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Abstract

Differential Privacy (DP) has become one of the most used approaches to protect
individual data. However, its implementation can vary significantly depending on the
context we are using it. In this study, we aim to compare two such implementations
of DP: Google’s Differential Privacy, an open-source library used for structured data
analytics, and Differentially Private Offsite Prompt Tuning (DP-OPT), a tool used for
the adaptation of machine learning models.

The main research question of this study is the following: "How do DP-OPT and
Google’s Differential Privacy Library compare when accounting for different factors in
different contexts?" We aim to conduct this research by doing a literature-based study
where no empirical experiments will be performed. This is because of the underlying
complexity of both tools, especially DP-OPT, and the time constraints posed in this
project.

The main results of this study show that Google DP is a tool that benefits from
its interpretability and speed when processing data analysis, while DP-OPT shows a
higher accuracy when training large language models (LLMs). Meaning that there
is no single mechanism for each problem, but instead it depends on factors like the
underlying task complexity, current available resources, and the final goal of the task.

By comparing these tools side-by-side, this research aims to provide more insights
into how each tool behaves and performs under different contexts and tasks. We aim
to guide developers and researchers to make better and more informed decisions when
choosing a tool for their desired task.

1 Introduction
How can we analyze sensitive data while still guaranteeing the individual’s privacy? For
many years, researchers, computer scientists, and developers have tried to answer this ques-
tion with very little success. Early attempts to preserve data privacy either failed to protect
it under scrutiny or rendered the data unusable [21]. A formal breakthrough came in 2006
by Dwork et al. [10] who introduced Differential Privacy (DP). DP changes the problem
entirely, rather than hiding the data from attackers, it makes sure that the output of any
process is statistically indistinguishable. Meaning that no matter how much an adversary
may know about the process or the dataset itself, it cannot confidently determine if any
individual’s data was used to take part in the process [11]. As a result, DP has become one
of the most robust frameworks that is used nowadays to protect an individual’s privacy.

However, DP is still only a theoretical concept that needs to be applied in practice. In
this study, we will analyze two of such implementations, the first one, Google’s Differential
Privacy Library [14], which is an open-source tool used for tabular data analysis. It adds
carefully calibrated noise to statistical results while using mechanisms that allow limiting
user contributions and tracking privacy budget. The second one is Differentially Private
Offsite Prompt Tuning [17], a technique used for adapting machine learning models. It
generates locally a private discrete prompt that is later used for adaptation without exposing
raw data.

Although both tools are based on the same theoretical principle of DP, they vary in the
domain where they are applied. One is used for more statistical purposes, while the other
focuses more on privately adapting language models. Therefore, comparing these two tools is
not about finding a universally superior one, but instead about understanding how each tool
performs in different contexts, under different parameters, and for different tasks. Nowadays,
more and more applications are incorporating both statistical analysis and machine learning
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models in their tasks, therefore, the need for a cross-domain comparison has become even
more relevant for this purpose. To the best of our knowledge, there is currently no systematic
study that compares such divergent tools across different settings. Most of the existing work
either focuses on DP libraries for analytics only or on DP applications in machine learning,
but rarely on both in the same study.

Our contribution is based on analyzing the cross-domain applicability of DP implemen-
tations. Specifically, we compare two such implementations. Google’s DP library, which is
used for privatized statistical queries, and DP-OPT, which privatizes prompt generation for
LLMs. This evaluation aims to show how DP principles translate into trade-offs between
data utility, computational performance, and their different privacy accounting mechanisms
in diverse contexts. By going from single-domain to cross-domain comparisons, this work
seeks to contribute to the growing literature on applied DP and provide better guidance for
future developers and researchers to make better informed decisions.

To guide this investigation, we focus on the following research questions:

• How do DP-OPT and Google’s Differential Privacy Library compare in their privacy-
budget accounting mechanisms?

• What are the performance trade-offs (runtime, memory) of each tool on representative
ML and analytics tasks?

• How does the output utility of DP-OPT compare to that of Google’s Differential
Privacy Library across different use cases?

To answer these questions, we have adopted a literature-based approach rather than
conducting our own empirical experiments, where we analyze existing results from peer-
reviewed publications, benchmarks, and other technical reports. This is done mainly for two
reasons. First, because of the underlying complexity of both tools, particularly DP-OPT.
Second, because there already exist evaluations and benchmarks from which meaningful
insights can be drawn. Therefore, by systematically reviewing existing publications, this
paper aims to provide a grounded analysis based on real-world data, while still trying to
remain feasible within the time and constraints of this project.

