
Extracting location context from transcripts: a comparison of ELMo and TF-IDF

David Happel1 , Stavros Makrodimitris1 , Arman Naseri Jahfari1 , Tom Viering1 , David
Tax1 , Marco Loog1 ,

1TU Delft
{D.V.Happel}@student.tudelft.nl, {S.Makrodimitris, A.NaseriJahfari, T.J.Viering, D.M.J.Tax,

M.Loog}@tudelft.nl

Abstract

Using transcripts of the TV-series FRIENDS, this
paper explores the problem of predicting the loca-
tion in which a sentence was said. The research fo-
cuses on using feature extraction on the sentences,
and training a logistic regression model on those
features. Specifically looking at the differences in
performance between using ELMo and TF-IDF for
this feature extraction, achieving an accuracy rate
of 58% and 67% respectively on a binary classifi-
cation. The paper also explores the effect of several
data cleaning techniques on the results.

1 Introduction
The study of Natural Language Processing can be traced all
the way back to the the 1950’s. Alan Turing proposed the
”Turing test”(Turing, 2009), challenging an artificial intelli-
gence to be indistinguishable from a human through language
interaction. To this day, we are still trying to achieve this goal
for the purpose of making it easier for people to interact with
computers in an intuitive way. This, in turn, can have great
implications in many areas. For example, it can be very bene-
ficial for the care of people who are susceptible to loneliness,
like elders or mentally disabled people. Firstly, by helping
those people navigate modern technologies better to keep in
contact with their loved ones. Secondly, sufficiently advanced
computers could even become companions themselves. Re-
cently, the Corona virus has further elevated that need, by
forcing many people to be quarantined in the hospital and at
home (Armitage & Nellums, 2020). Additionally, advanced
language processing could help writers with creative writing;
Or even aide professionals like historians or intelligence op-
erators in interpreting textual sources.

The use of machine learning has given promising results in
this field. Noticeably, in the last decade, where breakthroughs
have been made in finding and representing the meaning of a
word, word embedding. Starting with word2vec, developed
by Google (Mikolov et al., 2013), which is a technology al-
lowing a word to be represented as a weighted sum of abstract
features, by looking at which words are often used together.
This in turn, allows us to determine to what extend two words
are related. Since then, word embedding performance has

been improved and expanded to context awareness and sen-
tence embedding, using techniques like latent variable gener-
ation (SIF)(Arora et al., 2016), bi-directional LSTM (ELMo)
(Alammar, 2018; Taylor, 2019), and Transformers (BERT)
(Alammar, 2018; Devlin et al., 2018).

For a computer to offer intuitive conversation, it needs to
not only understand the literal definition of what is being said.
It also needs to understand the context of the conversation. In-
formation like who is speaking, and where the conversation
is taking place. That is at the core of this research, extract-
ing this context information from conversation. In our case,
specifically the location. This research aims to contribute to
this aspect by exploring to what extent it is possible to infer
the location of a conversation using existing Language pro-
cessing and classification techniques. I will be examining this
in the context of the TV-series FRIENDS. For this show, tran-
scripts with location data are freely available.

By combining sentence embedding with classification
models like logistic regression (Jurafsky & Martin, 2008,
Chapter 5), we can get concrete classifications from pieces of
text. This can, for example, be used to classify a piece of text
as spam (Alammar, 2018), or for author identification(Green
& Sheppard, 2013; Stamatatos et al., 2000). I have however
not been able to find the technique being used to get specific
context information like location from a conversation tran-
script. Some research has been done using ”Named Entities”
to extract location from text (Lingad et al., 2013). This aims
however to find a specific geographic location, while my re-
search aims at finding a more contextual location, like a liv-
ing room, or a restaurant. This is an important distinction to
make.

