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A B S T R A C T   

Geographic observation benefits from the increasing availability of time series of 3D geospatial data, which allow 
analysis of change processes at high temporal detail and over extensive periods. In this context, the demand for 
advanced methods to detect and extract topographic surface changes from these 4D geospatial data emerges. 
Changes in natural scenes occur with varying magnitude, duration, spatial extent, and change rate, and the 
timing of their occurrence is not known. Standard pairwise change detection requires the selection of fixed 
analysis periods and the specification of magnitude thresholds to determine accumulation or erosion forms. In 
settings with continuous surface morphology and dynamic changes to the surface due to material transport, such 
change forms are typically temporary and may be missed or aggregated if they occur with spatial and/or tem
poral overlap. This is overcome with the extraction of 4D objects-by-change (4D-OBCs). These objects are ob
tained by firstly detecting surface changes in the temporal domain at locations in the scene. Subsequently, they 
are spatially delineated by considering the full history of surface change during region growing from the seed 
location of a detected change. To perform this spatiotemporal segmentation systematically for entire 3D time 
series, we develop a fully automatic approach of seed detection and selection, combined with locally adaptive 
thresholding for region growing of individual objects with varying change properties. We apply our workflow to 
a five-months hourly time series of around 3,000 terrestrial laser scanning point clouds acquired for coastal 
monitoring at a sandy beach in The Netherlands. This provides 2,021 4D-OBCs as extracted accumulation or 
erosion forms. Results are validated through majority agreement of six expert analysts, who evaluate the seg
mentation performance at sample locations throughout the scene. Accordingly, our method extracts surface 
changes with an error of omission of 4.7% and an error of commission of 16.6%. We examine the results and 
provide considerations how postprocessing of segments can further improve the change analysis workflow. The 
developed approach thereby provides a powerful tool for automatic change analysis in 4D geospatial data, 
namely to detect and delineate natural surface changes across space and time.   

1. Introduction 

Time series of topographic 3D data pose great possibilities to 
geographic analyses, but also challenges to the detection and delineation 
of surface change information from these 4D geospatial data. Surface 
change analysis using topographic point clouds has long since gained 
considerable importance in the observation of Earth surface processes 

and in advancing geoscientific research in general (Eitel et al., 2016; Qin 
et al., 2016). Ongoing repetitions of topographic surveys have led to the 
cumulation of data in the temporal dimension that enable change 
detection for many use cases of Earth surface observation, among them 
studies of changes to landslides (Oppikofer et al., 2009; Pfeiffer et al., 
2018), rockfalls (Abellán et al., 2010; Rosser et al., 2007), rock glaciers 
(Bodin et al., 2018; Zahs et al., 2019), snow cover (Grünewald et al., 
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2010; Fey et al., 2019), and the coast (Fabbri et al., 2017; Miles et al., 
2019). 

Most recently, the acquisition strategy of permanent terrestrial laser 
scanning (TLS) generates time series of 3D point clouds at (sub-)hourly 
intervals over periods of weeks to months (e.g., Kromer et al., 2017; 
O’Dea et al., 2019; Stumvoll et al., 2020; Vos et al., 2017; Williams et al., 
2018). Such high-frequency time series of point clouds can alternatively 
be acquired by photogrammetric techniques (e.g., Eltner et al., 2017; 
Kromer et al., 2019), albeit obtained datasets have different properties 
from laser scanning point clouds and may require other specific pro
cessing strategies. The unprecedented temporal density of these 4D 
datasets provides many more epochs for change analysis to compare 
evermore combinations of pairwise states of the topography, which are 
ideally adapted to the rates of target changes, respectively. Even more 
importantly, the information these data potentially contain on temporal 
properties of change processes hold opportunity for new insights on 
spatiotemporal characteristics of topographic activity and, conse
quently, to extend our fundamental knowledge about the investigated 
geographic phenomena (Eitel et al., 2016; Eltner et al., 2017). 

To leverage the temporal dimension of 3D time series for change 
detection and delineation, a method of spatiotemporal segmentation 
was developed that makes use of the full history of surface change to 
extract periods and spatial extents of surface changes (Anders et al., 
2020b). The time series-based approach is designed to advance estab
lished approaches of pairwise change detection. Pairwise change anal
ysis typically serves to identify areas of accumulation or erosion over the 
selected analysis period and to quantify change rates. Based on the 
bitemporal change information, patterns and underlying drivers of 
change are interpreted (e.g., Anders et al., 2020a; Eltner et al., 2017; Fey 
et al., 2019; Zahs et al., 2019). Standard methods for pairwise change 
detection are the differencing of Digital Elevation Models (DEMs, James 
et al., 2012) or point cloud distance computation (Girardeau-Montaut 
et al., 2005; Lague et al., 2013). Alternatively, change can be assessed in 
object-based approaches, where observed objects are first identified 
based on morphometric features or even previously derived bitemporal 
surface change, and subsequently changes in object properties are ana
lysed, such as their location and size (e.g., Mayr et al., 2018). 