The structure of the paper is as follows. Section 2 provides background on the mathe-
matical foundations and core mechanisms of DP. Section 3 surveys existing literature on DP
tools and their evaluation. Section 4 introduces the criteria and metrics used to assess the
two implementations. Section 5 presents a detailed comparison based on privacy account-
ing, runtime performance, memory usage, and utility. Section 6 discusses the responsible
research practices followed throughout this study. Section 7 reflects on the results and their
implications. Finally, Section 8 concludes with a summary of findings and directions for
future research.

2 Background

2.1 Differential Privacy Fundamentals
Differential Privacy (DP) is a mathematical framework for quantifying and controlling the
privacy risk of individuals in statistical databases [10]. Formally, a randomized algorithm
M is said to be (ε, δ)-differentially private if, for all adjacent datasets D and D′ (differing
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by a single individual), and for all possible outputs S, the following equation holds:

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ (1)

Here, ε (the privacy budget) measures the strength of the privacy guarantee, while δ
allows for a small probability of failure.

The insight of DP is that the output of a computation should not substantially change
depending on whether any single individual’s data is included. This implies that even an ad-
versary with external knowledge cannot confidently infer the participation of an individual.
DP can be achieved through mechanisms such as the Laplace and Gaussian mechanisms,
which inject noise calibrated to the sensitivity of the query function. In practical systems,
cumulative privacy loss across multiple queries is tracked through privacy accounting tech-
niques, such as composition theorems [12].

2.2 Google Differential Privacy Library
The Google Differential Privacy Library is one of the most used and accessible frameworks
that apply DP to real-world data analytics [15]. It is an open-source software that uses dif-
ferent mechanisms to guarantee the indistinguishability of sensitive data within a dataset.
The main functionality of Google DP can be expressed in three components: contribution
bounding, noise addition, and privacy budget accounting. These components together guar-
antee that user information is safe, even when multiple queries are issued over the same data
or on overlapping datasets.

2.2.1 Contribution Bounding

Before making any privacy changes, the system limits how much a single user can contribute
to the data. This is done in two ways: (1) cross-partition bounding, which limits the
number of groups or partitions a single user can contribute to, (2) per-partition contribution
bounding, which limits the number of times a single user can contribute to a single partition.
We do this to ensure that no single user can overly influence the outcome, which potentially
leads to more noise in the outcome or even a privacy leakage.

In addition to this, Google DP also applies a probabilistic suppression mechanism, this
threshold is used to remove partitions that do not have sufficient user contributions. Parti-
tions that do not meet a specific threshold τ , often computed with a randomized mechanism,
are not considered for the final outcome with high probability. Since partitions with very
few user contributions tend to leak private information, this thresholding essentially stops
that [20, 38].

2.2.2 Noise Addition

Once the user contributions have been bound, the library applies randomized noise to the
results through the use of either the Laplace mechanism or the Gaussian mechanism. These
algorithms add calibrated noise depending on the amount of global sensitivity of the query,
meaning that the amount of noise depends on "the maximum change in the output that can
result from modifying a single individual’s data". Formally, for a given query function f with
sensitivity ∆f , the Laplace mechanism computes the noise from a distribution with scale
∆f/ε, whereas the Gaussian mechanism computes the noise from ∆f ·

√
2 log(1.25/δ)/ε [12].

This added randomness ensures that any single user’s inclusion or exclusion produces a
statistically negligible change in the query result.
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2.2.3 Privacy Budget Accounting

In the final component, we talk about privacy budget accounting. As mentioned before,
Google DP tracks how much privacy the mechanism has spent over multiple queries or
repeated executions. Since each operation that accesses the data consumes a fraction of
the privacy budget, defined as (ε, δ). The total privacy loss is computed using advanced
composition theorems [19] that provide a tighter bound on the total privacy loss compared
to basic summation, for example.

