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Abstract 
 

 

 

 

The current research work investigates the possibility of using machine learning models to deduce 

the relationship between WAAM (wire arc additive manufacturing) sensor responses and defect 

presence in the printed part. The work specifically focuses on three materials from the nickel alloy 

family – Inconel 718, Invar 36 and Inconel 625, and uses three sensor responses (welding voltage, 

welding current and welding audio) for predictions. A variety of types of prints, including ramp 

tests, single bead depositions, and walls were explored. Three different machine learning models 

are used – artificial neural networks (ANNs), K-Means clustering and random forests (RF), and the 

performances are compared. In addition to separate material analysis, cross-material predictions 

are conducted using two supervised models to investigate the prediction capabilities of such an 

approach. The results indicate that models are indeed capable of finding connections between 

welding parameters and defect formation, and the accuracies range from 60% to 90% and the 

correlation coefficient is less than 0.5 (indicating weak positive correlation) depending on the 

model and material. The cross-material predictions are significantly worse, with accuracies 

ranging from 20% to 27% and very weak correlation coefficients (less than 0.1). Analysis of the 

results indicates that the importance of audio sensor response depends on the nature of defect, 

and that additional sensors like spectrometers could give a wider range of information to cover 

more types of defects, potentially raising the performance of cross-material predictions. Between 

the models, random forest is found to perform the best overall, with ANNs coming in a close 

second. The versatility of ANNs indicates that increasing the dataset size and resolving the class 

imbalance could potentially tip the scales in the favor of ANNs. 
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1 Introduction 
 

 

 

 

The development of different techniques of additive manufacturing, which is a manufacturing 

paradigm based around the addition of successive layers of material to form a complete product, 

has been the result of an increasing demand of complex geometries in various engineering fields 

like aerospace and energy applications [1]. Additive manufacturing techniques feature a variety of 

advantages over more conventional “subtractive” techniques based on machining, which include 

the capability of generating complex geometries, heterogenous composition structures, and 

rapidly prototyping different components. While initially confined to prototyping research 

applications, additive manufacturing has since seen significant growth in mass manufacturing 

avenues [2]. 

Additive manufacturing techniques are typically classified based on the form of feed material and 

the energy source used [1, 3]. Feed material can be in the form of wire or as powder (which itself 

can be either in a bed or fed into the energy source), whereas energy sources can be lasers, electric 

arc or electron beams [1]. These processes are generally known as directed energy deposition (DED). 

This method utilizes an energy source like a laser to directly melt a wire/powder feedstock into a 

melt pool through a nozzle onto the substrate to form a bead of material after the melt pool 

solidifies [1, 4]. A track is generated when moving the heat source and feedstock in tandem. 

Overlapping multiple tracks results in a layer, and then a 3D object can be deposited layer by layer. 

An example of WAAM is shown in Figure 1. 

 

Figure 1: Depiction of WAAM, courtesy RAMLAB 
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DED provides the advantage of a good deposition rate, ranging from 8.3 to over 330 g/min [5]. It 

is also capable of creating layers on uneven substrates [5]. 

DED techniques are further classified based on the type of feedstock and energy source used [5]. 

While powder-based DED typically involves only laser power, wire-based DED can use a variety 

of power sources, giving rise to wire arc additive manufacturing (WAAM), wire laser additive 

manufacturing (WLAM), and wire electron beam additive manufacturing (WEAM) [5, 6]. Out of 

the available energy sources, the electric arc is typically the most economical [3]. Thus, WAAM is 

one of the most popular DED processes among industries. 

Since WAAM was developed on the basis of traditional arc welding, it can be conducted in a 

variety of modes depending on the type of arc welding being used. The two main arc welding 

processes that are most commonly used in industry are gas metal arc welding (GMAW) and gas 

tungsten arc welding (GTAW), and are briefly described below [1, 3]. 

Gas metal arc welding utilizes a consumable electrode acting as deposition metal. An arc is 

generated between the electrode and the substrate, which melts the electrode tip and transfers 

the molten metal to the melt pool on the substrate. Ideally, the electrode is fed in at a certain speed 

to offset the metal transfer by melting, such that the electrode stick-out length remains constant. 

Shielding gas is used to protect the melt pool from the atmosphere and may stabilize the arc. 

GMAW is reported to have a high deposition rate of about 3-4 kg/h [1], and has a relatively low 

setup cost, making it cost-effective and efficient [3, 5]. For larger wire diameter with a customized 

power setting, deposition rates as high as 5 kg/h can be achieved. A variant of GMAW called cold 

metal transfer (or CMT) achieves reduced heat input through the use of short circuiting [3, 10]. 

This kind of operation allows for higher arc stability and reduced spatter generation at the cost of 

deposition rate [5]. 

In gas tungsten arc welding, an arc is established between a non-consumable tungsten electrode 

and the substrate. A separate filler wire is fed into the arc in order to generate droplets that are 

deposited on the substrate. While GTAW has a lower deposition rate of around 1-2 kg/h [1], it 

shows reduced porosity and better surface finish [5]. GTAW also uses inert shielding gas for melt 

pool and electrode protection. 

 

1.1 Defects in WAAM 

The defects encountered in WAAM parts are very similar to the kind of defects seen in arc welding, 

since the same basic process is being used in both scenarios. Wu et al. [12] noted that some of the 

most common defects seen in WAAM-manufactured parts include (residual) stress-induced 

deformation, porosity, and cracking/delamination. Chen et al. [1] also mentioned additional types 

of defects like lack-of-fusion and humping.  In addition, spatter formation may occur during wire-

arc deposition. These defects will be described in greater detail below. 

 

1.1.1 Spatter in WAAM 

Spatter is defined as metal particles that are ejected from the melt pool or melting wire during the 

deposition process. Spatter particles may adhere to the surface of the top layer depending on the 

heat content of the particle, causing issues with surface finish and deposition of the next layer. 
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Cleaning such defects can be a difficult task at times as spatter may fuse with the substrate creating 

a strong bond. Furthermore, the removal of spatter reduces the deposition efficiency. An example 

of spatter is shown in Figure 2. 

 

Figure 2: Weld bead with visible spatter, courtesy BOC Ltd. 

 

Spatter can be generated due to a variety of mechanisms, including gas emission/explosion from 

the weld pool, molten metal scattering during arc re-ignition, and molten metal scattering due to 

repellent electromagnetic forces [21]. It can be seen that these factors depend on processing 

conditions like metal transfer mode, type of shielding gas, welding current, etc. 

Shareef et al. [32] stated that arc instabilities are a prominent cause of spatter. When the arc fails 

to re-ignite properly, the feed electrode will touch the substrate/workpiece. This completes the 

electrical circuit, leading to rapid resistance heating and melting of the electrode. The increase in 

current during the short circuit and the associated Lorentz force may lead to an explosive rupture 

of the liquid bridge. This kind of sudden melting can lead to ejection of the molten metal, 

generating spatter. They also reported that shielding gas bubble bursts like CO2 explosions can 

lead to spatter generation. Conventional GMAW welding is generally considered to have lower arc 

stability as compared to other welding processes like CMT and GTAW, making it more prone to 

spatter defects in general [3]. 

Wu et al. [12] reported that complex deposition paths can induce a higher risk of spatter ejection. 

This can be due to the higher probability of arc instabilities and deflection when tracing a complex 

path.  

 

1.1.2 Porosity in WAAM 

Porosity is defined as the presence of cavities within the material [51]. The presence of porosity 

reduces the effective material density, and results in diminished effective strength. Pores can 

also act as crack initiation points, making them detrimental to the fatigue properties of the 

printed part (to a lesser extent than cracks) [16]. An example of porosity in aluminum alloys is 

seen in Figure 3. 
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Figure 3: Porosity seen in AA536 WAAM samples [20] 

 

Welding pores can be classified into two broad types, namely hydrogen pores and process pores [13, 

14, 17]. Some researchers generalize hydrogen pores under a broader category of material-induced 

pores [1, 16]. These aforementioned types are explained briefly below. 

 

1.1.2.1 Hydrogen/Material-induced Pores 

Hydrogen pores are voids filled with hydrogen within the deposited material. Hydrogen is typically 

generated during the welding process from different contaminants on the surface of the feed wire. 

Moisture, or grease and other hydrocarbon-based contaminants, when exposed to the intense 

heat of the welding process, get converted to atomic hydrogen which then enters the melt pool 

[13, 15]. When this hydrogen is unable to escape molten deposited metal before solidification, 

pores are generated.  

In aluminum and aluminum alloys, hydrogen shows a significant difference in solubility in liquid 

and solid phases (0.71 cm3/100g in liquid aluminum at melting point and 0.043 cm3/100g in solid 

aluminum), which acts as the main driving force behind the formation of hydrogen pores in 

aluminum structures deposited using WAAM [13, 18]. Such voids are typically spherical in nature 

and relatively homogenously distributed in the material [13]. 

Hydrogen can also migrate into shrinkage voids, which are formed during the cooling of molten 

metal [14]. The latter case can also be considered as a lack-of-fusion defect since shrinkage voids 

imply lack of proper joining. In fact, some authors consider lack-of-fusion to be a subtype of 

porosity, called interlayer porosity [1, 6]. 

 

1.1.2.2 Process Pores 

Process pores are formed when instabilities in welding/deposition lead to lack-of-fusion and 

material spatter [1, 12]. This induces irregular voids in the built component. As seen in the 

previous section about hydrogen pores, such voids can also be considered hydrogen pores if 
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hydrogen migration occurs. Their distribution is relatively heterogenous due to this mechanism of 

formation being more random in nature [13]. 

Another possible mode of process porosity formation is the entrapment of shielding gas in the 

molten metal prior to solidification [6, 13]. This is very similar to the formation of hydrogen pores, 

with the only difference being the formation mechanism of the gas that generates the pores. Thus, 

such pores are also spherical in nature. The distribution of such pores is still random as compared 

to hydrogen pores since the entrapment of shielding gas does not happen in a uniform fashion [6].  

 

1.1.3 Lack-of-Fusion in WAAM 

Lack-of-fusion is the phenomenon of insufficient melting of the substrate material, leading to lack 

of proper joining between filler metal and substrate. This leads to void generation within the 

material, and in some cases, complete layer delamination of the deposited material [1, 3]. As seen 

earlier, lack-of-fusion can be considered a subtype of porosity in some cases. 

 

Figure 4: Lack of fusion seen in TIG welding samples [109] 

 

One of the most obvious reasons for lack-of-fusion is the lack of sufficient heat input to melt the 

substrate material insufficiently, as can be seen in Figure 4 for a TIG welded sample. This may 

happen for certain deposition conditions which involve low heat input, as is for instance also the 

case in the cold metal transfer process. Cong et al. [19] reported about the generation of lack-of-

fusion defects when using CMT-P-ADV (Pulse-advanced CMT) when depositing beads in parallel 

fashion for the printing of block structures. 

Arc instabilities can also lead to lack-of-fusion alongside other defects like porosity [20]. This is 

because problems with the arc directly translate to problems with melting the feed wire. This leads 

to large voids in the specific regions of the print where the problem occurred. 

Lack-of-fusion defects are irregular in shape due to their nature of formation, leading to multiple 

potential crack initiation points. In addition, the lack of sufficient bonding between layers due to 

this defect can compromise the mechanical integrity of the final part. 
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1.1.4 Cracking in WAAM 

Cracks can be formed in a material due to various reasons. These defects can extend through the 

material upon the application of a certain threshold stress, leading to complete failure of the 

component. Cracks can be generated by locally exceeding the tensile strength of the material, 

which can happen due to a variety of phenomena. An example of solidification cracks is shown in 

Figure 5. In welding and additive manufacturing processes, cracking can be classified into two 

main types, namely hot cracking and cold cracking [1, 3, 22]. These cracking types are summarized 

below. 

 

Figure 5: Microscopic solidification cracks in repair material samples 

 

 

1.1.4.1 Hot Cracking 

Hot cracking is cracking that occurs at elevated temperatures during the deposition process. A 

combination of mechanisms can lead to the formation of hot cracks in the final stages of 

solidification [1].  

Solidification cracking occurs due to the differential in volumetric change of different phases of 

the melt pool during cooling [1, 23, 24], i.e., solidification shrinkage and thermal contraction, 

generating stresses within the material (microscopic level). The stress state of the component is 

also affected by the clamping conditions of the printed part (macroscopic level). In addition, 

during solidification segregation may takes place, affecting the liquidus temperature of the 

remaining liquid. During the cooling of just-deposited liquid metal, solidification is accompanied 

by the trapping of liquid metal in inter-dendritic regions, i.e. a mushy zone is created. The strength 

of this mushy zone, which is the semisolid phase before complete cooling, is comparatively low 

due to the presence of liquid metal in the inter-dendritic zones and the elevated temperature. 

Initially, the amount of liquid is sufficient to accommodate the generated strains via grain 

rearrangement, but towards the end of solidification, the liquid fraction is too low to allow such 

rearrangement. 
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At this point, the residual stresses lead to the generation of intergranular cracks within the material 

that persist after complete solidification [25]. Seow et al. [26] mentioned that microsegregation 

during the solidification stage can increase the risk of cracking due to microstructural 

heterogeneities. 

Hot cracking can also occur due to liquation at grain boundaries. Certain classes of alloys, like 

superalloys (being comprised of many different elements), are prone to forming low melting 

phases (like Laves phases) under the processing conditions of WAAM [26]. Such phases can 

segregate to grain boundaries and melt, leading to highly reduced strength. Subsequently, cracks 

will generate under developing tensile stresses in the cooling phase of the thermal cycle. This 

leads to intergranular cracking similar to solidification cracking [27, 28]. Grain size affects cracking 

susceptibility, as evident from the mechanism of crack generation. Coarse grains have less 

freedom of movement and rearrangement, leading to lower ductility which increases the cracking 

risk, while finer grain structures have lower cracking susceptibility due to enhanced ductility [23, 

29]. Chen et al. [1] stated that hot cracks are typically irregular in shape, which is logical, 

considering that such cracks are intergranular in nature. 

 

1.1.4.2 Cold Cracking 

Cold cracking occurs eventually after deposition when the metal part is completely solidified. This 

kind of cracking is caused by residual stresses within the material after the thermal cycle of 

welding [22]. When this stress exceeds the tensile strength of the printing material, cold cracks 

are generated inside the printed part [1]. 

Residual stresses within the material can be magnified by the presence of discontinuities like slag 

inclusions and porosity since these act as stress concentrators. In addition, if the ductility of the 

printed material is low, this increases the cracking risk due to lack of accommodation of residual 

stresses as plastic strain. Finally, the presence of hydrogen within the weld can increase the cold 

cracking risk due to its embrittling effect [30]. The latter is specifically called hydrogen-induced 

cold cracking, or HICC. 

Chen et al. [1] reported that cold cracks are typically straight in shape. Cold cracks are associated 

with high crack propagations velocities and the sudden release of energy, generating sound. In 

addition, it should be mentioned that cold cracking may manifest itself after an extended period 

of time after deposition. 

 

1.2 Multi Sensor-based Defect Detection 

A skillful welder monitors the welding process making use of eyesight (monitoring the pool shape 

and the deposition of the consumable) and on sound (unstable processes generate irregular 

noises). He is capable of directly acting upon his observations. The automation of this kind of 

monitoring could be done using sensors. 

All kinds of signals could be considered to link to the occurrence of defects. In order to 

differentiate between defects, ‘fingerprints’ unique to each defect type should be extracted from 

the measured data. Increasing the number of sensors can be expected to increase the reliability 

of detection. 



 

9 | P a g e  
 

 Introduction 

The concept of a multi-sensor monitoring system in welding is not a very recent approach. 

Bhattacharya et al. [33] combined acoustic and electric signals (specifically sound kurtosis, 

welding current and arc voltage) to monitor the pulsed GMAW welding of mild steel plates using 

ESAB S-6 filler wire in 2011. Kurtosis is a measure of signal peakedness (the tailedness of the 

distribution), with high values indicating lots of outliers and vice versa [34]. It can be a useful tool 

to extract information of outliers from raw audio data, making computations more efficient. The 

study of Bhattacharya et al. [33] was focused on welding deposition efficiency rather than specific 

defect detection, but there is a connection between deposition efficiency and certain classes of 

defects, making this a valued reference for further research. Alfaro et al. [35] studied the 

combination of acoustic and optical infrared signals along with welding current and voltage in 

short-circuit GMAW (GMAW-S) done on AISI 1020 steel plates using ER70S-6 filler wire. The 

study showed that the usage of data fusion techniques (specifically Kalman filters) gave new 

parameters that could detect anomalies during the welding process better than single sensor 

parameters (A Kalman filter is a linear optimal state estimation theory based on Bayesian inference 

[52]). While numerical assessments of the extent of detection were not presented, the plots of 

quality parameters against different weld parameters do indicate that data fusion is a beneficial 

approach. 

Vandone et al. [36] used an interesting approach of combining online signals (specifically melt 

pool images and tool position/trace) and offline data (a 3D scan of the actual deposited material 

which acts as the “ground truth”) during the laser metal deposition of SS316L powder. The study 

focused on key process indicators like surface roughness and attempted to connect the predictions 

made using online parameters and the actual measured surface topography. The models used 

were able to adapt process parameters in about 50 ms based on surface profile deviations 

(quantified by a track degradation parameter), indicating the viability of such a system for 

automation of the printing process.  

Xu et al. [37] similarly designed a monitoring system for WAAM consisting of sensors like a 

pyrometer, wire feed speed sensor, current sensor, shielding gas flow sensor, oxygen sensor, and 

laser profilometer. This study also used Kalman filters to denoise the obtained signals. Defect 

detection tests were not conducted, but data acquisition was successfully achieved in real-time, 

making this study more of a proof-of-concept rather than an actual defect detection test. 

