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Chapter 1

Introduction

In this thesis we study models from statistical physics in curved space. The models
that we treat are standard and their properties are well-known in flat spaces. However,
the fact that we consider these models in curved space is new. The context of curved
space leads to new challenges, both of conceptual and of technical nature.

The goal of this introduction is to present the main concepts that are dealt with in
this thesis, to point to the relevant literature and to introduce the main research goals
to which this thesis contributes1.

We start by describing mathematical statistical physics, the subfield of mathemat-
ics (or, more precisely, probability theory) of which the research presented in this
thesis is a part. Then we introduce the models that we will work with, along with
some important properties and methods that are known and used in flat spaces. To
be more precise, we introduce interacting particle systems, where we mainly discuss
hydrodynamic limits and equilibrium fluctuations, and the Gaussian Free Field. Fol-
lowing that, we give an overview of how these notions have been studied outside of
the standard spaces like Rd or the flat torus. Then we motivate why we study these
models in curved space and we highlight which conceptual and technical challenges
arise. At that point we can formulate the aim of this thesis and sketch the content of
the following chapters.

In this chapter we stay on a conceptual level without going into mathematical details
(a master student in mathematics, say, should be able to read it without much trou-
ble). In Chapter 2 we give a brief mathematical introduction of the probabilistic and
analytic tools that are used in this thesis and we describe some basic notions from
differential geometry that are necessary to understand the upcoming chapters. All
other mathematical definitions will be given in the chapters concerned.

1Note that we focus mainly on the topics that are presented in Part II. The content of Chapter 7
stands more on its own, so will be introduced separately.
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4 Introduction

The readers who are familiar with the field and mathematical background are advised
to skip to Section 1.6 and 1.7 for the motivation and goal of this thesis and an overview
of the upcoming chapters and then proceed to Chapter 3.

1.1 Mathematical statistical physics

1.1.1 Statistical physics

The key observation to make when one enters statistical physics is that many nat-
ural objects and phenomena can be described on different scales. For instance the
motion of a liquid or the evolution of a gas can be described with partial differential
equations. However, on a much smaller scale, a gas or fluid actually consists of an
enormous amount of tiny particles that move around chaotically and interact with
each other. Similarly, consider a ferromagnetic material. As a whole object it has
magnetic properties, but these are determined by the magnetic moments of the many
particles that it consists of. Another example is a porous material: whether or not
water can percolate through the whole object depends on how the many tiny holes in
the material are distributed.

In all of these examples, we distinguish (at least) two different levels of description.
We call the large scale the macrolevel, this is the level of a system as a whole. The
small scale is called the microlevel. This should be thought of as the level of individual
particles or elements of a system. Note that the descriptions on these different scales
show very different behaviour. For instance, even when a gas seems to stay still on
a macrolevel (i.e. its density is constant in time), the particles that it consists of
keep bouncing around at very high speeds on a microlevel. However, both levels of
description describe the same gas, so they must be closely related to each other.

Therefore, one of the goals of statistical physics is to derive the macroscopic prop-
erties (density, temperature, entropy, magnetisation, percolation) of matter and the
equations that govern them from the microscopic behaviour, properties and/or inter-
actions of the particles that they are made of. In particular, one tries to understand
how phenomena like phase transitions, shock waves, condensation and spontaneous
magnetisation emerge. Special attention goes out to what happens around the critical
points of the systems: around the states or parameters that lie between regions with
different behaviour.

We want to point out that this idea of passing from microscopic to macroscopic
descriptions is certainly not restricted to physics, but also occurs in other fields. For
instance in genealogy, the microscopic scale is the scale of individuals in a population.
From their interactions and reproduction events, one would like to understand on a
macroscopic scale how allele frequencies evolve and which characteristics of species
survive or die out. In neuroscience the brain can be regarded on a microscopic level as
the firings of neurons through a complex network, from which macroscopic phenomena
like the functions of the brain and even consciousness emerge. Finally, in epidemiology,
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one of the goals is to understand the macroscopic spread of a virus or disease in a
population from the microscopic interactions between individuals in that population.

1.1.2 Mathematical statistical physics

Statistical physics gave rise to a subfield of mathematics: mathematical statistical
physics. The goal of the mathematician is to make mathematically solid definitions
of the objects and quantities involved in statistic physics and to derive its statements
in a mathematically rigorous way. This leads to an interesting interplay between
mathematics and physics. On the one hand, mathematicians develop a framework to
rigorously formulate and verify the physical results and find new results. On the other
hand, physicists supply a lot of interesting objects, models, examples and phenomena
that give direction to a better understanding of mathematics and even lead to new
mathematical theories. These are of course rough characterisations, in practice the
distinction is not so sharp.

The field of mathematical statistical physics is mostly part of probability theory. The
reason is that on the microscopic level, we generally use probabilistic models. There-
fore also the tools and methods to relate them to macroscopic models come from
probability theory. This might seem surprising at first. After all, the movement and
collisions of particles or the alignment of magnetic spins are chaotic but deterministic.
However, there are good reasons to use probabilistic models. First, there is the em-
pirical reason that some physical phenomena are described very well with stochastic
models, think for example of the ubiquitous Brownian motion that famously describes
the trajectory of pollen grains in water. Second, there is a pragmatic reason, namely
that some randomness gives better ergodic properties of the microscopic system. The
third reason is that understanding these models with random dynamics and interac-
tions is an important step towards understanding a more deterministic setting where
the only randomness is in the initial configuration (see for instance Bodineau et al.
[19], Liverani [110], Bodineau et al. [20]).

The physical question of relating microscopic and macroscopic descriptions now be-
comes part of a broader probabilistic question: how does randomness of many (inter-
acting) components of a system influence the behaviour of the bulk? Note that some
classical theorems from probability theory, namely the Law of Large Numbers and the
Central Limit Theorem, are of the same nature. Also in the cases of those theorems
there are many random variables on a microscopic level and one studies the behaviour
of their average, which is a macroscopic quantity. In fact, we will explain later in this
introduction that results on hydrodynamic limits and equilibrium fluctuations can
be interpreted as infinite-dimensional versions of the Law of Large Numbers and the
Central Limit Theorem.

The main probabilistic framework in which we analyse the questions of statistical
physics is interacting particle systems, which we will introduce shortly.
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Remark 1.1 (Related models). In addition to the models from statistical physics,
there are many other probabilistic models for all kinds of physical phenomena. For
instance random fields, random polymers, random graphs, sandpiles and many more
are widely studied both in probability and physics. The reason to mention them here
is first that more often than not, these models are related to models from statistical
physics. The second reason is that they share the common trait with interacting
particle systems that they are discrete, probabilistic models that usually have contin-
uous limits. Therefore the methods to study them have a lot in common. Indeed, the
Gaussian Free Field (that we will introduce later) is an example of a random field and
we will see in this thesis how the methods of studying it are related to the methods
used in certain problems in interacting particle systems. Finally, the active particles
that we study in Chapter 7 are also a probabilistic model for a physical phenomenon.
As we mentioned before, we will introduce these separately in Chapter 7.

