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A.BSERACT

This paper offers fundamentals necessary
to solve many of the problems posed in the
design and evaluation of mooring systems for
offshore operations. In addition to consider-
ing the mooring system requirements in place,
the actual operational requirements of "run-
ning" anchors, dropping, etc., are also
considered. Other aspects of mooring systems
such as pile anchors and catenary Tisin.kersui are
also covered. Special attention was given to
anchor line stretch.

INTRODUCTION

To those involved in the offshore opera-
tions of mobile drilling units, derrick barges
and pipe laying barges, the evaluation and
design of mooring systems is an ever-present
problem. The questions to be answered about
any offshore mooring situation are many.
Guidance in finding these answers is presented
in this paper.

Included are fundamentals necessary for
selection of proper number of anchor lines,
proper fluke area, anchor type and anchor
location. In addition, problems related to
setting out anchors are considered--dropping
distance of anchors, type of dropping, required
workboat pull requirements. The subject matter
of this paper is relatively new and, of course,

References and illustrations at end of paper.
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subject to discussion at the conference.

EQUATIONS 0F CATENARY

Differential Equation and Solution

The catenary is the curve in which a
flexible chain or chord of uniform weight will
hang when supported by its ends ÇFig. 1].

Differential equation of the catenary can
be obtained as follows: let an element of
catenary ds, have Forces T and. T i- T acting at
ends, as shown in Fig. 2.

Because any element with a force w.ds
acting downward is in equilibrium, we can con-
struct the force diagram, as shown in Fig. 3.
[H is constant at any point on the curve.]
From Fig. 3, it is easily seen that d tan is
equal to [w.ds]/H0 or d{dy/dx], since:

d5=
and

d2
Setting dy/dx u, we get
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Ln (+ V,*z) +c1.I-lo -
This can be written as

ZI=
o

Finally, we have

co.sh (- C,) C2.
I-lo

If we call H0/w = c, the parameter of the curve
and choose the minimum point as the origin

C1=-c c2=o
we have:

= ccoth-))
This can also be represented as y c.cosh [x/c]
by moving the origin to Oi, as shown in Fig. 1.

The Tight Catenary

In the case of very flat catenary [c
large] expansion of y into series gives:

1=2. [2]
2c

Ea. 2 is used to derive the 5 deflection of the
chord at any point on the curve [Fig. ].

2/-Io

W.2 (1-x)
2T. coS

The last two formulas were used long years in
the shipyards for line shaft alignment.

Basic Equations

The basic equations of the catenary are
listed below and apply to Fig. 5.

At any point tx,y].

v=

H w.c [5]

[i]

T=w.j [6]

tarih --
L C

Zn7=

termination of The Tension in Field

Often it is required to know the tension in
an anchor chain or cable of mooring systems or
offshore drilling barges when it is impossible
to measure the length of the chain. From
experience, it has been found that existing
tension measuring devices cannot provide
accurate readings because of the friction
developed in the hawse pipes. Eq. gives an
accurate value for tension when the water depth
and, the angle at the top of the chain are known.

w = weight of chain in water lb/ft

T=
f- cosc

z

if and x are known,
Vv'.X

[16]
Cos .sii7fl(t'r)

H, V, T, x, s, z, RELATIONS

X, z - R Are Known

5/nh (tan)

[15]

Most important relations are as follows.

2_ 22 [7]

v= c.cosh-. [8]

5=c.5r,hX [9]
C

2C .siyth [10]
2c

[u]

[12]

[5]

[SA]



= cosh'( H*Z.W\[17]
H

(z + .h') [i8J
Vv'

V= 5.W [19]

[20]

.S.Vv'
.5/n ' = [2:]H .i- Z.vv

COS9
H

[22]H*ZW
scope = V' + [23]Z.vV

H
[2h]

w, z - T Are Known

T= H-I-ZW

T- z.W T
w T-z w

[25]

5= z. ( 2T-ZW)
[26]

V= .5.W [27]

H= T-z.W [28]

co.sØ = / T
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Sir? ,s.w
[29]

T

z.w
[30

scope \/21__/
[31]

c= T-z.W
[32]w

Relations with k Parameter

k parameter is the ratio of the T tension
to the weight of the chain of which length is
equal to the water depth.

k=I.z.w
Many of catenary formulas may be simplified
when they are expressed in terms of k.