Hsieh et al. [38] conducted a multivariate time series anomaly detection study using a new 

unsupervised LSTM (long short term memory)-based autoencoder neural network. While the 

sensors used were not specified, the study did attain an anomaly detection accuracy of about 90% 

using their model. The authors indicated an important point that the lack of labeled data makes 

it difficult to use binary classification, since anomalies can be completely random and thus may 

have too many variations to individually identify and label. Thus, the approach taken in this study 

was to train the model on data indicating normal operation only. This way, by learning the time-

based patterns present during normal printing operation, the model would become capable of 

detecting deviations from such patterns, making it theoretically possible to detect any kind of 

defect. Transfer learning was used to retrain the model on datasets containing anomalies, and the 

final accuracy of 90% was achieved for both precision and recall. Other models like convolutional 

neural networks (CNNs) were used for comparison, and those methods achieved accuracies in the 

range of 70-85% for the same data. 

Reisch et al. [39, 40] conducted multiple studies on multisensor systems, initially using a 

combination of welding current sensor, arc voltage sensor and imaging, and later using a more 

comprehensive setup additionally including a spectrometer, microphone, structural acoustic 
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sensor, and gas flow sensor to detect various defects. The initial study in 2020 [39] compared three 

different neural network models (LSTM, Conv1D and Autoencoder) and achieved a minimum 

training error (called loss) on the order of 10-3. The authors noted that a lot of optimization 

concerning hyperparameters (parameters which define the structure and working of a model) was 

required to achieve the results. They also noted that voltage data already provides a lot of 

information to detect anomalies in the welding process, but the addition of other kinds of data 

adds redundancy and thus increases monitoring reliability. The second study done in 2022 [40] 

took things a step further through the utilization of a “Digital Twin”, which is a virtual 

representation of the printing setup. While the physical machine would provide sensing data, the 

digital machine would analyze it using models to assess the quality of the ongoing print. 

Bidirectional communication between the two entities would provide a system of continuous 

modification of parameters to correct for anomalies occurring during the printing process, as 

shown in Figure 6. The study found that intentionally introduced continuity defects could be 

rectified by the system using tool repositioning with a 93.4% success rate. It would be interesting 

to see such a system being applied to more complex defects which require optimization of multiple 

weld parameters simultaneously. 

 

Figure 6: Correction of intentionally introduced discontinuity using bidirectional digital twin, Reisch et al. [40] 

 

Cui et al. [41] studied the use of arc sound signals, welding current and arc voltage to track weld 

penetration in keyhole TIG (K-TIG) welding. 18 features were extracted from these three sensors 

(including kurtosis), and principal component analysis was used to extract the most important 

components for input data of training models. As mentioned before, mel frequency is used 

because it mimics the human ear response, thereby making use of the fact that weld process 

anomalies are usually audible to human ears in the form of arc sound discontinuities [31]. A 

support vector machine (SVM) with error correction and cross-validation was used to successfully 

classify different cases of weld penetration (too much, too little or normal) with an accuracy of 

98.7%. Verification was done by modifying different parameters that affect heat input, which 

makes the model more reliable. Interestingly, the authors focused on both classification accuracy 

and classification speed, meaning that a balance would be necessary to be considered in the ideal 

model. In this paper, a new method called spectral noise subtraction (SNS) is used for denoising 

the acoustic signal. 

Pringle et al. [42] designed an arc analyzer which could measure arc voltage, welding current, 

sound, light intensity, radio signals and temperature data. The wire feed speed was varied in order 

to destabilize the arc and induce extinction events in order to analyze the sensor responses. The 
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findings indicated that sound, radio signals and light were the most important sensors in context 

of arc anomalies since these signals showed the most variation. Current and voltage were found 

to be comparatively steady and non-indicative of any problems. Arc extinctions generally do show 

up in current and voltage signals, but this study seemed to indicate that such variations were less 

prominent as compared to those in other signals. 

 

1.3 Machine Learning in WAAM 

Nele et al. [7] used multilayer perceptron networks (MLPs) to analyze weld current, weld voltage 

and wire feed speed and classify welds having defects like lack-of-fusion. The results indicated a 

high classification accuracy of 97%, indicating high viability of MLPs in weld defect classification. 

The authors used a validated Welding Procedure Specification (WPS) as the baseline values for 

indicating a “good weld”. The values obtained from the experiments conducted by the authors 

were compared with these baseline values, and the errors were utilized for neural network training. 

This indicates that having an idea of a “boundary value” of different welding parameters can be 

useful in order to train machine learning models better. 

Rohe et al. [8] used two-dimensional convolutional neural networks (CNNs) to examine acoustic 

signals and detect irregularities. The results showed an overall accuracy of 84%, with some 

samples showing low accuracy due to noise. The obtained acoustic data was processed through 

a mel-band filter bank to simulate human perception and was subjected to a Fourier transform to 

convert it into a two-dimensional spectrogram, as shown in Figure 7. The performance indicates 

that CNNs might be a good idea for multidimensional datasets, with some further hyperparameter 

optimization. 

 

Figure 7: Mel acoustic spectrograms from GMAW WAAM of ER70S-6 wire with (a) no shielding gas (b) shielding 
gas flow rate of 15 L/min, Rohe et al. [8] 

 

Similarly, Zhang et al. [9] used CNNs to evaluate inline weld images in pulsed GTAW of an Al alloy . 

A defect classification accuracy of 99.38% was achieved, indicating the suitability of CNNs for 

processing optical data. Combining this with the study of Rohe et al. [8], there exists the possibility 

of combining imaging and acoustic data to form a new input dataset which could potentially point 

out connections between the two classes of data. In addition, instead of filtering out bright spots 

in imaging data, the spots were converted into features that were input into the training model. 

Considering the reported high accuracy, it indicates that certain aspects of sensor data that are 

usually filtered out as noise could be re-examined to look for additional details regarding the 
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welding process. The authors pointed out, however, that their approach is limited to detecting 

surface defects since none of the sensors used were capable of depth scanning below the surface.  

Li et al. [43] used the concept of incremental learning to monitor weld current and weld voltage 

to detect arc-on, arc-off and weld pool shift (narrowing of the melt pool due to impurities) events. 

Incremental learning is a different approach where the learning process never stops. The model 

is initially trained on a certain amount of data. Following this, each new print is evaluated for 

quality and incrementally added to the model for additional training. In this fashion, the model 

gradually learns better classification boundaries with increasing numbers of samples. In this study, 

a support vector machine (SVM) was used as the base ML model, and the results showed detection 

rates of above 90% for the abovementioned defects and required about 250 training 

instances/iterations to reach such accuracies. Such a system would be very interesting to use in 

an industrial application, since every printing job carried out by the machine can act as a training 

iteration for the model, essentially making it more and more accurate over time. 

Xiao et al. [44] developed a novel machine learning framework based on a neural network 

structure that has the capability of inversely determining optimal windows of process parameters 

based on the desired weld bead geometry. The model was able to estimate bead dimensions to 

within 5% of the actual printed geometry and had prediction accuracies of over 95%. This 

approach was similar to the digital twin approach of Reisch et al. [40], since such a model was 

capable of taking feedback to improve upon its own results. 

Kwak et al. [45] used reinforcement learning to analyze wire feed speed, travel speed and standoff 

distance in order to control bead geometry and temperature field. Reinforcement learning 

typically works based on a reward system, whereby the model iteratively learns the best courses 

of action based on the reward obtained by doing random actions. The specific type of 

reinforcement used was Q-learning, which is a method where a constantly updated quality matrix 

is used to determine the next action taken by the system. The results showed a convergence on a 

combined error of around 1.2 mm for bead height and width. The authors noted that this kind of 

learning method takes a lot of time/iterations, which is an indication that it might not be suitable 

for real-time applications. Additionally, it was noted that the deterministic nature of the model 

could make it unsuitable to handle random occurrences/disturbances. 

Wu et al. [11] used an object detection model named YOLO, or you only look once (specifically 

YOLOv3) to analyze slag and hole defects on the weld surface via melt pool monitoring, as shown 

in Figure 8. The model achieved a mean average precision (mAP) of 98% at a rate of 59 frames 

per second (FPS), which is great for real-time monitoring. For image-based monitoring, the 

selection of an appropriate bounding box is important, since that determines the regions that are 

monitored for defects. In this study, a K means ++ algorithm was used that iteratively deduces the 

best bounding boxes for each image. The authors used some additional modifications like a focal 

loss (FL) function and a squeeze and excitation (SE) module to improve the performance of the 

YOLOv3 model. Focal loss is a loss function that can deal with class imbalances, i.e., the over- or 

under-representation of certain classes of objects in a classification problem. In the scenario of 

defect detection, it is very common that datasets will have imbalances, since perfect welds are 

difficult to get as compared to defective welds (thereby making the dataset deficient in perfect 

samples), making the focal loss function a useful addition to the machine learning model used. 

Squeeze and excitation (SE) is a technique to allow a convolutional neural network to adjust its 

parameters for each feature separately. The advantage is that each feature can be assigned a 

certain level of importance which increases classification accuracy, all with a very minimal 
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increase in computational cost. Comparisons of the modified YOLOv3 model with the original 

YOLOv3 model in the study showed improved mAP along with improved FPS values. 

 

Figure 8: Depiction of YOLOv3 classification algorithm, Wu et al. [11] 

 

Qin et al. [46] studied a single sensor response – weld voltage in order to classify the droplet 

transfer mode in WAAM. The voltage signal was analyzed to extract 11 features which acted as 

input to the ML model. The model used in this case was an LSTM (long short term memory) 

neural network, which is designed for time series data processing. The results indicated a defect 

detection accuracy ratio of over 90% for both single pass and oscillating walls. There was 

reasonable correlation found between all the voltage features and metal transfer mode (via the 

Pearson correlation coefficient). An interesting point to note is that a class imbalance could be 

observed in the dataset of this study, since the percentages of each transfer mode represented in 

the dataset were 28.05%, 50.17%, 18.96% and 2.82%. This indicates that the usage of a focal loss 

function akin to the one used by Wu et al. [11] might help improve the accuracy of the model. 

A review of the usage of machine learning models in additive manufacturing conducted by Qin et 

al. [47] showed that deep learning models (which includes all the variants of neural networks) 

were the most commonly employed models for processing a wide variety of data including images, 

acoustic data and thermal data. An example of thermal image processing from the paper is shown 

in Figure 9. It is also interesting to note that support vector machines are fairly commonly used, 

whereas Gaussian processes are rarely used. This makes sense, considering that while Gaussian-

based models can be highly accurate, they are computationally expensive, making them a less-

desired choice for real-time applications. The authors noted, however, that deep learning models 

typically require a large amount of data to be useful, making it difficult to utilize in certain 

situations. Additionally, the paper pointed out the problem of many of these models being “black 

boxes” which are not physics-based. Some authors like Ko et al. [48] constructed knowledge-based 

models using graph-based networks for different additive manufacturing processes, indicating the 

possibility of a knowledge-based approach to investigate any potential accuracy improvements. 

Another review by He et al. [49] also corroborated the popularity of neural networks and support 

vector machines in the field of additive manufacturing. The authors additionally noted that 

support vector machines can be trained on small datasets to get reasonably good accuracies, 

giving a solution for dataset availability problems. It is further observed that feature extraction 
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should be carefully examined to ensure no loss of important markers for certain defects. This is 

especially relevant when looking at denoising since there is the potential for loss of important 

patterns in the removed “noise”.  

 

Figure 9: Converting a thermal image of a melt pool to a computer-usable contour using functional principal 
component analysis, Qin et al. [47] 

 

To summarize, it is clear that the primary objectives to be satisfied for the inline usage of machine 

learning models in WAAM are high accuracy and low latency time. An optimum should be found 

between the two since high accuracy typically requires more computation, which increases 

latency time. Surveying the research around this area, it is seen that deep learning models are 

highly favored due to their ability to learn complex patterns with low computational cost and high 

efficiency. Different types of neural networks are designed for different kinds of data (for example, 

recurrent neural networks handle time series data, whereas convolutional neural networks higher-

dimensional data), which means that there is high adaptability of the neural network approach for 

handling different varieties of sensor responses.  

Support vector machines (SVMs) are also found to be popular for this application. Ding et al. [50] 

states that SVMs have numerous advantages over artificial neural networks (ANNs), including 

lower training times, better convergence on global solutions and lesser extent of overfitting. The 

authors also mention that studies comparing SVMs and ANNs in an experiment to predict weld 

penetration showed better results for the SVM. The high “customization” potential of neural 

networks for different kinds of data, though, means that they are the focus of this study. 

 

1.4 Motivation and Thesis Structure 
The research work in this thesis is inspired by the fact that the majority of literature works on ML-

based anomaly detection have confined themselves to working on one material at a time. While 

such an approach does shed light on the nature of defect formation and its relation to welding 

parameters for the particular material, it limits the utility of such a detection paradigm on an 

industrial/practical level. 

In addition, it is very interesting to consider the similarities between different classes of materials 

when attempting to characterize the formation of a particular type of defect. This can be extended 

to looking at different defect classes altogether. If such commonalities can be found, that paves 

the way for a universal anomaly detection algorithm, which would be of great interest. 

Finally, it is important to consider how the process of data collection for additive manufacturing 

can be a costly and time-consuming process. Keeping this in mind, the likelihood of class 
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imbalance (whereby there is a high discrepancy between the number of datapoints of clean and 

defective beads) in the obtained datasets for such research is fairly high. The impact of this 

imbalance is important to understand in order to design data-collection experiments more 

efficiently for future work. 

Thus the research questions being investigated in this thesis can be summarized as shown below. 

1. Is it possible to make predictions on defect formation during the WAAM deposition of one 

material (say, Material A) with an ML model that is trained on the defect formation behavior of another 

material (say, Material B)? 

2. Is the usage of welding voltage, welding current and audio response sufficient to capture defect 

formation behavior during WAAM deposition? If not, what other parameters might be necessary and why? 

3. How severe is the effect of class imbalance on the quality of predictions made for anomaly 

detection in WAAM? Does the effect vary depending on which class comprises the majority of the dataset? 

 

This thesis begins with an introduction to the WAAM process and the defects most commonly 

seen in it. This includes a review of the state-of-the-art in current research on multisensor-based 

defect detection and machine learning approaches in WAAM. This is followed by the experimental 

protocols used in this research work, including the hardware, materials used and methodology of 

data evaluation. The machine learning models used for analysis are then discussed, along with 

the methods used to optimize their hyperparameters. 

Once the experimental conditions have been discussed, the results are presented. The physical 

detections of defects in the micrographs are presented, followed by data feature observations. This 

is followed by the machine learning results, along with the evaluation metrics used for the same. 

The three models used for the machine learning approach are all discussed along with their 

performance on each material. Following this, cross-material analyses done with neural network 

and random forest models are discussed using the same error metrics. 

Finally, the welding input parameter trends are analyzed to determine the physical reasons behind 

the observations made. The possibility of expanding the approach to other classes of alloys is 

discussed and the thesis concludes with a summary of the results and recommendations for future 

work.   
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2 Experimental Details 

and Data Processing 

Methodology 
 

 

 

 

This chapter describes the experimental aspect of this research work. All facets ranging from the 

printing hardware to the details of materials used for printing are discussed. The processing 

pipeline for extracting machine learning input parameters from the various sensor responses is 

also discussed. 

 

2.1 Experimental Setup and Materials 

2.1.1 Experimental Machinery 

All printing experiments were conducted at RAMLAB BV on a Panasonic TM1400 WGIII Robot. 

A picture of the robot is shown in Figure 10. 



 

17 | P a g e  
 

 Experimental Details and Data Processing Methodology 

 

Figure 10: Panasonic TM1400 WGIII robot used for printing experiments 

 

The robot has inbuilt current and voltage sensors that are capable of logging current and voltage 

signals during the printing process at a sampling rate of up to 50 kHz. For this study, a sampling 

rate of 25 kHz was used. 

For the recording of audio signals, a Devine M-Mic USB BK microphone was attached to the 

welding arm. An attachment in this fashion would ensure zero relative velocity between the 

microphone and weld tip, eliminating the Doppler effect, as well as maintaining constant distance 

from the welding arc. The microphone is capable of a sampling rate of up to 48 kHz. In this study, 

a sampling rate of 44.1 kHz is used. The attachment of the microphone is also shown in Figure 10. 

In some deposition experiments, thermocouples were spot-welded to the base plate, and in some 

cases, to the wall itself in order to monitor the temperature of the build. This was utilized in prints 

where the interpass temperature had to be kept within a certain range in order to avoid thermal 

defects like hot cracking. The thermocouples were connected to a Picolog datalogger which was 

connected to a laptop in order to record temperature variation with time. An example of one such 

thermocouple connection is depicted in Figure 11. 
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Figure 11: Thermocouple connection to a WAAM print 

 

 

2.1.2 Materials Used in Study 

All materials were designed as consumable wires of 1.2 mm diameter. The wires were sourced 

from Voestalpine Böhler Welding. 

 

2.1.2.1 Inconel 718 

Inconel 718 is a nickel-based superalloy that is designed for high-temperature corrosion-resistant 

applications that was developed by Special Metals Corporation [55]. The datasheet suggests that 

the performance of welded joints of this superalloy is good, indicating the suitability of processing 

this material using wire arc additive manufacturing [55].  

The composition of Inconel 718 is shown in Table 1 [55]. 

Table 1: Chemical composition of Inconel 718 

Element Fe Ni Cr Nb Mo Ti Co 
Weight 

Percentage 
(%) 

17 50 - 55 17 - 21 
4.75 - 
5.50 

2.80 - 
3.30 

0.65 - 
1.15 

< 1 

 

One of the most prominent issues encountered during the printing/welding of Inconel 718 is hot 

cracking [56]. This includes both solidification and liquation cracking. Research suggests that one 

of the main reasons for hot cracking is the formation of secondary phases (like γ’ and γ” phases) 

throughout the matrix [56]. This has been observed to reduce the tensile performance of IN718 

by 40 – 60%. 

 

2.1.2.2 Invar 36 

Invar 36 is an iron-nickel alloy that is well-known for a very low thermal expansion coefficient 

(1.2 x 10-6 K-1), which is about a tenth of that of carbon steel (11.7 x 10-6 K-1) [57]. It was 
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discovered by CE Guillaume, for which he received the Nobel Prize in Physics in 1920 [58]. The 

composition of Invar 36 is shown in Table 2 [57]. 