2.3 Differentially Private Offsite Prompt Tuning
Differentially Private Offsite Prompt Tuning (DP-OPT) is a more novel technique designed
to use large language models (LLMs) under sensitive data without altering the original
model weights [17]. Unlike other fine-tuning methods that often require changing thousands
of model parameters or gradient-based approaches, DP-OPT focuses on adjusting privately
a discrete prompt that is later used for inference on the desired model. This is particularly
useful specially if such a model is closed-source, it has restricted access or simply sharing
sensitive data with a model in the cloud is not a viable solution.

DP-OPT works on the premise that discrete prompts, when generated effectively, can
direct LLMs to perform a specific task without the need to alter the model’s internal
weights [32]. However, it has been shown that prompt tuning methods such as DLN-1 [33]
often times leave private information from the training samples [8, 23]. DP-OPT addresses
this issue by incorporating DP into the two main processes of DNL-1, prompt generation
and prompt selection.

The first phase is based on the sample-and-aggregate paradigm [29]. Given a training
set of inputs, their corresponding outputs, and an initial model prompt, the mechanism first
splits the data into disjoint subjects without any overlapping data. Then for each subset, the
mechanism uses the prompt to predict the output, knowing the results, the model learns from
it and generates a new token from each subset. Since often times the output space is very
large and we may end up with a wide range of tokens, the naive Exponential Mechanism [26]
would not be appropriate to use since the result would end up with a high variance and poor
utility [7]. The answer to this would be to use a mechanism that limits the amount of token-
level votes, which is exactly what LimitedDomain does [9]. This mechanism, as the name
explicitly says, limits the amount of candidate tokens to the top-k vote counts, and in the
case where the vote distribution is very similar, the algorithm either is rerun with a new set
of tokens or stops the process.

After generating the candidate prompts from the original template and the tokens, each
prompt is then tested to see its accuracy. Since this step is also DP, we will use the Expo-
nential Mechanism to choose the final prompt. This is done by evaluating each prompt on
its utility and assigning a probability depending on how good each prompt is, meaning that
better prompts have higher chances of being chosen. The algorithm then randomly chooses
a prompt based on this probabilistic distribution.

Regarding the privacy accounting method, DP-OPT uses the Rényi Differential Privacy
(RDP) [28] to track the privacy loss across both phases. RDP uses a more advanced com-
position mechanism that tracks the privacy loss across multiple iterations of the prompt
generation phase and the prompt selection phase. However, RDP still allows for some in-
terpretability since, in the end, it can be converted to the traditional (ε, δ) guarantee.
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3 Related Work
There exists several studies that have performed evaluations on open-source tools for Dif-
ferential Privacy (DP). Among the ones that seem most comprehensive is the work done by
Zhang et al. [41], which benchmarks a wide range of DP libraries. Their evaluation focuses
on three main aspects, namely, the privacy guarantees, the utility of the data, and how each
tool performs computationally.

However, the work by Zhang et al. is limited only to more traditional tools in DP appli-
cations, namely, related to statistical queries and relatively simple machine learning tasks.
Their review does not seem to extend to more recent techniques where DP is applied, par-
ticularly in the context of training and deployment of large language models (LLMs). These
newer use cases have shown to raise new challenges in the way we manage our computer
resources, account for the privacy budget, and also how the overall utility is affected [17]

Nevertheless, there does exist other works that have used DP in the context of language
models. Examples of them are Carlini et al. [6] and Duan et al. [8], who have shown in their
work that even small prompt-based fine-tuning can lead to a privacy leakage, motivating
the use of private prompt tuning methods. It was not until early 2024 that Hong et al.
introduced Differentially Private Offsite Prompt Tuning (DP-OPT) [17].

In relation to this last development, we have seen in the literature that most work
evaluating DP tools often focuses solely on accuracy and privacy guarantees, but often
forgets the importance of practical factors such as runtime and memory consumption of such
tools. However, in one particular study done by Hanke et al. [16], they analyze these aspects
for DP-OPT in 4 different contexts, revealing important trade-offs between privacy budget,
runtime overhead, and memory consumption of such tools. However, such evaluations still
remain in the same domain and rarely extend to compare across different fields of DP.

To the best of our knowledge, no prior work has systematically compared classical tools,
such as Google DP, to a more novel and recent one in the context of LLMs, such as DP-
OPT. By focusing on both systems’ utility, performance overhead, and privacy accounting
mechanisms, our study aims to contribute a cross-domain analysis that has been missing so
far in the literature.