This research looks only at extracting the location from
individual sentences. It is obvious that many sentences do
not contain any information about the location, and could
have been said anywhere. Especially in the show FRIENDS,
where many conversations about relationships, drama, jokes,
etc. happen. Taking this into account, the main goal of this
research is to understand how many sentences do contain ref-
erences to the current location, and how to best extract this in-
formation. The expectation is that these techniques will only
perform marginally better than random guessing, which I will
consider the baseline for this research.

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



2 Techniques
In order to classify textual data, first it needs to be trans-
formed to a format that is more easily to process for a com-
puter. Simply taking the numerical representations of the
characters in sequence, and feeding that to a classifier would
not be a practical option. Since the classification model would
need to learn to interpret language from scratch. This is a very
difficult task that requires a very large and complex model.
Another problem when working with raw text is that the dif-
ferences in the input lengths makes it hard for many mod-
els to interpret. Instead, I opt for a smarter method. Fea-
ture extraction. This is the process of taking a piece of text,
and transforming it into list of numeric features. These fea-
tures could be hand-crafted by humans or, as I will explore in
this research, generated by an algorithm. Since this technique
transforms a piece of text into numeric list of a set length (by
making non-existent features 0), this also solves the problem
differences in input length. A list of extracted features from
text will also be called an embedding of the text. We still
need a machine learning model to classify these embeddings.
However, this model can now be a lot less complex, since it
only needs to interpret a fixed length search space of continu-
ous features. Before embedding, pre-processing can be done
on the lines to remove irrelevant information.

Following this structure, the solutions I explore generally
consist of three main parts: Pre-processing, embedding, and
classification. Firstly, I will discuss some techniques for Fea-
ture extraction.

2.1 ELMo
In 2018, a new model for ”Deep contextualized word rep-
resentations” was released (Peters et al., 2018). It provided
lower error margins over a set of 6 diverse benchmarks. It
works by stacking several bi-directional LSTM networks,
each feeding into the next one. A LSTM network is a form
of recurrent neural network that makes use of both short-term
and long-term memory. For each token in a sentence, each
layer attempts to predict the next and previous token in the
sentence. The result of one layer is passed to the next one.
In order to reduce the input space for the LSTM models,
the tokens are not chosen to be words, but individual letters.
Then, the resulting output vectors from the final, and hid-
den layers are combined together in a weighted sum. These
weights are also learned parameters. Pre-trained versions of
this model are available, trained on the 1 Billion Word Bench-
mark (Chelba et al., 2013). The parameters for the weighted
summing for the output are optionally trainable for individual
tasks.

2.2 TF-IDF
In contrast to the complex ELMo model attempting to cap-
ture contextualized representations of the sentences, TF-IDF
is quite a simple method. It looks at the frequency in which
words appear in a document, compared to other documents.
Specifically, for each included word, it computes the product
of two terms, the TF (Term Frequency) and the IDF (Inverse
Document Frequency) (Wu et al., 2008) (“TF-IDF A Single-
Page Tutorial - Information Retrieval and Text Mining”, n.d.).

For the purpose of this research, these ”documents” are indi-
vidual sentences. The individual components of the TF-IDF
score are calculated as such:

TF (Term Frequency): The amount of times a word occurs
in a sentence, normalized by dividing by the total amount of
words in the sentence.

IDF (Inverse Document Frequency): The total amount of
sentences, divided by the amount of sentences that contain
the word. From this we take the logarithm.

TF-IDF: TF × IDF

TF-IDF on a sentence: A sparse matrix containing the
sentence’s TF-IDF calculation for each word in the corpus.
Each word not present in the sentence is set to 0.

2.3 Logistic Regression
For classification I use a Logistic Regression (Jurafsky &
Martin, 2008, Chapter 5) model. Logistic Regression is a
simple linear machine learning model. For each feature, it
learns how much it contributes to the output label, storing this
as a weight. When predicting, the model output simply repre-
sents a weighted sum of all the features. A possible problem
with training self-learning models, is them conforming too
specifically to the training data, and not learning to general-
ize (over-fitting). In order to prevent this, regularization can
be used. It prevents the weights from becoming too large,
and in turn, reduces how much the algorithm relies on very
particular configurations of features. There is several forms
of regularization. L1 regularization normalizes based on the
Manhattan distance of the weights vector to the origin (the
total sum of the weights). L2 regularization normalizes based
on Euclidean distance (the length of the weights vector).