1.2 Interacting particle systems

Now we arrive at one of the main classes of probabilistic models that we will deal
with in this thesis: interacting particle systems (IPS). The main idea is that we want
to model a space through which particles move randomly and where they influence
each other. We already explained why we have randomness in the motion of the
particles, but there is another key ingredient for interacting particle systems, namely
discretisation. Even though we normally think of particles as moving through a
continuum, it turns out that it is very helpful for our models to discretise the space
into a collection of points (or a grid) between which the particles can jump. We will
see soon how some grids can be rescaled to approximate a continuum.

1.2.1 Common interacting particle systems

Let us start by considering the following IPS. This will be our main example to
illustrate the concepts that we encounter later. It is also the IPS that is studied in
this thesis (although in a different space).

Example 1.2 (SEP). Let the collection of possible particle positions (or sites) be
given by Z. At each site we put either one particle or no particle. This is the initial
configuration. Now we need to specify the dynamics: how the particles move. Each
particle has a random clock: it rings after exponential times with rate 1 (independent
of the other particles). When the clock of a particle rings, it jumps to the left with
probability 1

2 or to the right otherwise. In case the site that it wants to jump to is
already occupied, the jump is suppressed. This model is known as the Symmetric Ex-
clusion Process (SEP) on Z, see also Figure 1.1. The particles all perform symmetric
random walks with the restriction of at most one particle per site. This restriction
induces a repulsion between the particles.
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. . . −3 −2 −1 0 1 2 3

×

. . .

Figure 1.1: SEP on Z with the next possible jumps.

Starting from this basic model, we can make a lot of variations by changing one or
more of the following aspects.

i) Initial configuration. We can influence how we initialise the particle system.
For instance fix a parameter ρ ∈ (0, 1) and at each position x ∈ Z put a particle
with probability ρ (independent for different positions). One can also start
with a Poisson distributed amount of points at each site or from a deterministic
configuration (of course taking into account that in case of SEP there can be at
most one particle per site).

ii) Jumping distributions. For instance we can let particles jump farther than one
site or we let them jump to the right with higher probability than to the left. We
could also let the jumping distribution depend on the position of the particle,
for example by imposing a potential on the particles.

iii) Interaction. As the name of IPS suggests, the most interesting particle systems
are those where the particles interact. The most basic interaction is to enforce
a maximum of one particle per site as in the Symmetric Exclusion Process
(SEP). As we said earlier, the exclusion induces a repulsion between particles.
To create attraction, one can add the tendency to jump to sites with a lot of
particles. This is done in the Symmetric Inclusion Process (SIP). Finally we
mention the class of Zero Range Processes (ZRP), where the only interaction is
with particles at the same site, which can lead to both attractive or repulsive
behaviour (depending on parameters). Many more types of interaction have
been studied.

iv) Space. In the example above, the particles jump on Z. A first step would be to
extend to Zd. This seems straightforward, but can seriously alter the properties
of the system. We could also arrange a finite number of sites in a circle and
obtain a (discrete) torus, again this can be done in multiple dimensions. In
general, one can just specify a graph together with probabilities to jump from
points to other points. We will elaborate on this in Section 1.6 and Section 2.1.3.

v) Boundary conditions. We can add points where particles enter or leave the
system (reservoirs). Such points can model boundary conditions.

vi) Multiple types. Instead of having all particles behave the same, we could have
different kinds of particles. For instance have blue particles that move to the
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right and red particles that move to the left. Particles can also be allowed to
switch colour. This is used to study reaction-diffusion equations.

vi) Internal state. Building on the previous point, we could even have particles that
decide which jumps they prefer based on an internal state process. Such particles
are called active particles and we will see more about those in Chapter 7.

This list is not exhaustive, many more variations can be considered. Of course for
each variation one should check that it is well-defined mathematically (for instance
to prevent that the numbers of particles at a fixed site goes to infinity in finite time).

The start of this field came through the work of Spitzer and Dobrushin around 1970.
The Symmetric Exclusion Process was introduced with a variety of other interact-
ing particle systems in Spitzer [139]. A good reference on some common IPS and
the main techniques and results is for instance Liggett [109]. Note that [109] also
contains a different class of systems, where at each site there is a spin (up/down) or
other parameter that evolves randomly and is influenced by its neighbours (important
examples include the Ising or Curie-Weiss model, the voter model and the contact
process). A further elaboration is beyond the scope of this introduction.

All these models have in common that the future evolution of the process only depends
on the current state (or configuration) of the process. In other words, they are Markov
processes. Indeed, mathematically, we regard such systems as Markov processes in
the space of possible particle configurations. For SEP, for instance, this state space
is {0, 1}Z. Here a 1 indicates the presence of a particle (and a 0 the absence). Note,
however, that the trajectories of individual particles are in general not Markov.

In the next sections, we will explain the kind of results that we obtain for SEP. We
want to mention here some other research questions that are typically investigated
for interacting particle systems. We already mentioned that first of all it needs to be
checked that a model is mathematically well-defined and does not blow up. The next
goal is often to see if there is a stationary measure (see Section 2.1.2 for the definition).
And if so, is it unique? And does the system converge to such measure? What are
its properties? And how does the behaviour of the IPS depend on its parameters? In
particular, are there any phase transitions? Can we discern multiple time scales on
which the process evolves?
For the purposes of this thesis, the most interesting properties of interacting particle
systems are what happens when we rescale them in an appropriate way.

1.2.2 Rescaling

As we mentioned earlier, the IPS are defined on grids that serve as a discretisation
of an underlying continuum. To do this, space and time need to be rescaled in an
appropriate way. We will illustrate this by defining SEP on a discretisation of the
interval [0, 1]. To avoid dealing with boundary conditions, we identify 0 and 1 and
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work on the 1-dimensional torus (the circle). With a slight abuse of notation, we will
still denote it as [0, 1].

Example 1.3 (SEP on a torus). We define the discrete torus GN = {1, 2, .., N} by
connecting the points 1 and N . Now SEP is defined on GN in the same way as on
Z: at each site i ∈ GN we initially put either one particle or no particle. Then the
particles jump after exponential times to a neighbour with equal probability. Note
that now 1 and N are considered neighbours. See Figure 1.2 for SEP on 1

NGN .

0 1/N 2/N . . .

×

N/N = 1

Figure 1.2: SEP on 1
NGN with the next possible jumps.

If we rescale GN with a factor 1
N , we obtain

1

N
GN =

{
1

N
,

2

N
, ..,

N − 1

N
, 1

}
. (1.1)

The larger N is, the better this approximates the torus [0, 1]. We will therefore use
GN as the microscopic space and [0, 1] as the macroscopic space by associating

[0, 1] 3 x←→ dNxe ∈ GN . (1.2)

We call the elements of [0, 1] macroscopic locations and the elements of GN micro-
scopic locations.