4 Methodology
The literature review of this research was done using the snowballing method, where, start-
ing with a set of initial papers, we would then identify other relevant information to the
research through citations and references [39]. This method was chosen over other ones,
such as PRISMA [31], due to the relatively small number of available studies done regarding
Differentially Private Offsite Prompt Tuning (DP-OPT). This method made it easier and,
in our opinion, faster to identify relevant sources without the need to use explicit inclusion
or exclusion criteria. Which makes it a better fit for this project in particular.

The evaluation and analysis of Google DP and DP-OPT are based on three criteria
that are directly influenced by real-world applications and scenarios. Namely: data utility,
performance overhead, and privacy budget accounting. In addition to this, a table of symbols
can be found in Table 1 for better context across the paper.

Utility refers to the output quality or usefulness after applying DP mechanisms. In
Google DP, this refers to how close the outcome is to the same query without having applied
DP. Whereas in DP-OPT it refers to the level of accuracy a certain model has performed
on a specific task.
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Performance overhead refers to the runtime and memory overhead that each tool
requires during performance. Even though both tools have been theoretically described,
these metrics show how each mechanism scales and performs under real-world settings.

Privacy budget accounting refers to how each method tracks and allocates the total
privacy budget over multiple iterations of the process. In the case of Google DP, it is a
more traditional (ε, δ)-composition that works by using a built-in ledger. For the case of
DP-OPT, it uses the more advanced Rényi Differential Privacy (RDP) [28], which allows it
to have a tighter composition after iterations. Tracking the privacy budget is essential to
avoid its overconsumption, which can lead to less private guarantees of information leakage.

Symbol Definition
D Original dataset
D′ Neighboring dataset differing by one individual
M Randomized mechanism (e.g., a differentially private algorithm)
ε Privacy loss parameter (controls the strength of privacy guaran-

tee)
δ Probability of a privacy breach (used in (ε, δ)-differential privacy)
τ Contribution threshold (used in Google DP to limit partitions)
Cu User contribution limit

RMSPE Relative Mean Square Percentage Error (a utility metric)

Table 1: Table of Symbols Used in This Paper

5 Comparison of Methods

5.1 Google Differential Privacy Library Results
The Google Differential Privacy Library includes several tunable parameters that signifi-
cantly influence the balance between privacy guarantees and data utility [2]. Among the
most critical are the dataset size, the privacy parameters ε and δ, the limits on user contri-
bution, both to a single partition and across multiple partitions, and the clamping of values
within specified bounds.

In 2023, an evaluation of such a library was conducted [41], using two datasets that
were carefully selected due to its realistic data and to their compatibility with the library
functionalities: the Parkinson’s Telemonitoring dataset [36] and the Massachusetts Health
Reform Survey [24]. In their study, the authors primarily varied the dataset size and the
privacy budget ε to analyze their effects on utility and performance. Regarding the rest of
the parameters, δ was held fixed at a small value (effectively zero for pure DP mechanisms),
similarly, the clipping bounds were often derived from the actual minimum and maximum
values of the data, and the user contribution limit was kept at the library’s default of one
contribution per user.

The evaluation consisted of subsampling the datasets to create scenarios of different
data sizes (e.g., subsets of 7k, 8k, 9k, and the full 9358 records in the health dataset) to
see how the dataset size would affect utility. As expected, larger dataset sizes resulted in
a better utility, which meant fewer errors in the query outputs. It was shown that for
simpler queries such as SUM, COUNT, and AVG, the increase of data size would spread the
noise. Particularly, we could see how Google DP’s relative mean square percentage error
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(RMSPE) ranged from approximately 0.1-20% compared to that of other tools, which had
shown RMSPEs between 0.2 and 350% [41].

Regarding the privacy budget ε, it was seen that, as expected, smaller values of ε, mean-
ing stricter privacy constraints, resulted in a higher RMSPE, meaning lower data utility.
The evaluation varied ε over a range of values based on prior research and industry rec-
ommendations [27, 3]. The results showed that at low ε values (e.g., ε ≈ 0.1), noise levels
were high and errors increased significantly (RMSPE ≈ 3.5%), especially in more complex
queries (RMSPE ≈ 20%). On the other hand, when ε was raised (e.g. ε ≈ 3), the er-
rors dropped consistently across all query types (RMSPE ≈ 1% for simpler queries and
RMSPE ≈ 15% on more complex ones) [41].