2.4 Data Cleaning
Textual data contains a lot of information that might not be
relevant to our problem of finding the location. For example:
punctuation, or numbers. These characters represent extra di-
mensions for the embedding algorithm and classifier to take
into account, making it harder for the algorithm to learn what
features are important. For this reason we clean the data.

Another technique we can perform is lemmatization (Prab-
hakaran, 2018). This transforms words into their base form.
For verbs this means transforming it to the base verb. And for
nouns this means making them singular. Removing or replac-
ing pronouns might also be a part of this.

• Caring→ Care

• Are→ Be

• Cars→ Car

It is also useful to remove lines that are very short. In the
transcripts for example. Many lines are just very short con-
firmations or greetings like: ”yes!” or ”Hello”. We can be
pretty confident that these do not contain any useful informa-
tion regarding the location of the line. It could be beneficial
to remove them from the data set to reduce noise. Taking into
account that you will also have to remove short lines from
actual unlabeled data when using the eventual model.



3 Method
3.1 Data
In this research I explore and compare the applications of
these techniques for solving the problem of guessing the lo-
cation of a performed line in the show FRIENDS. For the
purpose of simplicity, only two locations will be included in
the experiments. Meaning that the classifier will only have
to choose between two locations and making it a binary clas-
sification problem. This makes reading and interpreting the
results more intuitive. While this research does not include
results for more than two locations, in theory all these tech-
niques could work for any amount of location labels with mi-
nor changes to the classifier. The two locations I chose to use
are ”Central Perk” and ”Monica and Rachel’s”. These are
two of the most prevalent locations in the show with both a
roughly equal amount of sentences. The locations also rep-
resent two different contexts, a coffeehouse and an apartment
respectively, which is likely to be reflected in the conversa-
tions. While these locations both appear roughly the same
amount of times in the show, still the data is balanced by use
of under-sampling the larger of the two groups. This hap-
pens after the cleaning step, since filtering out short sentences
changes the amount of lines per location.

In order to properly evaluate the results, we split the
data into training sets and testing sets using 5-fold cross-
validation. This means the training and testing sets are of
fractions 4/5 and 1/5 respectively.

Transcripts for the TV-series FRIENDS are provided by
GitHub user puneeth0191. In order to properly perform cal-
culations on these transcripts, they need to be split up into a
list of sentences, each linked to the location they were said at.
As previously mentioned. Only the sentences from the two
chosen locations are included. Since the transcripts includes
some inconsistencies and spelling errors regarding locations
names, I include not only the locations that match literally
to the selected locations. Instead I include the locations that
match with Levenshtein similarity (Levenshtein, 1966) of at
least 0.7 to ”central perk” and ”monica and rachels”. Still, the
data might contain some small errors.

Further details of the parsing are not very relevant for the
purpose of this research, so they will be disregarded here. The
code used is available in the source repository2.

3.2 Setup
The setup consists of 5 main steps:

1. Parsing data
2. Cleaning
3. Embedding
4. Training Classifier
5. Evaluating Classifier

A visual representation of the data flow through these steps
can be seen in Figure 1

Parts of the of the implementation of setup was inspired by
the work of my peer researchers. Specifically, configuration

1https://github.com/puneeth019/FRIENDS
2https://github.com/David-Happel/scene-location-NLP

management by Thomas van Tussenbroek3, and parsing by
Pia Keukeleire4.

