρ leads to an invertible S in (5.37) that can be used in the
solver (5.41).

We #rst consider the case when f = 0, where all the M sensors have
the same mean value, i.e., m is the all-one vector up to a constant scaling.
We refer to them as identical sensors. In this case, any subset of sensors is
also the best subset of sensors, hence, random sensing is optimal. As the
correlation coe.cient ρ approaches 1, the amount of information (Kullback-
Liebler distance/Bhattacharyya distance/J-divergence/signal-to-noise ratio)
contributed by any random subset of K > 1 sensors is the same as that of the
contribution from K = 1 sensor; see Figure 5.4(a). !us, even with all the sen-
sors selected the detection performance is limited to that of the performance
with one sensor. !is is a well-known result from distributed detection that
extends to sampling design problems [Chamberland and Veeravalli, 2007].

Amore interesting case, in particular for sensing design problems, iswhen
the sensors are not identical ( f = 0.33), i.e., m has all di/erent entries. When
the sensors are not identical, as the correlation coe.cient ρ approaches 1, the
amount of information contained in the best subset of K > 1 sensors increases
signi#cantly; see Figure. 5.4(b). More speci#cally, with equi-correlated yet
di/erent observations, to achieve a certain detection performance, the num-
ber of sensors required decreases signi#cantly as the correlation coe.cient
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Figure 5.4:!e signal-to-noise ratio for di/erent values of the correlation coe.cient
ρ. (a) Identical sensors ( f = 0). (b) Nonidentical sensors ( f = 0.33).

ρ increases. !e maximum achievable signal-to-noise ratio is proportional
to the inverse of the minimum eigenvalue of Σ(w), which is λ−1min{Σ(w)} =
1/(1 − ρ), for any sampler size K ≠ 0. !e optimal sparse sampler would
choose the entries of m that are most aligned to the eigenvector correspond-
ing to the minimum eigenvalue of Σ(w) (hence, as ρ → 1 the signal-to-noise
ratio is large). Similarly, if the entries ofm are parallel to the eigenvector cor-
responding to the maximum eigenvalue of Σ(w), that is, the all-one vector,
then the signal-to-noise ratio is minimized; this is the case in Figure 5.4(a).

5.7.2 Gaussian Observation with Uncommon Covariances

We now provide some extensions and o/er guidelines for determining sparse
sensing mechanisms for testing between two covariance matrices. !at is,
when the covariance structures are di/erent under both hypotheses. Suppose
the conditional distributions are given by

H0 ∶ x ∼N (θ , Σ0)
H1 ∶ x ∼N (θ , Σ1), (5.46)
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where the mean vector θ ∈ RN as well as the N × N covariance matrices Σ0

and Σ1 are assumed to be perfectly known. !is model is a generalization
of (5.29) with nondiagonal covariance matrices.

As with (5.29), the distance measures are not equal to each other. Us-
ing (5.4), the Bhattacharyya distance for the observations of the form y =
Φ(w)x can be computed as

B(H1∥H0) = 1

2
log det{Σ01(w)}

− 1

4
(log det{Σ0(w)} + log det{Σ1(w)}) , (5.47)

where Σi(w) = Φ(w)ΣiΦ
T(w) for i = 01, 0, 1, with 2Σ01 = Σ0+Σ1. Similarly,

using (5.10), we can show that the Kullback-Leibler distance is given by

K(H1∥H0) = 1

2
(tr{Σ−10 (w)Σ1(w)} − ∥w∥0
− log det{Σ−10 (w)Σ1(w)}) . (5.48)

Here, Σ−10 (w)Σ1(w) is the signal-to-noise ratiomatrix.
We can express the Bhattacharyya and Kullback-Leibler distance as a dif-

ference of concave functions by relaxing w ∈ {0, 1}M to [0, 1]M . !at is, we
can express (5.47) and (5.48) as

f (w) = f0(w) − f1(w),
where f0(w) and f1(w) are concave functions of its arguments; see Appendix
5.D for the explicit expressions of f0(w) and f1(w). As a consequence, the
relaxed problem (for #xed K)

argmin
w∈[0,1]M

f1(w) − f0(w) s.to 1Tw = K ,

is not a convex problem as the cost is not a convex function of its argument
and has to be solved using nonconvex optimization techniques.

One such heuristic to solve the di/erence of convex problems is the convex-
concave procedure [Yuille and Rangarajan, 2003], where the concave term
(here, f1(w)) is replaced with its a.ne approximation (more generally, any
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reasonable convex approximation of f1(w)) while the convex portion , i.e.,− f0(w) is retained. !e resulting convex problem is iteratively solved to ob-
tain a local optimum.

!e J-divergence can be computed using (5.18) as

D(H1∣∣H0) = 1

2
tr{Σ−10 (w)Σ1(w)}
+ 1

2
tr{Σ−11 (w)Σ0(w)} − ∥w∥0 . (5.49)

We next show thatmaximizing the J-divergence overw can be cast as a convex
problem.

Let the covariance matrices Σ0 = Σ
1/2
0 Σ

T/2
0 and Σ1 = Σ

1/2
1 Σ

T/2
1 , respec-

tively, admit the decomposition

Σ0 = a0I + S0 ,
and

Σ1 = a1I + S1,
with scalars a0 and a1 chosen such that S0 and S1 are invertible. Using Prop-
erty 3.1 fromChapter 3, we can show that the J-divergence (5.49) is equivalent
to

D(H1∣∣H0) = 1

2
tr{S−10 Σ1

− S−10 [S−10 + a−10 diag(w)]−1 S−10 Σ1}
+ 1

2
tr{S−11 Σ0

− S−11 [S−11 + a−11 diag(w)]−1 S−11 Σ0} − ∥w∥0 .
!us, maximizing the J-divergence over w for a #xed K is the same as mini-
mizing

1

2
tr{S−10 [S−10 + a−10 diag(w)]−1 S−10 Σ1}
+ 1

2
tr{S−11 [S−11 + a−11 diag(w)]−1 S−11 Σ0}
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over w. To cast this as a convex problem, we introduce two variables

Z0 = Σ
T/2
1 S−10 [S−10 + a−10 diag(w)]−1 S−10 Σ

1/2
1 ;

Z1 = Σ
T/2
0 S−11 [S−11 + a−11 diag(w)]−1 S−11 Σ

1/2
0 ,

and obtain

argmin
w ,Z0 ,Z 1

1

2
tr{Z0} + 1

2
tr{Z1}

s.to 1Tw = K ,

Σ
T/2
1 S−10 [S−10 + a−10 diag(w)]−1 S−10 Σ

1/2
1 ⪯ Z0

Σ
T/2
0 S−11 [S−11 + a−11 diag(w)]−1 S−11 Σ

1/2
0 ⪯ Z1

0 ≤ wm ≤ 1,m = 1, 2, . . . ,M .

(5.50)

!e second and the third constraint can be, respectively, expressed as an LMI
in w, i.e.,

⎡⎢⎢⎢⎣
Z0 S−10 Σ

1/2
1

Σ
T/2
1 S−10 S−10 + a−10 diag(w)

⎤⎥⎥⎥⎦ ⪰ 0,
⎡⎢⎢⎢⎣

Z1 S−11 Σ
1/2
0

Σ
T/2
0 S−11 S−11 + a−11 diag(w)

⎤⎥⎥⎥⎦ ⪰ 0.
An approximate Boolean solution has to be subsequently computed using
randomized rounding.

!e optimization problem of the form (5.20) with unknown K can be
derived along similar lines by relaxing the ∥w∥0 in the cost function. Before
we end this section, we make the following remarks.

• For Gaussian observations, we recall that an upper bound on Pe and
Pm can be obtained in terms of J-divergence. Hence, optimizing J-
divergence is reasonable under the Bayesian and Neyman-Pearson set-
ting.
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• For generalGaussian dependent observations (with uncommonmeans
and uncommon covariances under both hypotheses), the design prob-
lems are straightforward combinations of the problems derived in §5.7.1
and §5.7.2.

5.8 Discussion

In this chapter we have developed a framework for structured and sparse
sampler design for distributed detection problems. In particular, we have ad-
dressed binary hypothesis testing in both the Bayesian and Neyman-Pearson
setting. !e proposed framework can be directly applied to sensor place-
ment/selection, sample selection, and fully-decentralized data compression,
where we seek the best subset of sensor/sampling locations or data samples
that results in a desired detection probability. To simplify the design prob-
lem, we have used a number of distance measures that quantify the closeness
or divergence between the conditional distributions of the observations. We
give an explicit solution for the sampling design problem with conditionally
independent observations and the results are summarized as follows. !e
best sensors are the ones with the smallest local average root-likelihood ratio
and largest local average log-likelihood ratio in the Bayesian and Neyman-
Pearson setting, respectively. !e framework has also been generalized to
conditionally dependent observations with a thorough analysis for the Gaus-
sian case. In that context, we have shown that, for uncommon means and
common covariances under both hypotheses, the number of nonidentical
Gaussian sensors required to achieve a desired detection performance re-
duces signi#cantly as the sensors become more coherent.

5.A Proof of Proposition 5.1

In this section, we prove that the additivity of the Bhattacharyya distance is
preserved with compression using Φ(w). Using the conditional indepen-
dence assumption, i.e., Assumption 5.1, the Bhattacharyya distance in (5.4)
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can be expressed as

B(H1∥H0) = − logE∣H0
{√l(y)}

= − logE∣H0
{ M

∏
m=1
[lm(x)]wm/2}

= − log M

∏
m=1

E∣H0
{[lm(x)]wm/2} ,

where lm(x) is the local likelihood ratio at themth sensor. Since wm ∈ {0, 1},
we can further simplify B(H1∥H0) to

B(H1∥H0) = − log M

∏
m=1
(E∣H0

{√lm(x)})wm

=
M

∑
m=1
−wm logE∣H0

{√lm(x)}
=

M

∑
m=1

wmBm(H1∥H0).

5.B Upper bound on Pm

To derive the upper bound on Pm stated in!eorem 5.1, we use Chebyshev’s
inequality [Hoe/ding, 1963]

Pr(X −E{X} ≥ t) ≤ 1

1 + t2

v2

, (5.51)

where X is a random variable with variance v2 and t is a constant. !en, Pm
simpli#es to

Pm = Pr (log l(y) ≤ log γ∣H1)
= Pr (log l(y) −E∣H1

{log l(y)}
≤ log γ −E∣H1

{log l(y)}∣H1)
= Pr (log l(y) −K(H1∥H0) ≥ K(H1∥H0) − log γ∣H1) ,
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where the last equation has the same form as the inequality (5.51) with t =
log γ −K(H1∥H0).

If the variance of log l(y) is v2, then, from (5.51), we have

Pm ≤
1

1 + (K(H1∥H0)−log γ)2
v2

!is completes the proof.

5.C Proof of Proposition 5.2

In this section, we prove that the additivity of the Kullback-Leibler distance
for independent observations is preserved with compression using Φ(w).
Assuming Assumption 5.1 holds, then the Kullback-Leibler distance in (5.10)
can be expressed as

K(H1∥H0) = E∣H1
{log l(y)}

= E∣H1
{log M

∏
m=1
[lm(x)]wm}

= E∣H1
{ M

∑
m=1

wm log lm(x)}
=

M

∑
m=1

wmE∣H1
{log lm(x)}

=
M

∑
m=1

wmKm(H1∥H0),
where lm(x) is the local likelihood ratio at themth sensor.

5.D Expressions for f0(w) and f1(w)

Let the covariance matrices Σ01, Σ0 and Σ1, respectively, admit a decomposi-
tion of the form Σ01 = a01I + S01, Σ0 = a0I + S0, and Σ1 = a0I + S0. Here, the
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scalars a01, a0, and a1 are, respectively, chosen such that the matrices S01, S0,
and S1 are invertible.

Using the Sylvester’s determinant identity

det{A+ BC} = det{A}det{I + CA−1B}, (5.52)

we can express, for example,

det{ΦΣ0Φ
T} = det{a0I +ΦS0Φ

T}
= aM0 det{I + a−10 ΦTΦS0}
= aM0 det{I + a−10 diag(w)S0}.

Bhattacharyya distance

Ignoring the terms that are independent of the optimization variable w, we
can express the Bhattacharyya distance (5.47) as

f (w) = f0(w) − f1(w),
where

f0(w) ∶= 1

2
log det{I + a−101diag(w)S01}

and

f1(w) ∶= 1

4
(log det{I + a−10 diag(w)S0}

+ log det{I + a−11 diag(w)S1}) ,
are concave functions on w ∈ [0, 1]M .
Kullback-Leibler distance

Using Property 3.1 from Chapter 3, we can write the #rst term of (5.48), that
is,

tr{Σ−10 (w)ΦΣ1Φ
T} = tr{ΦTΣ−10 (w)ΦΣ1}
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as

tr{S−10 Σ1 − S−10 [S−10 + a−10 diag(w)]−1 S−10 Σ1}.
!e above function can be expressed as a convex function inw (e.g., using the
epigraph form).!e second termof (5.48) can be relaxed to a convex function
1Tw. !e last term of (5.48), that is, log det{Σ−10 (w)Σ1(w)} is equivalent to

log det{ΦΣ1Φ
T} − log det{ΦΣ0Φ

T} =
log det{I + a−11 diag(w)S1} − log det{I + a−10 diag(w)S0}.

!us, we can equivalently express (5.48) as f (w) = f0(w) − f1(w) with
f0(w) ∶= −tr{S−10 [S−10 + a−10 diag(w)]−1 S−10 Σ1} − 1Tw

+ log det{I + a−11 diag(w)S1}
and

f1(w) ∶= log det{I + a−10 diag(w)S0},
which are concave in w.
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6.1 Introduction

In the sparse sensing schemes considered so far in this thesis, the focus was
on discrete sparse sensing. !at is, we were selecting sparse sensing patterns
from a discrete set of candidates, e.g., temporal samples, sensor positions,
which were obtained by gridding the output space, in order to reach a desired
inference performance. In this chapter we will discuss continuous (or o/-the-
grid) sparse sensing, where we can take samples anywhere in the continuous
output space (i.e., we can sample in between the grid points). Continuous

Part of this chapterwas published as: S.P. Chepuri andG. Leus. Continuous Sensor Place-
ment. IEEE Signal Processing Letters, 22(5): 544-548, May 2015.
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sparse sensingwill reduce the sensing costs for a given inference performance,
or in other words, it will improve the inference performance for a #xed sam-
pler size.

To realize continuous sparse sensing, we start with a discretized output
space and model every sampling point in the continuous sampling space as
a discrete sampling point plus a continuous perturbation. !en, we solve for
the smallest set of possible discrete points as well as the best possible pertur-
bations that result in a desired inference performance. Although we focus on
the estimation task with linear models in this chapter, the proposed approach
can be generalized to nonlinear models and also other inference tasks (e.g.,
#ltering and detection) discussed in this thesis. Depending on the nature of
the inference task, the risk function that quanti#es the inference quality will
depend on the discrete sampling points as well as their perturbations. In sum,
the main contribution of this chapter is a framework of continuous sparse
sensing, which allows for o/-the-grid sensor placement.

Let x(t) denote the observation signal with a continuous-domain argu-
ment, where without loss of generality t ∈ [0, T] denotes the sampling do-
main. We will restrict ourselves to the one-dimensional spatial domain, but
the ideas presented can be applied directly to higher dimensions and even to
temporal or spatio-temporal domains. Assume that x(t) represents the mea-
sured physical #eld over a continuous one-dimensional space t, and it satis#es
the linear model

x(t) = hH(t)θ + n(t) (6.1)

where θ ∈ RN collects the parameters to be estimated, h(t) ∈ CN is the known
linearmodel representing themapping between the parameters and themea-
surements, and n(t) is the noise. Furthermore, we assume h(t) = 0 for t < 0
and t > T . In other words, h(t) is completely described by its variation in the
interval t ∈ [0, T].

!e fundamental question of interest is—where to sample x(t) in order
to reach a desired inference performance? We next state the problem more
precisely.

Problem 6.1. Given the model (6.1) and a desired estimation accuracy, #nd the
optimal sampling locations in the range [0, T] such that the number of samples
is minimum and the desired estimation accuracy is achieved.
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6.2 Sensitivity to gridding

Wenow recall the sensingmodel (2.3) thatwe introduced in Chapter 2, where
we discretize (e.g., by regular sampling) the output space with M points de-
noted by {tm}Mm=1. !e inference performance (estimation accuracy, in this
case) is limited by the choice of the initial grid points {tm}Mm=1 as the resolu-
tion might be too low, especially when h(t) is fast varying compared to the
chosen grid.