Although [41] maintained fixed values for δ, clipping bounds, and contribution limits,
further insights into these parameters are provided in [38]. Using the TPC-H benchmark [35],
they analyzed how these settings affect utility and output completeness. For δ, which bounds
the probability of privacy failure due to rare or small-count groups, relaxing the parameter
resulted in more complete outputs. It has been seen that increasing δ reduced the number
of suppressed partitions nearly linearly, while stricter values led to higher error due to more
aggressive result filtering.

Regarding clipping bounds, it was seen that they were also of relevance. In their
study, they showed that tighter bounds (UpperBound ≈ 80) would yield higher expected
errors (RMSPE ≈ 0.4%) due to its risk of moving read data, while too wide bounds
(UpperBound ≈ 200) would also show some errors (RMSPE ≈ 0.3%) since they would add
excessive noise. The best results were shown by limiting only extreme outliers (UpperBound ≈
120, resulting in RMSPE ≈ 0.2%), where the main goal here is to find the balance between
reducing noise and minimizing bias.

In addition to this, user contribution limits also show some important trade-offs. [38]
had shown that depending on the data distribution, some errors would decrease faster than
the others, but as a general pattern, as the contribution limits increased (10 → 100Cu), the
median percent error decreased somewhat linearly (1 → 0%).

In terms of performance overhead, the most influential parameter was dataset size. In
contrast, changes to ε had minimal impact on runtime or memory usage. This is thought
to be because ε just affects the scale of added noise without altering the underlying com-
putational structure. As reported in [41], the runtime for a given query remained relatively
stable across different ε values, and memory usage was mostly driven by static allocations
and data processing.

Interestingly, larger datasets not only improved utility but also showed to slightly reduce
the relative runtime overhead. For example, the runtime for DP queries was approximately
100-130% of the non-private runtime on the largest datasets, compared to 110-150% on
smaller ones.

Memory overhead on the other hand, measured using Docker container tracking [5],
showed variable behavior. Although larger datasets generally required more memory due
to the volume of data processed, the relationship that was seen from the results were not
linear. Instead, memory usage fluctuated across dataset sizes, with DP functionality adding
only a small percentage (up to 3%) over baseline memory consumption.

5.2 Differentially Private Offsite Prompt Tuning Results
Differentially Private Offsite Prompt Tuning (DP-OPT) uses a smaller local language model
(e.g., Vicuna-7B) to generate a private prompt for a specific task, which is later used to query
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a larger, potentially closed-source model (e.g., GPT-4). Therefore, the performance of DP-
OPT is influenced by several metrics, including the privacy budget ε, the capacity of the
model, and the nature of the downstream task.

In the original paper we can see several experiments that test how the utility, in this
case the models accuracy to perform a task, varies under different privacy conditions [17].
The authors show that Vicuna-7B [7] can yield an accuracy similar to the non-private base-
lines when used for private prompt generation under the SST-2 classification task [37]. For
instance, as ε is reduced to 1, the accuracy was shown to drop from the low-90s to approx-
imately 86%. This decline is thought to be because of the LimitedDomain mechanism [9],
which limits the inclusion of certain data values when the privacy budget is too restrictive.
However, larger models, such as LLaMA-2-13B or LLaMA-2-70B [34], have been shown to
perform better with a small ε, maintaining accuracy above 90% even under strict privacy
settings [17]. This can suggest that the privacy-utility trade-off is significantly mitigated
when using stronger language models.

In addition to this, we can also see how across several classification tasks, DP-OPT’s
accuracy was generally very close to the non-private prompt tuning baseline. For example,
when using DaVinci-003 (text generation version of GPT3.5) [30] , DP-OPT was seen to
obtain an average accuracy of 81.4% compared to 82.9% of the one without privacy [17],
meaning there was a minimal utility loss.

Furthermore, DP-OPT consistently outperformed PromptDPSGD, a baseline applying
DP-SGD [1] to soft prompts [8], due to its ability to transfer the learned prompt to a more
powerful model [1].

Nevertheless, DP-OPT does not always show to match the performance of full DP fine-
tuning methods, especially when applied to open-source models. A recent benchmark study
published in late 2024 by Hanke et al. had shown that DP-OPT underperformed DP fine-
tuning techniques such as Private LoRA [40] and DP-FineTune [22] on several tasks [16]. For
instance, on the TREC classification benchmark [25], DP-OPT was seen to achieve over 26%
lower accuracy compared to the other approaches, and on average, Private LoRA applied
to Vicuna-7B was seen to achieve 90.3% across four tasks, whereas DP-OPT with the same
model only reached 75.3%.