Table 2: Composition of Invar 36 

Element Fe Ni Mn Si 
Weight Percentage 

(%) 
63 36 0.35 0.20 

 

When considering the printing of Invar 36, the biggest problem encountered is the low heat 

transfer coefficient. Experiments conducted during the course of the research indicated that high 

input energy per unit length or too small print dimensions resulted in the viscosity of the melt 

bead being too low and cooling being too slow, leading to the bead flowing off the surface and 

generating a misshapen structure. 

 

2.1.2.3 Inconel 625 

Inconel 625 is a nickel-based superalloy that is designed for high-temperature high-strength 

applications that was developed by HL Eiselstein and DJ Tillack [59]. Like Inconel 718, the 

performance of welded joints of this superalloy is also very good, indicating the suitability of 

processing this material using wire arc additive manufacturing [60]. 

The composition of Inconel 625 is given in Table 3 [60]. 

Table 3: Composition of Inconel 625 

Element Fe Ni Cr Nb Mo Mn Si 
Weight 

Percentage 
(%) 

< 5 > 58 20 – 23 3.15 – 4.15 8 - 10 < 0.5 < 0.5 

 

Similar to Inconel 718, the primary issue observed during the printing/welding of Inconel 625 is 

hot cracking [79, 80]. Research indicates that grain boundary aggregation of carbides can generate 

eutectic phases (specifically the Laves/γ eutectic) which is low-melting and can form cracks under 

residual stress [79]. 

 

2.2 Experimental Details 

Throughout the course of data collection for this thesis, two different welding modes were used, 

which are listed below. 

1. Super Active Weld Process (SAWP) 

2. Pulsemix Mode 

SAWP is a welding process developed by Panasonic which functions using repeated short 

circuiting to stabilize the arc and minimize spatter [53]. A typical super active weld process 

waveform of the voltage is as shown in Figure 12. The waveform together with the back-and-forth 

wire movement allows material to transfer through a stable short arc. 
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Figure 12: SAWP typical waveform of voltage vs. time plot 

 

Pulsemix mode is a welding process that is a combination of pulsed welding and short-circuit 

welding. A typical pulsemix weld process waveform of the voltage is shown in Figure 13. Pulsemix 

welding allows for lower heat input as compared to traditional pulsed welding, which can be useful 

for the deposition of materials with high thermal sensitivity of defects or low thermal conductivity. 

 

Figure 13: Pulsemix typical waveform of voltage vs. time plot 
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Different experiments were performed which have been categorized as follows. 

1. Ramp Tests – It is a single bead deposition with one parameter (like voltage, for instance) 

being varied along the length of deposition while keeping other parameters constant (like 

wire feed speed, current, travel speed, etc.). Ramp tests allow for a quick navigation of 

desired process parameters [108]. 

2. Single Beads – It is a single bead deposited using selected process parameters remaining 

constant throughout its length. Weaving motion was used to deposit a “wider” bead for 

some experiments. 

3. Single Bead Walls – It is a wall made with single beads deposited on top of each other in a 

bidirectional fashion. 

4. Block Walls – It is a wall with overlapping of multiple beads, i.e., structures printed layer 

by layer, where each layer consists of more than one bead 

5. Pyramids – It is an analogue of a block wall, with each layer from the bottom consisting of 

two less beads than the previous. It is used to evaluate the material response to the process 

when deposited on the feed material itself. Due to the similarity between these and block 

walls, they can be considered as one category. 

Due to the large number of experiments, the processing parameters for each test are listed in 

Appendix A. The following tables only summarize the type of experiment performed for each 

material in this research work. 

The details of the Inconel 718 tests have been summarized in Table 4. 

Table 4: Types of experiments performed using Inconel 718 wire 

Sl. No. Test Type 
Total No. of Beads 

Deposited 
Remarks 

1 Ramp Tests 10 • None 

2 Single Beads 25 
• Includes weaving single and 

layer beads 

3 Single Bead Walls 0 • None 

4 Block Walls/Pyramids 413 
• Includes beads deposited 

for preheating the base plate 
• Includes weaving block wall 

 

The details of the Invar 36 tests have been summarized in Table 5. 

Table 5: Types of experiments performed using Invar 36 wire 

Sl. No. Test Type 
Total No. of Beads 

Deposited 
Remarks 

1 Ramp Tests 6 • None 

2 Single Beads 11 • None 

3 Single Bead Walls 138 • None 

4 Block Walls/Pyramids 24 • No preheating done 
 

The details of the Inconel 625 tests are summarized in Table 6. 

Table 6: Types of experiments performed using Inconel 625 wire 
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Sl. No. Test Type 
Total No. of Beads 

Deposited 
Remarks 

1 Ramp Tests 0 • None 

2 Single Beads 6 • Includes layer beads 

3 Single Bead Walls 0 • None 

4 Block Walls/Pyramids 652 
• Includes beads deposited 

for preheating the base plate 
 

 

2.3 Input Data Evaluation 

2.3.1 Voltage Data Processing 

In order to analyze voltage signals for defect detection, it was imperative that the monitoring 

paradigm be independent of the weld mode. This would increase the applicability across 

different welding operations. 

The simplest possible operation would be to take a batchwise average of n points in order to 

eliminate the effects of pulse shape and only show value-based variations. While this approach is 

beneficial in terms of computational cost, it is too reductive and leads to the loss of information 

about individual pulse abnormalities (which can, for instance, occur due to wire feed variations 

caused by excessive friction in feeding tubes). To illustrate this, a bead of Invar  36 is taken as an 

example. This bead was deposited as part of a series of experiments to determine the ideal weld 

parameters for single bead-width wall deposition of the alloy. A picture of the bead is shown 

below in Figure 14. 

 

Figure 14: Invar 36 bead with irregularities caused by bead overflow (superactive mode, 15.6V, 0.25 m/min travel 
speed) 

 

The red rectangles indicate regions of the bead where clear deviation is seen from the straight 

line along the print direction. Now the average voltage for this bead can be examined (the batch 

size is taken to be 220 points for each average) in Figure 15. 
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Figure 15: Average voltage of Invar 36 bead in Figure 14 

 

It is clear that variations specific to the four marked regions in Figure 14 are not visible in this plot. 

While there is a small increase in variance in the plot towards the end, this is not seen to 

correspond directly with the anomalies in the observed bead. Thus, simple averaging was 

discarded and an alternative parameter was investigated. 

Since it was postulated earlier that individual pulse variations can play a role, the individual pulses 

in different regions of the weld bead were compared. Two such regions are shown below in Figure 

16. 

 
(a) 

 
(b) 
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Figure 16a-b: (a) Voltage pulses from deviant section of the bead depicted in Figure 14, (b) Voltage pulses from 
straight section of bead 

 

While the crests and troughs of the pulses appear consistent across the two sections, it can be 

noticed that many of the pulses in the deviant section have secondary peaks, whereas very few of 

the pulses in the straight section do. This means that a tracking parameter derived from voltage 

needs to display this feature. 

A straightforward way of finding the number of such peaks within a single pulse is to track the 

change in voltage between consecutive points (basically, tracking ΔV). A certain threshold value 

of ΔV can be defined above which the variation is deemed to be abnormal. Having multiple peaks 

would lead to more occurrences of large values of ΔV as compared to a smoother pulse. Counting 

the number of instances of excessive ΔV for each bead can lead to plots that potentially show 

variations directly corresponding to visible deviations. 

The plot of the number of excessive ΔV instances (nΔV) for the bead in Figure 14 is shown below 

in Figure 17. 

 

Figure 17: nΔV of Invar 36 bead in Figure 14 

 

From the outset, this plot shows significantly more variation than the average voltage plot in Figure 

15. Since the objective is to see regions of high ΔV counts, the regions where the plot drops to 0 

can be considered as non-defective regions. It is visible that there are clear regions where the ΔV 

is high, and these roughly correspond to the deviant regions in the bead. While the 

correspondence is not perfect, modifications in the threshold value can likely improve the results. 

This indicates that this parameter is a useful tracking tool for voltage. 
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It is also visible in Figure 17 that the beginning and end portions of the plot show maxima 

corresponding to the arc start and arc stop. Both these phenomena are expected to be relatively 

unstable compared to the remaining part of the printing process (the arc stop section can be 

somewhat stabilized using good crater filling conditions like increasing crater weld time, but a 

certain level of instability is always expected). This means that any calculations attempting to 

quantify the overall variance of ΔV must take the arc start and arc stop into account in order to 

prevent an erroneously inflated value. Examination of the variance values indicated that the 

inflation induced by arc start and stop is small enough to ignore, since the duration of both events 

is very small. 

The next step is normalization. Considering that different materials require different voltages for 

proper deposition, it is natural to expect that the average ΔV count would vary significantly. This 

can affect the magnitude of deviation/variance seen, which can give erroneous results for a model 

that should work across a wide range of materials. To eliminate this issue, the mean of the plot is 

subtracted from each point, giving the plot in Figure 18 (approximately centered around the zero 

line). 

 

Figure 18: Normalized nΔV of Invar 36 bead in Figure 14 

 

In order to quantify the deviations obtained in Figure 18, a simple method would be to slice the 

data into chunks of n elements and calculate the variance of each chunk individually. The chunk-

wise variances obtained for different values of n are shown in Figure 19. 
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          (a)               (b)                (c)                       (d) 
Figure 19a-d: Chunk-wise voltage variance for Invar 36 bead in Figure 14 – (a) n = 20, (b) n = 40, (c) n = 60, (d) n 

= 80 

 

For the smallest value of n, it is clear that there is too much variation to detect any useful regions 

of deviation. As the value gets higher, however, it is visible that three distinct peak regions are 

visible (ignoring the arc start and arc stop). Comparing this to Figure 14, it is possible to correlate 

these regions to the marked deviant portions of the bead. 

As clearly seen, the usage of nΔV can provide height-based information of voltage, whereas width-

based data is still missing. While the width of each pulse may have a weak correlation with nΔV 

(simply put, a pulse having a larger number of secondary peaks would be likely to be wider to 

accommodate those peaks), it is still important to have a dedicated width parameter in order to 

ensure better connection between the sensor response and defects. 

The calculation of pulse width is fairly straightforward and involves the definition of a threshold 

value which acts as the midpoint of the pulse crest and trough (somewhat akin to calculating 

FWHM, or full width at half maximum). Counting the number of points between consecutive 

crossings of such a threshold can give the width of each pulse. It is possible to normalize the 

obtained point number immediately using sample rate (thereby giving pulse width in time units), 

but it is not necessary. 

The determination of a threshold can be realized in two ways – one would be to select a 

conservative constant value threshold based on the data that has been collected, while the other 

would be to dynamically decide the threshold as an average of the maximum and minimum values 

of the entire dataset. Each approach has the potential for errors, but examination of the data 

indicated that the errors from using a constant threshold would be rare enough to be statistically 

insignificant. One such instance of peak width detection using a constant threshold of 15V has 

been portrayed in Figure 20. 
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Figure 20: Peak width measurement using constant voltage threshold of 15V 

 

In this fashion, both dimensions of the pulses can be considered, ensuring a better chance of 

identifying abnormalities. 

 

2.3.2 Current Data Processing 

As mentioned in the Section 2.3.1, two different modes of welding were used during this thesis. 

Comparing the current waveforms of the two modes can also be helpful for the analysis. The 

typical variations in the current waveform for a superactive weld process is provided in Figure 21. 
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Figure 21: Superactive current vs. time plot 

 

In comparison, the current variation in pulsemix mode is presented in Figure 22. 

 

Figure 22: Pulsemix current vs. time plot 
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Similar to the analysis of the voltage signal, the next step is to compare pulses from different 

sections of a bead to identify signature features to track. Pulses from two such sections are shown 

in Figure 23. 

 
(a) 

 
(b) 

Figure 23a-b: (a) Current pulses from deviant section of bead depicted in Figure 14, (b) Current pulses from 
straight section of bead 

 

It is visible that the deviant sections have pulses with secondary peaks whereas the straight 

sections have pulses that are more consistent in shape. Considering the similarity with voltage 

pulses, it stands to reason that an analogous parameter can be used to track current deviations (in 

this case, nΔI). In this case, another bead of Invar 36 produced in superactive mode can be 

examined, which is shown in Figure 24. 

 

Figure 24: Invar 36 bead with overflow defects (superactive mode, 12.8V, 0.25 m/min travel speed) 

 

The plot of excessive ΔI instances (nΔI) for the bead in Figure 24 is shown below in Figure 25. 
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Figure 25: nΔI of Invar 36 bead in Figure 24 

 

Ignoring the arc start and arc stop portions, it is visible that there are two large regions of deviation, 

with some more minor deviations present. These two major regions could be correlated to the 

two central rectangles marked in Figure 24, indicating the viability of current to be utilized in a 

manner similar to voltage.  

The same normalization procedure as for the voltage analysis is applied here, and a chunk-wise 

variance can be obtained, as shown in the plots of Figure 26. 

 

          (a)               (b)                (c)                       (d) 
Figure 26a-d: Chunk-wise current variance for Invar 36 bead in Figure 24 – (a) n = 5, (b) n = 15, (c) n = 25, (d) n 

= 35 

 

Interestingly, the variance plots show multiple peaks, indicating more arc disturbances than 

expected. Similar to the voltage, it is also seen that too low values of n leads to excessive “noise” 

which impedes identification of defects, and too high values of n leads to washing out of potential 

minor defects. 
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For comparison, it is useful to look at the corresponding chunk-wise variance plots for the voltage 

of the same bead. This is visualized in Figure 27. 

 

          (a)               (b)                (c)                       (d) 
Figure 27a-d: Chunk-wise voltage variance for Invar 36 bead in Figure 24 – (a) n = 20, (b) n = 40, (c) n = 60, (d) n 

= 80 

 

It can immediately be seen that the three peaks towards the end of the plots are corresponding 

well to the defective portions of the bead. In addition, there is a significant region of high variance 

towards the start that could mean additional defects alongside the arc start. 

Additionally, it is useful to examine the current plots for the bead in Figure 14 to compare the 

results with the voltage plots. The chunk-wise voltage variance plots for the bead in Figure 14 are 

shown in Figure 28. 

 

          (a)               (b)                (c)                       (d) 
Figure 28a-d: Chunk-wise current variance for Invar 36 bead in Figure 14 – (a) n = 5, (b) n = 15, (c) n = 25, (d) n 

= 35 

 

It is visible that there are two slightly elevated regions towards the beginning of the bead (ignoring 

the arc start and arc stop). These could correspond to a couple of marked regions on the bead, 

but it is clear that for this example, the current does not give as much information about the bead 

as the voltage does. 

Similar to voltage, width-based information is also necessary to examine. Once again, either a 

static or a dynamic threshold can be selected, and an example of a static threshold of 150A has 

been shown in Figure 29. 
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Figure 29: Peak width measurement using constant current threshold of 150A 

 

Considering the significant similarities between the behavior of current and voltage, it is possible 

to use the parameters deduced from both in conjunction for conducting predictions on defect 

occurrence. 

 

2.3.3 Audio Data Processing 

The acquisition of audio data for the welds produced during the course of this study required the 

attachment of a Devine M-Mic USB BK microphone to the welding robot arm. The integration of 

the audio data channel to the backend of the sensor hub required some time, which means that 

audio data was available only for a certain portion of the prints made during the experimental 

period. 

The first step is to denoise the signal. There are different methods of denoising mentioned in 

literature, and the method used in this study was spectral gating. This method is a type of noise 

gating, which splits the spectrogram of the audio data into frequency bands and applies noise 

thresholds to each band. Bands that are lower than the threshold get eliminated, which essentially 

removes noise from the signal. Controlling the threshold can give varying levels of noise reduction 

which can be finetuned for specific scenarios. 

To visualize this, the audio signal for the bead shown in Figure 14 can be examined. The raw audio 

data for this bead is shown in Figure 30. It is evident that there are no discernible “hotspots” of 

deviation that might indicate problems in the bead. A simple spectral gating-based denoising can 

be performed with Python using a threshold value of 1 (according to the scale used by the 

denoising library), leading to the plot shown in Figure 31. 
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Figure 30: Raw audio signal of the Invar 36 bead shown in Figure 14 

 

 

Figure 31: Spectral gating-denoised audio signal of Invar 36 bead in Figure 14 (threshold = 1) 

 

This signal already looks a lot cleaner, with marked regions of increased amplitude. Two to three 

regions of interest can be identified (excluding the regions of arc start and arc stop) at locations 
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that roughly correspond to the deviant sections marked in Figure 14. It is possible to tweak the 

value of the threshold to find the best results. A few examples are visible in the plots of Figure 32. 

 

          (a)               (b)                (c)                       (d) 
Figure 32a-d: Denoised audio signal for Invar 36 bead in Figure 14 – (a) Threshold = 0.5, (b) Threshold = 1, (c) 

Threshold = 2, (d) Threshold = 4 

 

As seen in Figure 32a-d, keeping the threshold too low leads to insufficient denoising, i.e., too 

much noise to delineate instabilities sufficiently. Excessively high thresholds lead to filtering out 

all but the most severe disturbances (which, in most cases, is just the arc start and arc stop), which 

is also undesirable. Thus, a threshold value between 1 and 2 is considered to be most viable, with 

a value of 1.6 being chosen for this study. 

The next step is to convert this one-dimensional audio data into a spectrogram in frequency-time 

space. Rather than using a simple linear frequency scale, the different frequency bands in the 

spectrogram are represented using the mel scale [54]. Mel bands delineate frequencies based on 

the ease of distinguishing them using the human ear, thereby giving a more accurate picture of 

how a human ear would evaluate the audio signal. 