To pass from a microscopic description of a process on GN to a macroscopic descrip-
tion on [0, 1], we should let N go to infinity. Now note that also the rate with which
particles jump should depend on N . Indeed, when GN is rescaled, the particles make
jumps of size 1

N . In the limit of N to infinity the particles would not move at all.
Therefore we need to answer the following question.

How many steps of size 1
N should on average be made per unit time, to

have a macroscopic movement of O(1)?

For SEP, the answer is N2. This comes from the symmetry of the random walks that
the particles perform. For instance by using the Central Limit Theorem, one can see
that after N i.i.d. steps with mean 0, a particle travels O(

√
N) distance. So after N2

steps, it travels O(N) distance on the microscopic grid, so O(1) in the macroscopic
space. Therefore we associate

t←→ N2t, (1.3)

where t is the macroscopic time associated to the microscopic time N2t.
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Remark 1.4. Note from (1.2) and (1.3) that when space is rescaled by a factor N ,
time should be rescaled with N2. We will see in Section 1.3 that the limiting PDE
that the rescaled SEP satisfies (in a way to be defined) is the heat equation. This
equation has a second derivative with respect to space and a first derivative with
respect to time. It is therefore invariant under the proposed scaling. That is another
way to see why it is the right scaling. For other interacting particle systems the time
scaling might be different. For instance with other kinds of interaction or (weak)
asymmetries it is not always directly clear how strong the interaction should be on a
microscopic level to be visible at a macroscopic level. The limiting equations can also
be very different from the heat equation.

Summarising what we discussed so far, we conclude the following. To study SEP
on a discretisation of the torus in such a way that it has a meaningful scaling limit,
we should scale space with a factor 1

N and time with a factor N2. This results in

the following process. At the point i
N ∈

1
NGN , a particle waits an exponential time

with rate N2 and then jumps to i−1
N or i+1

N with equal probability unless that site is
occupied.

1.3 Hydrodynamic limit

As we discussed in Section 1.1, our goal with interacting particle systems is to go from
a microscopic to a macroscopic description. We do so when we take the hydrodynamic
limit of an IPS. We already saw in Section 1.2.2 how to rescale SEP to obtain a
meaningful scaling limit. Now we will explain how to relate rescaled particle systems
to limiting density profiles that satisfy a PDE.

1.3.1 The idea

When considering a gas or fluid, we do not wish to track the position of every particle
but rather we would like to know how macroscopic quantities evolve. These are quan-
tities that do not depend on individual particles but on (local) averages over groups
of many particles. For the hydrodynamic limit, the quantity that we are interested
in is the density of the fluid or gas (as a function of space). In a hydrodynamic limit
result we prove that such limiting densities exist and how they behave.

We must first define how to relate a microscopic description to a macroscopic descrip-
tion. Again, let us consider GN as the microscopic space and the torus [0, 1] as the
macroscopic space. For each N , let ηN be a particle configuration on GN , i.e. a func-
tion GN → {0, 1} that is 1 at a site iff there is a particle at that site. Note that there is
actually not one microscopic particle configuration, but a sequence of configurations
(depending on N). A macroscopic density profile is a (smooth, say) non-negative
function ρ on the macroscopic space [0, 1]. We now associate the sequence ηN of
microscopic configurations to ρ if the following holds. For every macroscopic point
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x ∈ [0, 1] there are in the limit on average ρ(x) particles per site in ηN around the
associated microscopic point dNxe.

We will make this concept mathematically precise shortly. For now it is important
to note two things. First, for each macroscopic profile there are very many different
sequences of configurations that are associated to it, both random and deterministic
ones. A useful way to define a sequence of configurations for a fixed density profile is
as follows. Fix a macroscopic density profile ρ. Now for each N construct the con-
figuration ηN by placing a particle at i ∈ GN with probability ρ(i/N) independently
for different sites. This way the configurations ηN have associated density profile ρ.
We come back to this in Example 1.5.
Second, having an associated density profile is a special property that shows regular-
ity of the particle configurations. It is easy to make examples where this property
does not hold, i.e. sequences of particle configurations that do not have an associated
density profile.

Now the idea of a hydrodynamic limit (formulated for SEP) is as follows (see also
Figure 1.3). We start SEP on GN from initial configurations that are associated to
some initial density profile ρ0(·). Then we rescale space and time and show that in
the limit of N to infinity two things hold.

a) At every later macroscopic time point t, the particle configurations have an
associated density profile ρt(·).

b) The density profiles ρt(·) satisfy the heat equation ∂tρt = ∆ρt with initial
condition ρ0.

We call the limiting equation the hydrodynamic equation or the hydrodynamic limit
of SEP on [0, 1]. A more mathematical formulation of this theorem will be given later.

0 1/N 2/N . . . N/N = 1

0

1
ρt

ηNt

Figure 1.3: SEP and a density profile which evolves according to the heat equation.
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Note that part a) is quite surprising. As we noted above there are many different
sequences of particle configurations (either random or deterministic) associated to the
same initial profile ρ0. Apparently it does not matter from which of these configuration
the system starts. Just having an associated density profile provides enough regularity
to make sure that at every later point in time there is still an associated density
profile, which is a very special property. Part b) now tells us that this density is
actually uniquely determined by the initial density ρ0 through the heat equation.
This equation describes the behaviour of SEP when it is rescaled.

1.3.2 Mathematical framework

To define mathematically that a sequence of microscopic particle configurations is
associated to a macroscopic density, we proceed as follows. Denote a particle config-
uration on GN by ηN , where ηN (i) is the number of particles at the point i. Place
mass 1

N at each particle, by defining the empirical measure

µN =
1

N

N∑
i=1

ηN (i)δi/N , (1.4)

where for x ∈ [0, 1], δx denotes the Dirac measure at x. When ηN is random, µN is a
random measure on [0, 1]. Now we say that a sequence of particle configurations on
GN has associated density profile ρ(·) if

µN −→ ρ(x)dx (N →∞)

weakly in probability.

Example 1.5 (Local equilibrium). As we mentioned before, as an example with a
fixed density profile ρ : [0, 1]→ [0, 1], one can let ηN (i) be independent and Bernoulli
distributed with parameter ρ(i/N). This implies the required weak convergence in
probability of the corresponding empirical measures to ρdx. The resulting random
configurations ηN display what we call local equilibrium. When N is large, the sites
around i ∈ GN have independent Bernoulli distributions with parameter very close to
ρ(i/N) (since ρ is smooth), so in the limit around every point the distribution looks
like a product of i.i.d. Bernoullis. However, when moving to a different macroscopic
point, the parameter changes. This is called a slowly varying parameter.

We illustrate the hydrodynamic limit result by formulating it for SEP on GN . Denote
the particle configuration onGN at time t by ηNt . Here ηNt (i) is the number of particles
at position i at time t. Starting from some initial distribution, we run SEP. Together
this defines the particle process for all t ≥ 0. Write

µNt =
1

N

N∑
i=1

ηNN2t(i)δi/N (1.5)
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and note the space rescaling in i
N and the time rescaling in N2t (as discussed in

Section 1.2.2). Note that the trajectory µN = (µNt , t ≥ 0) is a random measure-
valued trajectory.