As already mentioned, the model’s capacity is not the only factor that determines the
outcome’s utility, but it is also dependent on the type of task to be performed. To this
end, the experiments had worked with DP-OPT across four different cases: SST-2 [37],
TREC [25], MPQA [25], and Disaster [4]. During their experiments, it was shown that
for some particular tasks, namely, the binary classification ones such as SST-2 and MPQA,
DP-OPT outcome is very close to the non-private model under moderate privacy levels (e.g.,
ε ≈ 8). At this exact setting, it was also seen how DP-OPT achieves 92.2% accuracy on
SST-2 versus 92.4% without DP, and 85.8% on MPQA, equaling the non-private result. A
similar trend is observed for the Disaster classification task, where DP-OPT scored 78.9%
compared to 79.0% in the non-private case [17].

When talking about computational performance, on one hand, DP-OPT has been shown
to require fewer resources compared to other gradient-based DP methods regarding run-
time. According to the study done by Hanke et al. [16], the total compute cost of DP-OPT,
including both training and inference, was significantly lower than that of DP fine-tuning
techniques. Specifically, using the Vicuna 7B model, training with DP-OPT costs approxi-
mately $2.10, compared to $13.80 for Private LoRA, and including inference, the total cost
for DP-OPT was about $2.90, while Private LoRA required $14.60. In terms of actual
measurable time, DP-OPT required less than one hour on a single GPU for prompt genera-
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tion, while DP fine-tuning took several hours under the same conditions. Furthermore, when
used to adapt GPT-3.5, DP-OPT had shown to add only a slight overhead compared to non-
private prompt tuning, with prompt generation costing approximately $2.10 in additional
compute.

On the other hand, when talking about memory overhead, DP-OPT has been shown to
be on the lower side of it. Since the method avoids backpropagation, it no longer needs to
store gradients or optimizer states. As explicitly mentioned in [17], DP-OPT is "much more
memory efficient than any gradient-based method, including soft prompt tuning." This is
thought to be because prompt generation only involves forward passes, meaning the memory
it uses during training is kept constant and at a minimum.

6 Responsible Research

6.1 Data and Privacy
This project did not involve the collection of new data from human subjects. All data used
in the evaluation was obtained from publicly available datasets that had already undergone
appropriate anonymization and ethics approval. Regarding the data that was used (e.g., the
Massachusetts Health Reform Survey [24] and the Parkinson’s Telemonitoring dataset [36]),
these were accessed through reputable repositories [18] and handled in accordance with the
F.A.I.R. principles (Findability, Accessibility, Interoperability, and Reusability) [13]. Since
no identifying or sensitive data was collected or stored during this project, there were no
special storage or retention considerations required. As the project only used existing data
and did not generate new datasets, there is no new data to be made available apart from
referencing the sources.

6.2 Research Integrity
Throughout the project, proper academic integrity was maintained by citing all relevant
sources, including research papers, code libraries, datasets, and benchmarks used for anal-
ysis. All externally sourced material has been clearly referenced, and licensing terms of the
tools and datasets were respected. Sections of the report that were supported by AI tools
(such as for drafting, checking grammar, coherence, etc) have been reviewed and revised to
ensure accuracy, ownership, and integrity. All presented results have been presented as they
are from the original sources, with no fabrication or manipulation.

6.3 Replicability and Reproducibility
Regarding reproducibility, all evaluation results were based on peer-reviewed or publicly
released benchmarks. The original sources for both the Google Differential Privacy Library
and DP-OPT were verified and are available to the public. The methodology followed a
transparent process, with clear references to the parameters and setups described in the
literature. Although we did not create our own implementation for this project, future
researchers can replicate the analysis by following the documentation and benchmarks cited.
The tools and datasets referenced in the study are open-source or freely available.
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6.4 Bias
In terms of bias, this has likely occurred from the selection of sources and benchmarks. Since
they use their own datasets, it is very likely that they are biased inherently. To mitigate
this, during the gathering of results, discussion, and conclusion sections, we have aimed to
base our analysis on multiple sources, making sure the results are as consistent as possible.
Furthermore, it is very important to also see that unnoticed but existing biases could still
remain in the study, and therefore extend to other contexts where organizations make use
of our analysis. We would like to address this in future works, where we can empirically
obtain new results, making sure to account for bias as much as possible.