Let xm = x(tm) be the discrete-domain observations, hm = h(tm) denote
the discretized model, and nm = n(tm) represent the noise. We assume that
the noise is white Gaussian with variance σ2 (for spatial sampling, the sen-
sor noise variance is independent of the sampling density). Using the above
notations, we can write the discrete-domain version of (6.1) as

xm = hHmθ + nm ,m = 1, 2, . . . ,M . (6.2)

!e data x = [x(t1), x(t2), . . . , x(tM)]T is acquired through the discrete
sparse sensing operation as

y = Φ(w)x = diagr(w)x ,
where we design a sparsest vector

w = [w1 ,w2, . . . ,wM] ∈ {0, 1}M
by solving (P0) introduced inChapter 2with f (w) = σ2tr{(∑M

m=1wmhmh
H
m)−1}.

!at is, we solve

argmin
w∈{0,1}M

∥w∥0
s.to σ2tr{( M

∑
m=1

wmhmh
H
m)
−1} ≤ λ. (6.3)

Recall that f (w) = σ2tr{(∑M
m=1wmhmh

H
m)−1} is theCramér-Rao bound (equal

to the mean squared error of the least squares estimate) for linear models in
Gaussian noise; see Remark 3.1 from Chapter 3.
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Figure 6.1:!e#eld ismeasured atM = 201discrete locations obtained by uniformly

gridding the interval [0, 10] m. !e mean squared error bound is set to λ = 0.026,

leading to K = 50 selected sensors.

We now illustrate the sensitivity to gridding with the following numerical
example. Consider the linear model in (6.1) with the following speci#cations.
Let the parameter vector θ be of length 2 × 1. Consider a sum of sinusoids
model for h(t) = [h1(t), h2(t)]T with hi(t) = ∑Pi

p=1 αp,i sin(2π fp,i t) for i =
1, 2. Let f i = [ f1,i , . . . , fPi ,i]T and α i = [α1,i , . . . , αPi ,i]T for i = 1, 2. We use
the following parameters: P1 = 5, P2 = 5, T = 10, σ2 = 1,

f 1 = [0.1, 0.33, 0.67, 0.78, 0.95]T , f 2 = [0.15, 0.7, 0.4, 0.58, 0.85]T ,
α1 = [0.5, 0.65, 0.3,−0.15, 0.45]T , α2 = [−0.25,−0.33,−0.6, 0.95,−0.25]T.

6.2.1 Coarse gridding

Assume that the #eld can be measured at M = 5 potential locations. Let us
consider the following case of candidate sampling locations tm ∶= {1, 3, 5, 7, 9}.
!e mean squared error resulting from the samples at these locations is 1.47.
!e optimalmean squared error using 5 samples, on the other hand, is around
0.16.
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We remark the following two observations. Firstly, the mean squared er-
ror resulting from the samples at the locations tm ∶= {1, 3, 5, 7, 9} is much
higher than the optimal mean squared error. Secondly, any subset of these
5 samples will naturally also result in a mean squared error larger than 1.47.
Hence, due to the involved discretization, coarse gridding might not lead to
the desired mean squared error even if all candidate samples/sensors are se-
lected.

6.2.2 Fine gridding

Alternatively, the initial grid can be very dense with the candidate sampling
locations at in#nitesimal distance apart. !en (6.3) would choose many sen-
sors within one or more virtual sampling bins.

For the setup discussed in the previous subsection, for a #ne grid with
M = 201 candidate sampling points the solution to the relaxed version of
(6.3) is illustrated in Figure. 6.1. !e sensors within the most informative bin
are selected #rst before going to the next informative bin, and so on, till the
desired mean squared error is achieved.

!e #ne gridding has two main drawbacks. Firstly, it might not be prac-
tically feasible to sample so close to each other. In addition, the reason why
more samples are selected within a certain bin is to improve the signal-to-
noise ratio. In case of spatial sampling, it might be desirable to restrict the
number of spatial samples. !at is, instead of placing additional (expensive)
sensors within a certain bin, the signal-to-noise ratio can be compensated by
other (cheaper)means, e.g., temporal averaging using a single sensor. Finally,
note that the solvers based on convex optimization techniques incur a cubic
complexity making #ne gridding also computationally less viable.

6.3 Sensing model based on binning

!e motivation behind a coarse discretization in discrete sparse sensing was
computational tractability, but its performance is limited by the choice of the
initial grid. On the contrary, #ne gridding su/ers from a high computational
complexity and multiple closely spaced sensors for signal-to-noise ratio im-
provement. In this section, we present the sparse sensing model based on
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binning, which allows to sample anywhere in the continuous sampling do-
main. Speci#cally, we take one sample per bin. To realize this, we augment
the discrete model by including additional variables that account for the con-
tinuous nature of the sampling domain.

We now recall the sparse sensing model that we introduced in Chapter 2,
wherewe acquire x(t) through a continuous-domain sparse sensing function
w(t) = ∑K

m=1 δ(t−τm)with unknown indices{τm}Km=1 andunknownnumber
of samples K, as

y(t) = w(t)x(t) = K

∑
m=1

x(τm)δ(t − τm).
By discretizing (e.g., regular sampling) the output space with M ≫ K points
denoted by {tm}Mm=1 we alternatively modeled y(t) as [cf. (2.3)]

y(t) = M

∑
m=1

wmx(tm)δ(t − tm)
wherewm = (0)1 indicates whether sample x(tm) is (not) selected. Here, the
assumption was that the {τm}Km=1 lie on the discrete grid.

When theydo not lie on the discrete gridwe follow a binning approach. If
x(t) is su.ciently smooth (i.e., its #rst-order derivative exists and is continu-
ous), then local shi"s of x(t) can be approximated using its derivative based
on a #rst-order Taylor expansion:

x(tm + pm) ≈ xm + pmx′m , m = 1, 2, . . . ,M , (6.4)

where {tm}Mm=1 are the discrete sampling points, pm represents the continuous
perturbation around tm with ∣pm ∣ < 0.5δ (δ denotes the bin size), and x′m is

the derivative of x(t) towards t evaluated at tm, i.e., x
′
m =

∂x(t)
∂t ∣t=tm . Using

this approximation, we arrive at an o/-the-grid sensing model, i.e., we can
model y(t) as

y(t) = M

∑
m=1

wm (xm + pmx′m) δ(t − tm − pm). (6.5)

Such #rst-order interpolations have also been used in the context of sparse
signal recovery in continuous compressive sensing to overcome problems due
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to gridding, but at the input grid [Ekanadhamet al., 2011,Zhu et al., 2011]. As a
remark, alternative interpolation techniques (e.g., polar interpolation [Ekanad-
ham et al., 2011]) can be considered.

Stacking {wm}Mm=1 in vectorw, {pm}Mm=1 in vector p, and {x′m}Mm=1 in vec-
tor x′, we can write the discrete-domain counterpart of (6.5) as

y = Φ(w) [x + diag(x′)p] = diagr(w) [x + diag(x′)p] , (6.6)

where y stacks {ym}Mm=1.
For the linear model (6.1), we can then represent the o/-the-grid samples

as

ym = wm [(hm + pmh′m)Hθ + nm] ,m = 1, 2, . . . ,M , (6.7)

where h′m =
∂h(t)
∂t ∣t=tm . Note that by using this idea, gridding actually results

in binning, where we take at most one sample per bin. In what follows, we
will derive the risk function that depends on w and p for the linear inverse
problem.

6.4 Risk function for continuous sparse sensing

As discussed in Chapter 3, for statistical estimation problems, we use scalar
measures of the Fisher information matrix to quantify the estimation accu-
racy. !e computation of the FIM for a linear model (6.7) is straightforward
[cf. (3.5) from Chapter 3]. It is given by

F(w , p) = M

∑
m=1

wmhmh
H
m +wmp

2
mh
′
mh
′H
m

+wmpm(h′mhHm + hmh′Hm ).
!e A-optimality criterion [cf. §3.1.1 fromChapter 3], which is the trace of

the inverse FIM, for linear Gaussianmodels corresponds to themean squared
error of the least squares estimate. Introducing variablesu = [u1 , u2 , . . . , uM]T
with um = wmp

2
m (which can also be written as um = w2

mp
2
m), and v =[v1 , v2, . . . , vM]T with vm = wmpm , we can write the risk function that we
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optimize as

f (u, v ,w) = σ2tr{(∑M

m=1wmhmh
H
m + umh′mh′Hm

+ vm(h′mhHm + hmh′Hm ))
−1}, (6.8)

where u = v⊙2.
In contrast to discrete sparse sensing, the risk function in this case, de-

pends on additional parameters that are related to the perturbation of the
discrete sampling points.

6.5 Solver

!e optimization variables (u, v ,w) in (6.8) are related through a structure.
Recall thatwm = 1 indicates that themth sample is selected. Only whenwm is
nonzero, the corresponding continuous variables um and vm are nonzero1. In
other words, the vectors u, v, andw all share the same support set. Hence, in-
stead of simply minimizing the cardinality ofw as in (P0) thatwas introduced
in Chapter 2, we can exploit the structure and jointly optimize their cardinal-
ity to minimize the number of samples, and thus selecting the smallest set of
perturbations associated with the discrete sampling points. De#ning the ma-
trix Z = [u, v ,w] ∈ RM×3, the proposed continuous sparse sensing problem
can be formulated as

argmin
Z

∥Z∥2,0 (6.9a)

s.to f (u, v ,w) ≤ λc, (6.9b)

Z = [u, v ,w],
u = v⊙2 , (6.9c)

wm ∈ {0, 1},m = 1, 2, . . . ,M , (6.9d)

− 0.5δ < vm < 0.5δ,m = 1, 2, . . . ,M , (6.9e)

0 < um < 0.25δ2,m = 1, 2, . . . ,M , (6.9f)

1We are not interested in a nonzero um or vm whenwm = 0.
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where the !2/!0-(quasi) norm counts the number of nonzero rows of Z as fol-
lows ∥Z∥2,0 ∶= ∣{m ∶√u2m + v2m +w2

m ≠ 0}∣, and the convex constraint (6.9b)
speci#es the estimation accuracy through a threshold λc (c denotes continu-
ous). Since the continuous variable pm takes values in the range [−0.5δ, 0.5δ],
we obtain the convex box constraints (6.9e) and (6.9f). !e optimization
problem (6.9) is nonconvex due to: (a) cardinality cost, (b) Boolean constraint
(6.9d), and (c) quadratic equality (6.9c). !erefore, it is (in general) di.cult
to solve (6.9) optimally.

We now use some standard convex relaxation techniques to simplify (6.9)
and solve it sub-optimally.

6.5.1 Convex relaxation

!e !2/!0-(quasi) norm is relaxed with its best convex approximation, i.e., an
!2/!1-mixed norm de#ned as ∥Z∥2,1 ∶= ∑M

m=1

√
u2m + v2m +w2

m . !e Boolean
wm ∈ {0, 1} constraint is replacedwith a convex setwm ∈ [0, 1].!e constraint
(6.9c) is equivalently expressed as u = diag(U), where U = vvH is a rank-
1 matrix with [U]i, j≠i = 0, ∀i , j. Dropping the rank constraint on U and
replacing the equality with an inequality as

U ⪰ vvH⇔ [ U v
vH 1

] ⪰ 0,
we arrive at the relaxed continuous sparse sensing problem:

argmin
Z ,U

∥Z∥2,1
s.to f (u, v ,w) ≤ λc,

Z = [u, v ,w],
[ U v
vH 1

] ⪰ 0,
diag(U) = u, [U]i, j≠i = 0,∀i , j,
0 ≤ wm ≤ 1,m = 1, 2, . . . ,M ,

− 0.5δ < vm < 0.5δ,m = 1, 2, . . . ,M ,

0 < um < 0.25δ2,m = 1, 2, . . . ,M .

(6.10)
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Subsequently, an approximate Boolean solution forw has to be recovered
either by deterministic or randomized rounding as discussed inChapter 3. Fi-
nally, the sensor placements are given by shi"ing the locations of the selected
sensors according to v. !e relaxed optimization problem can be solved using
o/-the-shelf solvers like SeDuMi [Sturm, 1999]. We underline here that the
proposed sensor placement is not limited to the initial chosen grid points,
and we basically replace grid points with bins allowing one sensor per bin.
However, this feature comes at an additional complexity compared to that of
solving the sensor selection problemwith a #xed discrete grid.!e increase in
complexity is due to the additional variables like the continuous perturbation
parameter and the associated box constraints.

Furthermore, the proposed algorithm is a single step approach. However,
it is also possible to compute the initial points from discrete sparse sensing
in step-1, and based on these initial points, iteratively solve for the sampling
locations using gradient descent techniques to #nd good local solutions in
step-2. But, such a two-step approach can result in a local optimum. More-
over, it will be a complex iterative approach, which can be completely di/erent
from the solution of the proposed approach.

6.5.2 Numerical example

To validate the proposed continuous sparse sensing approach, we refer to the
sum of sinusoids example introduced earlier in §6.2. Let the initial coarse
grid include M = 11 sampling locations {tm = (m − 1)δ ∣m ∈ {1, 2, . . . , 11}}
with δ = 1. Note that the proposed framework is not limited to the sum of
sinusoids model, but is valid for any general known model.

Figure. 6.2(a) illustrates the sensor placement via discrete sparse sensing
(speci#cally, sensor selection [Joshi and Boyd, 2009]). !e best subset of sen-
sors is computed by solving the relaxed version of (6.3). For sensor selection,
we choose λ ∶= 0.47 such that 5 sensors are selected out of 11 available sen-
sors. For the considered scenario, themean squared error achieved with such
a sensor placement is ≈ 0.47.

Figure. 6.2(b) illustrates the results from the proposed continuous sensor
placement obtained by solving the relaxed optimization problem (6.10). We
use λc = 0.064, which has also been chosen such that 5 sensors are selected.
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Figure 6.2: !e #eld is measured at M = 11 discrete locations with δ = 1 and T = 10.
(a.) Sensor placement via sensor selection. (b.) Proposed continuous sparse sensing.
A di/erent threshold λ is used for (a) and (b), such that 5 sensors are selected.
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M = 5 M = 11 M = 21 M = 41 M = 81
Sensor selection 1.47 0.47 0.28 0.20 0.18

Proposed sampler 1.32 0.36 0.22 0.18 0.17

Table 6.1: Mean squared error with 5 selected sensors for di/erent grid densities.

!e mean squared error achieved with the proposed placement is ≈ 0.36,
which is lower than the mean squared error obtained by the sensor place-
ment through sensor selection. !e threshold λc is an underestimate of the
mean squared error (unlike λ), and this is due to the approximation in (6.4).
!e threshold corresponding to a certain mean squared error can be chosen
by computing the solution path for di/erent λc values.

Finally, in Table 6.1 we evaluate the mean squared error with 5 selected
sensors obtained by solving the sensor selection problem and the proposed
continuous placement for di/erent grid densities. !e optimization prob-
lems are solved in MATLAB using SeDuMi [Sturm, 1999]. We consider dif-
ferent grid densitiesM = {5, 11, 21, 41, 81} and in each case we use a threshold
that selects 5 sensors. !e continuous sensor placement o/ers better mean
squared error with a reasonable increase in complexity.

6.6 Discussion

We have proposed a framework of continuous sparse sensing in this chapter,
where we select sparse sensing patterns from a continuous domain instead of
a discrete one. We model an o/-the-grid sampling point as an on-the-grid
sampling point plus a perturbation assuming that the continuous-domain
function is su.ciently smooth. In other words, we can take samples in be-
tween the grid points. Expressing the inference quality determining risk as
a function of the discrete sampling points and their perturbations, we have
designed a continuous sparse sensing operator by solving a convex program.
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7.1 Introduction

Sensor networks can be designed to faithfully represent distributed signals
(e.g., a spatially varying phenomenon such as a temperature #eld). In other
words, a sensor network can be used as a spatial sampling device. Further, to
acquire multidimensional distributed signals that exist in space and time, we
also need to perform sampling in time. !e temporal sampling is achieved

Part of this chapter was published as: S.P. Chepuri et al. Joint Clock Synchronization and
Ranging: Asymmetrical Time-Stamping and Passive Listening. IEEE Signal Processing Letters,
20 (1): 51 - 54, Jan. 2013.
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using analog-to-digital converters or time-to-digital converters, for example.
Each sensor has an independent sample clock (i.e., oscillator), and its stabil-
ity basically determines the alignment of the temporal sampling grid across
the sensors. !is temporal sampling grid is perfectly aligned if all the sensors
share a common clock. When uncommon, the individual clocks dri" from
each other due to imperfections in the oscillator, aging, and other environ-
mental variations. !is dri" will result in the misalignment of the temporal
sampling grid across the sensors. !erefore, clock synchronization among
di/erent nodes each having its own autonomous clock forms a key compo-
nent of a sensor network.