We can now give the statement of the hydrodynamic limit result. Note that a hydro-
dynamic limit is first of all about pointwise convergence of µNt for each t. However,
it is possible to show convergence for the whole trajectory, which is a bit stronger.
Since we will sketch a proof for convergence of the trajectory, we formulate the result
directly in that way. The pointwise convergence is a direct consequence.

Theorem 1.6. Consider the Symmetric Exclusion Process ηNt on GN with corre-
sponding empirical process µNt . Let ρ0 : [0, 1] → [0, 1] be a continuous function with
ρ0(0) = ρ0(1). Suppose that the initial configuration has associated density ρ0, i.e.

µN0 −→ ρ0dx (N →∞)

weakly in probability. Then:

i) The trajectory (µNt , t ≥ 0) converges weakly in path space to a deterministic
trajectory t 7→ ρtdx.

ii) t 7→ ρt satisfies the heat equation.

This type of result for SEP was first proved in Galves et al. [67] and Ferrari et al.
[61]. We will sketch a proof from Kipnis and Landim [96] in Section 1.3.3.

The result of Theorem 1.6 is in some sense a rather basic hydrodynamic limit results
since the particles perform simple symmetric random walks, the interaction leads
to closed equations (as will be explained later), there are no boundaries and the
space (the circle) is easy to discretise. All of these things can be changed. Most
importantly, we can add different interactions between the particles, like we discussed
before, and obtain non-linear hydrodynamic equations. Further, macroscopic PDEs
with boundary conditions can be obtained by letting particles enter or leave the system
in an appropriate way. There are also results for particles with a drift, different kinds
of particles and even active particles (we will mention some of them). In this thesis
we consider a basic kind of interaction (SEP), no boundaries and no drift, because
we change something else: the space. We will get back to this in Section 1.6.

1.3.3 Method of proof

To obtain a hydrodynamic limit result, one often proves the following three steps (as
described in for instance Kipnis and Landim [96]).

1) The distributions of the random trajectories are tight (relatively compact) as
measures on the path space. This ensures that every subsequence of µN has a
convergent subsequence.

2) Every limiting point of µN satisfies in the weak sense a deterministic PDE with
intial condition ρ0dx.
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3) The PDE has a unique weak solution of the form ρtdx where ρt strongly satisfies
the PDE with initial condition ρ0.

Step 2 and 3 together imply that all limiting points of µN are the same. Together
with step 1, this implies convergence in distribution to the trajectory t 7→ ρtdx. Since
this limiting point is deterministic (concentrated on a single trajectory), the weak
convergence implies convergence in probability. Usually step 1 is mostly technical
and step 3 is a result from analysis. Therefore we are usually mostly concerned with
step 2.

For step 2 a common method (that is also used in this thesis) is the martingale
approach, we will sketch it here.

Step 2 proof sketch. Using the Dynkin martingale (see Chapter 2), one can show that
for every test function φ

〈µNt , φ〉 − 〈µN0 , φ〉 −
∫ t

0

N2LN 〈µNs , φ〉ds = MN
t . (1.6)

Here 〈µNt , φ〉 denotes integration of φ with respect to µNt and MN is a martingale.
LN is the generator of SEP (see Chapter 2) multiplied by N2 that comes from the
time scaling. For now it is only important that

N2LN 〈µNt , φ〉 = N
∑
i∈GN

[
ηNt (i)(1− ηNt (i+ 1))

(
φ
(
i+1
N

)
− φ

(
i
N

))
+ ηNt (i)(1− ηNt (i− 1))

(
φ
(
i−1
N

)
− φ

(
i
N

))]
. (1.7)

By manipulating the sum, we see that this equals

N
∑
i∈GN

(ηNt (i)− ηNt (i+ 1))
(
φ
(
i+1
N

)
− φ

(
i
N

))
.

Note that there are only linear terms of ηNt left, the second order terms cancelled each
other out. A partial summation now shows that this equals

1

N

∑
i∈GN

ηNt (i)N2
(
φ
(
i+1
N

)
+ φ

(
i−1
N

)
− 2φ

(
i
N

))
= 〈µNt ,∆Nφ〉. (1.8)

Here ∆N is the discrete Laplace operator. Plugging this back into (1.6), we obtain

〈µNt , φ〉 − 〈µN0 , φ〉 −
∫ t

0

〈µNs ,∆Nφ〉ds = MN
t .

Now one shows that the martingale MN
t vanishes in the limit (to be precise, by

studying its quadratic variation) and that ∆N converges to ∆. The limiting equation
then becomes

〈µt, φ〉 − 〈µ0, φ〉 −
∫ t

0

〈µs,∆φ〉ds = 0. (1.9)

This shows that the limiting density µt is a weak solution to the heat equation.
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There are two things to take away from this proof sketch. First, it really helped that
the nonlinear terms with ηNt in (1.7) cancelled each other out and that we were able to
write (1.8) as a function of the empirical measure µNt without any other dependence
on ηNt . Because of this we obtained a closed equation for the empirical measures µNt .
In general this is not directly the case, for instance for particle systems with other
kinds of interaction. To close the equation in those cases, the inconvenient terms are
replaced by averages over large blocks of sites. There is whole class of systems (the
so called gradient systems) for which a method to do this has been developed. The
crucial estimates to replace quantities by averages are known as the one block and
two block estimates. We will not need these in this thesis (since we treat SEP), but
we will comment on them in Section 4.5.
Second, note that in (1.8), the discrete Laplacian ∆N appears. The reason is that this
operator is the generator of the symmetric random walk that the particles perform
(see Chapter 2 for more about generators). This tells us that to make such proof work
on a manifold, we will need to have a discrete Laplace operator there that converges
to the manifold Laplacian: the Laplace-Beltrami operator. We will get back to this
in Chapter 3.

To prepare for the next topic, we finally want to note that a hydrodynamic limit re-
sult can be thought of as an infinite-dimensional version of the Law of Large Numbers
(LLN). Indeed, this can be seen in two ways. First, the trajectory of empirical mea-
sures is the average of the (dependent) trajectories of the individual particles when
they are represented by Dirac measures. In the limit, all the randomness averages out
and a deterministic trajectory emerges. Second, we can look at it locally in space.
When a sequence of configurations ηNt has an associated density profile ρt(·), it means
that around a macroscopic point x, the average of the random particle numbers in
microscopic sites around dNxe is the deterministic real number ρ(x). This can be
seen as a local LLN around x.

1.3.4 Relevant literature

Among the first mathematical results about hydrodynamic limits was Morrey Jr [121].
Two important methods to obtain hydrodynamic limits are the entropy method and
the relative entropy method, developed in Guo et al. [81] and Yau [159], respec-
tively. An overview of the concepts and methods of hydrodynamic limits as well as
an overview of the early literature can be found in Kipnis and Landim [96]. For
exclusion processes also Seppäläinen [136] gives a proof for the hydrodynamic limit.
Other relevant overviews are given in Spohn [141], De Masi et al. [37] and De Masi
and Presutti [36].