In the following, we reveal drawbacks of pairwise change detection 
methods for the analysis of 3D time series. These drawbacks arise from 
the general circumstance of observing natural, Earth shaping processes 
that it is not a priori known when and where changes occur within a 
scene, and what the spatial and temporal properties of these changes 

are. The required selection of epochs in pairwise change analysis entails 
that the periods for detecting change are pre-defined. Temporary surface 
changes, which only persist for a limited amount of time within the 
observed scene, may hence be missed in the analysis (Anders et al., 
2019) as their timing and/or existence are not known to the analyst and 
their disappearance is not expressed in later topographic information 
(Fig. 1A). Performing pairwise change analysis for all combinations of 
epochs to solve this drawback would be somewhat impractical, and has 
not been done so far to our knowledge. Pairwise change analysis, 
therefore, is not adequate to analyse 3D time series for changes that 
occur with highly varying temporal characteristics, that is timing, 
change rate, duration of change processes, and persistence of change 
forms. Surface changes further occur at varying spatial scales regarding 
their extent, shape and magnitude and can therefore not be extracted 
generically with one-for-all settings. Where morphologic boundaries of 
objects or forms moreover are not distinct, it is difficult to spatially 
delineate them in individual scenes. Binary surface change information 
(change/no change) has been used to identify and delineate so-called 
change objects (Liu et al., 2010). However, these spatially contiguous 
areas of surface change do not necessarily stem from the same change- 
inducing process (Fig. 1B). Separating them into individual objects 
without a priori knowledge or information on external influences is 
improved when integrating the history of surface change that is con
tained in the 3D time series in the analysis (Anders et al., 2020b). 

Time series clustering (Kuschnerus et al., 2020) has been proposed 
for extracting change information from large 4D geospatial data. The 
method is useful to extract areas that are homogenous in their change 
dynamics and thereby finding dominant change patterns in the observed 
scene. It is not possible, though, to identify individual, spatially and 
temporally limited change occurrences as the full time series of the 
observation period are used as input. 

Object extraction by integrating the history of surface change can be 
performed with the concept of 4D objects-by-change (4D-OBCs; Anders 
et al., 2020b). This method identifies areas in the scene where the sur
face changes similarly over time within sub-periods in the time series at 
neighbouring locations. Sub-periods are automatically detected in the 
temporal domain of a location and are subsequently used as seeds for 
spatial region growing with time series similarity as homogeneity cri
terion. The seed locations at which to perform the temporal change 
detection have been selected manually so far. However, changes 
occurring are spatially variable within a scene and their timing and 
location is in general not known to the analyst. Automatic extraction of 

Fig. 1. Spatial and temporal properties of continual surface change in a scene that lead to ambiguity in change information when using pairwise change analysis, but 
can be resolved by integrating the history of surface change in the analysis. (A) Temporal separation: Individual temporary surface changes may be either missed or 
aggregated in case of consecutive occurrences when using fixed analysis periods. (B) Spatial separation: Surface changes that overlap spatially and temporally may 
not be separable into individual forms without considering their spatiotemporal change characteristics. 
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changes from entire datasets will therefore require fully automatic seed 
selection from all seed candidates. These can be obtained as sub-periods 
via temporal change detection at all locations in the scene. Many of these 
detected sub-periods will be both spatially neighbouring and temporally 
overlapping, and thereby likely belong to the same change form. One 
could perform the segmentation for all detected sub-periods at all lo
cations and subsequently aggregate segments into unique 4D-OBCs in a 
post-processing step. This option is hardly viable, given the large data 
volumes of 3D time series and considering the extreme redundancy of 
computations if each location within a change form is used as seed to 
obtain the same, single object. 

The drawbacks outlined above become particularly apparent in set
tings with continuous surface morphology and dynamic changes of the 
surface due to material transport induced by varying external drivers. 
Therefore, the use case of this paper is TLS-based monitoring of a sandy 
beach, using an hourly time series spanning five months. Sandy beaches 
are highly active in their morphodynamics through multiple processes 
acting on the surface, as these coastal landscapes are subject to continual 
sediment transport by wind, waves, as well as anthropogenic modifi
cations. Their surface is hence shaped by a variety of (temporary) forms 
of accumulation, erosion, and transported material (Walker et al., 
2017). Therefore, the target changes to be extracted from our data are 
temporary accumulation and erosion forms which typically exist over 
periods of days to few weeks. 

The objective of this paper is to develop a fully automatic workflow 
to extract surface changes as temporary accumulation or erosion forms 
in their varying spatial and temporal extents from a long and dense 3D 
time series dataset. To achieve this, we implement methods of automatic 
seed selection and locally adaptive thresholding for spatiotemporal 
segmentation. We consider the following methodological aspects: 

• Integrating the history of surface change in temporal change detec
tion will avoid missing temporary surface changes in the analysis 
which may not persist throughout epochs that are selected for fixed- 
period analyses.  

• Sorting and selecting seeds for region growing by an appropriate 
metric and considering previous segments throughout continued 
segmentation allows avoiding redundant calculations but also pre
vents skipping relevant change occurrences.  

• A locally adaptive approach of threshold selection is more suitable 
than pre-defined thresholds, albeit strict or loose, in order to avoid 
general over- or underestimation of spatial extents due to depen
dence on magnitude, duration, and change rate of the respective 
change form. 

The developed automatic spatiotemporal segmentation approach is 
designed to improve both the spatial separation of change forms, e.g. 
two co-occurring 4D-OBCs that would otherwise be extracted as one 

Fig. 2. Overview of the approach to (A) fully automatic spatiotemporal segmentation using a space–time array of surface changes quantified for a 3D time series and 
(B) validation of results. 
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accumulation or erosion object, and the temporal separation of change 
forms, e.g., two consecutive 4D-OBCs that could be aggregated or missed 
with alternative methods (cf. Fig. 1). Our approach thereby provides an 
important contribution to the toolset for change analysis in large 4D 
geospatial data. 