6.5 Beyond the Project
We believe that this research may pose potential implications in the way organizations
use differential privacy. One risk could potentially be that organizations misinterpret the
results, for example, they could assume that one tool always performs better than the other
without taking into account other considerations. To mitigate this, we tried to emphasize
that choosing a tool should depend on many factors. Furthermore, we believe that extending
the use of differential privacy, rather than causing harm, it helps to protect the privacy of
individuals ethically. Finally, we suggest that readers should not extend the results to other
contexts that have not been covered in this study, especially those involving highly sensitive
data or situations with high risk.

7 Discussion

7.1 Utility Trade-offs
The comparison between Google’s Differential Privacy (DP) Library and Differentially Pri-
vate Offsite Prompt Tuning (DP-OPT), shows that the utility function not only depends on
how the privacy is handled, but also on the system architecture of the mechanism.

For the case of Google DP, the utility is mainly influenced by its tunable parameters, the
dataset size, clipping bounds, user contribution limits, and the privacy budget. As shown
in [41], for queries like SUM, COUNT, and AVG for example, increasing dataset size has
shown to reduce the relative error (RMSPE), as well as by also tuning the clipping and
contribution limits.

On the other hand, DP-OPT works its way around utility degradation by outsourcing
generalization to a larger language model at inference time. This allows DP-OPT to
use more powerful, and even closed-source, language models (e.g., GPT-3.5 or LLaMA-2-
70B) [17] to perform the required task. This created a new paradigm in the context of
privacy preservation in the context of machine learning. This was demonstrated in [16],
where DP-OPT has been seen to outperform other techniques on text classification tasks,
maintaining high utility even when ε was very low (≈ 1).

This shows that the privacy-utility trade-off depends heavily on the context: while Google
DP relies on parameter tuning and statistical aggregation, DP-OPT takes advantage of more
powerful ML models, as well as on the type of task it is required to perform. Therefore, we
would like to highlight the difference in the system architecture, which, to the best of
our knowledge, has not been directly compared in existing literature.
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7.2 Performance Considerations
Regarding the performance characteristics of both tools, it has been seen that in both cases,
they have all shown to achieve a competitive performance compared to other mechanisms
that work in their same context.

Google DP shows low runtime and memory overhead (10 − 30% and ≤ 3% respec-
tively) [41], which we believe is not only because of how the mechanism is designed, but also
due to the low-dimensional data it operates on and the inherently lightweight queries.

On the other side, DP-OPT inherently requires a greater computational cost in abso-
lute terms, but this is believed to be normal due to the underlying complexity of the task
this performs. It has been seen that DP-OPT has achieved a significantly lower training
cost compared to other machine learning-based DP approaches like DP-SDG or Private
LoRA [16]. In terms of memory, thanks to the mechanism design, it does not need any
backpropagation, resulting in big savings in memory consumption.

These findings indicate that the performance should not be evaluated in terms of absolute
terms, but rather depending on the complexity class of the underlying task. This criterion
is also highly important for organizations when making a choice, to not only make it based
on privacy or utility, but also on system resources.

7.3 Privacy Accounting and Interpretability
Utility and performance consumptions are not the only difference between these two tools,
privacy budget tracking has also been shown to be different for the two, and not just in
technical terms, but also regarding its usability.

On one hand, Google DP uses the traditional (ε, δ) accounting, which is well understood,
easy to audit, and directly supports formal compliance reporting. This is particularly useful
in organizational contexts where interpretability and reproducibility are the main priority.

On the other hand, DP-OPT uses a more complex accounting mechanism, namely Rényi
Differential Privacy (RDP) [28]. This offers a tighter composition that is especially useful
for the iterative training process. Despite the fact that the result can be translated to (ε, δ)
in the end and that it results in more accurate cumulative privacy guarantees, the middle
steps of composition are less transparent and harder to understand for non-experts.

These two differences have shown that, as well as the other factors, privacy budget
accounting does not have a universal solution, but instead, the algorithm chosen should
be evaluated on its usability, ability to audit, and interpretability, depending on the user’s
requirements.