For hydrodynamic limits with boundary conditions see for instance Gonçalves [75] and
Franceschini et al. [64]. We will point to results in more general spaces in Section 1.6.
For an asymmetric version of SEP see Kipnis et al. [98], Landim et al. [103] and Ferrari
[62]. In the context of this thesis it is also interesting to mention the hydrodynamic
limit for a system of active particles in Erignoux [54].
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1.4 Equilibrium fluctuations

1.4.1 The idea

We have seen that a hydrodynamic limit result can be thought of as an infinite-
dimensional version of the Law of Large Numbers (LLN). It is only natural to ask
whether there exists a corresponding Central Limit Theorem (CLT). To go from a
usual LLN to a CLT, one subtracts the limit given by the LLN and rescales in a
different way to see the fluctuations around this limit. We can follow the same ap-
proach with a particle system: we subtract the solution to the hydrodynamic equation,
rescale and quantify how the resulting object behaves. We will see that the limiting
object can be interpreted as infinite-dimensional Gaussian process, so indeed we get a
CLT-like result. The limiting object is again a trajectory, but this time it is a random
trajectory. It formally solves a stochastic PDE (SPDE) instead of a PDE.

The fluctuations around the hydrodynamic limit are usually considered in equilib-
rium, i.e. when the microscopic process is started from a stationary distribution (see
Chapter 2 for the definity of stationarity) and, as a consequence, the macroscopic
density profile is constant in time. The reason is that the limiting Gaussian noise
is so rough that it is not always clear how to define it in the non-equilibrium case.
In equilibrium, the limiting object is a stationary Gaussian process, for which there
are more techniques available to define them. Another more pragmatic advantage of
stationarity is that the distribution of the microscopic process is known and equal at
each point in time. There are also results for non-equilibrium fluctuations. We will
mention some of them later.
In the case of SEP on the circle, the stationary distributions are independent Bernoulli
random variables with constant parameter ρ. The hydrodynamic equation is the heat
equation, so a density profile that is constant in time is also constant in space and
equals ρ everywhere.

1.4.2 Mathematical framework

We will again illustrate the mathematical framework around equilibrium fluctuations
by using the example of SEP on GN . As we discussed above, to consider the process
in equilibrium, the density profile must be constant. We set it equal to a constant
ρ > 0. The limiting fluctuation field will be so rough (similar to white noise) that
we need to interpret it as a random distribution. Therefore we define the fluctuation
fields Y Nt as acting on a smooth function f as follows:

Y Nt (f) =
1√
N

N∑
i=1

f
(
i
N

)
(ηNN2t(i)− ρ). (1.10)

Here the scaling in space and time is present in the factors i
N and N2t, respec-

tively. Als note that we subtracted ρ, the constant macroscopic density, and that
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the fluctuation field has a scaling of 1√
N

instead of 1
N , as usual with a CLT. Now

Y N = (Y Nt , t ≥ 0) is a random distribution-valued trajectory.

When we start SEP on GN from a product of Bernoulli distributions with parameter
ρ, it is stationary. This implies that the distribution of ηNt is also a product of
Bernoullis for every t. Using Lindeberg’s criterion, we can directly infer that

Y Nt (f) −→ N

(
0, ρ(1− ρ)

∫ 1

0

f(x)2dx

)
(N →∞) (1.11)

in distribution. This suggests that Y Nt (for fixed t) should have a Gaussian distribu-
tion since the marginals are Gaussian.

To see what the correlations are for different points of time requires a bit more work.
We sketch now how to do that. Note that some concepts that are explained in
Chapter 2 are used here.

Sketch of correlations. We start with the formula

Eηηt(j) =
∑
j∈GN

pNt (i, j)η(i),

which holds for SEP and where pNt (i, j) is the probability that a symmetric random
walk on GN starting from i is at j at time t. Using this and the Markov property
(see Chapter 2), one can show that for s < t

Cov(ηNs (i), ηNt (j)) = ρ(1− ρ)pNt−s(i, j).

This yields

Cov(Y Ns (f), Y Nt (g)) =
1

N

∑
i,j∈GN

f
(
i
N

)
g
(
j
N

)
ρ(1− ρ)pNN2(t−s)(i, j),

which converges to

ρ(1− ρ)

∫ 1

0

f(x)

∫ 1

0

pt−s(x, y)g(y)dydx,

where pt is the heat kernel on the circle. From this we conclude that the marginals
of the limiting process satisfy

Cov(Yt(f), Ys(g)) = ρ(1− ρ)〈f, S|t−s|g〉, (1.12)

where 〈f, g〉 denotes the L2 inner product on [0, 1] and S is the heat semigroup.

It turns out that the limit Y of Y N is a stationary Gaussian process that formally
solves the SPDE

dYt = ∆Ytdt+
√

2ρ(1− ρ)∇dWt. (1.13)
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Here W is space-time white noise. (1.13) shows that the limiting fluctuation field
satisfies a noisy version of the heat equation. It can be interpreted as an infinite
dimensional version of the Ornstein-Uhlenbeck process (see Chapter 2).

The interpretation of the term
√

2ρ(1− ρ)∇dWt in (1.13) is that if we let it act on
a test function f and integrate it from 0 to t, the resulting process is a martingale
Mf
t (Y ) with quadratic variation 2tρ(1 − ρ)

∫
(∇f)2dx (see Section 2.1.4 for more

on martingales and quadratic variation), and is therefore in fact a constant times
Brownian motion. The fact that the noise is given by ∇dWt instead of dWt is due to
a (local) conservation law, i.e. the conservation of the number of particles.

This interpretation suggests that we can give meaning to the SPDE in (1.13) by
evaluating both sides on test functions and integrating them. We then obtain the
following definition of solutions of (1.13). For each test function f , the following two
processes should be martingales:

Mf
t (Y ) := Yt(f)− Y0(f)−

∫ t

0

Ys(∆f)ds (1.14)

Nf
t (Y ) := (Mf

t )2 − 2tρ(1− ρ)

∫
(∇f)2dx.

This requirement is called a martingale problem.

We summarise these results in the following theorem.

Theorem 1.7. Consider the Symmetric Exclusion Process ηNt on GN with corre-
sponding fluctuations fields Y Nt . Let the initial configuration be a product of Bernoulli
distributions with parameter ρ ∈ (0, 1). Then the trajectory (Y Nt , t ≥ 0) converges
in distribution in path space to the generalised Ornstein-Uhlenbeck process Y defined
through (1.14). As a consequence, the marginals of Y are Gaussian and its covariance
structure is given by (1.12).

This type of result for SEP was first proved in Galves et al. [68]. We will sketch a
proof from Kipnis and Landim [96] in Section 1.4.3.

1.4.3 Method of proof

To prove that the fluctuation fields converge to a generalised Ornstein-Uhlenbeck
process, we can again proceed by proving the following three steps that are somewhat
similar to the steps in Section 1.3.3.