Catenary parameter c = z. (k-i)
Catenary length 5 =
Catenary distance x =

z(k-i) .cosh'().
For snail size computer application:

k-i L(22)
for /k/ >1

where: k +J2k-i
k-i

Horizontal tension ,L/ =

Catenary angle = coh ( k-L)
Sometimes to know the scope is very useful and
practical. By definition we have:

5cope = = \/2k-)
FORCE - DEPARTURE RELATIONS

Another important use of the catenary
curve is the calculation of tension - departure
relations. That is the change in the tension of
a chain due to the movement bf floating systems.

Horizontal Departure

The relationship is shown in the sketch in
Fig. 8. At the point Oi the chain tension is
that induced by the weight of the chain hanging
vertically downward. At all other points, the



chain tension increases with movement of the
system to the right of point 01. Accordingly,

it is possible to find the new tension in a
chain after any movement or departure.

The solution of this problem is facili-
tated by the use of a graph similar to the one
in Fig. 9 showing the correlation between
departure X and tension T:

;:U:: .±i. cosh(Z'%1\
W I-i

or

- jz.(z?)
T_-_. cosh'(-T )- w T-ZW

- z.
[1]

As an example, consider a system at Point
A inducing a tension of 70 kips into a 2-in.
Di-Lok anchor chain in 175 ft of water moving a
distance AX equal to 5 ft [w lb/ft}.

The new tension in the chain, when the
system moves to Point B, can be found by enter-
ing the correlation curve [Fig. 8] with the
initial tension, moving along the abscissa a
distance of AX = 5 ft and reading the new
tension on the curve.

It should be noted that: the same results
would be obtained if, instead of considering a
departure of 5 ft, the length of chain was
"taken up" 5 ft.

T= .234 . . . [5]cz-)2
In terms of k parameter, X becomes:

= z .[, + (k-i).(cosh--

\J2ki)
k-I

Vertical Departure

Fig. 10 shows a catenary at Point A. It

can be considered as departed from 01, fl
horizontal direction and departure equals to X.
It can also be considered as departed from Point
02 in vertical direction and departure equals tc
.'. Since X ' and from the conditions at Point

A, z z - X = z - can be easily calculated,

i.e.,

z.

[6]

T Z VV. k if T is known,

and L) values can be obtained in terms of k

parameter.

T kA= (y).w
T H

= __---w+

STRETCH FORMULAS

From geometry we have:

d
dz
ds -
d-v-,= 5/flds
From the elongation of an element of length

ds we have:

d(iL) T

=

We obtain:

=y.
J

I(i-k ).(c0L

z.w

(k ?).(cos'

k-i

cas

k-i )

[57]
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H= z.v..f.(k-i) if H is known



= 0fds

or in terms of k parameter,

zv.\'ak_I
E'A

Similarly, we obtain:

V.5 ['+o]

2EA

= 2k-i
.

2E'A
Total elongation may be obtained from

=

._L_ j 2+ (N)2 . ds [42]
EA

LL- -- ([C2.L (.C

+ Sc2j2
cZ j '

['+]

or, in terms of k parameter:

z2w (k-D2 [L'J2k_I ± k
EA 2 t<I

k.'.! 2k-1
[43A](k-i)2

Another way to obtain ¿L is:

or:

[38]

[39]

=

L L S .\J 2 (sw)a
['+4]

EA

For chain:

where L link length
8 elongation of link
P = acting force for 8 elongation

since

we have:

p EI
r .0149R3

By assuming

L2 d
we can have:

EA= Eli
Oi4 R3

since

A= 7854cJ2,
1= o4i d4
E'=.7gsx3Ox ßQ

= 22.7fO L6/2
d is the diameter of the link bar.