A plethora of clock synchronization algorithms based on the time-of-
0ight measurements of the messages have been proposed [Noh et al., 2008,
Freris et al., 2010,Wu et al., 2011, Rajan and van der Veen, 2011], which could
operate via a two-way time stamp exchange [Wuet al., 2011] or pairwise broad-
cast synchronization (PBS) [Noh et al., 2008]. Assuming an a.ne (i.e., #rst
order) clockmodel and one of the nodes as a reference, andusing least squares
the unknown clock skews and clock o/sets of the remaining nodes in a net-
work can be estimated from time stamps recorded with the two-way time
stamp exchange protocol [Rajan and van der Veen, 2011]. Sensor nodes are
usually battery powered. !us, all the tasks of a sensor network, including
synchronization, should be carefully performed to ensure longer operating
lifetime. For synchronization, this means to minimize the number of trans-
missions between nodes during which the time stamps are recorded.

In this chapter, we extend the joint clock synchronization and ranging al-
gorithm in [Rajan and van der Veen, 2011] to fully harness the broadcast na-
ture of the wireless medium. By doing so, the number of active transmissions
between the nodes can be signi#cantly reduced for a #xed synchronization
accuracy. In other words, the synchronization accuracy can be improved for
a #xed number of active transmissions. To realize this, we propose an asym-
metrical time stamping andpassive listening (ATPL) protocol.!eATPLpro-
tocol is based on the protocols proposed in [Wang et al., 2011] and [Noh et al.,
2008]. !e main goal of [Noh et al., 2008] was synchronization and did not
focus on ranging (distance between the nodeswas assumed to be known).!e
algorithmproposed in [Wang et al., 2011] also exploits the broadcast property
and focused on localization of a target node in an asynchronous network,
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Figure 7.1: !e ATPL protocol with the ith anchor transmitting. Solid (dotted) lines
refer to the active (passive) links. Dark (light) shaded lines refer to the forward (re-
verse) link.

however, estimation of the clock parameters was not explicitly considered.
In the ATPL protocol, during communication between a pair of nodes, time
stamps are recorded and exchanged. Besides this, the remaining nodes in the
network also passively listen and record the time stamps with their respective
clocks, in a cooperative way. However, they do not respond back to either of
the active node pair. In addition, the protocol does not put any constraint on
the sequence of transmissions, and this together with passive listening results
in asymmetrical links, and hence, asymmetrical time stamps. !e ATPL pro-
tocol is energy e.cient in the sense that we obtain more information just by
passive listening, and reception usually consumes less power than transmis-
sion. For a fully asynchronous network with one sensor and M anchors, we
propose a least squares estimator for jointly estimating all the unknown clock
skews, clock o/sets, and pairwise distances of the sensor to each anchor using
the time stamps recorded using the ATPL protocol.

7.2 Systemmodel

Weconsider a fully asynchronous networkwithM anchors (nodeswith known
relative locations) and one sensor (node 0). We assume that one of the nodes
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has a relatively stable clock oscillator and is used as a clock reference. All the
other nodes su/er from clock skews and clock o/sets. !e network model
considered here is a special case of the model in [Rajan and van der Veen,
2011], as the pairwise distances of certain nodes (anchors) are now assumed
to be known.

!e distance between the ith and the jth node is denoted by di, j = dj,i .
!e distance between the sensor and the ith anchor is denoted by d0,i = di,0 ,
and is unknown. Let ti be the local time at the ith node and t be the reference
time. We assume that the relation between the local time and the reference
time can be given by a #rst order a.ne clock model [Rajan and van der Veen,
2011]:

ti = ωi t + ϕi ⇔ t = αi ti + βi (7.1)

where ωi ∈ R+ is the clock skew, ϕi ∈ R is the clock o/set, αi = ω−1i and
βi = −ω−1i ϕi are the synchronization parameters of the ith node. Without loss
of generality, we assume that nodeM has a stable clock, i.e., [ωM , ϕM] = [1, 0].
!e unknown synchronization parameters are collected in

α = [α0, α1, . . . , αM−1]T and β = [β0 , β1, . . . , βM−1]T .
!e unknown clock skews and clock o/sets are, respectively, given by

ω = 1M ⊘ α and ϕ = −β ⊘ α. (7.2)

!e transmission and reception time stamps are recorded both during the
forward link (ith active anchor to the sensor) and the reverse link (sensor to
the ith active anchor). !e time stamp recorded at the ith node when the

kth iteration message departs is denoted by T
(k)
i , and on arrival of the corre-

sponding message, the jth node records the time stamp R
(k)
i, j . Note that the

time stamps recorded at the sensor will be either T
(k)
0 or R

(k)
i,0 .

7.3 Passive listening protocol

In the two-way time stamp exchange protocol between the ith anchor and the
sensor, the remaining nodes of the network are idle. On the other hand, in the
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Figure 7.2: An example sequence of the recorded time stamps. Solid (dotted) lines
refer to the active (passive) links. Dark (light) shaded lines refer to the forward (re-
verse) link.

ATPL protocol, we propose that all the remainingM− 1 anchors passively lis-
ten to the communication between the ith anchor and the sensor, and record
the time stamps R

(k)
i, j≠0 of their respective local clocks. By doing so, we ob-

tain more information with extra equations corresponding to transmissions
between a) active anchor and other passive anchors, and b) sensor and re-
maining passive anchors. !is is additional to the equations corresponding
to the active anchor sensor pair as compared to the two-way time stamp ex-
change. !e ATPL protocol initiated by the ith anchor is illustrated in Figure
7.1. An illustration of the sequence of time stamps recorded during the ATPL
protocol is shown in Figure 7.2.

In the proposed protocol, we do not put any constraints on the sequence
of forward links and reverse links [Rajan and van der Veen, 2011], i.e., the
reverse link need not always follow the forward link as in [Freris et al., 2010,
Wu et al., 2011,Noh et al., 2008]. !is means that the sensor need not respond
to the request from the anchor immediately. !erefore the processing time at
the sensor or the network delay typically considered in clock synchronization
algorithms [Freris et al., 2010, Wu et al., 2011, Wang et al., 2011, Noh et al.,
2008] need not be taken into account as long as the clock parameters are stable
within certain reasonable limits.

Remark 7.1. (Protocol modes): Possible ways of executing the ATPL protocol
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aremode a) Anchor node i makes Ki transmissions and the sensor replies back
with K0 messages, with K0 not necessarily equal to Ki and the transmissions
need not be sequential. "is is repeated by all the remaining anchors; mode b)
each anchor node i makes Ki transmissions, and, in the end the sensor replies
only once with K0 messages; andmode c)m-out-of-M anchors (m ≤ M)make
transmissions, and the sensor replies as described in either mode a or mode b.

A suitable protocol mode can be adopted depending on the performance
requirement and the energy constraint per node.

Remark 7.2. (With or without a central unit): "e computation can be done in
a centralized way in a fusion center (FC). However, there is an involved com-
munication load in transmitting the time stamps recorded at each node to a FC.

An FC based approach can be avoided by including the time stamps R(k)i,0 ,
k = 1, 2, . . . ,Ki in the payloadwhen the sensor responds to the ith anchor. How-

ever, additional broadcast messages to distribute the time stamps a) R(k)0,i , b)

R
(k)
i, j and R

(k)
0, j are still required. "is approach would avoid transmission of the

computed unknown parameters to the nodes, that is required with an FC based
approach. Moreover, it allows each node to independently perform computa-
tions without a FC.

7.4 Estimator

!e time-of-0ight for a line-of-sight (LOS) transmission between the ith and
the jth node can be de#ned as τi, j = ν−1di, j , where ν denotes the speed of
a wave (electromagnetic or acoustic) in a medium. Using (7.1), τi, j can be
written in terms of the time stamps recorded using respective local clocks of
the ith and jth node as

τi, j = (α jR
(k)
i, j + β j) − (αiT

(k)
i + βi) + n(k)i, j (7.3)

where n
(k)
i, j denotes the aggregate measurement error on the time stamps.

!e transmission and reception time stamps recorded at the ith and the
jth node are, respectively, collected in vectors

t i = [T(1)i , T(2)i , . . . , T(Ki)
i ]T ∈ RKi×1
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and
r i, j = [R(1)i, j , R(2)i, j , . . . , R

(Ki)
i, j ]T ∈ RKi×1 ,

where Ki is the number of transmissions made by the ith node. !e error

vector is denoted by ni, j = [n(1)i, j , n(2)i, j , . . . , n
(Ki)
i, j ]T ∈ RKi×1.

For the sake of exposition, we consider a networkwith one sensor (node 0)
andM = 2 anchors (node 1 andnode 2) and the following example protocol: (i)
node 1makes K1 transmissions, node 0 and node 2 passively listen, (ii) node 2
makes K2 transmissions, node 0 and node 1 passively listen, and #nally (iii)
sensor node 0 responds with K0 messages and node 1 and node 2 passively
listen. !is is an example of protocol mode b that was described earlier.

Collecting the clock parameters of the ith node in a vector bi = [αi , βi]T ,
we can now write the equations of the form given in (7.3), obtained for all the
K = K0 + K1 + K2 time stamps recorded in a matrix-vector form as

Node 0 responds j = 1(i = 0) j = 2
Node 1 transmits j = 0(i = 1) j = 2
Node 2 transmits j = 0(i = 2) j = 1

A∈R2K×9 , K=K0+K1+K2#$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$&⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t0 1K0 −r0 ,1 −1K0 0K0 0K0 1K0 0K0 0K0

t0 1K0 0K0 0K0 −r0 ,2 −1K0 0K0 1K0 0K0−r1,0 −1K1 t 1 1K1 0K1 0K1 1K1 0K1 0K1

0K1 0K1 t 1 1K1 −r1,2 −1K1 0K1 0K1 1K1−r2,0 −1K2 0K2 0K2 t2 1K2 0K2 1K2 0K2

0K2 0K2 −r2,1 −1K2 t2 1K2 0K2 0K2 1K2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0

b1

b2

τ0 ,1
τ0 ,2
τ1,2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

n ∈R2K×1#$$$$$$$$$$$$$$%$$$$$$$$$$$$$&⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n0 ,1

n0 ,2

n1,0

n1,2

n2,0

n2,1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

}n0

}n1

}n2

.

(7.4)

!e ordering of the rows of the system matrix A is arbitrary and does not
imply the order of transmission. !e columns of A corresponding to τ0,1,
τ0,2, and τ1,2 have two nonzero subvectors each as τi, j = τ j,i .

Remark 7.3. (Rank-de#ciency):"e linearmodel in (7.4) does not have a unique
solution, unless we impose certain constraints. Here, we do that by assigning
node 2 as the clock reference, i.e., b2 = [1, 0]T .
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We de#ne the vector τ0 = [τ0,1 , τ0,2, . . . , τ0,M]T ∈ RM×1, where the en-
tries of τ0 are not known. Note that τ1,2 = ν−1d1,2 corresponds to the distance
between the nodes 1 and 2, and is known. Moving all the knowns (columns
corresponding to b2 and τ1,2) to one side, (7.4) simpli#es to the following lin-
ear model given as

Node 0 responds j = 1(i = 0) j = 2
Node 1 transmits j = 0(i = 1) j = 2
Node 2 transmits j = 0(i = 2) j = 1

Ā∈R2K×6GHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHIHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHJ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t0 1K0 −r0,1 −1K0 1K0 0K0

t0 1K0 0K0 0K0 0K0 1K0−r1,0 −1K1 t1 1K1 1K1 0K1

0K1 0K1 t1 1K1 0K1 0K1−r2,0 −1K2 0K2 0K2 0K2 1K2

0K2 0K2 −r2,1 −1K2 0K2 0K2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

θ ∈R6×1>?@⎡⎢⎢⎢⎢⎢⎣
b0
b1
τ0

⎤⎥⎥⎥⎥⎥⎦

=

x ∈R2K×1>AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA?AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA@

−
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0K0 0K0 0K0−r0,2 −1K0 0K0

0K1 0K1 0K1−r1,2 −1K1 1K1

t2 1K2 0K2

t2 1K2 1K2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[ b2
τ1,2
] + n.

(7.5)

!e generalization of the datamodel (7.5) for anyM > 2 is straightforward
and can be easily derived along the same lines. !e generalized linear model
based on the ATPL protocol is given by

Āθ = x + n (7.6)

where Ā ∈ RKM×3M , θ ∈ R3M×1, x ∈ RKM×1 and n ∈ RKM×1, all having a
similar structure as that of (7.5).

Remark 7.4. (Correlated error vector): In case of broadcasting, the entries of
the error vector n are not uncorrelated due to a common error on the transmit
time stamp T

(k)
i .

We assume that the aggregate error n(k)i, j in (7.3) is due to the additive

stochastic noise components on the time stamps, T(k)i denoted by e(k)i and
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the time stamps, R(k)i, j denoted by e(k)i, j . We model the aggregate error in (7.3)
as

n(k)i, j = e
(k)
i + e(k)i, j (7.7)

where both e(k)i and e(k)i, j are modeled as zero mean i.i.d. Gaussian [Patwari

et al., 2005] with variance 0.5σ2, such that, E{e(k)i e(k)i, j } = 0 for i ≠ j. (!is

is a simpli#ed noise model and more accurate models could be considered.)
We can compute thenoise covariancematrix asΣ = diag(Σ0 , Σ1 , . . . , ΣM)

∈ RMK×MK , where Σi = E{nin
T
i }. For M = 2, we #nd

Σ i = [ σ 2IKi 0.5σ 2IKi

0.5σ 2IKi σ 2IKi

] ∈ R2Ki×2Ki (7.8)

!e structure of Σ can be generalized for any M > 2 in a similar way, leading
to Σi = 0.5σ2(1M1TM + IM)⊗ IKi ∈ R

MKi×MKi .

We can now prewhiten the observation model in (7.5) by forming Σ−1/2Ā
and Σ−1/2x. For K ≥ 3, Ā is tall and is le"-invertible. Hence, the unknown
parameters in θ can be estimated using least squares, i.e.,

θ̂ = (ĀT
Σ−1Ā)−1ĀT

Σ−1x . (7.9)

Subsequently, the clock skews ω, clock o/sets ϕ can be obtained using the
relation in (7.2), and the pairwise distances of the sensor to each anchor using
the relation d0 = ντ0.

Remark 7.5. (Sensor does not respond):
When only one of the nodes transmits, say node 1, Ā in (7.5) will not have

rows corresponding to transmissions of node 0 andnode 2, and it is rank-de#cient
as the columns two and #ve are dependent. "is also holds when only either
node 2 or node 0 transmits.

If only anchor nodes transmit, and the sensor does not respond, then Āwill
not have rows corresponding to transmissions of node 0. In that case, Ā will be
again rank-de#cient, as column two is a linear combination of columns #ve and
six. "erefore, for (7.6) to have a unique solution, the sensor should respond at
least once, i.e., K0 = 1 with K ≥ 3.

!e possibility that the sensor node responds with only one message in
the end makes the protocol energy e.cient.
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In sum, the proposed algorithm exploits: (1) known distances between
anchors, and (2) the broadcast property, which results in additional observa-
tions and a correlated error as compared to the pairwise transmissions with-
out passive listening.

7.5 Cramér-Rao lower bound

It follows from the Cramér-Rao lower bound (CRB) theorem that the covari-

ance of any unbiased estimate ̂̄θ of the unknown parameter θ̄ satis#es the
well-known inequality [Kay, 1993]

E{(θ̄ − ̂̄θ)(θ̄ − ̂̄θ)T} ≥ F−1,
where θ̄ = [ωT , ϕT , dT

0 ]T and F ∈ R3M×3M is the Fisher information matrix.
If the error n in (7.6) is zero-mean Gaussian with covariance matrix Σ, then
F can be computed as F = JTΣ−1J, where J is a Jacobian matrix. !e Jacobian
matrix is given by

J =
∂(Āθ − x)

∂θ̄
T

= [Jω Jϕ Jd 0
] ∈ RKM×3M (7.10)

with sub-blocks

Jω =
∂(Āθ − x)

∂ωT
= −(ĀSα − ĀSβ ⊙ 1KMϕT)⊘ (1KMωT)⊙2 ,

Jϕ =
∂(Āθ − x)

∂ϕT
= −ĀSβ ⊘ 1KMωT ,

Jd0
=
∂(Āθ − x)

∂dT
0

= ν−1ĀSτ0

where Sα , Sβ , and Sτ0 are selection matrices to select the columns of Ā cor-
responding to α, β, and τ0, respectively.