3.3 Cleaning
In this setup the cleaning is performed on both the training,
and validation data. The following cleaning steps can be per-
formed in their respective order:

1. Lemmatization
2. Remove numbers
3. Remove short sentences of less than n words.
4. Remove punctuation

By individually enabling/disabling steps 1, 2, and 4, we can
evaluate the influence each step has on the accuracy.

I will look at the 3’rd step separately, by changing the min-
imum words a sentence needs to have. It is important to note
that while only looking at very longer sentences can have
a positive impact on the results, it also makes the resulting
model only usable on very long sentences. So keeping the
eventual use of this research in mind, I will only consider a
minimum word length of up to 5 words. This means that for
step 3: 1 ≤ n ≤ 5.

Lemmatization
Lemmatization is done using the spaCy Language Processing
model (Honnibal & Montani, 2017). This lemmatization also
replaces pronouns with the placeholder ”-PRON-”. I opted
to remove these placeholders from the data entirely as part of
the lemmatization, since this yields the best results.

3.4 Embedding
ELMO
For the evaluation of using ELMo for embedding, I adapted
code from Karan Purohit 5. Using the pretrained ELMo V3
available through TensorFlow Hub 6. As previously men-
tioned, it is possible to train the hyper-parameters used for
summing the intermediate layers.

TF-IDF
For TF-IDF I use an existing implementation, the TfidfVec-
torizer from SKLearn (Pedregosa et al., 2011). For a list of
sentences, it returns a very sparse matrix containing the cal-
culated TF-IDF values for each word in the corpus, per sen-
tence. The implementation offers for a built-in option to ig-
nore stop words 7. Stop words are words generally considered
to not contain contextual information. However, obviously
this depends on the specific context whether this is truly the
case.

3https://github.com/thomasvant/Character-classification
4https://github.com/pi-zz-a/Text-Generation
5https://medium.com/saarthi-ai/elmo-for-contextual-word-

embedding-for-text-classification-24c9693b0045
6https://tfhub.dev/google/elmo/3
7https://scikit-learn.org/stable/modules/feature extraction.html#stop-

words



Figure 1: Conceptual Experimentation setup data flow.

Classification
For the classification I use SKLearn’s logistic regression im-
plementation (Pedregosa et al., 2011). I use its default setting
for regularization type, which is L2 regularization. This regu-
larization has a parameter C, the inverse of the regularization
coefficient. For both ELMo and TF-IDF, I use SKLearn’s
grid-search to determine the best values for the C parame-
ter. Using 5-fold cross-validation and optimizing for accu-
racy. The maximum iterations parameter is also included in
the grid search.

4 Experimental Results
4.1 Parameter Grid-Search
By performing grid-search on the parameters needed for
logistic-regression, we can find the most effective values for
them. The grid-search was performed on the parameters: C,
and the max iterations. The maximum iterations parameter is
not included in the figures since for any value over 100, this
did not impact the performance significantly. Consequently,
for the displayed results the max iterations is set at 200. For
the following experiments we perform the following clean-
ing steps: remove numbers, remove sentences shorter than 2
words, and remove punctuation. Lemmatization is not per-
formed.

ELMo
The results of grid search on ELMo for feature extraction can
be seen in Figure 2. The best results of 58.2% accuracy were
obtained with a value of C = 10. However C = 100 provides
very similar results far within the margin of variance across
runs. The latter has been used in further experimentation.
Furthermore, enabling the option for the hyper-parameters to
be fine-tuned, did not improve performance. Consequently, I
have opted to use the ”default” output instead.

TF-IDF
Similar to before, using grid-search when training the Logis-
tic Regression model on the TF-IDF generated data gives us
the best value for C: Figure 3. Here, the best results of 64.1%
accuracy were obtained with value C = 10000. This value is
used in further experimentation. Ignoring stop words did not
improve the results, and was not used for any of the experi-
ments featured in this report.

Figure 2: Grid search for C parameter for logistic regression on
ELMo embeddings using 5-fold validation. X-axis: Value for pa-
rameter C, the inverse of the regularization coefficient. Y-axis: Mean
accuracy on the validation set (blue) and the testing set (orange).