LOCATION 0F A DROPPED ANCHOR

ZvV
.\J2k- . j k2- k-

EA 4
['+5]

Comparison between Eq. '+3A and Eq. '+5 is
shown in Fig. 25, where:

A metallic area for cable

E'= I2.OlO Lb/2

R
3

Fig. 14 indicates an anchor at Point A
departed from Point O, by applying a horizontal
force, H, by a tugboat carrying that anchor on
her deck. Point A is assumed to be very near
the waterline. A vertical force, V, is also
applied by the tugboat which causes a change in
trim and stability on the tugboat. Cable which
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can be wire rope or chain is assumed to be long
enough and has a tangent point on the mud line.

Controlled Lowering

If the anchor is lowered to the mudline by

a cable from a winch on the tugboat, drop
distance is equal to S and can be easily
determined if H, w and Z are known.

Free Drop

or

2H [J9]

.fw
where f is the friction coefficient of the
chain on mudline and w is the linear weight of

chain in water [lb/ft].

If the anchor is dropped free, it most

probably will fall onto a point, C, located
between Points D and E. In this case the drop

distance dz may be expressed in terms of x.

q.x

q may be a function of scope, [s/z].

Office-type experience with a long dog
chain gave the following results.

[1] q is nearly independent of scope.

[2:1 In air and water, q varies between

O.9 to 0.97 and 0.91 to 0.95, respectively.

ANCHOR DROPPING DISTANCE

Fig. l5A shows a tugboat pulling a chain
of length 2s from a barge. Tugboat speed is

assumed to be approximately equal to the pay-

off speed of the chain. At the moment Link 2

touches to the mudline, Link 1 is the first

free link at the barge end. If this was a

static condition, anchor dropping distances
could be as follows.

Controlled lowering:

X -i-5 . [16]

Free drop:

d2 (í*).%. [i]

Fig. 15B shows the tugboat keeps pulling
the chain with a speed equal to payoff speed
until a kinetic equilibrium is reached.

We have:

H=wd2, [8]

Tugboat speed equals to payoff speed, out
they decrease together until the tugboat stalls.

netic energy of tugboat and chain, water
forces, etc., are neglected.

If for some reason the winch operator
starts to payoff the chain much faster than
tugboat speed, tangent point on the chain would

tend to move toward the barge. We could have
the following values as shown in Fig. 150.

1. Controlled lowering,

dz d(icj)z.
For practical reasons, d values should con-

tain efficiency factors including the human

factor. We obtain final recommended form of the

drop distances:

Controlled lowering,

d_- x ± n.d . . [5h]

Free drop,

d2_ r?.d+(I+).%
[55]

According to Fig. 16, xman is the optimum
necessary horizontal distance [barge to anchor]
to obtain Tmax tension in the chain in wDrking

condition. Here the shank angle is assumed to

be zero; therefore,

Xrncxz =
kz.Ck-i).csh'( k-i [56]

where k = -z. AI

If Tm, z and w are known, Xmax can easily

SO NOTES ON STATIC ANCHOR CHAIN CURVE OTO 1160

c1Z .±L -i-s [50:1

2. Free drop,

2H [51]

Fig. lSD indicates the anchor dropping
distances obtained by an experienced winchrnan

and a tugboat skipper combination as follows.

Controlled lowering,

+S. [52]

Free drop,



The minimum required tugboat pull would be:

Controlled, lowering,

Assume 2n/f = 0.25

k Tm 3727000 = 23.1343zw 300 X 53.6
From Eq. 56, = 1,968.1 ft. From Eq. 59,
we obtain H = 9,430.6 lb. From Eq. 57, we
check Xm = 1,988.1 ft.

Free drop,

Assume 2n/f 0.25; q 0.95. From Eq. 60, we
have H 54,165.1 lb. From Eq. 58, we check
Xmax 1,988.1 ft.

ETECT 0F CUFEENT

The effect of current on an anchor chain
is represented. in Fig. 17. Consider the forces
acting on an element of length, ds, in Fig. 18.

a = C = drag force, lb/ft

CD = drag coefficient
g = gravitational acceleration [sq ft/sec]

'= specific weight of water [lb/cu ft)
u velocity of current [ft/sec]

The force diagram is shown in Fig. 19.
From Figs. 18 and 19, we obtain:

[61]dtan =
N
s

- aJínc/.ds. . .[62]
o

v= y0

- J5ifl . d .{6]

164]

be obtained.