7.6 Simulations

Anetworkwith one sensor and 10 anchors is considered for simulations. Both
the sensor and the anchor nodes are deployed randomly within a range of
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100m. Clock skews ω and clock o/sets ϕ are uniformly distributed in the
range [1 − 100ppm, 1 + 100ppm] and [−1 s, 1 s], respectively. We use an ob-
servation interval of 100 s during which the clock parameters are #xed and
ν = 3 × 108m/s. !e time stamps are corrupted with an i.i.d. Gaussian pro-
cess having a standard deviation σ = 1ns [Patwari et al., 2005].

!e proposed estimator based on theATPLprotocol is compared with the
global least squares (GLS) algorithm proposed in [Rajan and van der Veen,
2011, Figure 3(c)], as it is already shown to outperformother existing synchro-
nization algorithms. We apply the GLS algorithm based on two-way commu-
nication between each sensor-anchor pair.

Figure 7.3 shows the root mean square error (RMSE) of the estimates ϕ
and ω, and d0 for di/erent number of messages, K. We show simulations for
mode a andmode c of theATPL protocol described in §7.3. It can be seen from
the #gures that the proposed algorithm performs better than GLS in both the
considered scenarios due the additional links obtained frompassive listening.
!e proposed algorithm also achieves the theoretical root CRB (RCRB).

7.7 Discussion

In this chapter, we have considered a fully asynchronous network with one
sensor and M anchors. We have proposed a least squares estimator to syn-
chronize the sample clocks of wireless sensors based on the ATPL protocol
that fully exploits the broadcast nature of the wireless medium. We estimate
all the unknown clock skews and clock o/sets along with the pairwise dis-
tances of the sensor to each anchor.!e proposed estimator is shown to be ef-
#cient, asymptotically meeting the theoretical CRB, and it outperforms avail-
able algorithms. Pairwise distances form a major input to any localization
scheme as we see in the next chapter.
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8.1 Introduction

In this chapter, we provide a di/erent 0avor of localization, called rigid body
localization. In rigid body localization, we use a few sensors on a rigid sensing
platform and exploit the knowledge of how the sensors are mounted on the
body (i.e., sensor placement on the platform) to jointly estimate the position
as well as the orientation of the rigid body based on distance measurements.

8.1.1 Applications and prior works

Rigid body localization has potential applications in a variety of #elds. To list
a few, it is useful for location services involving underwater (or in-liquid) sys-
tems, orbiting satellites, mechatronic systems, aircra"s, underwater vehicles,
ships, robotic systems, or automobiles. In such applications, classical local-
ization of the node(s) is not su.cient. For example, in an autonomous under-
water vehicle (AUV), or an orbiting satellite, the sensing platform is not only
subject to motion but also to rotation. Hence, next to position, determining
the orientation of the body also forms a key component, and is essential for
controlling, maneuvering, and monitoring purposes.

Traditionally, position and orientation are treated separately even though
they are closely related. !e orientation of a body is usually measured using
inertial measurement units (IMUs) comprised of accelerometers [Salhuana,
2012] and gyroscopes. However, IMUs generally su/er from accumulated er-
rors o"en referred to as dri" errors.!e dri" calibration is typically achieved
using di/erent sensor technologies including vision, magnetometers, ultra
wide band (UWB), or GPS [Hol et al., 2009,Hol, 2011], leading to dependen-
cies between these technologies. Sometimes these di/erent sensors cannot
be coherently fused, for instance magnetometer based calibration needs an
undistorted magnetic environment, which is typically di.cult to guarantee.

GPS-based attitude determination [Wahba, 1965, Cohen, 1992, Juang and
Huang, 1997] is closely related to our work, in which multiple antennas on
a platform are used. Here, the attitude is estimated from GPS carrier phase
measurements which involves a complicated integer problemwith no unique
solution in general.
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8.1.2 Contributions

We propose a framework for joint position and orientation estimation of a
rigid body in a three-dimensional space by borrowing techniques from clas-
sical sensor localization, i.e., using only rangemeasurements between all the
sensor-anchor pairs. We consider a rigid body on which a few sensor nodes
are mounted. !e absolute position of the rigid body is not known. However,
the topology of how the sensors are mounted on the rigid body is known up
to a certain accuracy. !e orientation of the rigid body is expressed as a rota-
tionmatrix and the absolute position of the rigid body (instead of the absolute
position of each individual sensor) as a translation vector. In other words, the
absolute position of the sensors is expressed as an a.ne function of the Stiefel
manifold.

!e maximum likelihood (ML) estimators for the original problem in-
volve solving a constrained (nonconvex) nonlinear least-squares (NLS) prob-
lem, which is in general di.cult to solve. In order to simplify this problem,we
linearize the problem by squaring the measurements. We use the linearized
model in a least-squares (LS) estimator to jointly estimate the rotation matrix
(to begin with, its structure is ignored) and the translation vector. Since rota-
tion matrices are unitary matrices, we also propose a unitarily constrained
least-squares (CLS) estimator and a simpli#ed unitarily constrained least-
squares (SCLS) estimator, both of which solve an optimization problem on
the Stiefel manifold. !e solutions from the proposed estimators can be used
as an initialization to solve the maximum-likelihood estimators or the orig-
inal nonlinear LS problem if needed. We also derive a unitarily constrained
Cramér-Rao bound (CCRB), which is used as a benchmark for the proposed
estimators.

Inmany applications, the sensor topologymight not be accurately known,
i.e., the known topology can be noisy. !ese perturbations are typically in-
troduced while mounting the sensors during fabrication or if the body is not
entirely rigid. To account for such perturbations, we propose a unitarily con-
strained total least squares (CTLS) estimator and a simpli#ed unitarily con-
strained total least squares (SCTLS) estimator. !e performance of the pro-
posed estimators is analyzed using simulations. Using a sensor array with a
known geometry not only enables orientation estimation, but also yields a



160 Chapter 8. Rigid Body Localization

t

Reference frame

Sensor

Anchor

q2 = [0, 1, 0]T

q1 = [1, 0, 0]T

q1 = [1, 0, 0]T

q2

q1

q3

c1

c2

c3
c4

c5

s1

s2

s3

s4

s5

Figure 8.1: An illustration of the sensors on a rigid body undergoing a rotation and
translation.

better localization performance.!e initial results on rigid body localization
using rangemeasurements, viz., SCLS and SCTLS were proposed in [Chepuri
et al., 2013a].

!e proposed framework of rigid body localization can also be used as
an add-on to the existing IMU based systems to correct the dri" errors, or
in environments where inertial measurements and/or positioning via GPS is
not feasible. !e proposed framework is based on a static position and orien-
tation, unlike most of the orientation estimators which are based on inertial
measurements and a certain dynamical state-spacemodel (e.g., see [Hol et al.,
2009]). Hence, our approach is useful when there is no dynamic model avail-
able. We should stress, however, that the proposed framework is also suit-
able for the estimation (tracking) of dynamic position and orientation using
a state-constrained Kalman #lter for instance, and some initial results on this
topic can be found in [Chepuri et al., 2013d].
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8.2 Problem formulation and modeling

8.2.1 Problem formulation

Consider a network with M anchors (nodes with known absolute locations)
and N sensors in a 3-dimensional space. !e sensors are mounted on a rigid
body as illustrated in Figure 8.1. !e wireless sensors are mounted on the
rigid body (e.g., at the factory), and the topology of how these sensors are
mounted is known up to a certain accuracy. In other words, we connect a so-
called reference frame to the rigid body denoted by the axes q1 = [1, 0, 0]T ,
q2 = [0, 1, 0]T , and q3 = [0, 0, 1]T in Figure 8.1. In that reference frame,
the coordinates of the nth sensor are given by the known 3 × 1 vector cn =[cn,1 , cn,2 , cn,3]T . !e sensor topology is basically determined by the matrix
C = [c1 , c2 , . . . , cN] ∈ R3×N . Let the absolute coordinates of the mth an-
chor and the nth sensor be denoted by a 3 × 1 vector am and sn, respec-
tively, where sn is not known. !e absolute positions of the anchors and
the sensors are collected in the matrices A = [a1, a2, . . . , aM] ∈ R3×M and
S = [s1, s2, . . . , sN] ∈ R3×N , respectively.

Rigid body transformation

A Stiefel manifold [Eldén and Park, 1999] in three dimensions, denoted byV3,3, is the set of all 3 × 3 unitary matrices Q = [q1 , q2, q3] ∈ R3×3, i.e.,

V3,3 = {Q ∈ R3×3 ∶ QTQ = QQT = I3}.
!e absolute position of the nth sensor can bewritten as an a.ne function

of a point on the Stiefel manifold, i.e.,

sn = cn,1q1 + cn,2q2 + cn,3q3 + t
= Qcn + t , (8.1)

where t ∈ R3×1 denotes the unknown translation. More speci#cally, the pa-
rameter vector t refers to the unknown position of the rigid body. !e com-
bining weights cn are the known coordinates of the nth sensor in the reference
frame. !is means that the unknown unitary matrix Q actually tells us how



162 Chapter 8. Rigid Body Localization

the rigid body has rotated in the reference frame. When there is no rota-
tion, then we have Q = I3. !e relation in (8.1) is sometimes also referred to
as the rigid body transformation. !e rotation matrices can uniquely repre-
sent the orientation of a rigid body unlike Euler angles or unit quaternions
(see [Chaturvedi et al., 2011] for more details). !e rigid body transforma-
tion is also used in computer vision applications [Arun, 1992, Horn et al.,
1988,Horn, 1987].

With (8.1), the absolute position of all the sensors can be written as

S = QC + t1TN =
ΘGHHHHHHHHHHHHHHHIHHHHHHHHHHHHHHHHJ[ Q t ]

CeGHHHHHHIHHHHHHHJ
[ C

1TN
], (8.2)

whereΘ ∈ R3×4 is the unknown transformation matrix.

Range measurements

!e proposed framework is general and can be applied to range estimates ob-
tained from any one of the standard ranging techniques (e.g., two-way rang-
ing based on TOAmeasurements [Patwari et al., 2005,Chepuri et al., 2013c]).
!e framework is valid as long as the range estimates between all the sensor-
anchor pairs are available. Further, we assume that the body position is nearly
static during the ranging process, i.e., the linear and angular velocities are
negligible compared to the propagation speed.

Let the range (or the Euclidean distance) between themth anchor and the
nth sensor be denoted by ρmn = ∥am − sn∥2. !e noisy range measurement
between themth anchor and the nth sensor can be expressed as

ymn = ∥am − sn∥2 + vmn

= ∥am − (Qcn + t)∥2 + vmn ,
(8.3)

where vmn ∼ N (0, σ2mn) is the stochastic noise resulting from the ranging
process.!e ranging noise vmn ,m = 1, 2, . . . ,M; n = 1, 2, . . . ,N , is a sequence
of independent randomvariableswhose variance σ2mn is assumed to be known
or easily estimated.
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Problem statement

Having introduced the rigid body transformation in (8.1) and the measure-
mentmodel (8.3), we can now formally state the rigid body localization prob-
lem as follows.

Problem 8.1 (Rigid body localization). Given one range measurement be-
tween each sensor-anchor pair, i.e., ymn as in (8.3), the ranging noise variance
σ2mn, for m = 1, 2, . . . ,M and n = 1, 2, . . . ,N, the positions of the anchors A,
and the topology of the sensors on the rigid body determined by the matrix C,
jointly estimate the position t ∈ R3×1 and orientation Q ∈ V3,3 of the rigid body.

!e ML estimator for jointly estimating the orientation and translation is
to solve the following optimization problem

argmin
Q ,t

M

∑
m=1

N

∑
n=1

σ−2mn(ymn − ∥am − (Qcn + t)∥2)2
s.to QTQ = I3.

(8.4)

!e above problem is a nonlinear and a nonconvex optimization problem,
and is in general di.cult to solve. To simplify this problem, we next linearize
themodel in (8.3), which can then be solved using linear LS based estimators.
!e solution from the proposed estimators can then be used as an initializa-
tion to solve the above NLS problem if needed.

8.2.2 Squared-range measurements

!e model in (8.3) is nonlinear in sn (or Q and t). !erefore, we linearize the
nonlinear model in (8.3) by squaring it. Squaring the measurements in (8.3)
results in a noise termwith a nonnegative knownmean1 σ2mn . Subtracting that
mean σ2mn from the squared-range measurements between the mth anchor
and the nth sensor, we obtain

dmn = y2mn − σ2mn

= ∥am∥22 − 2aTmsn + ∥sn∥22 + nmn ,
(8.5)

1For low noise levels, this nonnegativemeanwhich is simply the variance of the range error
in (8.3) can be ignored.
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where
nmn = 2ρmnvmn + v2mn − σ2mn (8.6)

is the new zero-meannoise termdue to squaring. Collecting these new squared-
range measurements between the nth sensor and all the anchors in

dn = [d1n , d2n , . . . , dMn]T ∈ RM×1,

we can write (8.5) in a vector form as

dn = α − 2AT sn + ∥sn∥221M + nn , (8.7)

where
α = [∥a1∥22 , ∥a2∥22, . . . , ∥aM∥22]T ∈ RM×1,

is known, and
nn = [n1n , n2n , . . . , nMn]T ∈ RM×1 .

Subtracting the knowns in (8.7) from the measurements, we arrive at

dn − α = −2AT sn + ∥sn∥221M + nn . (8.8)

We next eliminate the vector ∥sn∥221M in (8.8) using an isometry decomposi-
tion of the projection matrix

PM = IM − 1

M
1M1

T
M = UMU

T
M ∈ R

M×M ,

whereUM is anM×(M−1)matrix obtained by collecting orthonormal basis
vectors of the null-space of 1TM such thatUT

M1M = 0M−1. Pre-multiplying both
sides of (8.8) with UT

M , we arrive at

UT
M(dn − α) = −2UT

MAT sn +UT
Mnn . (8.9)

Stacking (8.9) for all the N sensors, we obtain

UT
MD = −2UT

MATS +UT
MN , (8.10)

where we de#ne the following M × N matrices:

D = [d1 , d2, . . . , dN] − α1TN ,
and N = [n1 , n2, . . . , nN].
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!e linear model in (8.10) can then be compactly expressed as

D̄ = ĀS + N̄ , (8.11)

where we have introduced the following matrices:

D̄ = UT
MD ∈ R(M−1)×N ,

Ā = −2UT
MAT ∈ R(M−1)×3 ,

and N̄ = UT
MN ∈ R(M−1)×N .

Vectorizing1 (8.11) leads to

d̄ =

(M−1)N×3NGHHHHHHHHHHHHHHIHHHHHHHHHHHHHHHJ(IN ⊗ Ā) s + n̄, (8.12)

where
s = vec(S) ∈ R3N ,

d̄ = vec(D̄) ∈ R(M−1)N ,
and n̄ = vec(N̄) = (IN ⊗UT

M)vec(N) ∈ R(M−1)N .
Using the rigid body transformation in (8.2), we can relate themeasurements
D̄ in (8.11) and the transformation matrix Θ. Substituting (8.2) in (8.11), we
arrive at the following linear model

D̄ = ĀΘCe + N̄ , (8.13)

which can then be vectorized to

d̄ =

(M−1)N×9GHHHHHHHHHHHHHHHHIHHHHHHHHHHHHHHHHJ(CT
e ⊗ Ā) θ + n̄, (8.14)

where
θ = vec(Θ) = [qT1 , qT2 , qT3 , tT]T ∈ R12×1

is the unknown parameter vector that has to be estimated.

1We use the matrix property vec(ABC) = (CT ⊗ A)vec(B).
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!e covariance matrix of the noise n̄ in (8.14) is denoted by

Rn̄ = (IN ⊗UT
M)Rn(IN ⊗UM) ∈ R(M−1)N×(M−1)N ,

where Rn is the covariance matrix of n = vec(N), and is developed in Ap-
pendix 8.A. To whiten1 the noise, the vectorized model in (8.14) (equivalently
the model in (8.12)) is transformed to

d̄
′ = R−1/2n̄ d̄

= R−1/2n̄ ((IN ⊗ Ā)s + n̄) (8.15)

= R−1/2n̄ ((CT
e ⊗ Ā)θ + n̄). (8.16)

Here, the notation R
1/2
n is de#ned from the Cholesky decomposition Rn ∶=

R
1/2
n R

T/2
n .