1) The distributions of Y N are tight (relatively compact). This ensures that every
subsequence of Y N has a convergent subsequence.

2) Every limiting point of Y N satisfies the martingale problem (1.14).

3) The martingale problem in step 2 uniquely determines the distribution of the
underlying process.
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Together these steps imply the convergence in distribution of Y N to some random
trajectory Y , which satisfies the martingale problem. The martingale problem char-
acterises Y as solving (1.13).

Again, usually we are mostly concerned with step 2. It can be handled with a Dynkin
martingale approach that is similar to the approach in Section 1.3.3. Only this time
the scaling is different, so the martingale part does not disappear and the limiting
process is still random. As in Section 1.3.3, for processes other than SEP, the mar-
tingale equation is not closed: the integral part of the Dynkin martingale cannot be
expressed directly in terms of Y Nt but depends on the microscopic configuration in
other ways. To overcome this, one again needs to replace the difficult terms by av-
erages over large boxes. This replacement is called the Boltzmann-Gibbs principle.
Since we will be dealing with SEP, we will not need that principle in this thesis.

1.4.4 Relevant literature

For the first results in this direction, including the Boltzmann-Gibbs principle, see
Martin-Löf [115] or Rost [133]. The proof for equilibrium fluctuations that we sketched
above can be found in Kipnis and Landim [96, Chapter 11], along with an overview of
other literature. In Holley and Stroock [84], the authors prove existence and unique-
ness of the generalised Ornstein-Uhlenbeck process. Non-equilibrium fluctuations
were first obtained in De Masi et al. [39] and then for SEP in general dimensions in
Ravishankar [128]. More recent results include Jara and Menezes [92] or Erhard et al.
[53].

1.5 (Discrete) Gaussian Free Field

One of the main models that is used in this thesis is the Gaussian Free Field (GFF).
We can think of the continuum GFF as a high-dimensional or spatial version of
Brownian motion, not in the sense that it takes values in space, but that it is indexed
by space. Like Brownian motion, it has a Gaussian distribution and it is centered.
Moreover, we will see that it satisfies a Markov property. In fact, in one dimension the
Gaussian Free Field is actually the same as a Brownian bridge. In higher dimensions,
the GFF is so rough that it is not function-valued but should be modelled as a random
distribution. We will first briefly discuss the idea of random fields and then introduce
the Discrete Gaussian Free Field (DGFF) and its continuum counterpart the GFF.
Finally we mention the steps to prove that the DGFF converges to the GFF.

1.5.1 Random fields

A stochastic process can be viewed as a collection of random variables indexed by time:
the values randomly evolve as time passes. Similarly, we can consider a collection
of random variables indexed by space: at every point in space there is a random
variable. If we were to make a graph of this collection, we would obtain a random
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surface or interface. To see why these are natural objects to study, consider the
following example. Suppose two fluids do not mix and one floats on top of the other.
The interface between the fluids is not smooth but goes up and down seemingly
randomly. Such interface could be modelled as a random surface. This is just one
example, random fields also appear in many other places such as material science,
cosmology, noise in sensory data, machine learning, image processing, textures in
computer graphics and more. See for instance Rue and Held [134] for an introduction
to Gaussian Markov random fields and some applications. Also for instance Zhu et al.
[161], Rangarajan and Chellappa [127], Diebel and Thrun [44], Cao and Worsley [25]
and Marinucci and Peccati [114] feature applications of random fields.

1.5.2 Discrete Gaussian Free Field

To define the Discrete Gaussian Free Field, we fix a finite graph V (denoting both the
graph and its vertex set by V ). We assume that the edges have weights cvw = cwv ≥ 0
for v, w ∈ V (where cvw = 0 means that there effectively is no edge between v and
w). Further, we require that between any two vertices, there exists a path consisting
of edges with weights greater than 0. Now we want to define a random variable ϕv
in each of the vertices v ∈ V in such a way that ϕv and ϕw tend to be close to each
other when cvw is high. In other words,

∑
v,w cvw(ϕv−ϕw)2 should typically be small.

Since this only gives a restriction on the ϕv’s relative to each other and not about
their values themselves, we need to ‘pin’ the field somewhere. Therefore we let V0 be
a non-empty proper subset of V and require that ϕv = 0 for v ∈ V0. Together this
leads to the definition that ϕ is a random vector indexed by v ∈ V with the following
distribution:

1

Z
exp

(
−1

2

∑
v,w

cvw(ϕv − ϕw)2

) ∏
v 6∈V0

λ(dϕv)
∏
v∈V0

δ0(dϕv). (1.15)

Here λ is the Lebesgue measure on R, δ0 is the Dirac measure at 0 and Z is a deter-
ministic normalising constant. We see indeed from (1.15) that the field ϕ is equal to 0
at the points in V0 because of the Dirac measures at those points. At the other points,
it has a density (with respect to the Lebesgue measure) that penalises realisations
with large differences between values at neighbouring points. See Figure 1.4 for a
realisation of the DGFF on a square lattice.

Instead of (ϕv−ϕw)2 we could have chosen h(ϕv−ϕw) for some other convex function
h that is symmetric around 0. However, for this particular choice of h(x) = x2,
the resulting distribution has surprisingly elegant properties. These are some of the
properties of the Discrete Gaussian Free Field (DGFF), as this model is called.

i) Gaussianity. ϕ has a multivariate normal distribution.

ii) Covariance. The covariance function of ϕ is Cov(ϕv, ϕw) = G(v, w). Here G is
the Green’s function corresponding to the random walk on V with jump rates
cvw and that is killed at sites in V0.
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Figure 1.4: The DGFF on a 60 × 60 square grid (source: https://en.wikipedia.

org/wiki/Gaussian_free_field).

iii) Mean. ϕ has mean 0. Moreover, when we let ϕ take other fixed values at V0,
the mean become the solution to the Poisson equation on V with those fixed
boundary values at V0 (and the covariance structure stays the same).

iv) Markov property. This property basically means that if the DGFF is conditioned
on the values in a subset of the sites, the resulting field is again a DGFF. To be
more precise, fix a non-empty proper subset U of V and fix values in U . Now
let ϕU be ϕ conditioned on the values in U . Then

ϕU = hU + ϕ
V \U
0 .

Here hU is harmonic (i.e. the solution of the Poisson equation) with the fixed

boundary values in U and ϕ
V \U
0 is a DGFF with boundary values 0 in U .

Moreover, ϕ
V \U
0 is independent of the values in U . This property implies the

following. Suppose one fixes a ‘closed contour’ of vertices somewhere in V .
Then, conditioned on the values of ϕ on that ring, the values inside of the ring
are independent of the values outside of the ring. Therefore it can be considered
a spatial analogue of the Markov property for stochastic processes.

We see that many important properties of the DGFF can be described in terms of
the Green’s function and the Poisson equation. Both of these are directly related to
the discrete Laplace operator on V . We will see that this Laplace operator turns out
to be very important in defining a suitable DGFF on a manifold. For completeness,
we mention here that one can add a constant multiple of the identity matrix to the
Laplacian in this model and obtain the so-called massive free field. The Laplacian can
also be replaced by its square. The resulting model is called the membrane model.