2. Data and methods 

We use a time series of hourly TLS data with 2,942 epochs acquired 
at a sandy beach to perform a fully automatic extraction of 4D-OBCs. 
The results are validated by a group of expert analysts, who assess the 
detection and extraction performance of our method for sample loca
tions. In addition, we compare extracted 4D-OBCs with changes derived 
from the baseline method of pairwise change analysis. The main steps of 
our approach and the investigation of results are visualised in Fig. 2, 
with details on data and methods outlined in the following sub-sections. 

2.1. Data 

The 3D time series used in this paper is an hourly dataset of TLS point 
clouds acquired in the frame of coastal monitoring at the sandy beach of 
Kijkduin (52◦04′14′′N, 4◦13′10′′E; Fig. 3), The Netherlands, over a 
period of five months (Vos et al., 2017). During the acquisition in the 
winter season of 2017, a Riegl VZ-2000 (Riegl LMS, 2017) laser scanner 
was installed in a fixed frame on a hotel building around 30 m above the 
ground to capture the beach scene below at ranges of 100 to 600 m with 
resulting point densities of 2–20 points/m2. Further details on the 
observation setup and acquired data can be found in Vos et al. (2017) 
and Anders et al. (2019). 

The analysed dataset has a spatial extent of around 300 m × 600 m 
and covers the acquisition period from 2017-01-15 to 2017-05-26 with 
2,942 epochs. The first epoch is used as reference scan both for iterative 
closest point (ICP)-based alignment of each epoch using stable planar 
surfaces in the built-up area between the dunes and the hotel building, 
and for quantifying surface change for each epoch in the time series via 
point cloud distance computation. An assessment of alignment accuracy 
and considering a range-dependent effect of atmospheric conditions on 
the LiDAR measurements over time yields a minimum detectable change 
of 0.05 m for this dataset (cf. Anders et al., 2019). 

Point cloud distances are obtained using the M3C2 algorithm (Lague 

et al., 2013) at locations in a regular grid of 0.5 m spacing, which pro
vides a space–time array of surface change values (Fig. 4). During dis
tance computation, the regular grid locations are used as core points, for 
which the surface position in both point clouds is averaged using all 
points in a neighbourhood of 1.0 m radius. To remove change values that 
are likely to represent measurement errors in single epochs, temporal 
averaging is applied to each location in the scene by setting surface 
change values to the median value in a window of one week, i.e. span
ning half a week before and after the respective epoch. For further de
tails on the preparation of data, we refer to Anders et al. (2020b). 

The space–time array of surface change values is used as input for the 
methods and all analyses in this paper. The structured dataset provides 
the 1D time series of surface change at each 2D location along the 
temporal domain. Each horizontal 2D slice of the array represents sur
face change for scenes of individual epochs compared to the reference 
epoch (Fig. 4). The surface change scene of individual epochs corre
sponds to results provided by fixed-period, pairwise change analysis. A 
time series of surface change at an example location and surface change 
in the scene for selected epochs are provided for the dataset in Fig. 5. 

2.2. Detection of seed candidates 

As a first analysis step, a detection of temporal changes is performed 
for the time series of all locations in the scene. Change occurrences are 
detected in the temporal domain using a sliding window approach 
which determines changes in the median according to the change point 
detection method presented in Anders et al. (2020b). All detected sur
face changes with determined location and sub-period, i.e. start and end 
times of a detected change, are considered seed candidates for spatio
temporal segmentation. For selecting seeds in order of their importance 
during the full segmentation, the seed candidates are sorted regarding 
two aspects: First, the similarity of surface change history in their im
mediate spatial vicinity and, second, their change volume, assuming that 
higher-magnitude or longer-duration changes are more relevant. The 
change volume is hence computed as the integral of the absolute surface 
change over the sub-period of a detected change. 

The neighbourhood similarity of surface change history of a seed 
candidate is obtained as average time series similarity within a detected 
sub-period in its immediate (3 × 3) spatial neighbourhood, i.e. the mean 
similarity of the eight neighbour locations. Time series similarity is 

Fig. 3. (A) 3D scene of the sandy beach in Kijkduin (RGB-coloured) and (B) location of the study site in The Netherlands. The star marks the location of the time 
series of surface change shown in Fig. 5. Data: World Borders © thematicmapping.org 2017. 
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based on Dynamic Time Warping (DTW) distance (Berndt & Clifford, 
1994) between a reference and a compared time series. As DTW distance 
values depend on the magnitude and number of observations in the 
input time series, we normalise the computed distance Dabs based on the 
maximum possible distance for each reference time series according to 
the following equation (Eq. (1)): 

Dnorm = min
(

1.0, 1.0 −
Dmax − Dabs

Dmax

)

∈ [0, 1]

with Dmax =

∫

I

⃒
⃒Tref (i)

⃒
⃒di ≈

∑

i

⃒
⃒Tref ,i

⃒
⃒

(1)  

where Dmax is the maximum possible distance that can result from the 
comparison, which is derived as the total change volume in the reference 
time series Tref . If the result of this normalisation is larger than 1.0, the 
normalised distance Dnorm is set to the maximum value of 1.0. This can 
occur, for example, if the reference time series experiences positive 
change while the compared time series experiences negative change, 
and means they are highly dissimilar. The normalised DTW distance 
Dnorm is considered as direct inverse of time series similarity. It is used to 
compare seed neighbourhood similarity for obtaining the list of sorted 
seed candidates as described above. Dnorm further provides the homo
geneity metric in the subsequent region growing, as described in the 
following section. 