In the next section, we propose several estimators of θ from the processed
squared-range measurements d̄

′
.

8.3 Linear least squares estimators

To begin with, we #rst look at the topology-agnostic classical LS-based loca-
tion estimator (i.e., ignoring the prior sensor placement information).

8.3.1 Classical LS-based localization (topology-agnostic)

We use the classical (weighted) LS estimator of s from d̄
′
in (8.15) to estimate

the absolute position of the sensors as

ŝ LS = argmin
s∈R3N

∥d̄′ − R−1/2n̄ (IN ⊗ Ā)s∥22
= (R−1/2n̄ (IN ⊗ Ā))†d̄′ ,

(8.17)

1!e noise covariance is parameter dependent, and hence, for whitening it we use an esti-
mated covariance matrix R̂n as discussed in §8.6.
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which is unique if IN ⊗ Ā has full column-rank. !is requiresM ≥ 4. Finally,
we have

Ŝ LS = unvec(̂s LS) ∈ R3×N .

In this classical LS-based localization, the knowledge about the known sensor
topology is not exploited, and the absolute position of each sensor is estimated
separately.

8.3.2 Unconstrained LS estimator

!e unknown parameter vector θ has a structure because Q = [q1, q2, q3]
is a unitary matrix. To begin with, we propose to estimate θ, ignoring its

structure, from d̄
′
in (8.16) using the following (weighted) LS estimator

θ̂ LS = argmin
θ

∥d̄′ − R−1/2n̄ (CT
e ⊗ Ā)θ∥22

= (R−1/2n̄ (CT
e ⊗ Ā))†d̄′.

(8.18)

!e estimator in (8.18) will have a unique solution if the matrix CT
e ⊗ Ā has

full column-rank, i.e., CT
e and Ā are both full-column rank, and this requires(M − 1)N ≥ 12. Finally, we have

Θ̂ LS = unvec(θ̂ LS) = [ Q̂ LS t̂ LS ] . (8.19)

8.3.3 Unitarily constrained estimators

!e LS estimate Q̂ LS obtained in (8.19) is typically (in presence of noise) not
a rotation matrix. Hence, we next propose two LS estimators with a unitary
constraint on Q. Both these estimators solve an optimization problem on the
Stiefel manifold.

For this purpose, we decouple the rotations and the translations in (8.2)
by eliminating the all-one vector 1TN , and hence the matrix t1TN . In order to
eliminate t1TN , we use an isometry matrix UN , and as earlier, this matrix is
obtained by the isometry decomposition of PN , given by

PN = IN − 1

N
1N1

T
N = UNU

T
N ,
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whereUN is an N × (N − 1)matrix obtained by collecting orthonormal basis
vectors of the null-space of 1TN such that 1TNUN = 0TN−1. Right-multiplying
both sides of (8.2) with UN leads to

SUN = QCUN . (8.20)

Combining (8.11) and (8.20) we get the following linear model

D̄UN = ĀQCUN + N̄UN ,

which can be further simpli#ed as

D̃ = ĀQC̄ + Ñ , (8.21)

where we have introduced the following matrices:

D̃ = UT
MDUN ∈ R(M−1)×(N−1) ,

C̄ = CUN ∈ R3×(N−1) ,

and Ñ = UT
MNUN ∈ R(M−1)×(N−1) .

Vectorizing (8.21), we obtain

d̃ =

K×9GHHHHHHHHHHHHHHHHIHHHHHHHHHHHHHHHHJ
(C̄T ⊗ Ā) q + ñ, (8.22)

where K = (M − 1)(N − 1), d̃ = vec(D̃), q = vec(Q), and ñ = vec(Ñ). !e
covariance matrix of the noise ñ in (8.22) is denoted by

Rñ = (UT
N ⊗UT

M)Rn(UN ⊗UM) ∈ RK×K .

We will estimate Q based on a (weighted) LS formulation with a unitary con-
straint, as given by

argmin
Q

∥R−1/2ñ (d̃ − (C̄T ⊗ Ā)q)∥2
2

(8.23a)

s.to q = vec(Q), QTQ = I3 . (8.23b)

!e optimization problem in (8.23) is nonconvex due to the quadratic
equality constraint, and does not generally admit a known closed-form so-
lution. However, such optimization problems can be solved iteratively as will
be discussed later on. Before presenting the iterative algorithm, we will #rst
look at a simpli#ed version of (8.23).
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Simpli+ed unitarily constrained LS (SCLS) estimator

!e optimization problem in (8.23) can be simpli#ed and brought to the stan-
dard formof an orthogonal Procrustes problem (OPP)with a noniterative kno-
wn solution. !e OPP is generally used to compute rotations between sub-
spaces.

Assuming that Ā has full column-rank (this can be ensured with optimal
anchor placement as discussed in Chapter 3 and [Chepuri et al., 2013b]), and

multiplying both sides of (8.21) with Ā
†
, we obtain

Ď = QC̄ + Ň , (8.24)

where Ď ∶= Ā
†
D̃ and Ň ∶= Ā

†
Ñ . !e simpli#ed unitarily constrained LS

(SCLS) problem is then given as

Q̂ SCLS = argmin
Q

∥Ď − QC̄∥2F
s.to QTQ = I3.

(8.25)

!e SCLS estimator in (8.25) is suboptimal for the problem in (8.23) due to
the colored noise Ň in (8.24).

-eorem 8.1 (Solution to the SCLS problem). "e constrained LS problem in
(8.25) admits a noniterative known solution given by Q̂ SCLS = VUT, where V

and U are obtained from the singular value decomposition (SVD) of ĎC̄
T =∶

VΣUT in which matrices V ∈ R3×3, U ∈ R3×3 are unitary, and Σ ∈ R3×3 is

diagonal."e obtained solution is unique if and only if ĎC̄
T
is nonsingular.

Proof. See [Golub and Van Loan, 1996, pg. 601].

Remark 8.1 (Alternative SCLS formulation). Instead of pseudo inverting Ā
in (8.21) to arrive at (8.24), we can alternatively pseudo-invert C̄ in (8.21) to
arrive at another OPP given by

Q̂ A-SCLS = argmin
Q
∥D̆ − ĀQ∥2F

s.to QTQ = I3,
(8.26)
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where D̆ ∶= D̃C̄
†
. "e OPP in (8.26) has a closed-form solution Q̂ A-SCLS =

UVT, where the unitary matrices U ∈ R3×3 and V ∈ R3×3 are obtained from

the SVD of Ā
T
D̆ =∶ UΣVT .

Pseudo inverting C̄ can o"en assure better conditioning as the topology
matrix is usually designed at the factory. However, the alternative SCLS for-
mulation in (8.26) cannot be used in case of perturbations on the sensor po-
sitions, which is discussed in §8.5. Hence, from now on we will not consider
the approach in Remark 8.1.

Subsequently, the SCLS estimate of the translation t can be computed us-
ing Q̂ SCLS obtained by solving (8.25). We can write (8.14) equivalently as

d̄ = [ (CT ⊗ Ā) (1N ⊗ Ā) ] [q
t
] + n̄, (8.27)

where (CT ⊗ Ā) ∈ R(M−1)N×9, and (1N ⊗ Ā) ∈ R(M−1)N×3. Substituting
q̂ SCLS ∶= vec(Q̂ SCLS) in the above model, and moving the knowns to the
le" side, we get the following linear model

d̄ − (CT ⊗ Ā)q̂ SCLS = (1N ⊗ Ā)t + n̄.
!e SCLS estimate for the translations is given by the following LS estimate

t̂ SCLS = argmin
t

∥d̄ − (CT ⊗ Ā)q̂ SCLS − (1N ⊗ Ā)t∥22
= (1N ⊗ Ā)†(d̄ − (CT ⊗ Ā)q̂ SCLS).

(8.28)

Since we solve the SCLS estimates in an unweighted LS sense, we need not
compute the related noise covariance estimates.

Unitarily constrained LS (CLS) estimator

!e CLS estimates are obtained by solving the optimization problem that was
introduced earlier in (8.23), which we recall as

Q̂ CLS = argmin
Q

∥R−1/2ñ (d̃ − (C̄T ⊗ Ā)q)∥2
2

(8.29a)

s.to q = vec(Q), QTQ = I3. (8.29b)
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!e optimization problem in (8.29) is a generalization of the OPP, and
is sometimes also referred to as the weighted orthogonal Procrustes problem
(WOPP) [Viklands, 2008]. Unlike theOPP of (8.25), which has a closed-form
analytical solution, the optimization problem (8.29) does not admit a closed-
form solution. However, it can be solved using iterative methods based on
either Gauss-Newton’s method, Newton’s method [Viklands, 2008], or steep-
est descent [Manton, 2002]. In this chapter, we restrict ourselves to Gauss-
Newton’s method for solving (8.29) because of the availability of a good ini-
tial value (e.g., the closed-form solution from !eorem 8.1) for the iterative
algorithm.

!e optimization problem in (8.29) is a LS problem on the Stiefel mani-
fold. To simplify the notations we write (8.29) in a more general form:

argmin
Q

∥z − Lvec(Q)∥22
s.to Q ∈ V3,3 ,

(8.30)

Algorithm 8.1 CLS based on Gauss-Newton’s method.

1. Compute initial value Q0 ∶= Q̂ SCLS,
2. initialize L, z, iteration counter k = 0, ε, and ε0.
3. while εk > ε
4. compute J using (8.48)
5. compute a Gauss-Newton step

xk = (JT J)−1JT(z − Lvec(Qk))
6. compute the optimal step-length αk using (8.50).
7. update Qk+1 = QkΩ(αkxk),

whereΩ(⋅) is de#ned in (8.46).
8. increment k = k + 1.
9. compute εk+1 =

∥JT(z−Lvec(Qk))∥2
∥J∥F∥z−Lvec(Qk)∥2

.

10. end while.
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and for solving (8.29) we use

z ∶= R−1/2ñ d̃ ∈ RK×1 ,

and L ∶= R−1/2ñ (C̄T ⊗ Ā) ∈ RK×9 .
(8.31)

!e algorithm is derived in Appendix 8.B, and it is summarized as Algo-
rithm 8.1. Amore profound treatment onWOPP is found in [Viklands, 2008].

As before, the estimate for the translation t can then be computed using
q̂ CLS ∶= vec(Q̂ CLS) in (8.27). !e CLS estimate for the translation is given by
the following (weighted) LS estimate

t̂ CLS = argmin
t
∥d̄′ − R−1/2n̄ ((CT ⊗ Ā)q̂ CLS + (1N ⊗ Ā)t)∥22

= (R−1/2n̄ (1N ⊗ Ā))†(d̄′ − R−1/2n̄ (CT ⊗ Ā)q̂ CLS).
8.3.4 Topology-aware (TA) localization

A complementary by-product of the rigid body localization is the topology-
aware localization. In this case, the position and orientation estimation is
not the main interest, but the absolute position of each sensor node has to be
estimated, given that the sensors follow a certain topology. !is latter infor-
mation can be used as a constraint for estimating the sensor positions rather
than estimating them separately. For the rigidity constraint, using Q̂ and t̂
obtained from either the SCLS or CLS estimator, we can then compute the
absolute positions of each sensor on the rigid body as

Ŝ TA = Q̂C + t̂1TN . (8.32)

8.4 Unitarily constrained Cramér-Rao bound

Suppose we want to estimate the unknown vector θ = [qT1 , qT2 , qT3 , tT]T ∈
R12×1 from the rangemeasurements ymn corrupted by independent noise vmn

∼N (0, σ2mn) for n = 1, 2, . . . ,N , andm = 1, 2, . . . ,M, where the observations
follow the nonlinear model (8.3). We can compute the CRB for any unbiased
estimator of θ as described next.
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8.4.1 Unconstrained CRB

!e covariance matrix of any unbiased estimate of the parameter vector θ
satis#es [Kay, 1993]

E{(θ̂ − θ)(θ̂ − θ)T} ≥ C CRB = F−1,

where the Fisher information matrix (FIM) F is given by

F =
M

∑
m=1

N

∑
n=1

E

⎧⎪⎪⎨⎪⎪⎩(
∂ ln p(ymn ; θ)

∂θ
)(∂ ln p(ymn ; θ)

∂θ
)T⎫⎪⎪⎬⎪⎪⎭ .

!is is theCramér-Rao bound theorem andC CRB is the Cramér-Rao lower
bound (CRB) matrix. Let us de#ne ce,n = [cTn , 1]T ∈ R4 for n = 1, 2, . . . ,N .
!e computation of the FIM for observations with Gaussian likelihoods is
straightforward, and the 12 × 12 FIM is given as

F(θ) = M

∑
m=1

N

∑
n=1

(ce,n ⊗ I3)(am − (Qcn + t))(am − (Qcn + t))T(cTe,n ⊗ I3)
σ2mn∥am − (Qcn + t)∥22 .

(8.33)

8.4.2 Constrained CRB

!e FIM in (8.33), does not take into account the unitary constraint on the
matrix Q, i.e., QTQ = I3. Generally, if the parameter vector θ is subject to
some P continuously di/erentiable (nonredundant) constraints h(θ) = 0,
then with these constraints, the resulting constrained CRB is lower than the
unconstrained CRB. In [Stoica andNg, 1998], it is shown that the constrained
CRB (CCRB) has the form

E{(θ̂ − θ)(θ̂ − θ)T} ≥ C CCRB(θ) = M(MTFM)−1MT , (8.33)

where F is the FIM for the unconstrained estimation problem as in (8.33),
and an isometrymatrixM ∈ R12×(12−P) is obtained by collecting orthonormal
basis vectors of the null-space of the gradient matrix

G(θ) = ∂h(θ)
∂θT

∈ RP×12 .
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!e nonredundant constraints ensure that the matrix G(θ) is full row-rank,
and implies

G(θ)M = 0
while MTM = I12−P . For the unitarily constrained CRB (CCRB) denoted by
C CCRB(θ), we have to consider the unitary constraint QTQ = I3, which can
be expressed by the following P = 6 nonredundant constraints

h(θ) =[qT1 q1 − 1, qT2 q1, qT3 q1, qT2 q2 − 1,
qT3 q2, q

T
3 q3 − 1]T = 06 ∈ R6×1,

(8.34)

where the symmetric redundant constraints are discarded. !e gradient ma-
trix for the constraints in (8.34) can be computed as follows

G(θ) = ∂h(θ)
∂θT

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2qT1 0T3 0T3 0T3
qT2 qT1 0T3 0T3
qT3 0T3 qT1 0T3
0T3 2qT2 0T3 0T3
0T3 qT3 qT2 0T3
0T3 0T3 2qT3 0T3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R6×12.

An orthonormal basis of the null-space of the gradient matrix is #nally given
by

M =
1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−q3 03 q2
03 −q3 −q1 09×3
q1 q2 03

03×3
√
2 I3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

!e CCRB for TA-localization can be easily derived from C CCRB(θ) using
the transformation of parameters [Kay, 1993].

-eorem 8.2 (Biased estimator). An unbiased constrained estimator for Q
does not exist, except for the noiseless case.

Proof. See Appendix 8.C.
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Due to!eorem 8.2, themean-squared-error (MSE) of any unitarily con-
strained estimator will be lower than the CCRB for high noise levels. How-
ever, at low noise levels, the bias tends to zero, and the CCRB gives a good
lower bound on the MSE of the unitarily constrained estimators.

8.5 Unitarily constrained total least squares

In the previous section, we assumed that the position of the sensors on the
rigid body in the reference frame, i.e., the matrix C, is accurately known. In
practice, there is no reason to believe that errors are restricted only to the
range measurements and there are no perturbations on the initial sensor po-
sitions. Such perturbations can be introduced for instance during fabrication
or if the body is not entirely rigid (e.g., wing 0exing of an aircra").

Let us assume that the position of the nth sensor in the reference frame
cn is noisy, and let us denote the perturbation on cn by en, and the perturba-
tion on C = [c1 , c2, . . . , cN] by the matrix E = [e1 , e2, . . . , eN] ∈ R3×N . !e
covariance matrix of the perturbation e = vec(E) is denoted by Re = σ2e I3N .
In other words, we assume that the perturbations en , n = 1, 2, . . . ,N , are a
sequence of independent and identically distributed (i.i.d.) random vectors.
To account for such errors in the model, we next propose total least squares
(TLS) estimators again with unitary constraints.