The nice structure of the DGFF allows for a thorough analysis of its properties.
Common examples of such properties are its extreme values, level set percolation and

https://en.wikipedia.org/wiki/Gaussian_free_field
https://en.wikipedia.org/wiki/Gaussian_free_field
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entropic repulsion.

1.5.3 Gaussian Free Field

To introduce the continuum counterpart of the DGFF, suppose we define the DGFF
ϕN on the grid V N given by

V N =

{(
i

N
,
j

N

)∣∣∣∣ i, j = 0, 1, .., N

}
(with edge weight 1 between neighbours and 0 otherwise). We set V0 ⊂ V N to be
the natural boundary: the points of V N on the boundary of [0, 1]2. This grid is a
discretisation of the square [0, 1]2. Now we can let N tend to infinity and study the
properties of the limiting field. A study of the Green’s function on V N shows that the
variance of the fields (around a macroscopic point in (0, 1)2) blows up. In fact, the
limiting field is so rough that it cannot be described as a random function. Therefore
it should be viewed as a random distribution, acting on an appropriate class of test
functions.

The limiting field ϕ is called the Gaussian Free Field (GFF) on (0, 1)2. Mathemati-
cally, it is a random element of the space of distributions acting on functions on (0, 1)2

with the following properties.

i) Gaussianity. The evaluation of ϕ on a suitable test function f , denoted by ϕ(f),
is a random variable with a Gaussian distribution.

ii) Covariance. When f, g are test functions, Cov(ϕ(f), ϕ(g)) = (f,Gg), where G
is the Green’s function on [0, 1]2.

iii) Mean. ϕ(f) has mean 0 for each f .

iv) Markov property. As the DGFF, the GFF has a spatial Markov property. It
states that if ϕ is restricted to orthogonal closed subspaces of the space of test
functions, then the resulting random distributions are independent. This implies
that if f and g are test functions with disjoint support, then ϕ(f) and ϕ(g) are
independent. It also implies roughly that we can fix a domain U ⊂ (0, 1)2 and
then write ϕ outside of U as the sum of a harmonic function with fixed values
in U and a GFF that is independent of the values in U . This is similar to the
Markov property of the DGFF.

Because of these properties, we view the GFF as a generalised Gaussian distribution
indexed by smooth functions instead of by points in space. The previous properties
were analogous to the DGFF properties. However, there are additional properties
that the GFF satisfies.

v) Conformal invariance. The GFF property is invariant under conformal map-
pings (mappings that preserve angles), i.e. the image of ϕ under a conformal
mapping is again a DGFF (although on a different domain).
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vi) Circle averages. Fix a point on (0, 1)2 and consider the average of the GFF on
a circle of radius ε around that point. Then these averages as a function of the
circle radii ε can be rescaled to Brownian motion.

We mentioned at the start of this section that the GFF can be interpreted as a
spatial version of Brownian motion. The circle averages show another way in which
the Gaussian Free Field is related to Brownian motion.

One of the important applications of the GFF is in the construction of Liouville
Quantum Gravity (LQG), a central object in random conformal geometry. In this
construction the conformal invariance property of the GFF is used. In fact LQG is
(formally) a random surface of which the Riemannian metric equals the exponential
of a GFF. Important for the study of LQG are the so called thick points of the GFF,
the points where the GFF is unusually high. The Gaussian Free Field also pops up as
a limiting random field for various probabilistic models, including for instance dimer
models.

We illustrated the GFF as a continuum limit of the DGFF in the 2-dimensional case on
the unit square (0, 1)2. We can also consider the GFF on domains in other dimensions
with analogous properties. It turns out that in dimension 1, it has enough regularity
to be a random function and actually equals a Brownian bridge. In dimension 2
and higher, however, it cannot be described as a function. The 2-dimensional case is
the most studied one, because of its use in other models in physics (like LQG). It is
also the critical case between dimension 1 and dimension 3, where other scalings are
sensible (see further Remark 1.8).

1.5.4 Convergence of the DGFF to the GFF

We sketch here how the convergence of the DGFF to GFF can be proved in arbitrary
dimension d. Fix some domain D in Rd. To prove convergence of the DGFF on grids
approximating D to the GFF on D, we interpret both the DGFF and the GFF as
elements of a Sobolev space of an appropriate negative index. Then there are often
two important ingredients.

i) Tightness (relative compactness) of the sequences of DGFFs.

ii) Convergence of the Green’s functions to the continuum Green’s function.

Tightness implies that subsequences have convergent subsequences and then the con-
vergence of the Green’s functions yields the uniqueness of the limit and shows that it
equals the GFF. See for instance Biskup [16] for more details.

In Chapter 6 we will generalise this result to compact manifolds of general dimensions.
For technical reasons, it is more convenient to define the GFF as acting on smooth
functions on a manifold (this will be explained in Chapter 6). The main advantage
is that it is easier to show tightness in that case. The main challenge will be to
show the convergence of the Green’s functions. Further, it is not directly clear how
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to define the DGFF when space cannot be rescaled. Additionally, since there is no
natural boundary on a manifold without boundary, there is no natural way to ‘pin’
the DGFF. Therefore we will consider a zero-average DGFF.

Remark 1.8. In some dimensions there are other ways to take limits of the DGFF.
We mention them briefly. In dimension d ≥ 3, we can define the DGFF on a large
box of length N in Zd and let N go to infinity. Since the random walk is transient for
d ≥ 3, the Green’s function and hence the covariance structure is bounded and has a
well-defined limit. The limiting field is called the infinite-volume limit.

In dimensions 1 and 2, the Green’s function is not bounded, so we cannot follow the
same approach. In dimension 2 it grows like log(N) and in dimension 1 like N . We
could rescale them to the unit square (in dimension 2, as above) or the unit interval
(in dimension 1) and rescale the fields in such a way that the variance becomes O(1).
In dimension 1 this results in a Brownian bridge, which coincides with the GFF.
However, in dimension 2 the limiting object is white noise (i.i.d. Gaussians), which
does not have any spatial covariances and is therefore not an interesting limiting field.

1.5.5 Relevant literature

The GFF was first studied in the physics community, where it was called a Euclidean
bosonic massless free field or sometimes it was used without a name (see [137, Remark
1.1]). A first more mathematical introduction of the GFF is Sheffield [137]. For
an introduction of the GFF in connection with LQG see Berestycki [12]. For an
introduction of the (D)GFF and its extreme values see Biskup [16]. The DGFF and
its relation with the underlying random walk can be found in Sznitman [144]. We
also mention the following related results. Kenyon [95] obtains the GFF as the limit
of a dimer model. In Cipriani et al. [33], the membrane model is studied and it is
shown that the discrete membrane model converges to its continuum counterpart.