4.2 Cleaning
The previous results were obtained using the following of the
before mentioned cleaning steps in their respective order, be-
cause of the configurations relatively good performance with
both embedding algorithms:

1. Lemmatization: No
2. Remove numbers: Yes
3. Remove sentences of 2 words or shorter: Yes
4. Remove punctuation: Yes

In the following section I will show the effect the mentioned
cleaning steps have on the accuracy scores when using either
ELMo or TF-IDF. Firstly, looking at the effect of removing
punctuation, removing numbers, and lemmatization. This is
done by adapting the above standard configuration and in-
dividually enabling/disabling these techniques. Using 5-fold
cross-validation. The results can be seen in Table 1.

The previous results also make use of removing sentences
of 2 word or shorter. The minimum amount of words is also a
parameter that we can change. In a similar manner as before,
the impact that this has can be seen in Table 2. Of course,



Figure 3: Grid search for C parameter for logistic regression on TF-
IDF embeddings using 5-fold validation. X-axis: Value for param-
eter C, the inverse of the regularization coefficient. Y-axis: Mean
accuracy on the validation set (blue) and the testing set (orange).

Table 1: The accuracy results obtained with different cleaning con-
figurations when embedding using ELM0 and TF-IDF respectively.
Accuracy: The mean accuracy of 5-fold cross-validation. STD: stan-
dard deviation of the different validation results.

when removing sentences, the amount of data data available
changes. Table 3 shows the size of the testing and training
sets size per minimum word count.

4.3 TF-IDF insights
While the features from the ELMo embeddings do not have a
clean and intuitive meaning to them, features from TF-IDF
are linked to words. An advantage to this is that we can
peek at the logistic regression’s reasoning by looking at the
weights associated with those TF-IDF features. The words of
the TF-IDF features most associated with either location are
displayed in Table 4.

5 Responsible Research
This research was performed as part of the course CSE3000 at
Delft University of Technology. To accommodate full repro-
ducibility, all code that was used to generate the results pre-
sented in this report is available on GitHub8 and all relevant
parameters used to obtain the results are disclosed. While
the results of the techniques in this research are not imme-
diately alarming, more advanced iterations of this research

8https://github.com/David-Happel/scene-location-NLP

Table 2: The accuracy results obtained when filtering the data for
different minimum sentence lengths when embedding using ELM0
and TF-IDF respectively. Accuracy: The mean accuracy of 5-fold
cross-validation. STD: standard deviation of the different validation
results.

Table 3: Size of training and testing sets for each minimum word
count.

could raise privacy concerns. It is easy to imagine how a
computer accurately guessing the location of a conversation
transcript could be used in the field of surveillance. This is
something to be mindful of when working on natural lan-
guage processing techniques.

6 Discussion
6.1 ELMo vs TF-IDF
The results show that when using elmo for embedding, it is
possible to get 58.8% accuracy. When using TF-IDF, the ac-
curacy can get up to 66.2%. TF-IDF clearly performs better.

Looking at Figures 2 and 3. For both ELMo and TF-IDF
the mean accuracy on the training set is higher than on the
testing set. From this, it is possible to conclude that the model
is over-fitting to some extend. Increasing the regularization
decreases the relative difference between the training and val-
idation accuracy considerably. However, this does not signifi-
cantly result in a better overall performance on the validation
set. Only for ELMo, does the higher regularization slightly
improve accuracy before hurting it, the best result being at C
= 10. For TF-IDF, extremely low regularization gives the best
results.