8.5.1 Simpli+ed unitarily constrained TLS (SCTLS) estimator

Taking the perturbations on the known topology into account, the datamodel
in (8.21) will be modi#ed as

D̃ = ĀQ(C̄ + Ē) + Ñ ,

where Ē = EUN . Multiplying both sides of the above equation with Ā
†
, we

get

Ď = Q(C̄ + Ē) + Ň . (8.35)



176 Chapter 8. Rigid Body Localization

!e solution to the data model in (8.35) admits a classical TLS formulation,
but with a unitary constraint. !e SCTLS optimization problem is given by

Q̂ SCTLS = argmin
Q

∥Ē∥2F + ∥Ň∥2F
s.to Ď = Q(C̄ + Ē) + Ň , and QTQ = I3.

(8.36)

Similar to SCLS, the optimization problem in (8.36) admits a known closed-
form solution which makes it simpli#ed compared to the weighted problem
discussed in the next section. Also, the noise Ň in (8.35) is not white leading
to a suboptimal solution.

-eorem 8.3 (Solution to SCTLS). "e SCTLS problem in (8.36) has the same
solution as the simpli#ed unitarily constrained LS problem, i.e., Q̂ SCTLS = Q̂ SCLS.

Proof. See Appendix 8.D.

We next estimate the translation vector t. Taking the perturbations into
account, we can modify the model in (8.13) as

D̄ = ĀQC + Āt1TN + ĀQE + N̄ ,

which can be vectorized and further simpli#ed to

d̄ − (CT ⊗ Ā)q = (1N ⊗ Ā)t +
ν∈R(M−1)NGHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHIHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHJ(I ⊗ ĀQ)e + n̄ . (8.37)

Using q̂ SCLS in the above model, the SCTLS estimator for the translation tak-
ing perturbations into account, is then given by the following (unweighted)
LS problem

t̂ SCLS = argmin
t
∥d̄ − (CT ⊗ Ā)q̂ SCLS − (1N ⊗ Ā)t∥22

= (1N ⊗ Ā)†(d̄ − (CT ⊗ Ā)q̂ SCLS).
!e algorithms to compute the SCTLS estimates are the same as that of the
SCLS estimator. As before, we solve SCTLS in an unweighted LS sense, there-
fore, we need not estimate the related noise covariance matrix for whitening.
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8.5.2 Unitarily constrained TLS (CTLS) estimator

Similar to the CLS formulation, the TLS estimator can be derived without
pseudo inverting the matrix Ā. !e data model in (8.21) taking into account
the perturbations on the known sensor topology is then given by

D̃ = ĀQ(C̄ + Ē) + Ñ , (8.38)

which can be further vectorized as

d̃ = (I3(N−1) ⊗ ĀQ)c̄ + (I3(N−1) ⊗ ĀQ)ē + ñ, (8.39)

where c̄ = vec(C̄) ∈ R3(N−1), and ē = vec(Ē) ∈ R3(N−1).
Assuming that the pre-whitening matrix takes the block diagonal form

R
−1/2
k ∶= diag(σ−1e I3(N−1) , R

−1/2
ñ )

with k = [ēT , ñT]T , the CTLS optimization problem is given by

argmin
Q

∥σ−1e ē∥22 + ∥R−1/2ñ ñ∥2
2

s.to D̃ = ĀQ(C̄ + Ē) + Ñ ,

ē = vec(Ē), ñ = vec(Ñ),
QTQ = I3 .

(8.40)

-eorem 8.4 (Solution to CTLS). Assuming that the covariance matrix of the
perturbation vector is a scaled identity matrix, the unitarily constrained TLS
problem in (8.40) has the same solution as a speci#cally weighted CLS, i.e., it is
the solution to

Q̂ CTLS = argmin
Q

∥Λ1/2(d̃ − (C̄T ⊗ Ā)q)∥22
s.to QTQ = I3,

(8.41)

where matrix (C̄T⊗Ā) ∈ RK×9 was de#ned earlier, andΛ ∈ RK×K is the speci#c
weighting matrix de#ned in (8.57).
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Proof. See Appendix 8.E.

!e optimization problem (8.41) does not have a closed-form solution,
and has to be solved iteratively using for instance Gauss-Newton’s method
(summarized in Algorithm 8.1) with

z ∶= Λ1/2d̃ ∈ RK×1 ,

and L ∶= Λ1/2(C̄T ⊗ Ā) ∈ RK×9 .
(8.42)

!eCTLS estimates for the translations can be computed similar to SCTLS
as earlier, however, for CTLS we #rst pre-whiten the noise. !e covariance of
the noise ν in (8.37) is denoted by an (M − 1)N × (M − 1)N matrix Rν ∶=
σ2e (I ⊗ ĀĀ

T) + Rn̄ . We can then use a weighted LS estimator to estimate the
translations accounting for the perturbations. !e CTLS translation estimates
are given by

t̂ CTLS = argmin
t
∥R−1/2ν (d̄ − (CT ⊗ Ā)q̂ CTLS − (1N ⊗ Ā)t)∥22

= (R−1/2ν (1N ⊗ Ā))†R−1/2ν (d̄ − (CT ⊗ Ā)q̂ CTLS).
8.6 Simulation results

We consider N = 5 sensors mounted on the vertices of a rigid body (rectangle
based pyramid as in Figure 8.1) with

C =

⎡⎢⎢⎢⎢⎢⎣
0.5 1.5 1.5 0.5 1
0 0 1.5 1.5 1
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦
m,

and M = 4 anchors #xed at location

A =

⎡⎢⎢⎢⎢⎢⎣
0 100 0 100
100 100 0 0
0 100 100 0

⎤⎥⎥⎥⎥⎥⎦
m.

Let us de#ne a function R(⋅) ∶ R3 → V3,3 that maps angles in degrees along
each dimension into a rotation matrix, and its inverse R−1(⋅) ∶ V3,3 → R3
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which maps a rotation matrix into corresponding angles in degrees (for de-
tails on converting angles to a rotation matrix and vice versa, see [Diebel,
2006]). Collecting the angles in a 3 × 1 vector ϕ = [20,−25, 10]T deg, the
rotation matrix is then generated according to Q = R(ϕ). We use a transla-
tion vector t = [15, 5, 10]T m. !e simulations are averaged over Nexp = 1000
independent Monte-Carlo experiments.

!e performance of the proposed estimators is analyzed in terms of the
root mean squared error (RMSE) of the estimates of Q, ϕ, and t, and are
respectively given as

RMSE(Q) = ⎛⎝
1

Nexp

Nexp

∑
n=1
∥Q − Q̂(n)∥2F⎞⎠

1/2

,

RMSE(ϕ) = ⎛⎝
1

Nexp

Nexp

∑
n=1
∥ϕ −R−1(Q̂(n))∥22⎞⎠

1/2

deg,

RMSE(t) =
⎛
⎝

1

Nexp

Nexp

∑
n=1
∥t − t̂(n)∥22⎞⎠

1/2

m,

where Q̂
(n)

and t̂
(n)

denote the estimates during the nthMonte-Carlo exper-
iment. Since the rotation matrix estimated using the unconstrained LS esti-
mator is not a valid rotation matrix, we #rst project it onto V3,3 using (8.51)
before converting it into corresponding angles.

We use the same noise variance for all the rangemeasurements, i.e., σmn =
σ m for m = 1, 2, . . . ,M, and n = 1, 2, . . . ,N . !e covariance matrix of the
noise n, i.e., (see Appendix 8.A)

Rn = diag(2ρ)Rvdiag(2ρ) + Rv⊙2 − µµT ,
depends on the unknown parameter

ρ = [ρ11 , ρ12 , . . . , ρM1, . . . , ρMN]T ∈ RMN .

Hence, to whiten it, we use the noisy range measurements

y = [y11 , y12 , . . . , yM1 , . . . , yMN]T ∈ RMN
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Figure 8.2: (a) RMSE of the estimated rotation matrix Q. !e RMSE of the con-
strained estimators is upper bounded as discussed in Remark 8.1. (b) RMSE in de-
grees of the estimated rotations. (c) Bias in the SCLS and CLS estimators for Q. Bias
tends to zero for low noise variance. (d) RMSE of the estimated translation vector t
along with the solution from the classical LS-based localization.
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in (8.3) instead of ρ to compute the estimated covariance matrix

R̂n = diag(2y)Rvdiag(2y) + Rv⊙2 − µµT .
We use this estimated covariance matrix for pre-whitening the noise. Simu-
lations are provided for di/erent values of the nominal ranging noise σ m.

In Figure 8.2, the RMSE of the estimates Q, ϕ, and t for di/erent values
of σ is shown. !e estimators in Figure 8.2 are LS based where the topology
of the sensors is assumed to be accurately known. Due to !eorem 8.2, the
RMSE of Q for the constrained estimators is lower than the CCRB at high
noise levels. !e saturation of the RMSE in Figure 8.2(a) for σ > 1m follows
from the following lemma.

Lemma 8.1 (Frobenius norm induced distance). For any matrix Q i and Q j,
such that, Q i ∈ Vn,n and Q j ∈ Vn,n, the Frobenius norm induced distance is

always upper bounded by
√
2n, i.e., ∥Q i − Q j∥F ≤

√∥Q i∥F + ∥Q j∥F =√2n.
However, theCCRB computed using (8.33) does not saturate in this range

as there exists no unbiased estimator for high noise values as discussed in
!eorem 8.2. Figure 8.2(b) shows theRMSE in degrees, which gives an insight
into how the error on the range measurements translates to the error on the
estimated rotations. For the considered scenario, the range error that yields
a positioning accuracy of the order of 10 cm also yields an orientation error
accuracy of the order of 0.1 deg.

!e bias of both the SCLS and CLS estimators is shown in Figure 8.2(c),
and it can be seen that the bias tends to zero for σ < 0.1 m (as discussed in
!eorem 8.2), whereas the unconstrained LS is an unbiased estimator. !e
bias is computed as

bias(Q) = ∥ 1

Nexp

Nexp

∑
n=1

vec(Q̂(n)) − vec(Q)∥2.
We can see a signi#cant (close to an order of magnitude) improvement in the
performance of the location estimates when the knowledge of the topology
is exploited as compared to the topology-agnostic case (see Figure 8.2(d)).
!e performance of the SCLS estimator is similar (slightly worse) to that of
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Figure 8.3: E/ect of bad anchor geometry (cond(A) = 100): (a) RMSE of the esti-
mated rotation matrix Q. (b) RMSE in degrees of the estimated rotations. (c) RMSE
of the estimated translation vector t.



8.6. Simulation results 183

2 4 6 8 10 12 14 16 18 20
10−15

10−10

10−5

100

 

 

iteration number, k

αk = 1
optimal αk

T
ol
er
an
ce
,ε

k

Figure 8.4: Convergence of Gauss-Newton iterations for range error σ = 10−2 m.

the iterative CLS estimator. !e resulting gap between the RMSE and the
root-CRB is reasonable, and thus the proposed estimators are robust to the
linearization via squaring.

Figure 8.3 illustrates the e/ect of a bad anchor geometry, where we use an
ill-conditioned matrix Awith a condition number of 100.!e performance of
the SCLS estimators (based on pseudo inverting Ā) deteriorates for scenarios
with a bad anchor geometry, however, the performance of the CLS estimators
is not a/ected. Nevertheless, if the topology is not subject to perturbations,
the solution proposed in Remark 8.1 can be used for scenarios with a bad
anchor geometry, in which a well-conditioned C can always be designed.

!e convergence (i.e., εk ∶= ∥JT(z−Lvec(Qk))∥2
∥J∥F∥z−Lvec(Qk)∥2

, where J de#ned in (8.48))

of Gauss-Newton’s method with σ = 10−2 m for the optimal step size and a
#xed step size is shown in Figure 8.4. We can see that it is su.cient to use a
#xed step size αk = 1 at low noise levels. As observed from the simulations,
the iterative algorithm requires typically ten or fewer iterations.

In order to analyze the performance of the estimators for the case when
the sensor topology is perturbed, we corrupt the sensor coordinates in the
reference frame with a zero-mean i.i.d. Gaussian random process of stan-
dard deviation σe = 1 cm. !e RMSE of the estimates of Q, ϕ, and t using
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Figure 8.5: Results for a perturbed topology C. We use σe = 1 cm. (a) RMSE of
the estimated rotation matrix Q . (b) RMSE in degrees of the estimated rotations. (c)
RMSE of the estimated translation vector t.
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the unconstrained LS, SCLS/SCTLS, CLS and CTLS estimators is shown in
Figure 8.5. !e performance of these estimators is similar to that of the LS-
based estimators, except for the error 0oor, and this is due to the model error
(perturbations on the sensor topology). !e estimators hit the error 0oor for
lower values of σ as σ2e increases. With an ill-conditioned matrix A, the per-
formance of the SCLS/SCTLS (and the unconstrained LS) estimator is worse
than the CLS and CTLS estimators.

8.7 Discussion

A framework for joint position and orientation estimation of a rigid body
based on range measurements is proposed. We refer to this problem as rigid
body localization. Sensor nodes can be mounted on the rigid bodies (e.g.,
satellites, robots) during fabrication at the factory, and the geometry of how
these sensors are mounted is known a priori up to a certain accuracy. How-
ever, the absolute position of the rigid body is not known. !e original non-
linear problem is linearized via squaring of the range measurements. !e
squared-range measurements between the anchors and the sensors on the
rigid body can then be used to estimate the position and the orientation of
the body. !e position and orientation of the rigid body is determined by a
translation vector and a rotation matrix, respectively. Ignoring the fact that
the rotation matrix is unitary, an unconstrained estimator is proposed. A
number of unitarily constrained LS estimators is also proposed, all of which
solve an optimization problem on the Stiefel manifold. All the proposed esti-
mators are robust to linearization via squaring. For good anchor geometries,
the performance of the SCLS estimator with a closed-form solution is already
reasonable.!e gap between the RMSE and root-CCRB of the SCLS and CLS
estimates is negligible, however, the estimators do not achieve the CCRB. In
addition to this, constrained TLS estimators that take into account the inac-
curacies in the known sensor topology are also proposed.

8.A Derivation of the covariance matrix Rn

In this section, we develop the covariance matrix Rn used for pre-whitening.
Modeling the noise on the range measurements vmn as a zero-mean additive
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white Gaussian process having a variance σ2mn , we can compute the statistics
(up to the second-order) of the zero-mean noise in (8.6), i.e.,

nmn = 2ρmnvmn + v2mn − σ2mn (8.43)

as
E{nmn} = 0,
E{(nmn − E{nmn})2} = 4ρ2mnσ

2
mn + 2σ4mn ,

E{(nmn − E{nmn})(nln − E{nln})} = 0, m ≠ l ,
and E{(nmn − E{nmn})(nml −E{nml})} = 0, n ≠ l ,

where we use the fact that, if vmn ∼ N (0, σ2mn) then E{v4mn} = 3σ4mn and
E{v3mn} = 0. Collecting ρmn ,m = 1, 2, . . . ,M; n = 1, 2, . . . ,N , in the vector

ρ = [ρ11 , ρ12, . . . , ρM1, . . . , ρMN]T ∈ RMN ,

vmn ,m = 1, 2, . . . ,M; n = 1, 2, . . . ,N , in the vector

v = [v11 , v12, . . . , vM1, . . . , vMN]T ∈ RMN ,

and σ2mn ,m = 1, 2, . . . ,M; n = 1, 2, . . . ,N , in the vector

µ = [σ211 , σ212 , . . . , σ2M1 , . . . , σ
2
MN]T ∈ RMN ,

we can write (8.43) compactly as

n = diag(2ρ)v + v⊙2 − µ,
where

n = [n11 , n12, . . . , nM1, . . . , nMN]T ∈ RMN .

We can then compute the mean of n as E{n} = 0MN , and the covariance
matrix of n as

Rn = E{(n − E{n})(n − E{n})T}
= diag(2ρ)Rvdiag(2ρ) + Rv⊙2 − µµT ∈ RMN×MN ,

where
Rv = diag(µ) ∈ RMN×MN ,
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and

Rv⊙2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3σ411 σ211σ
2
12 ⋯ σ211σ

2
MN

σ211σ
2
12 3σ412 ⋯ ⋮⋮ ⋯ ⋱ ⋮

σ211σ
2
MN ⋯ ⋯ 3σ4MN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ RMN×MN .

8.B Gauss-Newton iterations on the Stiefel manifold

!eNewtonmethod to solve theWOPP is developed in [Viklands, 2008], and
it is adapted to suit our problem. In this section, we derive the Gauss-Newton
iterations to solve the LS problems on the Stiefel manifold.