Construction of a mel spectrogram of the filtered signal is done and shown in Figure 33. The arc 

start and arc stop regions are clearly visible at the beginning and end of the spectrogram. Apart 

from these, a thin region of high intensity is seen in the region between 0-512 Hz at time around 

0.08 seconds. To get a better picture, the same kind of spectrogram for different values of threshold 

can be examined in Figure 34. 
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Figure 33: Mel spectrogram of filtered audio signal of the Invar 36 bead presented in Figure 14 

 

 

   (a) (b)         (c)       (d)     (e)    (f ) 
Figure 34a-f: Mel spectrograms of Invar 36 bead in Figure 14 - a) Threshold = 1, b) Threshold = 1.2, c) Threshold 

= 1.4, d) Threshold = 1.6, e) Threshold = 1.8, f ) Threshold = 2 

 

As shown, there are bright colored portions in the spectrogram that roughly correspond to the 

defective regions of the bead. Another observation is that these variations are best seen in the 

band between 3072-8192 Hz. This indicates that this particular frequency band needs to be 

isolated from the spectrogram and analyzed on its own. An added advantage of such an isolation 

would be the conversion of 2D data to 1D data, which can reduce computation time for a 

subsequent machine learning algorithm. 

While spectrograms are very descriptive, it can be argued that their analysis through machine 

learning would be computationally intensive compared to one-dimensional or zero-dimensional 

data. This means it can be useful to examine such alternate parameters that could be extracted 

from audio. 
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A useful one-dimensional parameter for audio analysis that has been used in literature is kurtosis 

[33]. Kurtosis is a measure of “peakedness” of data which can be useful to identify anomalies in 

print audio signals [34]. Bhattacharya et al. [33] used audio kurtosis in combination with current 

and voltage data to predict weld deposition. The utility of such a parameter is the reduction in 

dimension (one-dimensional audio data is converted into a zero-dimensional point), which is 

useful to reduce computational cost. In Python, kurtosis can be calculated using the scipy module 

after denoising. A comparison of kurtosis and spectral variance for some beads of Inconel 718 can 

be seen in Figure 35. 

 

Figure 35: Kurtosis and spectral variance scatter plot of Inconel 718 beads 

 

 

2.3.4 Parameter Summary 

Since the calculation methods of all parameters have been described in Sections 2.3.1, 2.3.2 and 

2.3.3, a table of input parameters can be compiled, as shown in Table 7. A vector comprising of 

these 6 parameters is used to represent each input datapoint after appropriate scaling in the 

subsequent ML approaches. 

Table 7: Input parameters used for ML models 

Parameter Symbol Description 

Voltage peak count variance V1 
The variance of the number 
of peaks per voltage pulse 

Voltage peak width variance V2 
The variance of the voltage 

pulse widths 

Current peak count variance I1 
The variance of the number 
of peaks per current pulse 
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Current peak width variance I2 
The variance of the current 

pulse widths 

Audio kurtosis A1 
Kurtosis of filtered audio 

signal 

Audio spectral variance A2 
Variance of 3072-8192 Hz 

frequency band of audio Mel 
spectrogram 

 

 

2.4 Data Labeling Methodology 

Printed bead datasets need to be labeled to have a ground truth for supervised machine learning 

approaches. In this context, labeling involves the identification of defects and classifying each 

bead as clean or defective based on the presence and severity of defects.  

The assessment of defects in Inconel 718 and Inconel 625 was done using ASME standards [81]. 

All cracks and lack-of-fusion defects are considered unacceptable regardless of size, and since 

cracking was the primary defect observed in Inconel samples, this was used in order to label 

Inconel samples. 

The case of Invar 36 is more complicated because of the fact that the defect being examined is 

not conventionally common. Internal defects such as porosity were observed on occasion and 

analyzed according to ASME standards [81], but the biggest anomaly observed was bead overflow 

(which could be classified under part dimension deviation). Looking at the relevant additive 

manufacturing defect formation standards from ASTM [82], part dimension deviations were 

indeed mentioned, but they were primarily concerned with stepping defects (i.e. stepped surfaces 

formed due to lack of proper slicing and path generation), but overflow defects were not discussed. 

Thus in such a scenario, a specific standard in terms of extent of deviation from the base geometry 

had to be defined in order to label deviations in the Invar 36 beads. For this thesis, an overflow 

defect was defined as follows – An instance of bead overflow is considered to be unacceptable, if the 

normal distance of the outermost point of the overflow from the nearest point on the expected bead 

geometry is more than 40% of the bead width. Any instance of complete bead detachment and flow is also 

considered unacceptable. 

An example of this can be seen in the collection of Invar 36 beads shown in Figure 36. Once all 

beads were identified based on the above definitions, a binary labeling system was used where 0 

corresponds to a clean bead, and 1 corresponds to a defective bead. 
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Figure 36: Unacceptable (3, 4) and acceptable (5) overflow defects seen in Invar 36 beads 
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3 Machine Learning 

Models and 

Hyperparameters 
 

 

 

 

This chapter deals with the various ML models that are utilized during the course of this research 

work. Different ML approaches and the models appropriate for each approach are discussed, and 

the methods of optimizing hyperparameters for each kind of model to achieve optimum 

performance are explained. 

 

3.1 Model Choice for Each Parameter 

A useful avenue to consider as a starting point is unsupervised learning models. Unsupervised 

learning refers to the paradigm of training an ML model using unlabeled data [62]. In the context 

of this thesis, it means not informing the model whether the given information corresponds to a 

defective bead or clean one. The hypothesis is that this method would be advantageous, since the 

nature of defects that can arise in a bead may be unpredictable. 

Multiple types of unsupervised approaches exist, one of which is clustering. As the name suggests, 

clustering involves separating the given training data into n clusters based on parameters that the 

model learns from the data. The number of clusters is defined by the user. Some examples of 

clustering approaches are indicated below. 

1. K-Means Clustering 

2. Mean-shift Clustering 

3. DBSCAN 

The idea is to use such approaches on the available bead data with the number of clusters being 

a rough approximation of the number of classifications/defects expected (+1 to include clean 

beads) and looking at the quality of the results. 

Following an unsupervised analysis, supervised approaches can be used with bead labels based 

on micrograph observations. The micrographs can help decide the labels for the supervised 
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models, and the results of the unsupervised approach can be used to add additional details in the 

labeling if required. 

Literature suggests the usage of neural networks and support vector machines for this kind of 

application. For this thesis, neural networks were chosen due to their high customizability, as 

mentioned in Section 1.3. Random forest models are also useful from the perspective of feature 

importance identification (understanding which features are most important for classifying beads), 

and thus will be analyzed too. 

 

3.2 Hyperparameter Optimization 

With regard to unsupervised clustering, one of the main hyperparameters is the number of clusters. 

This value decides the quality of segregation of data points, which is important for good results. 

Literature suggests that the elbow method can be used to determine the optimal number of 

clusters for a K-Means model [63, 64, 65]. The method consists of fitting the K-Means model on 

the training data for a range of values of cluster numbers. For each cluster number, a distortion 

score (the sum of squares of distances of each point from the center of the cluster it is assigned 

to). The curve of distortion score versus cluster number is then analyzed, and the “elbow point” 

is identified. The idea is to find a certain threshold number of clusters beyond which no further 

useful information may be obtained. It is also possible for a situation where the curve is too smooth 

to find an elbow, as shown in Figure 37. 

 

Figure 37a-b: a) Distortion plot with clearly identifiable elbow point b) Distortion plot without clearly identifiable 
elbow point. Reproduced from [66] 

 

Another clustering hyperparameter is the number of initializations, i.e., the number of times the 

model attempts to initialize centroids before finding the most converging value. A higher value 

essentially gives more attempts to find the most optimal solution, thereby giving a better quality 

of segregation.  
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For the supervised learning models, neural networks can be primarily examined. Neural networks 

tend to have a large number of hyperparameters since they are highly customizable. Some of these 

are described subsequently. 

Two of the most obvious hyperparameters for any neural network are the number of hidden layers 

and the number of neurons in each layer. These two values directly influence the complexity of 

the model, and thus the classification accuracy. Care needs to be taken to avoid excessive values 

since that makes the model too complex, leading to possible overfitting. 

Once the model structure has been decided based on the aforementioned hyperparameters, the 

next step is to determine the method and extent of optimization. The hyperparameters associated 

with this include the choice of optimizer, learning rate, number of epochs and batch size. 

Multiple optimizers exist for neural networks, with one of the most commonly used ones being 

the Adam optimizer [67]. Others include SGD (stochastic gradient descent), Adagrad and 

RMSprop [68]. Optimizers generally work based on iterative gradient descent, which relies on 

finding the negative gradient of the function needed to be minimized (in this case, the loss function) 

in order to find the optimal solution [69]. On one hand, SGD and related optimizers (like SGD with 

momentum) work with a stochastic approach, which selects a random number of points from the 

dataset rather than the whole dataset itself, which reduces computational load [70]. The extent of 

change in each iteration is controlled by one of the hyperparameters, namely learning rate.  On 

the other hand, Adam, Adagrad, RMSprop, etc. work based on adaptive learning, where the 

learning rate itself is modified individually for each parameter based on the magnitude of gradient 

of each parameter [71]. 

The number of epochs refers to the number of passes over the entire dataset done during the 

training process [72]. An insufficient number of iterations can lead to lack of sufficient learning, 

leading to bad predictions, whereas excessive number of iterations can lead to the model learning 

the noise within the data, leading to a problem known as overfitting [73]. Research done by Afaq 

et al. [73] suggested that the selection of number of epochs is a dataset-specific problem, and a 

general rule of thumb is difficult to decide. In general, a useful way of deciding the ideal number 

of epochs is to manually test different values and monitor the validation error performance. Unlike 

training error, validation error is calculated on data that the model has not seen, meaning that it 

can more accurately detect overfitting. An increase in validation error beyond a certain number 

of epochs will signal that the number of epochs is likely too high for the problem. 

The final hyperparameter, i.e., batch size is the number of samples that go through the neural 

network in each pass [74]. Having the batch size be the same as the total training dataset can give 

the most accurate picture in terms of gradient descent, but also takes more computational power 

(since more data is being processed). Thus models often use smaller batch sizes to attempt to 

improve efficiency without significant cost in terms of accuracy. Research done on CNNs suggests 

that larger batch sizes generally lead to higher accuracies [74]. Some authors have examined 

multilayer perceptrons and found that for a limited range of sizes, it is possible to use greedy 

algorithms to decide the best batch size [75]. Beyond this range, however, more intensive 

approaches like a grid search might be necessary. Smith et al. [76] examined Resnet-50 (a 

convolutional neural network) and found that increasing the batch size can improve accuracy (to 

a similar extent as compared to reducing the learning rate). For the purposes of this thesis, 

considering the comparatively smaller amount of data being analyzed (as compared to the 

aforementioned papers), the batch size can be set to the total input dataset size without significant 

computational cost.  
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4 Results and Discussion 
 

 

 

 

In this chapter, the results from the experiments are presented in detail. The physical defect 

observations are presented first in the form of micrographs, showing the most common defects 

seen in each material. This is followed by the data features observed for each material from which 

patterns are attempted to be deduced. The predictions made by the machine learning models 

detailed in Chapter 3 are then analysed using error metrics that are explained at the beginning of 

the section. A cross-material analysis using some of the ML models is also done. The reasons for 

different defect occurrences and the different signatures in the input data that correspond to these 

defects are discussed, which will help to further deduce whether analytical relationships can be 

made between different defects that occur in nickel-class alloys. 

 

4.1 Defect Detections for each Material 

4.1.1 Defects in Inconel 718 Deposition 

Among Inconel 718 samples printed at RAMLAB, the most common defects observed were 

solidification cracking and liquation cracking. This holds in line with the behavior of 

welded/printed Inconel 718 in literature [28, 77, 78]. Some examples of such hot cracking can be 

seen in the micrographs shown in Figure 38. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 38: Micrographs of various hot cracks observed in printed Inconel 718 samples – (a) solidification crack, 
(b)-(d) liquation crack 

 

The defect locations appeared commonly at the interlayer positions (i.e., between successive 

printed layers) are more susceptible to cracking. In addition to this, lack of fusion defects were 

also observed between the beads and commonly appeared around the weld toe where remelting 

can be difficult sometimes due to insufficient arc energy when the process is disturbed, as 

evidenced by the micrographs shown in Figure 39. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 39: Micrographs of various lack-of-fusion defects observed in printed Inconel 718 samples – (a)-(b) lack-of-
fusion in bulk, (c)-(d) lack-of-fusion in weld toe 
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4.1.2 Defects in Invar 36 Deposition 

The most common defect seen in Invar 36 samples printed at RAMLAB was bead overflow. This 

is defined as a projection of the bead volume outside the expected print shape and volume due to 

insufficient solidification rate and associated liquid overflow. This is thought to happen due to the 

very low thermal conductivity of Invar 36 (10.49 W/mK [57] as compared to 54 W/mK for AISI 

1024 steel [110], for instance). Supporting this hypothesis is the fact that the first couple of beads 

deposited on a conventional steel base plate do not show such overflow (which would be 

explained by the high conductivity of steel enabling fast diffusion of heat from the melt pool), 

whereas subsequent beads gradually begin to show this defect (which is explained by low 

conductivity of the Invar beads below which slows down heat conduction away from melt pool). 

One good example of this overflow is seen in Figure 14. Another example of this can be seen in 

Figure 36. Such overflow did not show significant internal defect indications in the micrographs 

of most Invar 36 beads. In some cases, porosity could be seen, as shown in Figure 40. While the 

possibility of cracks due to high heat retention was considered, no such cracking was observed in 

any of the micrographs. 

 

Figure 40: Significant porosity seen in a single-bead-thickness wall of Invar 36 

 

Measurement of the tensile properties of the final large Invar 36 wall deposition (shown in 

Appendix D) indicated improvements over the typical mechanical properties of the material. The 

results for longitudinal and transverse tensile specimens are summarized in Table 8 alongside the 

properties of Invar 36 from the wire manufacturer datasheet. The tensile results for Inconel 718 

and Inconel 625 are still under processing as of now. 
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Table 8: Mechanical properties of large Invar 36 wall deposited and datasheet from wire manufacturer 

Mechanical Property 
Longitudinal 

Specimen 
Transverse 
Specimen 

Datasheet 

Yield Strength, 0.2% 
(MPa) 

325 328 280 

Tensile Strength 
(MPa) 

485 486 350 

Elongation (%) 34 33 25 
 

 

4.1.3 Defects in Inconel 625 Deposition 

As mentioned in Section 2.1.2.3, Inconel 625 is also susceptible to hot cracking similar to 

Inconel 718. However, the prints constructed during the course of this thesis did not show such 

cracks, indicating that the parameters used were satisfactory. Additionally, a large number of 

Inconel 625 beads using near-optimal conditions were constructed as part of another project, 

whose data was used for this thesis. 

 

4.2 Data Features for each Material 

Before moving into each material, it is useful to evaluate the class composition, i.e., the number of 

samples which are clean versus defective. Class imbalance can have an impact on the performance 

of machine learning models, and thus it is important to conduct this evaluation before the actual 

learning process. 

An imbalance ratio was calculated for each material, defined as the ratio of number of samples in 

majority class (class with higher number of samples) to number of samples in minority class (class 

with lower number of samples). This ratio, along with the numbers of samples in each class for all 

the materials in this study has been presented in Table 9. 

Table 9: Class composition for all materials (Inconel 718, Invar 36, and Inconel 625) 

Material Inconel 718 Invar 36 Inconel 625 
Clean 30 145 658 

Defective 418 34 0 
Imbalance ratio 13.933 4.265 ∞ 

 

It is immediately clear that the highest extent of imbalance is in Inconel 625, since the defective 

class is completely absent. In order to evaluate the extent of imbalance in the remaining two 

materials, it is necessary to consult literature to identify some kind of limit of imbalance ratio 

beyond which prediction performance gets affected. 

Buda [95] conducted a study on different kinds of convolutional neural networks and the results 

indicated that at an imbalance ratio close to 15, the performance of some of the CNNs would drop 

by around 5% only. The others required much higher imbalance ratios to show similar 

performance drops. This indicates that the extent of imbalance in Inconel 718 and Invar 36 is 

small enough to have minimal effects on the performance of ML models. Another literature survey 

done by Leevy et al. [96] suggested that high imbalance ratios generally lie between 100:1 and 
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10000:1, indicating that the ratios in Table 9 do not qualify to be extreme in nature (except Inconel 

625). Johnson et al. [97] surveyed the usage of deep neural networks to analyze class imbalanced 

data and found that the actual number of samples in the minority class is an important factor in 

determining the quality of prediction (not just the imbalance ratio). 

 

4.2.1 Inconel 718 Data Features 

During the various experimental prints of Inconel 718 conducted at RAMLAB, solidification cracks 

were extensively observed throughout, as shown in Figure 39. In total, 448 individual beads of 

Inconel 718 were deposited. The first step is to calculate the total population variance of nΔV for 

each Inconel 718 bead and represent all these bead variances in a scatter plot. The plot is shown 

in Figure 41. It is quickly evident that while most of the values are low and between 0 and 200 (by 

visual estimation), some values are much higher. A careful examination reveals that the errant 

beads belong to pulsemix ramp tests and small plate bead wall tests. Plots of the batchwise 

variances of the nΔV of all these beads are done in one plot and shown in Figure 42. It is clearly 

visible that the variance values are much higher than those visible in Figure 41, for reference. Since 

it has been established that the high variance beads are primarily pulsemix welds, it is only logical 

to separate superactive and pulsemix beads and examine them separately. 

 

Figure 41: Variance of nΔV of all Inconel 718 beads 
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Figure 42: Chunk-wise nΔV variance of Inconel 718 pulsemix beads for n = 60 

 

Considering superactive and pulsemix beads separately, constructing a variance plot (similar to 

Figure 41) gives Figure 43. The majority of values in Figure 43a are seen to lie between 0 and 100, 

with a few values going outside these bounds. In Figure 43b, the range of values is much bigger, 

going between 1000 and 4000. Using a similar approach for current, the population variance plot 

of nΔI obtained for all beads without separation is shown in Figure 44. It is interesting to note that 

contrary to voltage, the difference between superactive and pulsemix modes is not so significant 

when looking at current. It is clearly seen that when examining the corresponding bead numbers, 

the difference between superactive and pulsemix beads is smaller than in voltage. The superactive 

and pulsemix beads have been plotted separately in Figure 45. 