Very high regularization hurts performance considerably,
which is to be expected since high regularization reduces the
learned weights towards the origin, reducing learning capac-
ity. For ELMo and TF-IDF, Performance start to suffer at C
≤ 0.01 and C ≤ 10.0 respectively

6.2 Cleaning
The results from Table 1 show that the two embedding tech-
niques are affected differently by the different cleaning steps.
Both suffer from the use of Lemmatization. When using
ELMo, removing numbers and punctuation get the best ac-
curacy. While TF-IDF does best when removing punctua-
tion but not numbers. Why not removing numbers works



Monica and Rachel’s Central Perk
paulo jealous

airport spontaneous
earrings jill
snapped affects

dues teeth
breast felt

kitchen shutting
squad sudden
tasted dollar
nuhuh imim
accent yell

andandand russ
poem needed

Table 4: Words corresponding to the TF-IDF scores most associated
with locations ”Monica and Rachel’s” and ”Central Perk”.

best when using TF-IDF is not entirely clear. It could be that
money amounts are mentioned more often in the Lunchroom
environment than at the apartment.

It is clear from Table 2 that both methods do generally ben-
efit from removing short sentences, especially TF-IDF. ELMo
also slightly improves when with longer sentences, however
not nearly by as much. This makes sense since with TF-IDF
each distinct word will be a feature. Sentences with very few
words will have very few features that are non-zero, activating
only a very small part of the classifier. Short sentences also
simply contain less information, explaining the better perfor-
mance for both techniques. In real world applications the
benefits of slightly more accurate results on longer sentences
should be weighed against the reduced usability on short sen-
tences when choosing a minimum sentence length.

Interestingly, both techniques experience a small drop in
performance after eliminating 2-word sentences. I have no
obvious explanation for this. Possibly there is a set of 2-
word sentences with clear correlation to a location, enough
to counter the general trend.

6.3 TF-IDF Feature Interpretation
While some of the words in Table 4 do not make immediate
sense, it is reassuring to see the word ”kitchen” being asso-
ciated with the apartment, and ”dollar” with the lunchroom.
Some other of the words represent names or expressions, the
latter likely do not appear in the data-set very often, and prob-
ably do not bear any real significant link to locations in real
world applications. Identifying these words could help im-
prove data cleaning in future research. It is, however, im-
portant to realize that a correlation the machine learning al-
gorithm has learned, which does not seem intuitive to a hu-
man, could still be a valid. An additional consideration is that,
while these are the words with the highest weights associated
to them, each sentence only contains a very limited number of
words. So many of the classifications will be purely decided
by features with smaller weights.

This makes apparent a considerable limitation of the cur-
rent method. The lines are being shuffled completely ran-
domly, not keeping track of what lines belong together in con-
versation. It might be that specific words that are mentioned

often in only one conversation artificially inflate the accuracy.
Since some of the lines in that conversation could end up in
the testing set, these words then do not contain any real infor-
mation about the location. TF-IDF already somewhat deals
with this since the IDF part takes into account how often that
word is mentioned, limiting the TF-IDF value of infrequent
words. However in a difficult task like this, this effect could
still have a significant impact. One issue to deal with this,
could be to completely disregard words that appear only a
limited number of times.

There is another solution that this research was not able to
touch upon however. Looking outside of the scope of a single
sentence. When classifying individual sentences the accu-
racy does not exceed 70% and might even hit a hard limit re-
lated to the limited amount of information contained in a sen-
tence. However, we can also keep the sentences grouped by
their conversation. And when predicting, we average the pre-
dictions of all sentences in a complete conversation together.
Then we assign the predicted location of the complete conver-
sation, to all sentences in the location. We avoid the problem
of topics in conversations artificially increasing the accuracy
on the testing set. Since sentences are kept grouped by con-
versation, and a conversation is never split up between the test
and training set. At the same time, we can likely get a higher
accuracy. Since the average of many guesses is will likely be
more accurate than the individual guesses separately, as de-
scribed in the law of large numbers(Hsu & Robbins, 1947).
The effects of predicting for entire conversation is something
that I encourage future research to explore.