!e CLS andCTLS problems solve an optimization problemon the Stiefel
manifold of the form

argmin
Q

∥z − Lvec(Q)∥22 s.to Q ∈ V3,3. (8.44)

We can represent any unitary matrix Q in the vicinity of a given unitary ma-
trix Qk as

Q = Qk Ω(x), (8.45)

where the operator Ω(⋅) ∶ R3 → V3,3 is de#ned as
Ω(x) = exp(X(x)), (8.46)

and X(x) is a skew-symmetric matrix

X(x) =
⎡⎢⎢⎢⎢⎢⎣

0 −x1 −x2
x1 0 −x3
x2 x3 0

⎤⎥⎥⎥⎥⎥⎦
∈ R3×3,

with x = [x1, x2, x3]T ∈ R3×1. We use the matrix exponential exp(X) to map
a point x ∈ R3 onto the Stiefel manifold V3,3.

We linearize the matrix exponential by using a #rst-order expansion of
the matrix exponential

Ω(x) ≈ I3 + X .
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Using this linearization1 in (8.45) we get

Q ≈ Qk(I3 + X).
We can then express Lvec(Q) as

Lvec(Q) ≈ Lvec(Qk) + Lvec(QkX),
which is a function of x, i.e.,

fk(x) = Lvec(Qk) + Jx , (8.47)

where

J =
∂Lvec(QkX)

∂xT
∈ RK×3 . (8.48)

Next, we solve the optimization problem in (8.44) iteratively as follows.
Using (8.47) in (8.44), we can transform the unitarily constrained optimiza-
tion problem into an unconstrained minimization problem. More speci#-
cally, during the k-th iteration we compute the Gauss-Newton search direc-
tion by minimizing the following unconstrained LS problem

xk = argmin
x∈R3

ψ(x) = ∥z − fk(x)∥22
= (JT J)−1JT(z − Lvec(Qk)),

(8.49)

and subsequently compute the rotation update

Qk+1 = QkΩ(αkxk).
Here, αk is the step size. !e optimal step size is obtained by solving

αk = argmin
α∈(0,1]

∥z − Lvec(QkΩ(αxk))∥22, (8.50)

1Instead of a matrix exponential, a Cayley transformation Ω(x) = (I3 + X)(I3 + X)−1
can be alternatively used, which can be then linearized by using a #rst-order expansion of(I3 + X)−1 ≈ I3 + X (see [Viklands, 2008]). As a result, we get a similar expression Q ≈
Qk(I3 + 2X).
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whose solution is the root of the polynomial equation obtained by expanding
the matrix exponential [Viklands, 2008], or can be computed simply by line
search. With a good initial point and at low noise levels we can take αk = 1.

!e solution Q̂ SCLS of the SCLS algorithm can be used as an initial point
for the iterative algorithm. Alternatively, the initial point can be computed
by orthonormalizing the solution of the unconstrained LS solution Q̂ LS. !e
latter orthonormalization procedure solves a special case of OPP, and is given
as

Q0 ∶= argmin
Q
∥Q − Q̂ LS∥2F s.to QTQ = I3

= (Q̂ LSQ̂
T
LS)−1/2Q̂ LS.

(8.51)

8.C Proof of-eorem 8.2

We prove the claim of!eorem 8.2 by contradiction. Let there exist an unbi-
ased constrained estimator Q̂ such that Q̂ ∈ V3,3. !en Q̂ = Q +Ψ where Ψ
is the estimation error such that E{Q̂} = Q or E{Ψ} = 0. Since Q̂ ∈ V3,3, we
have Q̂Q̂

T
= I3, and hence

(Q +Ψ)(Q +Ψ)T = I3. (8.52)

Using QQT = I3 and taking expectations on both sides, (8.52) can be further
simpli#ed to

tr{E{Ψ}QT} + tr{QE{ΨT}} = −E{∥Ψ∥2F}. (8.53)

Due to the assumption thatE{Ψ} = 0, the le"-hand side of (8.53) is zero, but,
the right-hand side is strictly less than zero. Hence a contradiction occurs,
unless the noise is zero.

8.D Proof of-eorem 8.3

!e proof from [Arun, 1992] is provided here to aid the understanding of the
proof of the next theorem. For any Q, we can re-write the constraint in (8.36)
as

[ Q −I3 ] [ Ē
Ň
] = − [ Q −I3 ] [ C̄

Ď
] .
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Using the unitary constraint on Q, and pseudo-inverting the wide matrix[ Q −I3(N−1) ] we get

[ Ē
Ň
] = − 1

2
[ QT

−I3 ] [ Q −I3 ] [ C̄
Ď
]

= − 1
2
[ I3 −QT

−Q I3
] [ C̄

Ď
]

= − 1
2
[ C̄ − QT Ď

Ď − QC̄
] .

We can now re-write the objective in (8.36) to compute the minimum-norm
square solution

tr{[ Ē
T

Ň
T ] [ Ē

Ň
]}

=
1

2
tr(C̄T

C̄ − ĎT
QC̄ − C̄T

QT Ď + ĎT
Ď)

=
1

2
∥C̄∥2F − tr(QC̄Ď

T) + 1

2
∥Ď∥2F .

!e solution to the SCTLS problem is then obtained by optimizing the term

depending only onQ, i.e., bymaximizing tr{QC̄Ď
T}. !is is the same cost as

that of the SCLS problem (see [Golub and Van Loan, 1996, pg. 601]). Hence,
the solution to the unitarily constrained TLS problem is

Q̂ SCTLS = VUT , (8.54)

where the matrices V and U are obtained by computing the SVD of ĎC̄
T =∶

VΣUT .
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8.E Proof of-eorem 8.4

!e proof proceeds along the similar lines as the proof of !eorem 8.3. For
any Q the constraint in the optimization problem (8.39) can be written as

[ (I3(N−1) ⊗ ĀQ) −IK ] [ ē
ñ
]

= − [ (I3(N−1) ⊗ ĀQ) −IK ] [ c̄

d̃
] .

(8.55)

Multiplying both sides of (8.55) with the pseudo-inverse of the wide-matrix[(I3(N−1) ⊗ ĀQ) ∣ − IK] given by

[ (I3(N−1) ⊗ ĀQ) −IK ]†
= [ I3(N−1) ⊗QT Ā

T

−I ] ((I3(N−1) ⊗ ĀĀ
T) + IK)−1 ,

we get theminimum-norm solution k = [ēT , ñT]T to the system of equations
in (8.55) which is given by

[ ē
ñ
] = − [ (I3(N−1) ⊗QT Ā

T)−IK ] ((I3(N−1) ⊗ ĀĀ
T) + IK)−1

× [ (I3(N−1) ⊗ ĀQ) −IK ] [ c̄

d̃
] .

(8.56)

Assuming that the covariancematrix of the perturbation vector is a scaled
identitymatrix, it is straightforward to verify that the objective in (8.40) using
(8.56) simpli#es to

tr{[ ēT ñT ]Rk [ ē
ñ
]} = ∥Λ1/2(d̃ − (C̄T ⊗ Ā)q)∥22,

where

Λ1/2 = (σ−2e (I3(N−1) ⊗ ĀĀ
T) + R−1ñ )1/2 ((I3(N−1) ⊗ ĀĀ

T) + IK)−1 . (8.57)

Hence, the solution to the optimization problem (8.40) is equivalent to a
speci#cally weighted CLS.
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9.1 Concluding remarks

Pervasive sensors collect massive amounts of data. As a consequence, it is
becoming increasingly di.cult to store and ship the acquired data to a cen-
tral location for signal/data processing. !erefore, to overcome these prob-
lems, we have focused on developing sensing mechanisms to extract as much
information as possible yet collecting fewer data. In particular, in the #rst
part of this thesis, we have addressed the question “How can task-cognition be
exploited to reduce the costs of sensing as well as the related storage and com-
munications requirements?”. To answer this question, the tool that we have
exploited for data reduction is sparse sensing. It consists of a deterministic
sparse sensing function (guided by a sparse vector) that is optimally designed
to achieve a desired inference performance with the reduced number of sam-
ples.
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!e sparse sensing model to acquire continuous-domain and discrete-
domain observations, which we term as continuous sparse sensing and dis-
crete sparse sensing, respectively, has been derived in Chapter 2. One of the
fundamental di/erences with compressive sensing (a well-known data reduc-
tion mechanism used for sparse signal recovery) is that in sparse sensing the
underlying signals need not be sparse. !is allows us to focus on general sig-
nal processing tasks such as estimation, #ltering, and detection. !e devel-
oped theory can be applied to sensor placement, sensor/sample selection, data
compression, with an impact on a range of signal processing applications.

Chapters 3, 4, and 5 have been, respectively, dedicated to discrete sparse
sensing for estimation, #ltering, and detection tasks. In all these chapters,
under the assumption that the data is not yet available, the main questions
that we have answered are: “What are the reasonable inference performance
metrics for estimation, #ltering, and detection tasks?” and “Can we e$ciently
optimize (e.g., using a polynomial time algorithm) such inference performance
metrics to obtain the sparse samplers of interest?”. To this end, we have de-
rived convex risk functions that include the sparse vector for speci#c infer-
ence tasks and thus, can be optimized via convex programming. Relying on
the assumption that the data model is perfectly known, we have shown that
measures such as the Cramér-Rao bound (CRB) for nonlinear estimation,
posterior CRB for #ltering, and Ali-Silvey distances (i.e., Bhattacharyya dis-
tance, Kullback-Leibler distance, or J-divergence) for binary hypothesis test-
ing can be used as reasonable inference performance metrics. Furthermore,
we have also shown that all these (ensemble) inference performancemeasures
(A) can be computed in closed form and are independent of the observations,
thus enabling o2ine (or data-independent) designs, and (B) can be optimized
using a convex program, in many cases of interest.!e optimization problem
is relatively easier to solve when the observations are independent, irrespec-
tive of their distributions. By choosing appropriate instantaneous (instead
of ensemble) inference performance metrics (that depend on data), the uni-
fying approach presented in this thesis can be extended to data-driven sparse
sensing formachine learning problems, like clustering or classi#cation, which
provides room for further research.

In Chapter 6, we have presented the continuous sparse sensing framework.
Here, unlike the discrete case, we have shown that it is possible to sample in
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between the grid points, that is, anywhere in the continuous observation do-
main. We have done this by modeling an o/-the-grid sampling point as a
discrete sampling point plus a perturbation. !en, the smallest set of possible
discrete sampling points is searched for, along with the best possible pertur-
bations, in order to reach the desired inference performance. We have solved
the continuous sparse sensing problemvia convex programming for linear in-
verse problems. !ere is still room for extending this framework (especially
the solver) to other inference tasks, like hypothesis testing and nonlinear es-
timation/#ltering with correlated errors.

Next, in the second part of this thesis, we have focused on some sig-
nal processing problems related to distributed sensing and sensor networks.
More speci#cally, we have addressed the questions: “How canwireless commu-
nications be exploited to synchronize spatially separated sample clocks?”, and
“How can we extend the classical localization paradigm to localize a sensing
platform by exploiting the knowledge of the sensor placement on the platform?”.

In Chapter 7, we have provided a solution to synchronize the sample
clocks of the sensors by fully exploiting the broadcast nature of the wire-
less medium, and using the time-of-0ight measurements of themessages. We
have assumed an a.ne clock model and that there exists at least one line-of-
sight path between the nodes, which are reasonable in many cases of interest.
Speci#cally, we have solved for all the unknown clock skews and clock o/sets
using least squares. !e proposed estimator is shown to be e.cient, asymp-
totically meeting the theoretical CRB. However, when there is no line-of-sight
path, the wireless clock synchronization remains challenging.

Finally, in Chapter 8, we have solved the rigid body localization (i.e., po-
sition and orientation estimation) problem using only the distance measure-
ments. To achieve this, we have exploited the prior information about the
sensor placement on the platform. We have shown that the position and ori-
entation of the rigid platform can be represented by a rotation matrix and
translation vector. We have proposed a number of constrained least squares
estimators, and we have also derived the theoretical limits (i.e., CRB) for the
position and orientation estimation problem using distance measurements.
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9.2 Directions for future research

!e research for this thesis has generated a number of new challenging re-
search questions, which remain open. Inwhat follows, we conclude this thesis
by listing some directions for future research.

9.2.1 Sparse sensing for constrained inverse problems

In Chapter 3, the focus was on designing sparse sensing mechanisms for non-
linear estimation problems. In particular, the goal was to sparsely sense the
signal x that is related to an unknown (nonrandom) parameter vector θ thro-
ugh a known nonlinear model in order to achieve a desired estimation accu-
racy. We have used scalar functions of the CRB as the inference performance
metric to quantify the estimation accuracy. In many applications, the param-
eter spacemay be restricted to a known subset of the Euclidean space through
smooth functional constraints on the parameters. !e question then is, how
canwe design sparse sensing functions that take into account such constraints
on the unknown parameter. Note that this is di/erent from the Bayesian ap-
proach that we have discussed in Remark 3.4 of Chapter 3, where the assump-
tion was that the parameter is random and the prior information was related
to its distribution.

If the parameter vector θ is subject to some continuously di/erentiable
constraints g(θ) = 0, then with these constraints, the resulting constrained
CRB (CCRB) is lower than the unconstrained CRB [cf. §8.4.2 from Chap-
ter 8]. In [Stoica and Ng, 1998], it is shown that the CCRB has the form

E{(θ̂ − θ)(θ̂ − θ)T} ≥ C CCRB(w , θ) = M(MTF(w , θ)M)−1MT ,

where θ̂ denotes the estimate of θ, F(w , θ) is the FIM for the unconstrained
estimation problem as de#ned in (3.2), and M is an isometry matrix whose
columns form an orthonormal basis for the nullspace of the gradient matrix
∂g(θ)/∂θT . Here, w is the sparse sensing vector to be designed. !e ques-
tion is, can we optimize the risk functions [cf. §3.3 of Chapter 3] f (w) ∶=
tr{C CCRB(w , θ)} or f (w) ∶= λmax{C CCRB(w, θ)} using a convex program.
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9.2.2 Sparse sensing for composite detection problems

In Chapter 5, the focus was on choosing the best subset of observations for
a binary hypothesis testing problem. In particular, the assumption was that
the model parameters were perfectly known. !at is, our goal was to sparsely
sense the signal x that follows, for example, the conditional distributions:

H0 ∶ x ∼ h0(θ0 , n)
H1 ∶ x ∼ h1(θ1 , n),

where we assumed that the parameter vectors θ0 and θ1 of the functions h0
and h1 as well as the probability density function of the noise n are perfectly
known. When the parameter vectors θ0 and θ1 are unknown, we gener-
ally solve the so-called composite binary hypothesis testing problem [Scharf,
1991].

For composite hypothesis testing problems, the question is, how to de-
sign sparse sensing mechanisms. Clearly, the inference performance metrics
that were discussed in §5.4 of Chapter 5 will now depend on the unknown
parameters. Consequently, the risk function of the form f (w, θ0 , θ1) has to
be optimized over the sparse sensing vector w, ∀θ0 and ∀θ1. !is is reminis-
cent of the risk functions of the nonlinear estimation problem discussed in
Chapter 3. !erefore, a way to solve the sparse sensing problem would be to
grid the parameter space (every grid point would result in an additional per-
formance constraint), or alternatively marginalize the unknown parameters
using the prior statistical information, when available. !is leads to a num-
ber of interesting questions, such as: “Is optimizing the signal-to-noise ratio
optimal in terms of the error probabilities for Gaussian composite hypothesis
testing?” and “How much data reduction can be achieved via sparse sens-
ing for composite hypothesis testing as compared to (nonlinear) parameter
estimation?”.

9.2.3 Distributed sparse sensing

!roughout this thesis, we have assumed that the signals were available only
at a single instance in space, frequency, or time. Suppose now that they are
available at multiple instances, that is to say, the signals are distributed. For
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example, imagine spatially separated sensors observing continuous-time phe-
nomena. !e question then is, how we can jointly design the di/erent sparse
sampling functions at di/erent physical sensors to reach the best compression
rate per sensor, subject to speci#c performance guarantees.