2.3. Spatiotemporal segmentation with seed selection and adaptive 
thresholding 

The second analysis step is the actual spatiotemporal segmentation. 
This is performed via region growing starting from a seed location and 
using time series similarity at neighbouring locations as homogeneity 
criterion. Time series similarity is derived from the normalised DTW 
distance Dnorm of a compared time series to the seed (Section 2.2). We 
further adapt the region growing by subtracting the first value of the 
sub-period from each time series before DTW distance computation. By 
this, the comparison of surface change values is independent from both 
the initial surface elevation in the reference epoch and the course of 
surface changes up to the starting point of the detected change. The 
latter was lacking in the original version, where the median value of the 
sub-period was subtracted, which depends on the surface change history 

of the detected change itself (cf. Anders et al., 2020b). 

2.3.1. Automatic seed selection during segmentation 
The segmentation starts with the seed from the top of the list of 

sorted seed candidates (Section 2.2) and continues with the seed 
candidate at the next lower rank after concluding region growing of a 
segment. Seed candidates are omitted if the detected temporary change 
form is not completed, i.e. does not disappear, up to the end of the time 
series or if the detected sub-period exceeds a duration of eight weeks. 
This eight-week maximum duration serves to exclude detected changes 
that represent signals of larger temporal scales. It is set liberally to cover 
a third of the observation period of this dataset and does not affect the 
temporary changes we are aiming at in our use case (cf. Section 1). We 
further discard seed candidates if the maximum surface change value in 
the sub-period is below the minimum detectable change, which is 
determined at 5 cm for this dataset (cf. Anders et al., 2020b). 

Finally, seed candidates are also omitted if they were segmented into 
the 4D-OBC of a previous seed, meaning they are located in the spatial 
extent of an existent segment and occur in overlapping epochs. The re
gion growing itself is not restricted by previous segments, so that 4D- 
OBCs may overlap both spatially and temporally. This is adequate for 
the premise of this paper that surface changes in natural scenes often 
overlap in their timing and affected area (Section 1). However, for the 
selection of seeds it can be assumed that the history of surface change in 
the area of overlap with another 4D-OBC is not the most representative 
to delineate a potentially additional, superimposed surface change from 
that seed candidate. If the superimposed surface change is relevant and 
occurs independently from the previously segmented overlapping 4D- 
OBC, a suitable seed outside the existent segment is expected to be 
found in the remainder of the seed candidates. 

2.3.2. Automatic thresholding and validity of segments 
To spatially delineate surface changes covering a large range of 

magnitudes and durations within one fully automatic segmentation 
procedure, robust thresholding is an important aspect of the region 
growing segmentation. Surface changes with high magnitude and/or 
long duration will require looser thresholds of time series similarity to 
delineate the entire object and avoid premature termination, whereas 
segments with lower change volume are more prone to leakage during 
the region growing if thresholds are not strict enough. Leaking is here 

Fig. 4. Schematic of procedure to derive a space–time array of surface changes from a time series of 3D point clouds.  
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referred to the growing of a segment outside the correct spatial extent. 
There is no one-for-all solution to thresholding and suitable thresholds 
cannot be determined solely based on the seed properties, as they lack 
information on the spatial segment properties. We solve this by per
forming the region growing for a range of thresholds in parallel and 
deciding for the most suitable version based on the resulting segments. 
Accordingly, the region growing is performed for normalised DTW dis
tance thresholds of 0.3 to 0.9 in steps of 0.1. We select the most suitable 
threshold based on the resulting segment sizes which should not change 
abruptly between thresholds increased or decreased by one step. If the 
ratio of segment sizes between increasingly large thresholds decreases, it 
indicates that the segment size strongly increased and it is likely that 
leakage occurred. The threshold value which produces the first local 
maximum of segment size ratios for increasing thresholds is therefore 
used to provide the final result of the segmentation. 

Before continuing segmentation, a resulting segment is checked for 
its validity. Segments are discarded as invalid if they exceed a certain 
level of within-segment heterogeneity. For this purpose, heterogeneity is 
derived as coefficient of variation (CV, Eq. (2)) of the change volume at 
all locations in the segment. 

CV =
σ
μ (2)  

where σ is the standard deviation and µ the mean of values at all loca
tions in a segment. The CV value indicates variability of surface change 
histories within the segment and was found to be most suitable in an 
exploration of selected valid and non-valid segments. The threshold was 
thereby determined at a CV ≤ 0.8 of normalised DTW distances for 
segments to be accepted as valid. All segments obtained in this way are 
used to determine the spatiotemporal overlap for subsequent seed can
didates, which are skipped if already segmented (Section 2.3.1). 
Regarding the extraction of 4D-OBCs, ultimately, only segments with a 
minimum segment size of 10 locations (i.e., 2.25 m2) are used as result 
for the use case of this sandy beach (cf. Anders et al., 2020b). 

We check the suitability of the automatic thresholding based on 
evaluations provided by expert analysts in the validation, which is 
presented in the following section. 

2.4. Evaluation of results 

The performance of the fully automatic segmentation is assessed 

Fig. 5. Surface change on the beach for three selected epochs (A–C) compared to the reference epoch at the beginning of the 3D time series, respectively. The epochs 
are marked by dashed lines in (D) the time series of surface changes at an example location (marked by star in maps A–C). Surface increases in the time series at this 
location belong to temporally independent accumulation forms of different spatial extent (boxes in A and C). 
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regarding both the detection of surface changes and their spatial 
delineation as 4D-OBCs. The detection performance is particularly 
important to assess, as it is not possible to procure the ground truth of all 
changes that occur during an observation period. We hence choose a 
validation approach common to detection tasks in remote sensing, using 
reference data generated by a group of human interpreters who check 
the data and results at a number of locations in the area of interest (e.g., 
Foga et al., 2017; Healey et al., 2018). 