 
(a) 

 
(b) 
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Figure 43a-b: Variance of nΔV of all (a) superactive Inconel 718 beads, (b) pulsemix Inconel 718 beads 

 

 

Figure 44: Variance of nΔI of all Inconel 718 beads 

 

 
(a) 

 
(b) 

Figure 45a-b: Variance of nΔI of all (a) superactive Inconel 718 beads, (b) pulsemix Inconel 718 beads 

 

The last parameter to examine is audio. In this case, the raw audio is denoised as indicated in 

Section 2.3.3 and the kurtosis and spectral variance are taken for each bead. As mentioned earlier, 

audio data was not available for the entirety of beads printed, and thus the available data is 
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presented in Figure 46. The spectral variance does not show a clear trend, whereas the audio 

kurtosis has most values lying between 0 and 400, with some outliers. All the beads for which 

audio data was available were deposited in superactive mode as it was the mode of interest for an 

industrial partner of RAMLAB, so a mode-based separation is not done, which can be included in 

future research. 

 
(a) 

 
(b) 

Figure 46a-b: (a) Kurtosis, (b) Spectral variance of all Inconel 718 audio signals 

 

 

4.2.2 Invar 36 Data Features 

Examination of different beads showed bead overflow to be the most likely defect in Invar 36. 

Cracking was not observed and even the presence of porosity was only in the case of severe 

overflow. Since arc disturbances need not happen for excessive energy input, it is expected to be a 

little more difficult to accurately detect such defects. One example of such an overflow can be 

seen in Figure 47. 

 

Figure 47: Invar 36 bead showing overflow 

 

Throughout the course of experiments, a total of 179 individual beads of Invar 36 were deposited. 

Similar to Inconel 718, a total variance plot of nΔV for each bead can be calculated and the resulting 

scatter plot is shown in Figure 48. It is visible that most of the variances are visually approximately 

between 0 and 200, with some values being significantly higher. It is also observed (via 

experimental logs) that the majority of high-value points belong to beads generated by pulsemix 

welding. 
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Figure 48: Variance of nΔV of all Invar 36 beads 

 

Analogous to Inconel 718, it is useful to separately plot the nΔV of all the superactive and pulsemix 

beads for further examination. This results in Figure 49. Similar to the case of Inconel 718, it is 

visible that the majority of beads have a variance below 100, with a few going above this value. 

Shifting focus to current, the variance plot of nΔI obtained for all beads without separation is shown 

in Figure 50. Similar to Inconel 718, the difference between superactive and pulsemix modes is 

smaller when looking at current. It is, however, still clear that the values of pulsemix welds seem 

to be higher overall than superactive mode. 

 
(a) 

 
(b) 

Figure 49a-b: Variance of nΔV of all (a) superactive Invar 36 beads, (b) pulsemix Invar 36 beads 



 

51 | P a g e  
 

 Results and Discussion 

 

 

Figure 50: Variance of nΔI of all Invar 36 beads 

 

The nΔI of superactive and pulsemix welds are plotted separately and shown in Figure 51. The 

majority of superactive values are seen to lie between 0 and 200, with a few values exceeding 

these limits. 

 
(a) 

 
(b) 

Figure 51a-b: Variances of nΔI of all (a) superactive Invar 36 beads, (b) pulsemix Invar 36 beads 
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The audio data including kurtosis and spectral variance of all the beads is presented in Figure 52. 

The kurtosis plot shows most of the values lying between 0 and 250, with some exceptions. The 

spectral variance does not show a clear visible trend. 

 
(a) 

 
(b) 

Figure 52a-b: (a) Kurtosis, (b) Spectral variance of all Invar 36 audio signals 

 

 

4.2.3 Inconel 625 Data Features 

The tests conducted on Inconel 625 comprised of a few single beads, small walls and a couple of 

large walls. A total of 658 beads of Inconel 625 were deposited. Micrographs indicated a normal 

extent of substrate dilution (5-10%), but no major defects were observed. In general, literature 

indicates that Inconel 625 may also show the possibility of weld cracking similar to Inconel 718 

[61].  

The variance of nΔV of all the beads is presented in Figure 53. Most of the points are visibly below 

400, with a few that are above, but not much higher (less than 50% higher at most). This makes 

sense, considering that all the beads were printed using superactive mode. Interestingly enough, 

it is visible that the variances of the beads printed on small plates while making small builds (the 

rightmost 22 points) is much lower than the variances of the beads printed as part of the big walls. 
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Figure 53: Variance of nΔV of all Inconel 625 beads 

 

The variance of nΔI of all the beads is shown in Figure 54. Most of the values are below 350, but 

in a few beads, the variance of the current exceeds this value. This is also attributable to the fact 

that all the bead weld modes were superactive in nature. 

 

Figure 54: Variance of nΔI of all Inconel 625 beads 
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The kurtosis and spectral variance of all the beads (for which audio data was available) are shown 

in Figure 55. A clear pattern in the variance in the audio signals is not visible for this material 

either. It is important to note that audio data was not available on the beads printed for a large 

wall (amounting to 636 beads in total), so they have not been depicted in Figure 55. 

 
(a) 

 
(b) 

Figure 55a-b: (a) Kurtosis, (b) Spectral variance of all Inconel 625 audio signals 

 

 

4.3 Machine Learning Results 

As mentioned in Section 4.2, the class imbalance in the available data needs to be considered in 

order to accurately evaluate the performance of the models used. For this purpose, tests were 

conducted with the training and testing sets for different ML models being chosen such that the 

minority class would be sufficiently represented in the testing set. The idea behind this approach 

was to ensure that the model correctly learns the differences between clean and defective samples 

in spite of the imbalance. 

In addition, scaling was done on all input parameter vectors to ensure equal weightage of every 

parameter in the model. Scaling was done using the StandardScaler function from scikit-learn (in 

Python), which scales the data such that the mean is 0 and the variance is 1 (zero mean unit 

variance). 

For the generation of training and testing sets from the total dataset, a test set fraction of 0.25 was 

used (i.e., 75% of the data would be used in training and 25% of the data would be unseen by the 

model and used for testing). In addition, for the neural network, the training process involved the 

formation of a validation set with a fraction of 0.1 (i.e., 10% of the training data would be used for 

validation). Using the information from Table 9, it was decided to include 66% (or two thirds) of 

the minority class dataset in the testing set, and the remaining in the training set. This way, the 

ability of the model to correctly ascertain the relation between input parameters and class labels 

for the minority class could be assessed. 
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4.3.1 Single Material Evaluation 

4.3.1.1 Evaluation Metrics 

Machine learning (ML) model evaluation is a wide research topic in itself. A vast amount of 

research is being conducted and published on the different evaluation methodologies of 

evaluation with their advantages and disadvantages [83, 84, 85, 86]. The “black box” approach of 

most ML models can make it difficult to accurately identify if the model predictions are applicable 

in practical cases.  

Elmrabit et al. [83] analyzed multiple ML classification models to evaluate various instances of 

network behavior in order to identify cyberattacks. In this work, the authors used seven metrics 

to analyze their models, including accuracy, precision, recall, false positive rate, F1 score and area 

under the receiver operating characteristic curve (ROC-AUC). A confusion matrix was also used 

to evaluate the true and false positives and negatives.  Earlier research done into time series 

anomaly detection by Aminikhanghahi et al. [87] details the aforementioned parameters and 

mentions that they can be useful in classification-related problems. Chicco et al. [88] interestingly 

notes that another metric called the Matthew’s Correlation Coefficient (MCC) can be better used 

than F1 score and accuracy in order to evaluate binary classification problems. The authors 

conducted tests on highly class-imbalanced datasets and found that the MCC score could better 

assess the poor quality of prediction as compared to accuracy and F1 score (both of which were 

erroneously high in some cases). Considering that the current thesis also involves situations with 

class imbalance (specifically concerning Inconel 625 due to the large amount of clean data versus 

no defective data), it is useful to consider MCC as an evaluation metric for this thesis. A summary 

of the evaluation metrics used for classification in this research and their formulae has been shown 

in Table 10. 

Table 10: Classification evaluation metrics summary 

Metric Formula Meaning Range 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Degree of closeness 
of predicted value to 

ground truth 

{0, 1} 
Close to 1 is 

good 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Quality of positive 
(defect) prediction 

{0, 1} 
Close to 1 is 

good 

Recall 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Ability to predict 
positives (defects) 

correctly 

{0, 1} 
Close to 1 is 

good 

False Positive 
Rate (FPR) 

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

Extent of false 
prediction of positives 

(defects) 

{0, 1} 
Close to 0 is 

good 
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F1 Score 
𝑇𝑃

𝑇𝑃 + 0.5 ∗ (𝐹𝑃 + 𝐹𝑁)
 

Harmonic mean of 
precision and recall 

{0, 1} 
Close to 1 is 

good 

Matthew’s 
Correlation 
Coefficient 

(MCC) 

𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√
(𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁) ∗
(𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁)

 Summarizes the 
contributions of the 
entire error matrix 

{-1, 1} 
Close to 1/-1 is 

strong 
positive/negative 

correlation 

 

In Table 10, TP and TN represent true positives and true negatives, which are the predicted 

positives (defects) and negatives (clean) that match with the ground truth. FP and FN represent 

false positives and false negatives, which are the predicted positives and negatives that do not 

match with the ground truth. 

As for regression, the metrics used are generally mean squared error (MSE), root mean squared 

error (RMSE) or R2 score. Since this is non-linear regression, R2 score is invalid and an extremely 

poor indicator of model quality due to high susceptibility to number of parameters [91]. Thus, the 

error metrics being used will be mean squared error (MSE), root mean squared error (RMSE), and 

mean absolute error (MAE). Mean absolute percentage error (MAPE) is not considered since there 

are ground truth class labels with value 0, meaning a division by 0 would occur.  

While some reviews state that these measure have flaws too, it is also agreed upon that an “ideal” 

metric does not exist [100]. Thus the metrics that are selected will be analyzed while being mindful 

of the factors that might cause bias towards excellent or poor results. A summary of the evaluation 

metrics used for regression in this research along with their definitions and formulae has been 

shown in Table 11. Here, 𝑦̂𝑖 refers to the ith ground truth value, whereas 𝑦𝑖 refers to the ith predicted 

value. 

Table 11: Regression evaluation metrics summary 

Metric Formula Meaning Range 

Mean Squared 
Error (MSE) 

1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 

Average squared 
difference between 

predicted and ground 
truth values 

{0, ∞} 
Close to 0 is good 

Root Mean 
Squared Error 

(RMSE) 
√
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 

Root of average 
squared difference 
between predicted 
and ground truth 

values 

{0, ∞} 
Close to 0 is good 

Mean 
Absolute 

Error (MAE) 

1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 

 

Average absolute 
difference between 

predicted and ground 
truth values 

{0, ∞} 
Close to 0 is good 
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4.3.1.2 Random Forest Evaluation 

A random forest is a collection of tree-based decision makers that classifies the input dataset 

based on a series of decisions made at each node [98]. Each tree runs its own analysis, and the 

collection of trees eventually lands at a decision. 

Random forests can be extremely useful to identify the relative importance of features, since the 

decisions made at each node in each tree depends on the input features. Python offers the 

functionality of calculating the relative importance of each feature based on the mean decrease in 

impurity (or Gini impurity). Impurity describes the extent of division of classes at each node based 

on the “question” asked by the node. Low impurity means there is good extent of division of 

classes (i.e., the parameter that determines the question asked by the node is of high importance). 

The hyperparameters used for the random forest analysis have been shown in Table 12. 

Table 12: Hyperparameters of Random Forests model used 

Hyperparameter Value 
Number of trees (n_estimators) 1000 

Maximum tree depth (max_depth) 8 
Criterion (criterion) Entropy 

 

The available criteria are entropy and Gini, both of which are effectively the same for most 

applications [99]. Running the experiments on Inconel 718 led to the predictions shown in 

Figure 56. 

 
(a) 

 
(b) 

Figure 56a-b: (a) Ground truth, (b) Predicted class labels for Inconel 718 beads 

 

Visual inspection of Figure 56 indicates the results are fairly accurate. To view this in a numerical 

perspective, the error metrics of this model on the testing set are shown in Table 13. 

Table 13: Evaluation metrics for Random Forest classification of Inconel 718 beads 

Evaluation Metric Score 
Accuracy 0.911 (91.1%) 
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Precision 0.862 (86.2%) 
Recall 1.000 (100.0%) 

False Positive Rate (FPR) 0.200 (20.0%) 
F1 0.926 (92.6%) 

MCC 0.830 (83.0%) 
 

The results are great, with a high MCC indicating very strong positive correlation between the 

prediction and ground truth. The accuracy, precision, recall and F1 are also very high. The false 

positive rate is 20%, which might be too high for an industrial application. Ideally, an FPR of less 

than 10% should be targeted at the very least (the decision of an appropriate FPR is typically done 

on a case-to-case basis). The most important result, however, is that even with a low number of 

minority class datapoints to train on, the model was able to correctly classify such datapoints for 

the most part. Using the inbuilt feature_importances_ attribute (in Python) on each tree in the 

random forest, a bar plot of feature importances can be constructed as shown in Figure 57. 

 

Figure 57: Bar plot of feature importances of all input parameters for Inconel 718 

 

It is evident that the pulse width variance parameters of welding voltage and welding current (V2 

and I2) are the most important features for classification. Interestingly, it is also seen that the audio 

features are of comparatively low importance in this classification. The large error bars are 

important to note, but discussion in the subsequent sections will use the mean values depicted in 

the bar plot to discuss relative feature importance. 

For Invar 36, the minority class is the opposite (i.e., defective beads). Using a similar training-

testing split of the minority class as Inconel 718, running the same random forest model gave the 

predictions in Figure 58. 



 

59 | P a g e  
 

 Results and Discussion 

 
(a) 

 
(b) 

Figure 58a-b: (a) Ground truth, (b) Predicted class labels for Invar 36 beads 

 

Figure 58 clearly shows that the predictions on the defect class (label = 1) are poor. Only 2 beads 

in the defective data class have been identified correctly. The numerical representation of this 

result is shown in Table 14. 

Table 14: Evaluation metrics for Random Forest classification of Invar 36 beads 

Evaluation Metric Score 
Accuracy 0.611 (61.1%) 
Precision 1.000 (100.0%) 

Recall 0.125 (12.5%) 
False Positive Rate (FPR) 0.000 (0.0%) 

F1 0.222 (22.2%) 
MCC 0.271 (27.1%) 

 

The results clearly indicate the lack of ability to detect true positives (defects) correctly, since the 

recall score and F1 score are very low. The MCC is also less than 0.5, indicating a weak correlation 

between the ground truth and predictions. It is also interesting to note how the accuracy, precision 

and false positive rates are fairly good, which shows the danger of using an insufficient number of 

metrics to evaluate a model. 

The calculation of feature importances leads to the bar plot shown in Figure 59. Compared to 

Figure 57, the discrepancy between importances seems smaller. The voltage count variance (V1) 

is seen to be the most important parameter, followed by both current parameters (I1 and I2). The 

audio parameters are also seen to have increased in importance in comparison to Figure 57. 
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Figure 59: Bar plot of feature importances of all input parameters for Invar 36 

 

 

4.3.1.3 K-Means Clustering Evaluation 

The next approach was unsupervised K-Means Clustering, which is one of the most well-known 

unsupervised clustering methods as mentioned in Section 3.1. The objective was to let the model 

decide boundaries for classification of clean and defective beads, and then compare the outcome 

to the known labels. Due to the lack of requirement of training, there was no splitting of data done 

here to delineate training and testing sets. 

As detailed in Section 3.2, an elbow point should be identified first. Python offers this functionality 

using Yellowbrick, and this was used to analyze the dataset of Inconel 718 beads [94]. The elbow 

point plot obtained has been shown in Figure 60. 
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Figure 60: Elbow point plot for K Means Clustering for Inconel 718 

 

The plot indicates that the threshold number of clusters for the data is 5, which seems unphysical 

since under any paradigm, it is not expected to obtain five different classes. It is important to note, 

also, that in this case the elbow is not sharp, indicating that the model has problems differentiating 

between clusters. For the analysis of this dataset, the hyperparameters of the model used are 

shown in Table 15. Conducting a test with 2 clusters, a prediction is obtained, which is shown 

side-by-side with the actual labels for 181 beads of Inconel 718 in Figure 61. 

Table 15: Hyperparameters of K-Means clustering model used 

Hyperparameter Value 
Number of clusters (n_cluster) 2 

Number of cluster centroid initializations 
(n_init) 

25 

Tolerance for convergence (tol) 0.0001 

Number of iterations (max_iter) 300 
 

 
(a) 

 
(b) 
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Figure 61a-b: (a) Ground truth, (b) Predicted cluster labels for Inconel 718 beads 

 

The predicted cluster labels can be flipped, since the numbering that the model assigns to clusters 

is simply a semantic issue. Thus in order to evaluate the prediction, one can compare both the 

actual prediction and the flipped prediction (all labels flipped from 0 to 1 and vice versa) and 

select the better prediction. With this methodology, the evaluation scores discussed earlier have 

been calculated and tabulated in Table 16. 

Table 16: Evaluation metrics for K-Means classification of Inconel 718 beads 

Evaluation Metric Score 
Accuracy 0.641 (64.1%) 
Precision 0.967 (96.7%) 

Recall 0.589 (58.9%) 
False Positive Rate (FPR) 0.100 (10.0%) 

F1 0.733 (73.3%) 
MCC 0.364 (36.4%) 

 

Generally for clustering problems, ROC-AUC curves/metrics are not calculated since such models 

are not probabilistic in nature. The calculation would effectively return a single point instead of a 

curve. Some authors have put forward methodologies to construct ROC curves for clustering 

models using point-shifting between clusters, but such approaches are considered to be out of the 

scope of this research [89]. 

The results for K-Means clustering indicate a fairly average result, with a decent accuracy of 

around 64% and a Matthew’s correlation coefficient of about 0.36, which indicates a weak positive 

correlation (since it is closer to 0 than 1). The precision score is extremely high, indicating that 

the false negative rate of the model is very low (which is very good from a conservative safety 

point of view). In addition, it is seen that the false positive rate is around 10%, which could be on 

the borderline of being usable for the application being examined here. 