6.4 Fitting TF-IDF
Before the sentences can be vectorized using TF-IDF, first the
model is fitted on the training data. For this fitting it calculates
the IDF (Inverse Document Frequency) part of the equation
for each word. After fitting, when calculating the actual em-
beddings for all data, words that have not been seen during the
fitting step are not included. For the results in this paper TF-
IDF was only fitted on the training data. However the labels
are not needed for this step. This makes it is not unthinkable
to also fit TF-IDF on the testing data, as is done by McClure
in the book ”TensorFlow machine learning cookbook” (Mc-
Clure, 2017, Chapter 7). This generates more complete fea-
tures for the sentences and likely increase eventual accuracy.
This increased accuracy does come at a cost though, it means
that for each batch of new unlabeled data, both TF-IDF and
the classifier would need to be re-fitted. Whether this is useful
to do if the model is to be used in production would depend
entirely on the circumstances. For once, this would only cre-
ate significant difference if the unlabeled data would come in
sizeable batches compared to the training data. Additionally,
if the unlabeled data includes data that is not representative of
the rest of the data-set, this ”bad” data will likely worsen the
models performance on the other unlabeled data.

6.5 Larger Classifier Model
Another consideration is the fact that higher regularization
in the classifier does not significantly increase performance
for either embedding algorithm. This could be an indicator
that the Logistic Regression model has hit its capacity of the



amount of information that can be encoded into its weights.
This, in turn, might mean that using a more intricate classifier
model, for example by adding an extra hidden layer, could
lead to a more intricate generalization and better results. This
was briefly investigated in this research, but not pursued to
the end in the interest of the scope of the research.

7 Conclusion
The results presented in this paper have shown that it is possi-
ble to infer which one of two locations a line in the TV-series
FRIENDS was performed at upwards of 66% of the time
when using TF-IDF with logistic regression. While this ac-
curacy is only 16% above randomly guessing, it exceeds the
initial expectations. This research has also shown that the use
of the relatively simple statistical TF-IDF method performs
better at this task than the complex context aware ELMo em-
beddings, which yielded an accuracy of up to 59%.



References
Alammar, J. (2018). The illustrated bert, elmo, and co. (how

nlp cracked transfer learning). https : / / jalammar .
github.io/illustrated-bert/

Armitage, R., & Nellums, L. B. (2020). Covid-19 and the
consequences of isolating the elderly. The Lancet
Public Health, 5(5), e256.

Arora, S., Liang, Y., & Ma, T. (2016). A simple but tough-to-
beat baseline for sentence embeddings.

Chelba, C., Mikolov, T., Schuster, M., Ge, Q., Brants, T.,
Koehn, P., & Robinson, T. (2013). One billion word
benchmark for measuring progress in statistical lan-
guage modeling. arXiv preprint arXiv:1312.3005.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018).
Bert: Pre-training of deep bidirectional transform-
ers for language understanding. arXiv preprint
arXiv:1810.04805.

Green, R. M., & Sheppard, J. W. (2013). Comparing
frequency-and style-based features for twitter au-
thor identification, In The twenty-sixth international
flairs conference.

Honnibal, M., & Montani, I. (2017). Spacy 2: Natural lan-
guage understanding with bloom embeddings, con-
volutional neural networks and incremental parsing.
To appear.

Hsu, P.-L., & Robbins, H. (1947). Complete convergence and
the law of large numbers. Proceedings of the Na-
tional Academy of Sciences of the United States of
America, 33(2), 25.

Jurafsky, D., & Martin, J. H. (2008). Speech and language
processing: An introduction to speech recognition,
computational linguistics and natural language pro-
cessing. Upper Saddle River, NJ: Prentice Hall.

Levenshtein, V. I. (1966). Binary Codes Capable of Cor-
recting Deletions, Insertions and Reversals. Soviet
Physics Doklady, 10, 707.

Lingad, J., Karimi, S., & Yin, J. (2013). Location extrac-
tion from disaster-related microblogs, In Proceed-
ings of the 22nd international conference on world
wide web.