The group of interpreters are six analysts with expertise in 3D change 
analysis. Each analyst evaluates the segmentation performance at 72 
evenly distributed locations in the scene. At each validation location, the 
detection performance is assessed based on the 1D time series of surface 
changes and an animation of surface changes in the area of that location, 
so that the analyst can identify change occurrences that are not 
segmented in any 4D-OBC. The analysts further decide on the correct
ness of each 4D-OBC that was extracted at a validation location, 
meaning the location is included in the spatial extent of an object. Ob
jects that cannot be recognized as suitable surface change information 
by the analysts are marked as incorrect. Objects identified as suitable 
may be designated as fully correct, or too large or small in spatial extent. 

To account for subjective errors in the complex task of evaluating 
extracted surface changes, we use majority aggregation of expert results 
for each location and object (Herfort et al., 2018). Accordingly, more 
than 50% of experts need to mark a change as being missed to result in a 
false negative (FN) or an object as being incorrect to result in a false 

positive (FP). Objects that are correct according to the majority aggre
gation are true positives (TP). 

From these reference data, we validate our results using the error of 
omission (Eq. (3)) and the error of commission (Eq. (4)): 

Error of omission :
FN

FN + TP
(3)  

Error of commission :
FP

FP + TP
(4) 

We discuss the performance of our method based on this evaluation 
and for representative 4D objects-by-change resulting from the fully 
automatic spatiotemporal segmentation. The material used for valida
tion and results of the expert evaluation are openly available in the data 
repository of Heidelberg University (Anders et al., 2021). 

3. Results 

In the spatial–temporal extent of the dataset, a total of 306,728 
surface changes are detected as sub-periods at 192,901 locations in the 
scene, which derive from over 15 billion LiDAR points in the full 3D time 
series. The detected sub-periods are sorted by decreasing neighbourhood 
similarity and therein decreasing change volume, and provide the seed 
candidates for the segmentation (Section 2.2). A total of 7,893 segments 
are generated by the full segmentation until the end of the seed 

Fig. 6. Seed and segment properties in relation to the full list of seed candidates, and compared by valid and discarded segments. Seed candidates are sorted by 
normalised DTW distance Dnorm as metric of inverse neighbourhood similarity. (A) Frequency of seeds in the range of sorted seed candidates shows a strong increase 
in the number of segments towards the end of the candidate list. (B) Segment sizes show a strong overall decrease at the end of the candidate list. Segment size is the 
number of segmented locations, note that the axis of segment size is logarithmic. Bottom row shows the relation of seed neighbourhood heterogeneity to within- 
segment heterogeneity as coefficient of variation (CV) of normalised DTW distances Dnorm for (C) discarded and (D) valid segments. Segments are invalid (grey) 
if their segment size is below the minimum size or the change volume of time series at all locations in the segment is very heterogeneous. 
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candidate list. Invalid segments are determined by the criteria of inner- 
segment heterogeneity (59 segments discarded) and minimum segment 
size (5,813 segments discarded). In consequence, 2,021 segments are 
designated valid and provide the final result of 4D-OBC extraction. 

3.1. Seed sorting and selection 

The distribution of seeds used for segmentation over the full list of 
sorted seed candidates (Fig. 6A) shows that increasing numbers of seeds 
are selected towards the end of the candidate list. This indicates that less 
seed candidates are skipped with ongoing segmentation, and therein 
decreasing neighbourhood similarity of sorted candidates. At the same 
time, seeds towards the end of the candidate list result in overall much 
smaller segment sizes (Fig. 6B), which are mostly discarded by the 
minimum size criterion (coloured in grey in Fig. 6; cf. Section 2.3.2). 
More than half of these discarded segments (3,059 of 5,813) only consist 
of the seed location itself (segment size of 1), another 27% have a size of 
only 2–3 locations. Even for the loosest of thresholds (0.9) of the parallel 
runs, no real segment is grown for these seeds, which are mostly 
spatially isolated locations, for example in areas of sparse data due to 
occlusion or water influence. 

Segment sizes at the beginning of the seed list are overall larger and 
highly variable. The latter fits the nature of surface changes that may 
occur at a large range of spatial extents. This result demonstrates that 
seeds with lower importance in the sense of neighbourhood similarity 
lead to fewer meaningful 4D-OBCs, or, put the other way round, lead to 
more segments that should be discarded. 

The suitability of this validity criterion is demonstrated in the rela
tion of seed neighbourhood heterogeneity to within-segment heteroge
neity (Fig. 6C and D). Heterogeneity is derived as coefficient of variation 
CV (Eq. (2)) of time series similarities Dnorm, respectively, for neigh
bourhood heterogeneity in the seed neighbourhood, and for within- 
segment heterogeneity for all locations in the segment. In contrast to 
valid segments that are considered as final 4D-OBCs, discarded segments 
show particularly high within-segment heterogeneity even though their 
neighbourhood heterogeneity is comparably low. 

3.2. Validation of spatiotemporal segmentation results 

A total of 107 4D-OBCs, which extend over 38 of 72 validation lo
cations, were extracted for evaluation through experts. At the other lo
cations no changes were detected or segments are discarded as invalid. 
Since some 4D-OBCs cover multiple validation locations in their spatial 
extent, the expert analysts provide 169 object assessments for the total 
of evaluated locations. Results of expert evaluations are aggregated by 
majority agreement of all six analysts for each location and 4D-OBC, 
respectively (Table 1). 