Since K-Means clustering does not assign feature importances implicitly, a different methodology 

was implemented to calculate this. The cluster centroids (which have the same dimensions as the 

number of input parameters) were retrieved from the fitted model, and the sum of squared 

distances (SSDs) of each point from its respective centroid was calculated along each dimension 

(which represents each parameter individually). The idea was that a greater extent of clustering 

along a particular dimension (i.e., smaller squared distance between datapoints and centroid) 

would imply greater importance of that particular dimension (parameter) in deciding the centroid 

location. This would give an approximate idea of feature importance. This approach can be run 

multiple times in order to construct confidence intervals. Using this methodology for 1000 runs, 

the SSDs with error bars are presented in Figure 62. 
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Figure 62: Sum of squared distances of Inconel 718 datapoints from respective clusters 

 

From Figure 62, it is visible that V2 (voltage pulse width variance) is the most important parameter 

for K-Means clustering of Inconel 718 beads. Interestingly, the audio parameters are shown to 

have the least importance. The possible reasons for this observation will be discussed in later 

sections.  

In general, from this data analysis of Inconel 718, K-Means clustering is likely a poor algorithm for 

defect detection, since the correlation between prediction and ground truth is weak. This confirms 

the hypothesis from the elbow plot where a clear elbow was not seen, indicating the likelihood of 

poor analytical ability. 

The next material analyzed is Invar 36, and the elbow plot for the dataset is shown in Figure 63. 

Once again a clear elbow is not seen, indicating that K-Means will yield a poor analysis. Using the 

same K-Means model detailed in Table 15 on the data of Invar 36 beads, the metrics obtained are 

shown in Table 17. 
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Figure 63: Elbow point plot for K Means Clustering for Invar 36 

 

Table 17: Evaluation metrics for K-Means classification of Invar 36 beads 

Evaluation Metric Score 
Accuracy 0.607 (60.7%) 
Precision 0.291 (29.1%) 

Recall 0.953 (95.3%) 
False Positive Rate (FPR) 0.463 (46.3%) 

F1 0.447 (44.7%) 
MCC 0.369 (36.9%) 

 

While the recall score is excellent (indicating good ability to detect positives in the dataset), most 

of the other scores are average-poor, with the MCC showing a weak positive correlation. The low 

precision shows that the quality of positive (defect) prediction is poor. The false positive rate is 

almost 50%, which is too high for any practical applications. 

The relative feature importances are calculated using the SSD method as explained in the Inconel 

718 section and shown in Figure 64. The figure shows that I2 (current pulse width variance) is the 

most important parameter for clustering Invar 36 beads. While audio parameters are still of lower 

importance, they are now comparable to the voltage parameters, implying that the relative 

importance of audio parameters is higher. This will be further discussed in later sections. 
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Figure 64: Sum of squared distances of Invar 36 datapoints from respective clusters 

 

The final material analyzed is Inconel 625. The situation is a little different since all the beads 

deposited were defect free. The extreme class imbalance in the dataset meant that the 

performance of the model would be fairly inconclusive to verify its effectiveness. In spite of this, 

an elbow plot is constructed for this dataset and shown in Figure 65. 

 

Figure 65: Elbow point plot for K Means Clustering for Inconel 625 

 

In the interest of thoroughness, the model in Table 15 was run on the entire dataset using only 

current and voltage data (the number of beads for which audio data was available was far too low), 

and performance metrics were obtained as shown in Table 18. This set of results can serve as an 
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example of accuracy being misleading when evaluating a model. The model accuracy is extremely 

high, and yet the performance of the model itself is poor. It also shows how class balance is 

important and necessary to properly train a model. 

Table 18: Evaluation metrics for K-Means classification of Inconel 625 beads 

Evaluation Metric Score 
Accuracy 0.967 (96.7%) 

Precision 0.000 (0.0%) 
Recall Undefined (no defect positives in ground 

truth) 
False Positive Rate (FPR) 0.033 (3.3%) 

F1 0.000 (0.0%) 
MCC Undefined (no defect positives in ground 

truth) 
 

 

4.3.1.4 Artificial Neural Network Evaluation 

Neural networks have high flexibility in their structure (in the form of a large number of 

hyperparameters) and are suitable for big data, which can become a useful characteristic when 

enough data is collected over a longer period of time [90]. 

Multilayer perceptrons (MLPs) were chosen for this research work since the nature of the data did 

not necessitate the usage of RNNs (recurrent neural networks) or CNNs (convolutional neural 

networks). The model architecture used in the current work is shown in Figure 66. 

 

Figure 66: MLP architecture used for bead data analysis 

 

The number of layers and neurons were selected after some trial runs using random subsets of 

the available bead data in order to prevent overfitting. The validation loss (the loss measured on 



 

67 | P a g e  
 

 Results and Discussion 

the validation set) was used to detect overfitting, and the complexity of the model was 

appropriately changed (either changing the number of layers or the number of neurons in each 

layer). The training and validation loss curves obtained for all three materials are shown in 

Appendix B. Models that were too simple led to underfitting, which gave highly inaccurate 

predictions since the learned function was not complex enough to capture the full relation 

between input parameters and output labels. Throughout the rest of this thesis, this model will be 

interchangeably referred to as either an MLP or an ANN model (since MLPs are essentially a 

subset of ANNs). 

The hyperparameters of the model have been summarized in Table 19. While the earlier clustering 

and random forest approaches were of classification nature, the MLP was configured to run as a 

regression. The reasoning behind this was that modeling the nature between sensor responses 

and defect presence as a continuous function introduced the possibility of deducing defect 

severity or extent of presence using the value of class rating predicted by the model. The caveat 

to such an approach, however, would be that more datapoints which sufficiently represent varying 

levels of defect severity would be needed for finetuning the model. 

Table 19: Hyperparameters of the MLP model used 

Hyperparameter Value 
Number of hidden layers 4 

Number of neurons per layer 25 
Activation function ReLU (hidden layers) 

Sigmoid (output layer) 
Loss Binary cross entropy 

Optimizer Adam 
Optimizer learning rate 0.0004 

Number of epochs 450 
 

Apart from the classical regression approach, another possibility would be to convert the 

predictions into a classification result by defining prediction windows for each class. The easiest 

way would be to apply a clustering method to the set of predicted labels (like K-Means clustering). 

Within this paradigm, evaluation would be done based on error metrics defined for classification. 

The advantage of this approach would be that parameter boundaries can be defined for defects 

easily by looking at the set of input parameters in each cluster. Both approaches will be examined 

in this section. 

Obtaining confidence intervals for predictions with neural networks is not straightforward due to 

its “black-box” nature. The usual methodology for constructing such intervals is bootstrapping, 

where multiple training sets are constructed from the total available dataset with replacement (i.e., 

some elements in the training set could be repeated), and the model is run on all these individual 

training sets to get multiple predictions [92]. The mean and variance of these predictions are used 

to make confidence intervals (akin to a brute-force approach) [93]. For the ANN analysis, 

bootstrapping was used to generate confidence intervals for statistical analysis. 

Similar to earlier sections, Inconel 718 beads are examined first. The obtained predictions on the 

testing set with 95% confidence intervals along with ground truths are shown in Figure 67. 
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(a) 

 
(b) 

Figure 67a-b: (a) Ground truth, (b) Predicted class values for testing Inconel 718 beads 

 

As seen in Figure 67, many of the beads of the minority class (class label = 0) have predicted 

values that are close to the ground truth, with a few points being far. The confidence intervals also 

seem to indicate that the points far from ground truth have significant prediction variance, 

whereas the highly accurate points have very low prediction variance. The good performance seen 

with regard to the majority class (class label = 1) is expected, considering that larger number of 

majority class datapoints available for training. 

The average error metrics (over all bootstrapped testing sets) are shown in Table 20. Evaluating 

the metrics against the class label range of 0 to 1, it is visible that the error values are fairly small, 

indicating decent performance. The RMSE is higher than the MAE due to the squaring of errors, 

leading to higher penalties for outliers. In the context of this thesis, outliers are important to 

observe because they indicate beads that are not easily classified as either clean or defective (i.e., 

most likely to be classified as false positives/negatives). Thus it is of higher importance to detect 

the presence of outliers, meaning that RMSE will be the metric of importance when comparing 

the results of this analysis to those of other materials. 

Table 20: Evaluation metrics for ANN regression of Inconel 718 beads 

Evaluation Metric Score 
MSE 0.086 (95% CI {0.084, 0.089}) 

RMSE 0.286 (95% CI {0.282, 0.290}) 
MAE 0.092 (95% CI {0.089, 0.095}) 

 

The next step would be to apply K-Means clustering to the obtained set of results and examine 

the quality of clustering. Using the same model parameters as shown in Table 15, the error metrics 

along with their confidence intervals can be compiled. These metrics are shown in Table 21. The 

results are very good, with a high MCC indicating a strong positive correlation between prediction 

and original data. The false positive rate is around 20%, which is a little too high. The high 

precision and recall indicates good ability to predict positives (defects), which is expected, since 

it is the majority class. 
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Table 21: Evaluation metrics for K-Means classification of Inconel 718 bead regression results 

Evaluation Metric Score 

Accuracy 0.894 (95% CI {0.887, 0.901}) 
Precision 0.844 (95% CI {0.835, 0.853}) 

Recall 0.972 (95% CI {0.961, 0.982}) 
False Positive Rate (FPR) 0.202 (95% CI {0.197, 0.208}) 

F1 0.903 (95% CI {0.893, 0.912}) 
MCC 0.796 (95% CI {0.781, 0.810}) 

 

It is possible to look at the set of bootstrapped predictions and define a probability of accurate 

prediction (since the clustering has converted the problem from regression to classification). The 

probability can be calculated simply as the ratio of number of accurate predictions to the total 

number of predictions (in this case, 1000). 

A scatter plot of probabilities for each testing set bead can be seen in Figure 68. It is visible that 

the majority of beads have more than 95% probability of accurate prediction with the lowest 

probability being around 20%. It is also visible that many beads of the minority class also have a 

high prediction probability, which is good (since good predictions are obtained in spite of limited 

training data). 

 

Figure 68: Prediction probabilities of Inconel 718 beads 

 

Now that the results have been compiled, it is meaningful to look at the scaled input parameters 

and probability of prediction side by side. This has been shown in the plots in Figure 69. The figure 

shows that there is no clear visible trend in the input parameters that corresponds to the dips in 

probability. 
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Figure 69: Scaled input parameters and probabilities of accurate prediction for Inconel 718 beads 

 

In order to evaluate the relative importance of each input parameter, SHAP values (Shapley 

Additive Explanations) are used. SHAP gives a list of feature importances that can indicate the 

contribution of each feature to the prediction made by a model [101]. Python has an inbuilt module 

to calculate such SHAP values, which was used to evaluate the ANN. The results are shown in 

Figure 70. 

 

Figure 70: SHAP feature importances for prediction of Inconel 718 using ANN 
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Figure 70 shows that the most important parameter by far is I2, which is the welding current peak 

width variance. Interestingly, the audio parameters are shown to be slightly more important than 

one of the current parameters, which is unlike the importances obtained from the random forest 

evaluation in Section 4.3.1.2. Voltage parameters are seen to retain their importance relative to 

other parameters across both methods (random forests and ANNs). 

Subsequently, Invar 36 beads are analyzed. The predictions (with 95% confidence intervals) and 

ground truth of the testing set are shown in Figure 71. Examining the minority class datapoints 

(class value = 1), it is apparent that the prediction quality is poor. Not only are most of the 

predicted class values below 0.5 (which would indicate being closer to a clean bead than a 

defective bead), but the confidence intervals are also large, indicating high uncertainty. For the 

majority class beads (class value = 0), however, the prediction appears to be mostly accurate with 

very small error bars (which is to be expected, since a larger number of majority class datapoints 

are available for training). 

 
(a) 

 
(b) 

Figure 71a-b: Ground truth and predicted class values for testing Invar 36 beads 

 

The average of error metrics over the bootstrap testing sets is shown in Table 22. All the metrics 

are seen to be larger than the corresponding metrics for Inconel 718, indicating comparatively 

worse performance. The values are also significant when considering a range of 0 to 1, indicating 

potential for a lot of improvement. RMSE was earlier chosen as the most important metric due to 

the emphasis on outliers, and it is seen that the value has nearly doubled. The confidence intervals 

are fairly narrow however, indicating a low extent of uncertainty in the values. 

Table 22: Evaluation metrics for ANN regression of Invar 36 beads 

Evaluation Metric Score 
MSE 0.358 (95% CI {0.355, 0.362}) 

RMSE 0.597 (95% CI {0.595, 0.600}) 
MAE 0.368 (95% CI {0.365, 0.371}) 

 

Similar to Inconel 718, the K-Means clustering method is applied to the regression results of the 

testing dataset (using the same parameters from Table 15), and the final classification obtained is 
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examined against the ground truth labels to look for any improvements. The error metrics for this 

classification are shown in Table 23. 

Table 23: Evaluation metrics for K-Means classification of Invar 36 bead regression results 

Evaluation Metric Score 
Accuracy 0.611 (95% CI {0.605, 0.617}) 
Precision 0.846 (95% CI {0.831, 0.860}) 

Recall 0.271 (95% CI {0.259, 0.282}) 
False Positive Rate (FPR) 0.117 (95% CI {0.100, 0.135}) 

F1 0.354 (95% CI {0.346, 0.363}) 

MCC 0.245 (95% CI {0.230, 0.259}) 
 

It is seen that applying clustering to the results leads to average-poor results. The high precision 

indicates that the positive (defect) detection done by the model is of high quality (i.e., low false 

negative prediction). The recall score is poor, indicating poor ability to detect true positives. This 

indicates that the model is very strict with the criteria for classifying a datapoint as positive, 

leading to a low number of high-quality positive predictions. The false positive rate is also low, 

indicating usability from an industrial standpoint. The MCC is closer to 0 than 1, indicating a weak 

positive correlation between ground truth and predictions. 

It is also meaningful to look at the evaluation probabilities of the testing set beads. Using the same 

procedure as with Inconel 718, the probability plot obtained is shown in Figure 72. There are 

similarities to the Inconel 718 plot when looking at the lowest probabilities in the figure. It is visible 

here that the lower limit of probability is very small, being close to 10% probability (for Inconel 

718, the lowest probability was 20%). Comparing with Figure 68, it is also visible that the majority 

class datapoints have high prediction probability, whereas nearly all the minority class datapoints 

have probabilities between 10% and 60%. 

 

Figure 72: Prediction probabilities of Invar 36 beads 



 

73 | P a g e  
 

 Results and Discussion 

 

The next step would be to examine the probability side by side with the scaled input parameters 

to look for any visible indications of probability drops. This is shown in Figure 73. The figure shows 

that there isn’t a clear visual indication in the input parameters. 

  

Figure 73: Scaled input parameters and probabilities of accurate prediction for Invar 36 beads 

 

The SHAP values are calculated in order to assess the importance of each parameter (similar to 

Inconel 718). The results are shown in Figure 74. 

 

Figure 74: SHAP feature importances for prediction of Invar 36 using ANN 
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Contrary to the results from random forests in Section 4.3.1.2, the most important feature here is 

A2, which is the audio spectral variance. This is followed by both voltage parameters, both current 

parameters, and finally A1, which is audio kurtosis. Voltage parameters retain high importance 

(relative to other input parameters) in both random forests and ANN models. It is interesting to 

note that the absolute values on the x-axis (average impact on model output magnitude) are much 

smaller than that of Inconel 718 (105 times smaller). The exact reason for this is not known, but 

since relative importance is what is important, it is not of too much concern. 

For Inconel 625, analysis using audio data in the abovementioned manner did not seem useful 

due to the low number of data points available (22), while follow up research work could involve 

further testing with more designed experiments that introduces more data with defective beads. 

 

4.3.2 Cross-Material Evaluation 

Section 4.3.1 detailed some single-material evaluations that gave an idea of how accurate random 

forests, K-Means classifiers, and multilayer perceptrons can be at predicting different kinds of 

defects. An interesting avenue of inquiry, however, would be the possibility of doing this kind of 

analysis on a cross-material scale (i.e., across different materials). More specifically, the objective 

of this section is to examine the possibility of training a model on the defective/clean samples of 

one material (say, Material 1) and testing the model on a different material (say, Material 2). There 

are different levels of depth possible for such an investigation, ranging from using different 

materials that show similar kinds of defects, to using different materials that show different kinds 

of defects.  

In this thesis, ANN models trained on Inconel 718 and Invar 36 (separately) have been tested 

against the other two materials (Inconel 718/Invar 36 and Inconel 625). Both regression and 

classification steps were completed and the resulting predictions were compared to ground truth 

to extract error metrics. Training on Inconel 625 was omitted due to the lack of sufficient 

datapoints that included an audio component. 

First, an ANN model trained on Inconel 718 using the hyperparameters in Table 19 is tested on 

Inconel 625 and Invar 36. In both cases, bootstrapping was done (250 samples) in order to 

construct confidence intervals. The regression results for Invar 36 are shown in Figure 75. 

Subsequently, clustering is applied on the regression results, leading to the evaluation metrics 

shown in Table 24. 
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(a) 

 
(b) 

Figure 75a-b: (a) Ground truth, (b) Predicted class values for Invar 36 beads with Inconel 718 data 

 

Table 24: Evaluation metrics for ANN prediction of Invar 36 beads with Inconel 718 data 

Evaluation Metric Score 
Accuracy 0.258 (95% CI {0.245, 0.272}) 
Precision 0.181 (95% CI {0.178, 0.184}) 

Recall 0.962 (95% CI {0.954, 0.969}) 
False Positive Rate (FPR) 0.881 (95% CI {0.865, 0.898}) 

F1 0.303 (95% CI {0.299, 0.307}) 
MCC 0.086 (95% CI {0.076, 0.097}) 

 

The regression results for Inconel 625 are shown in Figure 76. Clustering the regression results 

leads to the evaluation metrics shown in Table 25. 