Necessary tugboat pull can be obtained by
trial and error from:

1. Controlled lowering,

= .±i_.cosh (ZW± H)
H

+Jz.(z+!) [57]

2. Free drop,

i-,aZ (iq) cosWt(z1+H
w

2rH
The iterative forms of these equations are

more useful, especially if a small desk-type
computer is available; we can have:

1. Controlled lowering,

I-l::

w.
cosh'( Z.W

H j:

2. Free drop,

Ç-4rn

(i).cosh(ZW±H)..
-

[60J

Friction coefficient f of the chain on dry
ground is taken as 0.40 f 0.90 for the ship
launching calculations.

In our case, a minimum value 0.25 for 2n/f
is recorended to obtain a conservative value
if efficiency and bottom conditions are not
known. For example, with a 2-1/2_in. Di-Lok
chain:

W = 55.6 lb/ft in water
Z 500 ft water depth

Tm half of the breaking strength 744,000
lb 572,000 lb.
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.[65J

Since

/

ds ccs2,;6 cí
we have

, .{66]



W. -i- a. In CoS
ci( S

- c J551fl Ø' . c/S
o

For a graphical solution, Eq. 67 can be
replaced by

w. cos2 . sin c.os

I-/o - a5in2cÀ1.LS

If the lower boundary conditions, E0, V0,
are known, we can obtain S, H, V, T, x, y

values from the following relations.

= [69]

= H- s[7°]

= vr)- W.s_a.s,n(>r,
.CQS .Ls [71]

'p-)

Th+s =

=

W. coS + . s cr,. C £

±
1/i-1

V) i! 4. co

-f-I = ?J i-, * 3i r
The results can be obtained by a digital

computer or a digital plotter. For a variable
current, similar results may be obtained by a
minor change in the a term. These formulas
may be used in the force analysis of a cable
controlled submarine. [Application of these
formulas will indicate that to neglect the
resistance of anchor cables or chains may cause
unsafe selection of mooring system for drilling
barges operating against currents in deep

waters.]

PILE ANCHOR CATENARY

Fig. 20 shows a pile anchor at Point A and
a cable hanging down Point O. When Point O
moves toward Point 00, the tangent point on the
mudline moves toward A. When the tangent point
reaches Point A, catenary will begin to be a
partial catenary. By inspection it can be seen
that Point 00 cannot pass Point 01, if it does
not stretch. To fiad any relation between

z
[72]

departure and other variables, Eqs. through
1 may be used. For example, the relation be-
tween the horizontal tension, H, and departure
parameter, Xp, becomes:

From Eq. 5 and Eq. lO, we have:

K- 2c.5ir,h- \/i-z . . [76]

or

K = 2 ± 5inh'- \1L2 .Z2 . [77]w 2H

and k'- (L-z) [78]

In terms of k parameter, we can have:

,= 2k..r5h''t-r (r_i)]L 2k

where r =
For each r ratio and water depth we can have a
similar graph as shown in Fig. 21. In this
figure, z'ir2-1 indicates the asymptothic
condition.

CATENARY WITh SIR

L < z Condition

From the basic equatdons we can have:

h=Vc2 - 152C2 [So]

(c)2= .5Iac2
[8i]

L= Vzkc2_c2
- (+k±c)2c? [82]

From the equilibrium of the sinker of
Weight P, we have

2 [8]

We obtain:

- (z+hc)2_c2JC2

(h+c)

[79]

[84]

I-1 54
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where

h=
[(+C)2_Ca +]2± c2

C-±c). [85]

can be evaluated by iteration from Eqs.
81 and 85 for each L, z, w, H combination.

parture X5 can be calculated from:

(Z).[(k-i).(cosh' k_
k-i

\Jkl)
+ I]k-i

P= 2k.(Z-).[5ih12k

where

y-=

[86]

and k= (z_j).vv.(k-i).
L > z Condition

In this case, the cable will begin to form
a natural catenary until the tangent point
moves to the sinker location. It will form a
pile anchor catenary until the sinker starts to
rise. V P ± Lw after it becomés a catenary
with sinker. By using the previous formula-
tions we can obtain a characteristic curve as
shown in Fig. 24.