According to the expert validation, the error of omission regarding 
missed surface changes amounts to 4.7%. The error of commission 

regarding the number of incorrectly extracted 4D-OBCs amounts to 
16.6%. Of the 83% true positives, 58% of objects were marked as fully 
correct, whereas 12% and 13% were evaluated as too small and too large 
in their spatial extent, respectively. We check these evaluations in the 
subsequent section regarding locally adaptive region growing thresholds 
for specific 4D-OBCs. 

3.3. Automatic thresholding and extracted 4D objects-by-change 

The region growing threshold for spatiotemporal segmentation is 
automatically determined for each seed based on the resulting segments 
for a set of thresholds (cf. Section 2.3.2). This avoids general over- or 
underestimation of spatial extents for change forms with differing 
properties in the variety of magnitudes and durations of surface changes. 
In most cases, a normalised DTW distance threshold of 0.4 or 0.5 is 
selected for the region growing of 4D-OBCs (1,284 of 2,021 valid seg
ments). A decreasing number of 4D-OBCs is extracted with looser region 
growing thresholds, with the lowest number of 47 objects extracted with 
a distance threshold of 0.9. Descriptive statistics of thresholds are listed 
in Table 2. 

In some cases, the automatic threshold selection does not perform 
ideally, which is demonstrated by the expert evaluations of extracted 
4D-OBCs being too small or too large in spatial extent (cf. Section 3.2). 
Subsequently, we show two representative examples why this occurs 
with the developed approach of locally adaptive thresholding. 

The threshold selection is designed to avoid strong increases of 
segment sizes for small increases of the region growing threshold. In 
some cases, this causes the spatial extent to only cover a fraction of the 
actual change form. This occurs mostly if there are gaps in the topo
graphic information or low point densities, for our data particularly in 
the outer beach area that is strongly and frequently influenced by water 
(Fig. 7A and C). 

In the same example 4D-OBC, the automatic thresholding prevents 
the segment from being delineated extremely large for an even looser 
threshold (Fig. 7B). The accumulation form is extracted with another 
4D-OBC in its correct spatial extent using a seed that is ranked a few 
positions after this example object. Thereby, the change form as a whole 
is not missed, since a more suitable seed for delineation is available later 
in the list of seed candidates. An important aspect for using results of the 
spatiotemporal segmentation for subsequent analysis will therefore be to 
filter or aggregate potentially superfluous objects that cover the same 
change form but do not correctly represent its spatial extent. 

In contrast to undersized objects which can be extracted correctly by 
additional seeds at a progressed stage of the segmentation, there are 4D- 
OBCs which are evaluated as too large. These cases occur if the segments 
resulting from the strictest possible region growing threshold already 
produce oversized segment sizes (Fig. 8). Subsequent seed candidates 
representing the same change form are not used for region growing if 
they are already segmented in the area of the oversized object and a 
more suitable extraction as 4D-OBC will hence not be available. A 
relevant change form is nonetheless detected and extracted by these 4D- 
OBCs with overestimated spatial extent. For subsequent analysis, a 
postprocessing step would allow to refine the spatial delineation of such 
cases. A potential issue that should be taken into account regarding the 
full spatiotemporal segmentation, is that the spatial extent of oversized 
segments potentially incorporates other change forms that would not be 

Table 1 
Aggregated evaluations by six expert analysts for 169 objects at 72 validation 
locations. Correct 4D-OBCs are true positives (TP), incorrect 4D-OBCs are false 
positives (FP), and missing 4D-OBCs represent false negatives (FN). Percentages 
for these missed surface changes are not available, as there is no quantification 
of true negatives.  

Final evaluation Expert evaluation Number Percentage 

Correct 4D-OBCs  141 83% 
Fully correct 98 58% 
Too small 21 12% 
Too large 22 13%  

Incorrect 4D-OBCs  28 17%  
Weird/cannot specify 10 6%  
Incorrect 18 11%  

Missing 4D-OBCs Missed surface change 7 –  

Table 2 
Number of segments and statistics of final segmentation threshold for all seg
ments and only valid segments. Possible thresholds of normalised DTW distance 
range from 0.3 to 0.9.  

Segments Number Final segmentation threshold (time series similarity)   

Mean Median Std. dev. 5th Perc. 95th Perc. 

All 7,893 0.45 0.40 0.09 0.40 0.60 
Valid 2,021 0.53 0.50 0.12 0.40 0.80  
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Fig. 7. Result of segmentation for 4D object- 
by-change that was evaluated as too small in 
the expert-based validation. The method of 
automatic thresholding determines a strict 
normalised DTW distance threshold of 0.4 
time series similarity at the maximum 
segment size ratio before decreasing for a 
higher threshold (marked by red star in C). 
(A) Spatial extent of the segment for the 
selected threshold of 0.4 as well as a looser 
threshold of 0.6, which would be more suit
able in the case of this change form. The 
bounding box in (B) illustrates the segment 
resulting for an even looser threshold of 0.8, 
which leads to a large portion of the beach 
being segmented for this detected accumu
lation form and is prevented by the locally 
adaptive thresholding method. (C) Segment 
size ratios for each region growing threshold 
in relation to the largest segment size (black 
line) and to the segment size of the next- 
stricter threshold (red dots, red star marks 
selected threshold). Grid spacing of maps is 
25 m. (For interpretation of the references to 
colour in this figure legend, the reader is 
referred to the web version of this article.)   