 
(a) 

 
(b) 

Figure 76a-b: (a) Ground truth, (b) Predicted class values for Inconel 625 beads with Inconel 718 data 
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Table 25: Evaluation metrics for ANN prediction of Inconel 625 beads with Inconel 718 data 

Evaluation Metric Score 
Accuracy 0.078 (95% CI {0.069, 0.087}) 
Precision 0.000 (95% CI {0.000, 0.000}) 

Recall N/A 
False Positive Rate (FPR) 0.922 (95% CI {0.913, 0.931}) 

F1 0.000 (95% CI {0.000, 0.000}) 
MCC N/A 

 

When looking at the performance on Invar 36, it is visible that the metrics are very poor. At this 

point however, it is important to note that not only are the two materials used in training and 

testing different, but the defect classes being analyzed are completely different too (overflow vs. 

hot cracking). The MCC is very close to 0, indicating a nearly non-existent positive correlation 

between prediction and ground truth. The recall and false positive rates are both very high, 

indicating that the model considers most examples to be positive (defective). The reasoning for 

this kind of prediction is discussed later on in the chapter. The acquisition of more datapoints for 

each material could lead to better results, since the model would be better equipped to find the 

relationship between input parameters and class labels.  

Looking at Inconel 625, a completely different picture is painted. The lack of defective datapoints 

leads to two undefined metrics (similar to what is seen in Table 18) and other extremely poor 

results. The accuracy is nearly 0 and the false positive rate is nearly 100%. It is important to note, 

however, that the acquisition of a sufficient amount of Inconel 625 data with defects deliberately 

induced can open up this avenue for further investigation. 

Next, a model trained on Invar 36 is tested on Inconel 718 and Inconel 625. The regression results 

for Inconel 718 are shown in Figure 77. Clustering is applied on the regression results, giving 

classification error metrics shown in Table 26. 

 
(a) 

 
(b) 

Figure 77a-b: (a) Ground truth, (b) Predicted class values for Inconel 718 beads with Invar 36 data 
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Table 26: Evaluation metrics for ANN prediction of Inconel 718 beads with Invar 36 data 

Evaluation Metric Score 

Accuracy 0.271 (95% CI {0.260, 0.281}) 
Precision 0.906 (95% CI {0.884, 0.928}) 

Recall 0.144 (95% CI {0.131, 0.158}) 
False Positive Rate (FPR) 0.093 (95% CI {0.071, 0.116}) 

F1 0.234 (95% CI {0.216, 0.252}) 
MCC 0.064 (95% CI {0.043, 0.084}) 

 

The results of Inconel 718 are poor. The false positive rate is low (less than 10%), which is 

encouraging. The precision is very high, indicating that the model is good at selecting positives of 

high quality (which is corroborated by the low false positive rate). The recall is low, however, 

indicating that only a low fraction of the actual positives are detected by the model. The MCC is 

close to 0, indicating nearly no positive correlation between predictions and ground truth. The 

possibility exists that more data could give the model more information to work with, leading to 

better results. 

The regression results for Inconel 625 are shown in Figure 78. Applying clustering on the 

regression results gives Table 27. 

 
(a) 

 
(b) 

Figure 78a-b: (a) Ground truth, (b) Predicted class values for Inconel 625 beads with Invar 36 data 

 

Table 27: Evaluation metrics for ANN prediction of Inconel 625 beads with Invar 36 data 

Evaluation Metric Score 
Accuracy 0.681 (95% CI {0.643, 0.720}) 
Precision 0.000 (95% CI {0.000, 0.000}) 

Recall N/A 
False Positive Rate (FPR) 0.319 (95% CI {0.280, 0.357}) 

F1 0.000 (95% CI {0.000, 0.000}) 
MCC N/A 
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Interestingly, the accuracy score for the prediction of Inconel 625 is somewhat good (almost 70%). 

The precision is 0 and MCC and recall are undefined due to the lack of positives (defects) in the 

ground truth. The false positive rate is still too high (almost 32%) for practical applications. The 

low number of datapoints being predicted (22) means that it is difficult to draw conclusions from 

the data, but the fact that the accuracy was decently high means there is potential for good 

performance (with more datapoints being involved in both training and testing). 

From all the predictions done in this section in Figure 75, Figure 76, Figure 77 and Figure 78, it is 

visible that the error bars are large across the entire prediction (as opposed to the single material 

predictions where the error bars were only large in the minority class predictions). This is to be 

expected, considering the fact that there is much lower commonality between the training and 

testing sets in a cross-material prediction as compared to a single-material prediction.  

From Section 4.3.1 it is seen that random forests performed well on single material predictions as 

compared to ANNs. This means it is useful to examine the possibility of doing a similar cross-

material analysis using random forests. Following the same methodology from the single material 

analysis, the first set of results is obtained by training on Inconel 718 and testing on Invar 36 and 

Inconel 625. The results are shown in Table 28 and Table 29. 

Table 28: Evaluation metrics for Random Forest classification of Invar 36 beads with Inconel 718 data 

Evaluation Metric Score 
Accuracy 0.172 (17.2%) 
Precision 0.162 (16.2%) 

Recall 0.958 (95.8%) 
False Positive Rate (FPR) 0.983 (98.3%) 

F1 0.277 (27.7%) 
MCC -0.066 (-6.6%) 

 

Table 29: Evaluation metrics for Random Forest classification of Inconel 625 beads with Inconel 718 data 

Evaluation Metric Score 
Accuracy 0.000 (0.0%) 
Precision 0.000 (0.0%) 

Recall N/A 
False Positive Rate (FPR) 1.000 (100.0%) 

F1 0.000 (0.0%) 
MCC N/A 

 

It is seen from Table 28 and Table 29 that even with the random forests approach, the results are 

poor. For Inconel 718, the accuracy is found to be very low (close to 20%), and the MCC is negative 

and close to 0, indicating a very weak negative correlation (it may even be considered as 

effectively having no correlation between predictions and ground truth due to how close it is to 

0). The recall score is very high, indicating a high fraction of true positives (defects) being detected, 

but the precision is very low, indicating a poor quality of positive prediction. The false positive 

rate is very high (above 98%), indicating the tendency of the model to label most samples it sees 

as positive. For Inconel 625, the lack of defective data causes poor results as expected. The false 

positive rate is 100%, indicating a perfectly inaccurate prediction. 

The next set of results is obtained by training on Invar 36 and testing on Inconel 718 and Inconel 

625. The results are shown in Table 30 and Table 31. 
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Table 30: Evaluation metrics for Random Forest classification of Inconel 718 beads with Invar 36 data 

Evaluation Metric Score 

Accuracy 0.199 (19.9%) 
Precision 0.636 (63.6%) 

Recall 0.093 (9.3%) 
False Positive Rate (FPR) 0.267 (26.7%) 

F1 0.162 (16.2%) 
MCC -0.198 (-19.8%) 

 

Table 31: Evaluation metrics for Random Forest classification of Inconel 625 beads with Invar 36 data 

Evaluation Metric Score 
Accuracy 0.545 (54.5%) 
Precision 0.000 (0.0%) 

Recall N/A 
False Positive Rate (FPR) 0.455 (45.5%) 

F1 0.000 (0.0%) 
MCC N/A 

 

Table 30 and Table 31 indicate that even with switching to Invar 36 for training the model, the 

results remain poor. For Inconel 718, the accuracy is seen to have slightly improved over Table 28 

(an increase of about 3%), and the precision has improved significantly (an increase of almost 

50%). The recall score has become much worse, indicating that the model has become too 

stringent with finding positives. This is also reflected in the false positive rate, which has reduced 

to around 27% (which is still too high for practical use, but much less than what is seen in Table 

28). The MCC is negative and higher in magnitude than in Table 28, indicating a stronger negative 

correlation between predictions and ground truth (the value is objectively still indicative of a weak 

correlation due to a magnitude < 0.5). As seen earlier, the results for Inconel 625 are 

inconclusive/poor due to the lack of defective datapoints. 

 

4.4 Overview of Nickel Alloy Analysis 

Based on the obtained results from Sections 4.3.1 and 4.3.2, it is clear that some relationships 

could be established between the different materials that were analyzed. While the prediction 

qualities were poor in some scenarios, meaningful conclusions could still be drawn based on them. 

The inferences from the above results are presented below. 

 

4.4.1 Relationships between Defect Occurrence and Input Parameters 

The collections of welding voltage and welding current (which were the input parameters for all  

the ML models apart from audio-based parameters) corresponding to clean and defective beads 

for each material have been separately presented in Table 32, Table 33 and Table 34. The 

confidence intervals are presented as percentages of the mean to help with visualizing their size. 

The values of the scaled input parameters themselves have been included in Appendix C along 

with the confidence intervals. 
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Table 32: Input parameters for Inconel 718 beads 

Parameters Vavg Iavg 

Mean (clean) 20.60 155.43 
Mean 

(defective) 
18.86 155.80 

95% CI 
(clean) 

3.45% 5.09% 

95% CI 
(defective) 

1.33% 1.54% 

 

Table 33: Input parameters for Invar 36 beads 

Parameters Vavg Iavg 

Mean (clean) 16.12 137.50 
Mean 

(defective) 
16.87 147.76 

95% CI 
(clean) 

1.47% 2.24% 

95% CI 
(defective) 

7.50% 10.52% 

 

Table 34: Input parameters for Inconel 625 beads 

Parameters Vavg Iavg 
Mean (clean) 20.30 185.65 

Mean 
(defective) 

- - 

95% CI 
(clean) 

1.28% 1.00% 

95% CI 
(defective) 

- - 

 

From Table 32, Table 33 and Table 34 it is possible to calculate the average input power for the 

clean and defective beads of each material. The experiments conducted involved a relatively 

small range of traverse speeds, and thus an algebraic average of traverse speeds were taken for 

the defective and clean bead sets of each material. Using the average power and average 

traverse speeds, the average value of arc energy per unit length (AEL) can be determined for 

each of the bead sets. The average power and AEL values of clean and defective beads for all 

materials are shown in Table 35. 

Table 35: Average input power and AEL values of all materials 

Material 

Clean Defective 

Power (W) 
Arc 

energy/length 
(J/mm) 

Power (W) 
Arc 

energy/length 
(J/mm) 

Inconel 718 3201.88 291.08 2938.61 322.57 
Invar 36 2216.95 308.84 2492.30 536.46 

Inconel 625 3769.24 339.62 - - 
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Comparing the AEL values of clean and defective beads, it is seen from Table 35 that both Inconel 

718 and Invar 36 have correspondence between defect occurrence and increased AEL. This 

makes logical sense when looking at Invar 36, since the reason for bead overflow is the lack of 

sufficient heat dissipation from the melt pool. Thus, increased heat input would exacerbate the 

issue and lead to increased probability of defects. For Inconel 718, literature suggests that 

increased heat input can lead to cracking due increased segregation of elements, leading to the 

formation of brittle Laves phases, which helps corroborate the observations made here [105, 106].  

 From Section 4.1 it is shown that the two kinds of defects in question are hot cracking and bead 

overflow. The most significant similarity between these defects is the dependence on AEL, since 

that controls the amount of heat supplied for bead formation. Thus the average values of AEL 

shown in Table 35 will be used to try to explain the trends in error metrics shown in Section 4.3.2. 

 

4.4.2 Predictions between Inconel 718 and Invar 36 

Consider an ML model trained on Inconel 718 data. This model would likely learn the fact that 

welding voltage and welding current parameters that lead to high arc power typically correspond 

to clean beads, whereas the parameters that correspond to lower input power typically correspond 

to defective beads (the exact threshold is difficult to identify, but the average powers of both bead 

sets are known from Table 35). It is important to note that since traverse speed was not passed as 

a parameter, the model should not have information about AEL. If the power range of Inconel 718 

is compared to the power range of Invar 36, it is immediately visible that the entire power range 

of Invar 36 is smaller in magnitude than the range of Inconel 718. This effectively means that if 

input power was the only factor being considered, any system that learns the defect-sensor 

correlations for Inconel 718 would assume nearly the entire set of Invar 36 to be defective (due to 

the power being even lower than the average defective bead power of Inconel 718). This is clearly 

reflected in the cross-material analysis results shown in Table 24 and Table 28, where the precision 

score is low, and the recall score is high. This combination indicates the tendency of random forest 

and neural network models to consider an excessively large fraction of the testing set to be positive 

(defective). 

At this juncture one may argue about the influence of audio parameters since they do not directly 

correspond to heat input. To explain this, one can examine the feature importances for the single-

material analysis done on Inconel 718 in Sections 4.3.1.2, 4.3.1.3 and 4.3.1.4. The plots in Figure 

57, Figure 62 and Figure 70 clearly show the low feature importance of audio parameters as 

compared to welding voltage and welding current.  

The reason for this low importance can be logically understood when looking at the kind of defect 

that is formed in this material, i.e. hot cracks. Hot cracking involves the formation of low-melting 

phases and thermal strains, none of which are likely to have a significant impact on the stability 

of the arc since they occur during material solidification. Since audio signals primarily capture the 

stability of the electric arc during the WAAM process, it stands to reason that a defect which does 

not directly influence or depend on arc instabilities would have a smaller signature in audio sensor 

responses as compared to welding current and welding voltage. 

Due to this, it is unlikely that a model trained on Inconel 718 would consider the existence of a 

significant relation between audio signals and defects, due to which there is minimal effect of 

audio discrepancies on the prediction capabilities of a model trained on Inconel 718 and tested 

on Invar 36. 
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The next step would be to consider the inverse situation, i.e., an ML model trained on Invar 36 

data attempting to make predictions on Inconel 718 data. From Table 35, it is clear that such a 

model would likely learn the fact that welding voltage and welding current parameters 

corresponding to high input power correspond to defective beads, and the parameters 

corresponding to low input power correspond to clean beads. The exact line of delineation 

between “high” and “low” is difficult to identify, but the mean power values are available (in Table 

35). Comparing the ranges of power values of Inconel 718 and Invar 36, the entire range of Invar 

36 is seen to be of lower magnitude than the range of Inconel 718. Thus a model trained on Invar 

36 would be likely to consider most beads of Inconel 718 to be defective (if the input power is the 

primary feature being considered). This, however, is nearly the exact opposite of what is portrayed 

in the cross-material analysis results in Table 26 and Table 30. The precision score is high and the 

recall score is low, indicating that both random forest and neural network models are inclined to 

predict a low number of high-quality positives (defects). This seems strange. 

At this point, it is useful to return to the AEL. Even though it was stated earlier that the model is 

unlikely to have information about the AEL due to the lack of a welding speed parameter in the 

input, if the AEL is taken as reference instead of input power, all the abovementioned results 

suddenly make sense. Contrary to what was earlier mentioned, the trend from clean to defective 

beads is found to be increasing for both materials, and the range of magnitudes is found to be 

higher for Invar 36 as compared to Inconel 718. From this perspective, a model trained on Inconel 

718 will still find most Invar 36 beads to be defective (due to the higher values of AEL), and a 

model trained on Invar 36 will find most Inconel 718 beads to be clean (due to the lower values 

of AEL). To support this, the results from Sections 4.3.1.2 and 4.3.1.4 (supervised single material 

analysis) show that for Invar 36, the detection of positives (defects) is difficult. Thus it is safe to 

say that the model somehow either finds the trends of AEL without including a welding speed 

parameter or manages to combine the three kinds of input parameters (welding current, welding 

voltage and welding audio) in a fashion that mimics the trend of the AEL. 

Assessing the impact of audio data in this scenario, one can refer to the feature importances of 

the single-material analysis done on Invar 36 in Sections 4.3.1.2, 4.3.1.3 and 4.3.1.4. The plots in 

Figure 59, Figure 64 and Figure 74 show that the relative importance of audio features is slightly 

increased in comparison to Inconel 718.  

This may be understood when considering the nature of defect seen in Invar 36, i.e., bead overflow, 

which happens during the melting process. While the root of the issue still lies in the thermal input 

of the printing process, the presentation of the defect is topological in nature (unlike cracks, which 

are fully internal). The change in the surface geometry of the bead induced by molten metal runoff 

can cause significant variation in the instantaneous contact tip distance of the welding torch from 

metal surface. This variation can induce instabilities in the arc which directly translate to clear 

audio signatures. Thus the discrepancies in audio are expected to have a bigger impact on the 

prediction capabilities of a model trained on Invar 36 and tested on Inconel 718 as compared to 

earlier.  

To quantify this, it is useful to compile the precision, recall and F1 scores of both kinds of 

predictions using both neural network (ANN) and random forest (RF) models. The F1 score is 

added as a summary metric of the precision and recall since it is the harmonic mean of both 

metrics (as mentioned in Table 10). The scores are shown in Table 36. 
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Table 36: Precision, recall and F1 scores of cross-material predictions 

ML model 
Trained on Inconel 718 

Tested on Invar 36 
Trained on Invar 36 

Tested on Inconel 718 
Precision Recall F1 Precision Recall F1 

ANN 0.181 0.962 0.303 0.906 0.144 0.234 
RF 0.162 0.958 0.277 0.636 0.093 0.267 

 

The F1 values are seen to be slightly higher when predicting on Invar 36 from Inconel 718 as 

compared to the reversed situation. This could be due to the difference in relative importance of 

audio parameters as explained earlier but the difference is small (the increase is close to 30% for 

the ANN model and about 4% for the RF model). 

It is interesting to note that when looking at the effect of class imbalance, there is not much 

difference seen depending on which class is in the minority (Since Inconel 718 and Invar 36 have 

opposite classes as the minority class). Both Inconel 718 – Invar 36 and Invar 36 – Inconel 718 

predictions have comparable metrics and the MCC only differs by about 0.023. It would be useful 

in the future to look into cases where the same class is the minority for both materials in order to 

see whether the prediction quality changes. 

 

4.4.3 Predictions on Inconel 625 

The cross-predictions on Inconel 625 were not examined in detail earlier due to the low number 

of datapoints and lack of defective datapoints. On the one hand, going off of the trend of AEL 

seen in Table 35, one would expect that a model trained on Inconel 718 would predict most 

datapoints of Inconel 625 to be defective (since the average AEL of Inconel 625 is higher than the 

entire range of values for Inconel 718). On the other hand, a model trained on Invar 36 would 

predict a fair number of Inconel 625 datapoints to be clean since the AEL of Inconel 625 is closer 

to the average of clean Invar 36 beads as compared to the defective beads. This expected result 

is confirmed when looking at Table 25, Table 27, Table 29 and Table 31 in Section 4.3.2. Since the 

precision is zero in all cases (due to the lack of ground truth positives), the false positive rate can 

be examined to assess the tendency of the models to erroneously predict positives. The compiled 

results are shown in Table 37.  

