

100 000 BIOBASED TOP-UPS

Quickest route to Paris Proof housing?

Frank Vahstal

RESEARCH QUESTIONS

MAIN RESEARCH QUESTION

• How can locally sourced biobased building materials be used in constructing top-ups in The Netherlands?

SUB QUESTIONS

1. The Potential

Why should we build the 100 000 required top-ups with biobased materials?

2. The Resources

What kind of biobased materials can be sourced in The Netherlands?

3. The Scale-up

Can the production of these materials be scaled-up to contribute to the construction of the 100 000 required top-ups?

4. The Benefit

Does using locally sourced biobased building materials reduce the embodied emissions compared to the conventional material choices?

DESIGN QUESTIONS

5. The Design

How can locally sourced biobased materials help inform the design for the top-up of Smits Vastgoedzorg?

HYPOTHESIS

MAIN RESEARCH QUESTION

• How can locally sourced biobased building materials be used in constructing top-ups in The Netherlands?

HYPOTHESIS

- The 100 000 required top-ups could be constructed with locally sourced biobased materials.
- By doing so the embodied emissions will be reduced.

POTENTIAL WHY TOP-UP?

OPERATIONAL VS EMBODIED EMISSIONS

Operational emission (Kg CO_2)

Embodied emission $(Kg CO_2)$

Paris Proof Housing 2030

Embodied emission ($Kg CO_2/m^2$)

Fig. 1: Embodied vs Operational, adapted from: Dutch Green Building Council. (2021).

Fig. 2: Paris Proof housing, adapted from: Dutch Green Building Council. (2020).

POTENTIAL WHY BIOBASED?

REASONS TO CHOOSE FOR BIOBASED

Scarcity of resources

Carbon capture

Regenerative

Health and comfort

Less transport

Less waste

Image 10: Iron ore mine. from citicpacificmining.com/our-operation

POTENTIAL WHY BIOBASED?

A CRITICAL NOTE ON BIOBASED

- Responsible cultivation
- Displacement concerns
- Growth location
- Manufactering process
- The percentage of biomass
- Using biomass for energy

Image 11: Biomass energy. Retrieved from parool.nl/amsterdam/biomassacentrale-diemen-krijgt-groen-licht-van-rechter

POTENTIAL WHY BIOBASED TOP-UP?

PREFABRICATION

LIGHTWEIGHT

COMFORT

Steel structure
Rockwool insulation
Composite cladding

50 kg

46 kg

Fig. 3: Lightweight biobased structures, adapted from: Platform m3. (2020).

RESOURCES

THE SCALE-UP NATIONAL APPROACH

GOALS 2030

- 50 000 hectares of fiber cultivation
- 400 000 tons annual yield of fibers
- At least 30% of new residential buildings are constructed using 30% biobased materials

THE SCALE-UP REGIONAL APPROACH

The region of Zuid-Holland has three types of landscapes

- Natura 2000
- Clay landscape
- Peat landscape
- Sand landscape

Image 15: Dutch landscape

CLAY LANDSCAPE

- Salinization
- Soil depletion due to current intensive agriculture

PEAT LANDSCAPE

- Oxidation of the peat soil causing CO2 exhaust
- Subsidization

SAND LANDSCAPE

- Soil and water pollution
- Pressing nitrogen crisis

Image 18: Sand landscape

Image 19: Topping-up on location

THE SCALE-UP RESOURCE APPROACH

MATERIAL APPROACH The annual yield of wood from the Dutch forestry is and will always be very limited. Flax is a rotation crop which is cultivated every 7 years, and will help improve the soil qualitiy. Hemp is a rotation crop which is cultivated every 5 years, and will help improve the soil qualitiy. Straw is a residual and abbundantly available. Miscanthus has minimal requirements and could grow on any soil. Cattail grows along the more and more present water bodies. Seaweed require minimal land.

GLOBAL WARMING POTENTIAL

Fig. 5: Schematic representation of Life Cycle Assessment (EN 15804, 2012 + A2:2019)

GLOBAL WARMING POTENTIAL

Fig. 6: GHG emissions in a life cycle (Gobbo et al., 2021)

29 | 50

GLOBAL WARMING POTENTIAL

Fig. 6: GHG emissions in a life cycle (Gobbo et al., 2021)

30 l 50

GLOBAL WARMING POTENTIAL

Fig. 6: GHG emissions in a life cycle (Gobbo et al., 2021)

31 l 50

Fig. 7: GWP for 8 load-bearing structures

COMPARISON OF GWP

Fig. 9: GWP for 8 load-bearing structures

Image 20 Timber-straw panel (Ecococon, n.d.) from: https://www.biobasedbouwen.nl/producten/ecococon-prefab-stropanelen/

Fig. 9: GWP for 8 load-bearing structures

 $Image\ 27\ Scandinavian\ forestry\ from:\ global woodmarkets in fo.com/norway-boosts-softwood-log-exports-eu-countries-filling-russian-supply-gap/$

DESIGN CURRENT DESIGN

Fig. 10: Structure of the top-up

DESIGN TEAM

nieuwe architecten

Fig. 10: Structure of the top-up

DESIGN TEAM

Fig. 10: Structure of the top-up

DESIGN TEAM

Fig. 10: Structure of the top-up

DESIGN TEAM

Fig. 10: Structure of the top-up

DESIGN TEAM

- + Maximize the amount of biobased materials
- Limit the amount of scarce biobased materials

WOOD FIBRE

LAI

FLAX WOOL

I-BEAMS 41 | 50

Fig. 11: Materialisation of the top-up

Fig. 12: The top-up decomposed

ALLOCATED RESOURCES

UN-ALLOCATED RESOURCES

Image 22: Visualization of the interior

Image 23: Visualization of a section

Image 24: Visualization of a section

Fig. 2: Paris Proof housing, adapted from: Dutch Green Building Council. (2020).

Image 24: Visualization of a section

CONCLUSION

MAIN RESEARCH QUESTION

• How can locally sourced biobased building materials be used in constructing top-ups in The Netherlands?

HYPOTHESIS

- The 100 000 required top-ups could be constructed with locally sourced biobased materials.
- By doing so the embodied emissions will be reduced.

CONCLUSION

- It is currently not possible to construct the 100 000 required top-ups with biobased materials
- The strong believe is that by 2030 the production and cultivation of biobased materials could significantly be increased without competing with food production or biodiversity.
- By constructing these top-ups with biobased materials the embodied emissions will reduce
- It is very complex to prove whether sourcing these materials locally has a positive impact on the GWP, since trade-offs could take place

QUESTIONS?