Fig. 8. Result of segmentation for 4D object-by-change that was evaluated as too large in the expert-based validation. (A) Spatial extent of the segment for the 
selected normalised DTW distance threshold of 0.5 as well as the strictest threshold computed in the full segmentation of 0.3, which would be more correct in the case 
of this change form. The strictest possible threshold (given the ratio-based selection method) is 0.4, for which the overestimation of the spatial extent already occurs. 
The detected surface change has a low magnitude in relation to a long duration, which is visualised in the time series of the seed location in B (start and end point of 
the detected temporal change marked by arrows, location marked by star in (A). (C) Segment size ratios for each region growing threshold in relation to the largest 
segment size (black line) and to the segment size of the next-stricter threshold (red dots, red star marks selected threshold). Grid spacing of map is 25 m, the epoch is 
marked by the dashed line in B. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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possible to extract anymore due to the design of seed selection, i.e. 
skipping seed candidates that are segmented in a previous object (Sec
tion 2.3.1). To our best knowledge, this does not occur for our use case of 
full spatiotemporal segmentation. We further consider this unlikely to be 
a general issue, since spatial extents being too large due to the described 
cause mainly occurs for subtle change forms with low magnitude in 
relation to longer durations (Fig. 8B). These will not grow into the area 
of other relevant surface changes given the homogeneity criterion of 
time series similarity. 

3.4. Improvement of surface change extraction using spatiotemporal 
segmentation 

Spatiotemporal segmentation is a method of time series-based 
change analysis with the objective to avoid both missing changes due 
to fixed-period analysis and aggregating spatially and/or temporally 
overlapping surface changes, which can occur in pairwise change 
analysis (cf. Fig. 1). We demonstrate how this is overcome through the 
extraction of 4D-OBCs with an example of an accumulation form and an 
erosion form co-occurring during the same period and in adjacent spatial 
extents. The same accumulation form spatially overlaps with another 
accumulation form that occurs in a successive, temporally independent 
period (Fig. 9). 

The spatial extents of the accumulation and erosion form demon
strate that each surface change is delineated regarding its surface change 
history and independently of the border of another, simultaneously 
occurring change form (Fig. 9A and C, marked by 1 and 2). Importantly, 
this further visualises how the time series-based analysis is not affected 
by the selection of the reference epoch used for bitemporal change 
quantification. The detection and delineation of accumulation and 
erosion in fixed-period analyses relies on the sign of surface change 
values, and the selection of epochs determines the magnitude, and, 
critically, the direction of changes in the resulting bitemporal change 
image. When considering the surface change history, change forms will 

be identified as positive or negative surface changes irrespective of the 
signed surface change values (Fig. 9C). 

4. Discussion 

The ability to identify and separate individual change forms spatially 
and temporally with time series-based change analysis is an important 
improvement regarding drawbacks of standard pairwise change analysis 
approaches (cf. Section 1). The change analysis becomes independent of 
selecting analysis periods and also of selecting a reference epoch that 
most suitably represents the initial state of the surface, relative to which 
accumulation and erosion are determined. Particularly in natural scenes 
characterised by complex, multidirectional morphodynamics, such as 
the surface of a sandy beach in coastal monitoring, acquisitions of some 
initial state of the terrain are usually not available. In our use case, we 
follow the common approach of using the first epoch of the data as 
reference for bitemporal change quantification. This has no effect on the 
method of spatiotemporal segmentation, which is based on the history of 
surface change rather than signed surface change values. 

With our developed approach of fully automatic extraction of 4D- 
OBCs from a 3D time series, we are able to extract temporary accumu
lation and erosion forms with a completeness of around 95% according 
to reference data at 72 locations in the scene (error of omission of 4.7%, 
Section 3.2). To our knowledge, there is currently no method capable of 
equivalent generic detection of surface changes from 3D time series to 
compare the performance of our method to. Our approach achieves a 
similar performance as is reported for detection and extraction tasks 
from time series of satellite images, such as mapping of burned areas 
with detection of seed pixels and subsequent region growing (error of 
omission of 10–16%; e.g. Bastarrika et al., 2011) or a time series-based 
change detection method for land cover change (overall accuracy of 
88%; e.g. Lin et al., 2019). The error of commission amounts to 16.6% 
due to a few incorrectly extracted objects. Filtering out these segments 
which are not useful as 4D-OBCs could be integrated in subsequent 

Fig. 9. 4D objects-by-change (4D-OBCs) of an erosion form (1) and two accumulation forms (2 and 3) whose spatial extent is depicted in surface change maps (A and 
B) of the full scene at the epochs of their highest magnitude, respectively. (C) Time series of surface change of the three temporary change forms (1–3) throughout the 
period of their existence. Time series show the surface change at the seed location of each 4D-OBC. Dashed lines mark the epochs of maps A and B. Grid spacing of 
maps is 100 m. 
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processing steps. Using (only) segments with specific properties for 
identification of target objects or classification in scenes is an integral 
part of object-based analyses (e.g., Mayr et al., 2017). 

The developed approach of locally adaptive thresholding enables 
spatial delineation of surface changes that is flexible to the properties of 
detected change forms (Section 3.3). Leakage of segments in the region 
growing is avoided without the need to introduce threshold criteria 
tailored to any specific change properties, such as distinguishing be
tween high- and low-magnitude changes for region growing. With this, 
few parameters are required to apply the methodological workflow. 
Besides the definition of changes to detect, in our case temporary 
accumulation and erosion forms, we parametrise the segmentation 
regarding (i) limitations of our dataset, i.e. the minimum detectable 
change, and (ii) a priori information on target changes, i.e. a maximum 
duration of surface changes to be considered (cf. Section 2.3.1). 
Adjusting or leaving out these settings would mainly influence the 
number of 4D-OBCs that are extracted and potentially require more 
careful selection of appropriate objects for subsequent analysis. 