COIARISON OF ANCHORS

It has been shown that the holding power
of anchors varies as follows: [1] holding
power = shape factor x [fluke area]3/2, or, for
the sane family of anchors, [2] holding power
will vary linearly with the weight of the
anchor.

The following anchor families were
examined: [1] Baldt snug - stowing anchor,
[2] Baldt stockless anchor, [3] Hall anchor,
[4] Admiralty anchor, [5] Pool anchor, [6] Statc
anchor and [7] IMT anchor. The first six were
geometrically similar. Weights varied with L3.

Holding powers could be expressed as HP =

c weight.

In LWT anchors, weight varied as

(k) We/9ht L3COCQ

1.22
= w

They were not geometrically similar. Their
holding powers were expressed as HP
c.[wL]O.2. If they were geometrically similar,
holding power would be:

.82
HP= C. (vvL)

.82
= c.(w'22) = c.w.

Therefore, true comparison between LWT and
other anchors should be done on the fluke area
basis for the same soil conditions.

NOÌNCLATURE

A metallic area
C = constant
E Young modulus
L sinker location on catenary
P weight of sinker
T tension
W = weight of anchor
c parameter of catenary
d distance, diameter of link bar
f = friction coefficient
g gravitational acceleration
k tension parameter
q distance coefficient
r ratio
s length of catenary
w weight of unit length of cable in water

x,y coordinates
z water depth
5 = deflection

sinker location above nudline
X = horizontal departure parameter
V = vertical departure parameter

= reduced depth parameter
p = radius of curvature of catenary

= catenary angle
= increment
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Fig. 25 - Chain, comparison between stretch formulas.

K+1 COEFFICIENT 0F FIRST EQUATION COEFFICIENT OF SECOND EQUATION

3.0 2.39052976 2.29128785

4.0 5.27894927 5 12347538

5.0 8.87064720 8.67467579

6.0 13.04517744 12.81600562

7.0 17.72940567 17.471.40521

8.0 22.87255526 22.58871400

9.0 28.43663978 28.12916636

10.0 34.39182885 34.06244266

11.0 40.71387970 40 36396908

12.0 47.38257904 47.01329599

13.0 54.38073442 53.99305511

14.0 61.69348778 61 .28825336

15.0 69.30782978 68 88577502

16.0 77.21224500 76.77401904

17.0 85.39644583 84.94262770

18.0 93.85116842 93.38227883

19.0 102.56801323 102.08452380

20.0 111.53931832 111 .04165885

21.0 120.75805727 120.24662157

22.0 130.21775581 129.69290651

23.0 139.91242307 139.374.49551

24.0 149.83649422 1.49.28579972

25.0 159.98478221 159.42161083

26.0 170.35243686 169.77705970

27.0 180.93490990 180.34758 107

28.0 191.72792483 19! .12888321

29.0 202.72745096 202 11692160

30.0 213.9296806! 213.30787608

31.0 225.33100939 224.69813083

32.0 236.92801861 236.28425677

33.0 248.71745995 248 .0 6299603

34.0 260.69624169 260 03124812

35.0 272.86141655 272 18605768

36.0 285.21017080 284.52460350

37.0 297.73981439 297.04418862

38.0 310.44777224 309.74223154

39.0 323.33157620 322.61625811

40.0 336.38885789 335.66389439

41.0 349.61734215 348.88285999

42.0 363.01484104 362.270962 12

43.0 376.57924845 375.82609009

44.0 390.30853511 389.54621035

.45.0 404.20074402 403.42936184

46.0 418.25398625 417.47365186

47.0 .432.4664371a 431.67725211

48.0 446.83633259 446 .0 38 39 521

49.0 461.36196599 460.55537126