McClure, N. (2017). Tensorflow machine learning cookbook.
Packt Publishing Ltd.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean,
J. (2013). Distributed representations of words and
phrases and their compositionality, In Advances in
neural information processing systems.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., & Duch-
esnay, E. (2011). Scikitlearn: Machine learning in
Python. Journal of Machine Learning Research, 12,
2825–2830.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark,
C., Lee, K., & Zettlemoyer, L. (2018). Deep contex-
tualized word representations, In Proc. of naacl.

Prabhakaran, S. (2018). Lemmatization approaches
with examples in python. https : / / www .

machinelearningplus . com / nlp / lemmatization -
examples-python/

Stamatatos, E., Fakotakis, N., & Kokkinakis, G. (2000). Au-
tomatic text categorization in terms of genre and au-
thor. Computational linguistics, 26(4), 471–495.

Taylor, J. (2019). Elmo: Contextual language embedding.
https: / / towardsdatascience.com/elmo- contextual-
language-embedding-335de2268604

Tf-idf a single-page tutorial - information retrieval and text
mining. (n.d.). http://www.tfidf.com/

Turing, A. M. (2009). Computing machinery and intelligence,
In Parsing the turing test. Springer.

Wu, H. C., Luk, R. W. P., Wong, K. F., & Kwok, K. L. (2008).
Interpreting tf-idf term weights as making relevance
decisions. ACM Transactions on Information Sys-
tems (TOIS), 26(3), 1–37.

https://jalammar.github.io/illustrated-bert/
https://jalammar.github.io/illustrated-bert/
https://www.machinelearningplus.com/nlp/lemmatization-examples-python/
https://www.machinelearningplus.com/nlp/lemmatization-examples-python/
https://www.machinelearningplus.com/nlp/lemmatization-examples-python/
https://towardsdatascience.com/elmo-contextual-language-embedding-335de2268604
https://towardsdatascience.com/elmo-contextual-language-embedding-335de2268604
http://www.tfidf.com/


A Coefficient Weights
To provide some insights into the models decisions, I ex-
tracted the weights for each feature from the logistic regres-
sion model. These feature weights, or coefficients, are or-
dered from low to high and displayed in Figure 4 for the
ELMo embeddings and Figure 5 for TF-IDF embeddings. A
high coefficient means the feature points to the location ”Cen-
tral Perk” while a low coefficient mean the feature is associ-
ated with the location ”Monica and Rachel’s” apartment.

For both embedding techniques, the coefficients resemble
a normal distribution, where most features are around the
center and few features have the biggest impact on the re-
sult. These coefficient distributions are also quite balanced.
The median coefficient of the ELMo and TF-IDF features are
0.008 and 1.371 respectively. One big difference that can
be seen between the two techniques, is that the ELMo fea-
tures mostly have coefficients between -1 and 1, while those
of TF-IDF range between -40 and 40. This can be explained
by the difference of the regularization parameter C. As dis-
cussed previously, the C parameter is set to 100 for ELMo
and 10000 for TF-IDF. This means that ELMo uses higher
regularization, and big coefficient values are punished more.

Figure 4: The feature coefficients from logistic regression trained on
the ELMo embeddings, ordered from low to high.

Figure 5: The feature coefficients from logistic regression trained on
the TF-IDF embeddings, ordered from low to high.


	Introduction
	Techniques
	ELMo
	TF-IDF
	Logistic Regression
	Data Cleaning

	Method
	Data
	Setup
	Cleaning
	Lemmatization

	Embedding
	ELMO
	TF-IDF
	Classification


	Experimental Results
	Parameter Grid-Search
	ELMo
	TF-IDF

	Cleaning
	TF-IDF insights

	Responsible Research
	Discussion
	ELMo vs TF-IDF
	Cleaning
	TF-IDF Feature Interpretation
	Fitting TF-IDF
	Larger Classifier Model

	Conclusion
	Coefficient Weights