7.4 Implications and Contextual Guidance
The key takeaway of this study is that no single DP tool has been seen to offer universally
optimal performance across all use cases. On one hand, Google DP can be better suited
for analytics systems that require transparent, efficient, and auditable privacy guarantees.
Google DP has been seen to perform best on low-dimensional data and simple statistical
queries, where utility loss can be minimized through careful parameter tuning.

DP-OPT, on the other hand, is tailored for modern machine learning tasks, particularly
in scenarios involving personalized or federated data. It allows private adaptation of powerful
language models without requiring raw data to leave the local device. While it demands more
in terms of computational resources and expertise, it compensates with higher flexibility and
accuracy guarantees when performing in different types of tasks.
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As a result, our comparison is not meant to say that we should only choose one tool and
forget about the other. Instead, it aims to highlight a question that organizations tend to
face more nowadays: where in the pipeline should differential privacy be applied? In systems
that include both statistical analysis and machine learning, developers may need to choose
between protecting the data early (via DP analytics), protecting it later (via DP model
tuning), or applying DP at multiple stages, where each decision comes with trade-offs, in
utility, interpretability, and cost.

Because most existing studies treat analytics and machine learning separately, the field
lacks a unified framework for cross-domain evaluation. By comparing these two tools, we
contribute to the literature by showing that selecting a tool in the context of DP is not only
a matter of algorithms, but also of system architecture, task objectives, and user
constraints. Our results aim to offer practical guidance for developers, researchers, and
engineers deciding what is the best way to integrate differential privacy into their system
architecture.

8 Conclusions and Future Work
This research aimed to compare two tools that implement Differential Privacy (DP) in very
different ways: Google’s Differential Privacy Library, which is used for statistical analysis,
and Differentially Private Offsite Prompt Tuning (DP-OPT), which applies DP to tuning
language models. Although both tools rely on the same mathematical definition of privacy,
they are designed for different types of tasks and have different goals. Therefore, the purpose
of this research was not to find which tool is better, but to understand how DP behaves
when used in very different settings.

Based on public evaluations and benchmarks, we considered three metrics: utility, per-
formance overhead, and privacy accounting methods. The results show that Google DP is
best suited for tasks where speed, low memory usage, and transparent privacy guarantees
are important, since it uses standard accounting methods that are easier to track and un-
derstand. On the other hand, DP-OPT performs well in machine learning tasks, especially
when privacy must be preserved during model tuning. It does this by generating private
prompts locally and using a more powerful external model for inference. This design lets it
keep good performance even under strong privacy constraints, but the downside is that it
requires more computing power and uses a more complex privacy accounting system.

Our findings suggest that selecting a DP implementation should not be seen as a simple
choice of one over the other, but rather as an informed decision about where in the data
pipeline privacy protections are most effective. In many real-world systems, analytics and
machine learning coexist, and organizations must take into account the trade-offs in privacy
guarantees, utility loss, and operational overhead at each stage. This study contributes to
the literature by providing a structured, cross-domain comparison, helping bridge the gap
between DP in analytics and DP in machine learning.

Because this project had limited time and constraints, we focused on reviewing existing
studies instead of running our experiments. This made it possible to compare the tools based
on real-world data that was already available, but also meant that we could not evaluate
them under other conditions to see how they would perform in different scenarios.

Regarding future work, it would be valuable to conduct new empirical experiments to
validate the results observed in previous studies. Additionally, exploring the practical us-
ability of both tools could show interesting insights, which include: evaluating the ease of
integration into data pipelines, installation processes, and whether they are constantly up-
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dated. Finally, another interesting direction would be to study how these tools perform
when they are both implemented within the same pipeline, from data gathering, through
analytics, and to machine learning. This could help determine whether the tools can be
effectively combined or if their integration introduces any limitations or conflicts.

As nowadays more applications use both analytics and machine learning, understanding
how different DP tools work in practice is becoming more important. This research takes a
step in that direction by offering a side-by-side view of how DP behaves in two very different
but increasingly connected areas of data science.

A Use of LLMs
ChatGPT was used to generate ideas, to gather information, and/or to assist in the writing
process in the following context and prompts:

• Explain to me what X is, please do so by providing an example.

• Edit this paragraph that is in the literature review above in an academic tone, featuring
a clear and succinct writing style: Insert my own text
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