Postprocessing of segments should further regard aggregation of 
single 4D-OBCs that represent the same change form. In particular, this 
can occur if objects are undersized. Their area then does not cover the 
full spatial extent of a change form and another seed can be found for 
region growing in the remaining list of seed candidates. This affects 
around 15% of extracted 4D-OBCs (Section 3.2) and mostly occurs in 
areas where gaps are present in the topographic data, for example due to 
occlusion or laser shot dropouts caused by water influence (Höfle et al., 
2009). The seed of such an object may therefore qualify as the most 
suitable regarding the neighbourhood similarity criterion (Section 
2.3.1) but will perform poorly in the region growing with strict 
thresholds due to a high degree of noise in the extended spatial neigh
bourhood. Our examination of results indicates that this does not 
necessarily adversely affect the full segmentation, as a correct 4D-OBC is 
provided by another seed that is found in the remainder of the seed 
candidate list (cf. Section 3.3). An alternative to avoid this would be to 
include spatial interpolation of surface changes in each epoch of the 
space–time array during preparation of the input data. The pre- or 
postprocessing applied to the data and obtained segments, respectively, 
will typically be tailored to the specific analysis or research question of a 
use case. 

With regards to delineating 4D-OBCs too large in their spatial extent, 
the design of our method might lead to change forms not being 
segmented at all if they were incorporated by a previous oversized object 
and all potential seed candidates are subsequently skipped as 
segmented. While our results show no indication of such a case, this 
consideration becomes relevant for the analysis of coinciding change 
processes. Scenarios where some change form occurs within a larger 
area of surface change become ever more likely when observation pe
riods cover multiple seasons and years, and the types of surface changes 
to be extracted by spatiotemporal segmentation are extended in their 
variety. These could for example be changes to individual morphologic 
components on top of continual surface lowering, such as the movement 
of boulders within the creep of a rock glacier (Ulrich et al., 2021). Ac
counting for this will require a multiscale approach particularly in the 
temporal change detection, to separate, e.g., changes at slower rates 
from simultaneous, spatially overlapping changes. 

The presented approach of 4D change extraction works on change 
information from time series of 3D geodata in a regular structure. The 
input for the method could hence also be a series of gridded topographic 
information, such as Digital Elevation Models. The epochs of time series 
need not be sampled at regular intervals, as is often the case for archives 
of topographic data. Irregularly sampled time series will require addi
tional considerations, though, for example by weighting epochs in the 
computation of time series similarity. Alternatively, gaps in the tem
poral domain of data could be filled by interpolating changes heuristi
cally or based on modelling. Depending on the relation of temporal 
resolution and length of time series, this could lead to extremely large 

data volumes and consequently strongly increased computational cost of 
spatiotemporal segmentation. The DTW distance computation during 
region growing is the main factor of computation time with a complexity 
of O(es), where e is the number of epochs in the sub-period of a detected 
change and s is the segment size, i.e. the number of DTW distance 
computations performed. Considering the linear increase of computa
tional cost, analysis could benefit from a reduction in spatial and tem
poral resolutions, though the influence on extracted 4D-OBCs requires 
investigation. Ultimately, one can always make use of the original, in 
case of gridded point cloud data, full 3D information in the spa
tial–temporal extent of resulting 4D-OBCs to enrich the detail analysis of 
individual change forms and processes. To reach this point in the anal
ysis, fully automatic spatiotemporal segmentation provides an essential 
step to detect and extract surface change from large 4D geospatial data. 

5. Conclusion 

In this paper, we present a fully automatic approach to change 
analysis from 3D time series data. The method detects changes in the 
time series at locations in a scene and makes use of spatiotemporal 
segmentation to delineate change forms. This enables the extraction of 
4D objects-by-change (4D-OBCs), i.e. temporary surface changes 
induced by material transport on continuous surface morphology that 
are difficult to detect in space and time using single topographic snap
shots or fixed-period pairwise change analysis. 

The crucial steps to deploy spatiotemporal segmentation for the 
extraction of changes from 4D geospatial data are the automatic 
detection of relevant change occurrences, selection of suitable seeds and 
locally adaptive thresholding of the region growing segmentation that 
accounts for the variety of spatial and temporal scales that are covered 
by surface changes in natural scenes. Our developed method of auto
matic seed detection and selection sorts seeds by their importance for 
the delineation of individual change forms. It hence avoids highly 
redundant computation and thereby reduces the segmentation effort. 
The segmentation from a selected seed itself performs region growing 
for a set of thresholds in parallel. Through locally adaptive thresholding 
no decision for one threshold is required. This avoids general over- and 
underestimation in the spatial extents of 4D-OBCs, which would occur 
for the variety of magnitudes and durations of surface changes if using a 
one-for-all threshold of time series similarity during region growing, 
albeit strict or loose. All in all, a high accuracy is achieved for the 
detection and delineation of surface changes from the 3D time series 
dataset. 

The extraction of 4D-OBCs from 3D time series improves standard, 
pairwise approaches to change analysis by removing the requirement to 
select periods for the analysis of changes. The consideration of surface 
change histories in the time series-based approach enables the separa
tion of spatially overlapping changes, which might be aggregated in the 
extraction of accumulation or erosion forms from bitemporal change 
information of a scene. The developed approach thereby enables a 
generic extraction of surface changes in their varying spatial and tem
poral extents from large and dense 4D geospatial data. 
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