It is clear from the table that both ANN and RF models trained on Inconel 718 tend to excessively 

predict positives (defects), whereas the models trained on Invar 36 tend to predict a reduced 

number of positives. This is exactly in line with the hypothesis that training on Inconel 718 would 

lead to overprediction of positives whereas training on Invar 36 would lead to the opposite, which 

further verifies the line of reasoning pursued to explain the connection between sensor responses 

and defect prediction. 

Table 37: False positive rates of cross-material predictions on Inconel 625 

ML model Trained on Inconel 718 Trained on Invar 36 
ANN 0.922 0.319 
RF 1.000 0.455 
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4.5 Limitations of the ML Approach and Future Work 

The primary limitations seen in the analysis of ML predictions in this chapter stem from the lack 

of datapoints and class composition imbalance. The problem of datapoints is universal for ML 

models since the availability of more data enables a more comprehensive “learning” of relations 

between input parameters and output labels. Haykin [102] stated that an ANN requires at least 10 

times the number of network weights in order to get a meaningful prediction. Looking at the ANN 

in Section 4.3.1.4, the number of weights is  

W = 6*25 + 3*(252) + 25 = 2050 

which implies that at least 20,500 datapoints would be needed for a good prediction. This is far 

higher than the number of datapoints that was actually used, which was on the order of 102, 

implying that the predictions have to be taken with a grain of salt. 

Random forest models also require a moderate-large amount of data for good performance, as 

shown in research works reported in literature [103, 104]. A relation to the number of model 

parameters similar to ANNs was not found, but the general number of datapoints used in the 

aforementioned studies were at least an order of magnitude larger than the datasets used in this 

study. 

The issue of class imbalance can be mitigated to some extent using bootstrapping (as done in this 

research work), but the lack of unique datapoints can still pose problems when attempting to 

properly understand the relations between welding input parameters and defect presence. A 

shortage of clean bead data is comparatively easy to resolve if ideal conditions for the particular 

material are known (this was the case for Inconel 718, but time constraints made it difficult to 

obtain sufficient amounts of clean bead data). A shortage of defective data can be somewhat 

trickier due to the variety of circumstances that can lead to such defects. Overrepresenting one 

particular cause of a defect by repeating a particular set of conditions can cause the model to 

generate wrong conclusions and misdiagnose alternative process aberrations that lead to the same 

defect. 

Another limitation is the number of sensors involved in the monitoring process. In this study, 

welding voltage, welding current and audio signals were recorded, but additional signals like 

spectroscopic data, high speed camera images, etc. can provide a wider range of information 

about the welding arc and substrate. For instance, spectroscopic data can give some information 

about the arc temperature and elemental composition in the vicinity of the melt pool, thereby 

giving better information about thermal input into the bead, as well as the possible presence of 

contaminants in the melt pool. There is also the possibility of extracting more parameters from 

the available recorded signals to possibly capture variations that are missed by the current set of 

parameters. 

 

4.6 Applicability to Other Classes of Alloys 

This research study specifically focused on nickel alloys. When considering other classes of alloys 

like carbon steels or titanium alloys, it remains to be tested whether such cross-material analyses 

can give some meaningful results. 

It is likely that topographic defects (similar to bead overflow) would be easier to detect as 

compared to internal defects (like hot cracking) due to the fact that surface changes in a bead have 
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a significant impact on the stability of the arc, which is a response that is independent of the 

chemistry of the deposited material (interestingly, this is the opposite of what was hypothesized 

in Section 4.2.2). This makes it more likely for a model trained on other materials to classify such 

an event as an anomaly. 

In order to better expand the applicability of ML models to various alloy classes for internal defects, 

it would be needed to conduct further research on obtaining more parameters from recorded 

sensor data that can be made independent of the material itself. Barring this, the best approach 

would be to use incremental learning to create a continuously learning model that expands its 

repertoire of information as and when it encounters a new material being deposited, akin to the 

work of Li et al. [43]. 
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5 Conclusions and 

Recommendations 
 

 

 

 

Through the course of this research work, many interesting connections were found between 

various sensor responses and defects in additively manufactured pieces. Physically consistent 

reasonings were deduced for most observations, but some still need further work. The primary 

conclusions that can be made from this work are as follows. 

1. In both Invar 36 and Inconel 718, increased arc energy per unit length is found to be 

correlated with the presence of defects. This is consistent with both literature and the 

physics of defect formation since bead overflow (in Invar 36) is indeed caused by excessive 

heating of the melt pool and hot cracking in Inconel 718 can be caused by Laves phase 

formation due to increased heat input. 

2. Unsupervised K-Means clustering is found to be poor at conducting predictions on 

unlabeled welding parameter data. Out of the two supervised ML models used for 

predictions on the defect status of WAAM prints, the random forest model is found to have 

better results as compared to the ANN. 

3. The relative importance of audio-based parameters (kurtosis and spectral variance) are 

found to be low when training/testing on Inconel 718, whereas it increases when 

training/testing on Invar 36. This is sensible when considering the nature of defect found 

in each material, since Inconel 718 shows hot cracking, which is an internal defect that 

has minimal effects on the electric arc (which is the primary source of sound). Invar 36 

shows bead overflow, which affects the contact tip distance and can thus affect the stability 

of the arc, which has a prominent audio signature. 

4. Even though welding speed as a parameter is not introduced to the supervised models at 

any stage of training, the trends seen in the predictive nature of these models shows 

similarities to the arc energy/length values, which would require knowledge of the welding 

speed. Even when considering the possibility of audio features causing this effect, their 

relative importance does not seem significant enough to explain this. 

5. Cross-material predictions between Inconel 718 and Invar 36 are found to heavily depend 

on the nature of defect in either material (in connection with point 3). Training with Inconel 

718 is found to lead to underprediction of defects in Invar 36 and Inconel 625 whereas 

training with Invar 36 is found to lead to overprediction of defects in Inconel 718 and 

Inconel 625. 
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6. Class imbalance is found to have a significant impact on the prediction capabilities of both 

supervised models. In both random forest and ANN models with a reduced amount of 

minority class datapoints in training (1/3rd), the testing performance of Inconel 718 was 

found to be better than Invar 36. This could mean that a minority in clean beads is less 

impactful on performance reduction as compared to a minority in defective beads. The 

effect of type of class imbalance on cross-predictions seems to be minimal, with the 

change in MCC being very small. 

7. The usage of welding current, welding voltage and audio signals is found to give 

information about the stability of the arc. However, tracking additional details such as heat 

input, weld contaminants, etc. will require additional parameters or sensor responses.  

From the above conclusions, it is clear that the research questions outlined in Section 1.4 have 

been answered to a fair extent. The results indicate that the potential for a cross-material 

defect prediction model indeed exists, and resolving the problems with the current approach 

can help approach that goal. To that end, it is useful to outline future research work that can 

extend upon this work and help produce a more comprehensive model. 

1. Collecting more data for the three materials in the study (Inconel 718, Invar 36 and Inconel 

625) in a manner that creates a balanced dataset (comparable numbers of clean and 

defective samples) is the first step needed to potentially get better results. 

2. Expanding the material domain to include more nickel alloys like Nimonic superalloys and 

copper-nickel alloys can enhance the versatility of predictions. An appropriate amount of 

data, however, will be necessary to ensure good quality predictions. The next step in this 

direction would be to expand to other alloy classes like iron or titanium alloys. 

8. Expanding the defect domain to include more diverse defects is also useful for increasing 

versatility (in conjunction with point 2). Depending on the various causative factors for 

these defects, additional sensors may be necessary (as mentioned in point 7 of the 

conclusions). Future work could include spectroscopic sensing in order to gather arc 

temperature and arc plasma composition data. In addition, attempting to extract more 

parameters from the voltage, current and audio data can be helpful. One example would 

be hydrogen porosity, which is primarily linked to contamination of the welding 

wire/substrate. Such a defect would be better tracked by spectroscopic signals which 

would detect hydrogen peaks. 

3. Investigating incremental learning models akin to the study of Li et al. [43] can be very 

helpful for practical applications since this enables continuous learning and updation of 

the model. The information obtained from the current analysis can be passed to the model 

as a starting point in order to help it process the incoming real-time data better. A variant 

of this, known as class incremental learning, can be used as well since this type of 

modeling allows for the introduction of new class labels in real-time [107]. Additive 

manufacturing involves all sorts of unpredictable factors which could cause defects, and 

thus a model that is open to classifying new types of defects without requiring prior 

information will be apt. 

The application of machine learning in additive manufacturing is a vital step that takes us one step 

closer towards complete automation of the process. The research work done through the course 

of this thesis is a contribution towards investigating the predictive capabilities of ML models across 

different materials, which is something that has not been analyzed in current literature. Further 

work done along the lines of what has been outlined above can result in a complete system which 

learns from new prints in real-time and gives a comprehensive view of various defect probabilities. 
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Thus ends this thesis. 
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This appendix gives the experimental parameters used for the experiments conducted during 

the course of this thesis in Tables A1, A2 and A3. The tables only include details for the beads 

used in the analysis. Other tests were conducted which were not considered for the analysis due 

to lack of audio data (prior to installation of the microphone), which are not shown here. 

Table A1: Experimental parameters for Inconel 718 beads 

Test 
Number 

Welding Mode 
Test 
Type 

Bead 
Type 

Voltage 
(V) 

Current 
(A) 

Wire 
Feed 

Speed 
(m/min) 

Travel 
Speed 

(m/min) 

1 Superactive 
Single 
bead 

- 24 - 4.80 0.66 

2 Superactive 
Single 
bead 

- 22.5 - 3.25 0.50 

3 Superactive 
Single 
bead 

- 24 - 4.80 0.66 

4 Superactive 
Single 
bead 

- 24 - 3.30 0.50 

5 Superactive 
Single 
bead 

- 23 - 3.10 0.50 

6 Superactive 
Single 
bead 

- 22.5 - 3.25 0.50 

7 Superactive 
Single 
bead 

- 22.5 - 3.25 0.50 

8 Superactive 
Single 
bead 

- 22.5 - 3.25 0.50 

9 Superactive 
Single 
bead 

- 22.5 - 3.25 0.50 

10 Superactive 
Single 
bead 

- 24 - 4.80 0.66 

11 Superactive 
Single 
bead 

- 24 - 4.50 0.66 

12 Superactive 
Single 
bead 

- 24 - 4.20 0.66 

13 Superactive 
Single 
bead 

- 24 - 4.20 0.66 
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14 Superactive 
Single 
bead 

- 24 - 4.20 0.66 

15 Superactive 
Single 
bead 

- 24 - 4.20 0.66 

16 Superactive 
Bead 
wall 

Preheat 22.6 - 4.20 0.66 

   Wall 22.5 - 3.25 0.50 

17 Superactive 
Bead 
wall 

Preheat 22.6 - 4.20 0.66 

   Wall 24 - 4.80 0.66 

18 Superactive 
Bead 
wall 

Preheat 22.6 - 4.20 0.66 

   Wall 22.5 - 3.25 0.50 

19 Superactive 
Bead 
wall 

Preheat 22.6 - 4.20 0.66 

   Wall 22.5 - 3.25 0.50 

20 Superactive 
Bead 
Block 

- 22.5 - 2.80 0.60 

21 Superactive 
Bead 
Block 

- 22.5 - 2.80 0.60 

 

Table A2: Experimental parameters for Invar 36 beads 

Test 
Number 

Welding Mode Test Type Voltage (V) 
Current 

(A) 

Wire Feed 
Speed 

(m/min) 

Travel 
Speed 

(m/min) 
1 Superactive Bead wall 20.8 - 8.00 0.15 

2 Superactive Bead wall 15.6 - 8.00 0.25 
3 Superactive Bead wall 15.6 - 8.00 0.25 
4 Superactive Bead wall 15.6 - 8.00 0.25 
5 Superactive Bead wall 15.6 - 8.00 0.25 

6 Superactive 
Single 
bead 

10.8 - 3.00 0.25 

7 Superactive 
Single 
bead 

11.2 - 3.50 0.25 

8 Superactive 
Single 
bead 

14.8 - 3.00 0.25 

9 Superactive Bead wall 14.8 - 3.00 0.25 
10 Superactive Bead wall 14.8 - 3.00 0.25 

11 Superactive 
Single 
bead 

21.6 - 5.00 0.75 

12 Superactive 
Single 
bead 

18.6 - 3.50 0.65 

13 Superactive 
Single 
bead 

18.6 - 3.00 0.55 

14 Superactive 
Single 
bead 

18.6 - 2.75 0.50 

15 Superactive 
Single 
bead 

20.5 - 2.75 0.50 

16 Superactive 
Single 
bead 

21.6 - 5.50 0.50 
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17 Superactive 
Single 
bead 

18.6 - 2.75 0.48 

18 Superactive Bead wall 19.0 - 2.50 0.52 
19 Superactive Bead wall 19.0 - 2.50 0.52 
20 Superactive Bead wall 19.0 - 2.50 0.52 
21 Superactive Bead wall 19.0 - 2.50 0.52 

 

Table A3: Experimental parameters for Inconel 625 beads 

Test 
Number 

Welding 
Mode 

Test Type Voltage (V) 
Current 

(A) 

Wire Feed 
Speed 

(m/min) 

Travel 
Speed 

(m/min) 

1 Superactive 
Single 
bead 

27.5 - 6.25 0.75 

2 Superactive 
Single 
bead 

22.9 - 5.25 0.70 

3 Superactive 
Single 
bead 

21.8 - 4.80 0.66 

4 Superactive 
Bead 
layer 

24.0 - 4.80 0.66 

5 Superactive Bead wall 24.0 - 4.80 0.66 
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This appendix contains a few loss curves from the ANNs for each material presented in Figure B1, 

Figure B2 and Figure B3. These curves can be examined to determine the extent of 

overfitting/underfitting. Both Inconel 718 and Inconel 625 show fairly uneventful curves with an 

expected decrease as the epochs pass. Invar 36, however, shows a more tumultuous plot with a 

validation loss curve that shows many localized peaks. A general increasing trend would suggest 

overfitting, but that does not seem to be the case here. Looking at the shape of the curve, however, 

it is clear that fitting the behaviour of Invar 36 is not as straightforward as that of Inconel-class 

alloys. It would be interesting to take more data in a class-balanced fashion and try the same fitting 

to see if the validation loss improves. 

 

Figure B1: Training loss and validation loss curves of ANN trained on Inconel 718 data 
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Figure B2: Training loss and validation loss curves of ANN trained on Invar 36 

 

 

Figure B3: Training loss and validation loss curves of ANN trained on Inconel 625 
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This appendix compiles the average values of scaled input parameters for clean and defective 

beads of each material along with the 95% confidence intervals in Tables C1, C2 and C3. The 

intervals are presented as percentages of the mean in order to better demonstrate the size of the 

interval. Since Inconel 625 did not have any defective beads, the corresponding table only includes 

data of clean beads. 

Table C1: Scaled input parameters of clean and defective beads of Inconel 718 

Parameters V1 V2 I1 I2 A1 A2 
Mean 
(clean) 

4.3124 10.7225 5.4616 9.4607 199.0250 199.0509 

Mean 
(defective) 

4.1373 8.1114 4.2137 5.0265 170.2186 217.9748 

95% CI 
(clean) 

4.1367% 6.0539% 6.7278% 9.6558% 21.6573% 12.6842% 

95% CI 
(defective) 

1.1528% 3.6032% 2.5600% 3.2314% 19.9531% 6.0714% 

  

Table C2: Scaled input parameters of clean and defective beads of Invar 36 

Parameters V1 V2 I1 I2 A1 A2 
Mean 
(clean) 

3.0994 8.0356 3.7175 4.7308 271.8471 131.8315 

Mean 
(defective) 

4.2451 10.0829 4.4732 5.6741 218.3055 97.1015 

95% CI 
(clean) 

4.6000% 5.3616% 5.7599% 5.4065% 22.9620% 9.1833% 

95% CI 
(defective) 

11.7467% 7.8948% 9.3869% 7.6141% 47.1079% 29.7043% 

 

Table C3: Scaled input parameters of clean beads of Inconel 625 

Parameters V1 V2 I1 I2 A1 A2 
Mean 
(clean) 

4.4015 9.3678 5.0663 6.7336 100.2629 234.1729 

95% CI 
(clean) 

2.3203% 2.4407% 1.0389% 0.8416% 25.9189% 12.9449% 
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Appendix D 
 

 

 

 

This appendix includes micrographs taken during the metallographic analysis of samples printed 

at RAMLAB. Groups of defective samples of each material have been compiled and presented to 

give an idea of the kind of defects observed during the course of this research work. The first 

collection of micrographs is of Inconel 718, shown in Figure D1. The primary defects observed 

are lack of fusion and hot cracking. The next collection of micrographs is of Invar 36, shown in 

Figure D2. The primary defect observed is porosity, but only in a few samples. In addition, some 

sample pictures of Invar 36 have also been presented to depict the levels of bead overflow 

encountered in the course of experiments. These are shown in Figure D3. Finally, the large 

samples made for all three materials are shown in Figure D4. The large sample of Invar 36 was 

used for the measurements of tensile properties in Table 8. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 
(f ) 

 
(g) 

 
(h) 

Figure D1a-h: Micrographs of defects taken of various Inconel 718 samples – (a)-(c) lack-of-fusion defects, (d)-(f )  
solidification cracks, (g)-(h) liquation cracks 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure D2a-d: Micrographs of defects taken of various Invar 36 samples – (a) porosity near substrate, (b) porosity 
in bulk, (c) large porosity in bulk, (d) porosity in bulk 

 

 
(a) 

 
(b) 

 
(c) 

Figure D3a-c: Sample pictures of Invar 36 showing bead overflow 

 

 
(a) 

 
(b) 

 
(c) 

Figure  D4a-c: Large samples of (a) Invar 36, (b) Inconel 718, (c) Inconel 625



 

 

 

  



 

 

 