While deriving sparse sensingmechanisms for estimation, #ltering, or de-
tection, we always considered a single realization of the signal x was available
and designed the sparse sensing functionΦ(w) to obtain the sparsely sensed
signal y. Now if multiple realizations are available, e.g., when x is a spatial-
domain signal, we could gather this signal at di/erent time intervals or in
di/erent frequency bands. All these realizations can be sparsely sensed as be-
fore, by employing the same sensing function at di/erent sensors. !is might
not be the best thing to do, as we do not fully exploit the available diversity to
acquire the available multiple realizations using di/erent sensing functions.
In order to exploit the available diversity, clearly we should have the freedom
to design di/erent sparse sensing functions at di/erent physical sensors. For
example, let x1 = [x1,1 , x2,1 , . . . , xM,1]T and x2 = [x1,2 , x2,2 , . . . , xM,2]T be the
two available temporal snapshots of the spatial signal x = [xT1 , xT2 ]T . We ac-
quire such distributed multidimensional signals using two sparse vectors w1

and w2 related to two temporal snapshots (instead of one sparse vector) as

y = Φ(w1 ,w2)x ,
where Φ(⋅, ⋅) denotes the sparse sensing function. Although the theory de-
veloped in this thesis can be used to design such sparse sensing functions, the
interesting question is, to study the trade-o/ between spatial and temporal
sampling densities.

9.2.4 Clock synchronization in non line-of-sight scenarios

!e algorithms for wireless clock synchronization derived in Chapter 7 were
based on time-of-0ightmeasurements of messages between the sensor nodes.
!is relies on a fundamental assumption that there exists a line-of-sight path
between the sensor nodes. !e framework in Chapter 7 can be extended to
multipath environments that include the line-of-sight path. !is can, for ex-
ample, be done by resolving the line-of-sight path using techniques like ray
tracing or outlier rejection methods (i.e., to look for the consistent system
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of equations). However, when there is no line-of-sight path, synchronizing
sample clocks is a challenging problem.

One possible way to synchronize clocks is to use a phased-lock loop — a
well-known phase and frequency tracking tool used in wireless communica-
tions. Let us de#ne a(t) as the output of an oscillator [Allan, 1987]

a(t) = a0 sin(2π f0t +ψ(t)),
where f0 is the nominal frequency, a0 is the constant amplitude, and ψ(t)
captures all the residual phase deviations. For an ideal clock, ψ(t) = 0, ∀t. In
Chapter 7, we have modeled only the #rst order clock deviations and ignored
the higher-order terms. !at is, the assumption was

ψ(t) ≈ ϕ + ωt = ϕ + 2π f t,
where t is the true time, ϕ is the phase o/set (or the clock o/set) and ω = 2π f
is the frequency o/set (or the clock skew). !e question is, can we use a
phased-lock loop (or rather a dual phased-lock loop) discussed in [Johnson
and Sethares, 2004, pp. 200-202] at each sensor to track the phase and fre-
quency o/sets with respect to a synchronization beacon transmitted from a
sensor with a relatively stable clock. !e second question is, what are the the-
oretical limits on synchronization based on such an approach.

9.2.5 Sensor, source placement, and closing the loop

In the #rst part of this thesis, the focus was on sensor placement, that is, to
choose the best subset of sensor locations, subject to speci#c inference perfor-
mance guarantees. !e dual problem of sensor placement is the source place-
ment problem (e.g., see [Ranieri and Vetterli, 2014]). !e source placement
problem can be interpreted as choosing the best subset of source locations in
order to generate a desired #eld. Naturally, one would think of closing this
loop through a joint sensor and source placement mechanism.

We will illustrate this with the rigid body localization problem that was
discussed in Chapter 8. In particular, the question is, what are the optimal
sensor/anchor placement (on the #xed world) and optimal source placement
on the rigid platform to achieve the desired localization accuracy. To realize
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this, we can express the Fisher information matrix [cf. (8.33)] in terms of two
sparse vectors, where one vector is associated with the candidate anchor posi-
tions and the other one is associated with the candidate sensor positions. !e
resulting constrained CRB [cf. (8.33)] is then optimized to jointly minimize
the number of sensors and sources. !e question of interest is, how e.ciently
can we solve this optimization problem.

9.2.6 Robust sparse sensing

Data analytics (e.g., robust learning, classi#cation, clustering)with large-scale
data, such as data generated from social networks, #nancial markets, gen-
omics, consumer behavior, and so on, is infeasible without dimensionality
reduction due to limited computational capacity [Slavakis et al., 2014]. An
interesting question is, how can sparse sensing be used to optimally compress
already acquired data. !is is di/erent from the setup considered in this the-
sis as in data analytics the data is already available and stored. So, we need
to study inference performance metrics for sketching or throwing away less
informative samples. In this case, the design of sparse samplers will be data
driven, where the samplers have to be designed for each data realization. Such
a data dependent design is more appropriate for handling outliers or model
mismatch (i.e., when the model information is not completely known), and
are robust to them.

In addition to the above list, there is still room for studying greedy (e.g.,
submodular) algorithms for continuous and discrete sparse sensing (with de-
pendent observations, in particular) problems that were considered in this
thesis and for studying sparse sensing for multiple hypothesis testing. Devel-
oping a theory on relative position and orientation estimation between rigid
bodies in an anchorless scenario, also remain open.

!e ideas presented in this thesis with innovative perspectives on sparse
sensing and distributed sensing are certainly pertinent to the design of mod-
ern sensing systems. We hope that these ideas will also open up new lines of
research within the broad #eld of signal processing.
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Abbreviations

Notation

Sets

R Real numbers.
R+ Nonnegative real numbers.
C Complex numbers.
RN Real length-N vectors.
RM×N Real M × N matrices.
CN Complex length-N vectors.
CM×N Complex M × N matrices.{0, 1}N Boolean length-N vectors.{0, 1}M×N Boolean M × N matrices.
Z Integers.
N Natural numbers.
SN Symmetric N × N matrices.
SN
+ Symmetric positive semide#nite N × N matrices.

SN
++ Symmetric positive de#nite N × N matrices.∣A∣ Cardinality of setA.
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Vectors and matrices

x Scalar.
x Vector denoted by lower bold face letters.
X Matrix denoted by upper bold face letters.
XT Transpose of matrix X.
XH Hermitian of matrix X.
diag(⋅) Block diagonal matrix with the elements in its argu-

ment on the main diagonal.
diagr(⋅) Diagonalmatrix with the argument on its diagonal but

with the all-zero rows removed.[X]i, j (i , j)th entry of matrix X .[x]i ith entry of vector x.
1N N × 1 vector of all ones.
0N N × 1 vector of all zeros.
IN Identity matrix of size N .
x⊙2 Element-wise squaring of vector x.
tr{X} Trace of matrix X .
det{X} Determinant of matrix X .
λmin{X} Minimum eigenvalue of a symmetric matrix X .
λmax{X} Maximum eigenvalue of a symmetric matrix X .
X ⪰ Y X − Y is a positive semide#nite matrix.
X ⊗ Y Kronecker product of matrix X and matrix Y .
X† = (XTX)−1XT Pseudo inverse (or the le"-inverse) of a full-column

rank tall matrix X.
X† = XT(XXT)−1 Pseudo inverse (or the right-inverse) of a full-row rank

wide matrix X.
vec(X) MN × 1 vector formed by stacking the columns of an

M × N matrix X .
unvec(X) M × N matrix X formed by the inverse vec(X) oper-

ation on an MN × 1 vector.
cond(X) Condition number of a matrix X.
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Norms and distances

∥w∥0 !0-(quasi) norm, i.e., number of non-zero entries of vector w.∥w∥1 !1-norm of vector w.∥w∥2 Euclidean (or !2-)norm of vector w.∥w∥2A Weighted squared !2-normwTAw.∥W∥2,0 !2/!0-(quasi) norm counts the number of nonzero rows of matrixW .

Stochastic processes

Pr(H) Probability of event H.
E{x} Expected value of random vector x.N (µ, Σ) Gaussian distribution with mean vector µ, covariance matrix Σ.U(a, b) Uniform distribution with support [a, b].
p(x; θ) Probability density function of x parameterized by θ.

Abbreviations

ADC analog-to-digital converter
AOA angle of arrival
CCRB constrained Cramér-Rao bound
CLS unitarily constrained least squares
CRB Cramér-Rao bound
CS compressive sensing
CTLS unitarily constrained total least squares
FIM Fisher information matrix
GPS global positioning system
i.i.d. independent and identically distributed
LS least squares
LMI linear matrix inequality
MDS multi-dimensional scaling
MSE mean squared error
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OPP orthogonal Procrustes problem
PCRB posterior Cramér-Rao bound
RCRB root Cramér-Rao bound
pdf probability density function
RMSE root mean squared error
RSS received signal strength
SCLS simpli#ed unitarily constrained least squares
SCTLS simpli#ed unitarily constrained total least squares
SDP semide#nite programming
SNR signal-to-noise ratio
TDOA time di/erence of arrival
TDC time-to-digital converter
TOA time of arrival
TLS total least squares
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Summary
Sparse Sensing for Statistical Inference
-eory, Algorithms, and Applications

In today’s society, we are 0ooded with massive volumes of data in the order
of a billion gigabytes on a daily basis from pervasive sensors. It is becoming
increasingly challenging to locally store and transport the acquired data to
a central location for signal/data processing (i.e., for inference). To alleviate
these problems, it is evident that there is an urgent need to signi#cantly reduce
the sensing cost (i.e., the number of expensive sensors) as well as the related
memory and bandwidth requirements by developing unconventional sensing
mechanisms to extract as much information as possible yet collecting fewer
data.

!e #rst aim of this thesis is to develop theory and algorithms for data re-
duction. We develop a data reduction tool called sparse sensing, which con-
sists of a deterministic and structured sensing function (guided by a sparse
vector) that is optimally designed to achieve a desired inference performance
with the reduced number of data samples. !e #rst part of this thesis is dedi-
cated to the development of sparse sensingmechanisms and convex programs
to e.ciently design sparse sensing functions. We design sparse sensing func-
tions under the assumption that the data is not yet available and the model
information is perfectly known.

Sparse sensing o/ers a number of advantages over compressed sensing
(a state-of-the-art data reduction method for sparse signal recovery). One
of the major di/erences is that in sparse sensing the underlying signals need
not be sparse. !is allows us to consider general signal processing tasks (not



220 Summary

just sparse signal recovery) under the proposed sparse sensing framework.
Speci#cally, we focus on fundamental statistical inference tasks, like estima-
tion, #ltering, and detection. In essence, we present topics that transform
classical (e.g., random or uniform) sensing methods to low-cost data acquisi-
tion mechanisms tailored for speci#c inference tasks. !e developed frame-
work can be applied to sensor selection, sensor placement, or sensor schedul-
ing, for example.

In the second part of this thesis, we focus on some applications related
to distributed sampling using sensor networks. Sensor networks can be used
as a spatial sampling device, that is, to faithfully represent distributed signals
(e.g., a spatially varying phenomenon such as a temperature #eld). On top of
that, the distributed signals can exist in space and time, where the temporal
sampling is achieved using analog-to-digital converters, for example. Each
sensor has an independent sample clock, and its stability essentially deter-
mines the alignment of the temporal sampling grid across the sensors. Due
to imperfections in the oscillator, the sample clocks dri" from each other, re-
sulting in themisalignment of the temporal sampling grids. To overcome this
issue, we devise amechanism to distribute the sample clock wirelessly. Specif-
ically, we performwireless clock synchronization based on the time-of-0ight
measurements of broadcastmessages. In addition, clock synchronization also
plays a central role in other time-based sensor network applications such as
localization.

Localization is increasingly gaining popularity in many applications, es-
pecially formonitoring environments beyondhuman reach, e.g., using robots
or droneswith several sensor unitsmounted on it. Consequently we nowhave
to localize more than one sensor or even localize the whole sensing platform.
!erefore, we extend the classical localization paradigm to localize a (rigid)
sensing platform by exploiting the knowledge of the sensor placement on the
platform. In particular, we develop algorithms for rigid body localization,
i.e., for estimating the position and orientation of the rigid platform using
distance measurements.

Given the central role of sensing and sensor networks, the results pre-
sented in this thesis impacts a wide range of applications.



Samenvatting
Schaarse Data-Acquisitie voor Statistische Inferentie
-eorie, Algoritmes, en Toepassingen

Demaatschappij van tegenwoordig wordt overspoeldmet grote volumes data
in de orde van biljoenen gigabytes per dag a!omstig van alomtegenwoordige
sensoren. Het wordt alsmaarmoeilijker omdie data lokaal op te slaan en door
te sturen naar een centrale locatie voor signaal- en dataverwerking (m.a.w.
voor inferentie). Vandaar dat onconventionele data-acquisitietechnieken drin-
gend nodig zijn om zo veel mogelijk informatie te vergaren en dit met zo wei-
nig data-acquisitie als nodig. Dit zal zowel de kost van data-acquisitie (aan-
tal dure sensoren) als de benodigde geheugeninhoud en communicatieband-
breedte verminderen.

Het eerste doel van deze thesis is het ontwikkelen van een theorie en al-
goritmes voor datareductie. We ontwikkelen een datareductietechniek, ge-
naamd schaarse data-acquisitie of “sparse sensing”, die bestaat uit een deter-
ministische en gestructureerde data-acquisitiefunctie (geparametriseerd met
een schaarse vector) die optimaal ontworpen is om een bepaalde inferentie-
performantie te behalenmet een gereduceerd aantal data. Het eerste deel van
deze thesis is gewijd aan het ontwikkelen van schaarse data-acquisitietechnie-
ken en convexe programmas om schaarse data-acquisitiefuncties te ontwer-
pen. We ontwerpen schaarse data-acquisistiefuncties in de veronderstelling
dat de data nog niet beschikbaar is maar de modelinformatie perfect gekend
is.

Schaarse data-acquisitie biedt een aantal voordelen t.o.v. gecomprimeerde
data-acquisitie of “compressed sensing”(een van de nieuwste datareductie-
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methodes voor de reconstructie van schaarse signalen). Eén van de groot-
ste verschillen is dat de onderliggende signalen voor schaarse data-acquisitie
niet schaars hoeven te zijn. Dit laat ons toe om in het voorgestelde schaarse
data-acquisitiekader meer algemene signaalverwerkingstechnieken te behan-
delen (en niet enkel de reconstructie van schaarse signalen). Meer speci-
#ek richten we ons op fundamentele statistische inferentietaken zoals schat-
ting, #ltering, en detectie. In essentie stellen we werktuigen voor die klas-
sieke data-acquisitietechnieken (bijv. random of uniform) transformeren in
nieuwe data-acquisitietechnieken met een lage kost en toegespitst op speci-
#eke inferentietaken. Het ontwikkelde kader kan toegepast worden op sen-
sorselectie, sensorpositionering, of sensorplanning.

In het tweede deel van deze thesis richten we ons op een aantal toepas-
singen gerelateerd aan bemonstering via sensornetwerken. Sensornetwerken
kunnen gebruikt worden als een ruimtelijk bemonsteringssysteem, ofmet an-
dere woorden, om op een betrouwbare manier gedistribueerde signalen voor
te stellen (bijv. fenomenen die variëren in de ruimte zoals een temperatuurs-
veld). Daarenboven kunnen gedistribueerde signalen bestaan in ruimte en
tijd, waarbij de bemonstering in het tijdsdomein wordt uitgevoerd door de
sensor zijn analoog-digitaalomzetter bijvoorbeeld. Iedere sensor hee" een
ona"ankelijke bemonsteringsklok en de stabiliteit van deze klok bepaalt of de
sensoren synchroon lopen of niet. Onnauwkeurigheden in de klokoscillator
kunnen dri" veroorzaken en zorgen ervoor dat de sensoren niet synchroon
bemonsteren. Om dit probleem op te lossen hebben we een techniek ontwik-
keld om een kloksignaal draadloos uit te wisselen. Meer speci#ek hebben we
een draadloos synchronisatiealgoritme ontworpen gebaseerd op de propaga-
tietijd van communicatiesignalen. Verder speelt kloksynchronisatie ook een
belangrijke rol voor andere toepassingen gebaseerd op tijdsmetingen zoals
lokalisatie.

Lokalisatie wint aan populariteit in vele geautomatiseerde observatietoe-
passingen, bijv. door middel van robots of drones waarop verschillende sen-
soren worden gemonteerd. Om zo een sensorstructuur te lokaliseren moeten
we dus gelijktijdig verschillende sensoren lokaliseren. Daarom breiden we in
deze thesis het klassieke lokalisatieparadigma uit naar het lokaliseren van een
(rigide) sensorstructuur gebruikmakende van de kennis van de locatie van de
sensoren in die structuur. In het bijzonder ontwikkelen we algoritmes voor de
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lokalisatie van rigide sensorstructuren, m.a.w. om de positie en de oriëntatie
van de structuur te schatten op basis van afstandsmetingen.

Gegeven de centrale rol die data-acquisitie en sensornetwerken spelen
hebben de resultaten die voorgesteld zijn in deze thesis een impact op een
overvloed aan toepassingen.

Geert Leus
Del", december 2015
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