1.6 Generalisation to other spaces: manifolds

Most results on scaling limits of interacting particle systems and random fields are set
in (a domain in) Rd or on a d-dimensional (flat) torus. However a lot of processes do
not take place in such flat and homogeneous spaces, but in more complex spaces. For
this reason it is relevant to see if particle systems and random fields can be studied
in those more complex spaces. Moreover, because of the symmetries of spaces like Rd
(and grids like Zd) a lot of proofs, calculations and expressions simplify considerably.
To understand what the essential ingredients are to make these models and proofs
work, we study them in spaces where such symmetries are not available. In return,
the behaviour of the models may help us to understand the geometry of these spaces
better.

We will give a brief overview of different ways in which these models have been studied
in more complex spaces. Then we introduce and motivate the main setting of this
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thesis: manifolds. We will provide some available results on manifolds and describe
the main issues that come up in this context.

1.6.1 Other underlying spaces

Hydrodynamic limits have been studied in a variety of spaces other than the standard
Zd or the torus.

i) Still on Zd. The first way to move to a more complicated environment is by
staying on Zd but adding inhomogeneity to the space. For instance by setting
random conductances (Faggionato et al. [59]), random maximal particle num-
bers at sites (Floreani et al. [63]) or even by letting the environment itself be
determined by an exclusion process (Avena et al. [6]).

ii) Other approximation of Rd. The next step is to move away from Zd as a
discretisation of Rd. This can be done by allowing more general grid structures,
so called crystal lattices (triangular, hexagonal, etc), as in Tanaka [145], or by
considering random approximations of Rd (Faggionato [57]).

iii) Away from Rd. One can also consider macroscopic spaces other than Rd or
the torus. For instance by studying hydrodynamic limits of particle systems
on fractal structures, see Jara [90] and Chen and Gonçalves [26]. In Jara [91]
and Faggionato [56] an approach can be found for obtaining hydrodynamic limits
in the presence of a certain type of inhomogeneities under the assumption of
homogenisation. Here the macroscopic spaces can be general metric spaces such
as percolation clusters or fractals.

For some models above also equilibrium fluctuations have been obtained. For instance
in a random environment (Farfan et al. [60], Gonçalves and Jara [76]) and on the
Sierpinksi gasket (Jara [89]).

The convergence of the DGFF to the GFF was obtained in a model with random
conductances in Biskup [15, Thm 6.7]. The DGFF with random conductances was
also studied in Chiarini and Nitzschner [29]. Further, the DGFF was studied on a
fractal structure in Chen and Ugurcan [27].

1.6.2 Manifolds: introduction and motivation

In this thesis we consider SEP and the DGFF in yet a different setting: on manifolds.
We will introduce manifolds along with some important concepts from differential
geometry in Section 2.2. However, since they are important to understand the goal
of this thesis, we will quickly sketch the main idea here.

The idea of a manifold

A d-dimensional manifold is a geometric object that locally looks like Rd, but globally
can be very different from Rd. A basic but instructive example to keep in mind is the
sphere. When zooming in closely on a particular point on the sphere, its surroundings
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start to look like a plane (similar to the daily-life experience of a person looking around
from a point on earth). In this sense a sphere is locally like R2. However, its global
properties are very different. For instance, on a sphere one can move along a straight
line (a so-called geodesic) and still return to the initial location. Also, it is possible to
make a triangle with three 90° angles, by connecting the north pole with two points on
the equator. And, more mathematically, a sphere is compact (without boundaries).
R2 itself certainly does not have these properties. A sphere can be thought of as many
parts of planes that are smoothly patched together to create a surface, similar to how
the charts in an atlas can be patched together to describe a globe. Of course this
patching together can be done in many ways to create all kinds of smooth surfaces.
Roughly speaking, these surfaces are the two-dimensional manifolds. This idea can
be generalised to define d-dimensional manifolds by requiring that they locally look
like Rd instead of R2.

Applications
As we said earlier, we will give some more mathematical definitions concerning man-
ifolds in Section 2.2. For now we want to explain why it makes sense to study (pro-
cesses on) manifolds. Manifolds are ubiquitous in physics, biology, astronomy and
other fields. First, the shapes of smooth physical objects can be modelled by man-
ifolds. This means that every process that moves along a non-flat shape or surface
is essentially a process on a manifold. An example that comes up in bionanoscience
is particles that move along cell membranes. To understand their behaviour, the
geometric setting is essential and must be taken into account. Next, state spaces
of physical systems can often be most naturally expressed as manifolds. See for in-
stance Epstein [52] for an introduction to the use of manifold theory in continuum
mechanics. In the theory of general relativity even space-time itself is modelled as
a manifold. More practically, manifolds also find wide application in imaging (Pless
and Souvenir [126]) and the creation of computer textures. Another example comes
from data analysis. In high-dimensional data sets the dependence between variables
can create the effect that all data points are actually on a submanifold of the whole
space, see for instance Singer [138]. We will mention more references from the context
of data analysis in Chapter 3.

In all of these contexts, when there is noise on anything that takes values in a manifold,
we deal with a stochastic process or model on a manifold. When noise or disturbances
emerge locally, we would like to know how this affects the global behaviour. For
instance in material science there are so-called dislocations, local disturbances of
patterns of atoms in a material. These dislocations move randomly and one would
like to know the effect on the material as a whole. This kind of probabilistic question
of how randomness on a microscopic scale affects the evolution on a macroscale has
similarities with results like hydrodynamic limits.

Interplay between randomness and geometry
Besides the point of view of applications, there are mathematical reasons to study
stochastic processes in general and particle systems in particular on manifolds. This
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works two ways.

First, as we mentioned at the start of this section, removing structure of the underlying
space helps to get to the essence of a proof. In the usual flat space, the lattice
structure of the grids on which particle systems are defined is helpful in the proofs.
They are homogeneous, translation invariant and symmetric. We will comment more
in Section 1.6.4 on the difficulties that arise when those properties are not present.
Studying these models in a context without such nice structure, helps us understand
to what extent that structure is really essential for the results or merely helpful but
not necessary.

Second, studying stochastic processes on manifolds may help us understand more
about the manifolds themselves. For instance Brownian motion is completely de-
termined by the Laplace-Beltrami operator (see Chapter 2 for the relation between
Markov processes and their generators), which in turn contains a lot of information
about the geometry of the manifold. An example of this is the question whether one
can ‘hear the shape of a drum’ (Kac [94]). It turns out that knowing the eigenvalues
of the Laplace operator gives information about the shape of the domain. Therefore
the behaviour of Brownian motion might contain information about the manifold, for
instance about its curvature. For another example see for instance Wang [156] where
connections between diffusion semigroups and geometric properties of manifolds are
studied. This interplay with geometry is also present for random fields. See for in-
stance Adler and Taylor [2] for a detailed account of the connections between random
fields and geometry. Because of these relations, it is reasonable to expect that also
the properties of interacting particle systems contain information on the underlying
manifold. If these connections are known, the particle systems could be used to ex-
plore manifolds. For instance, a direct consequence of the hydrodynamic limit results
is that SEP can be used to approximate solutions to the heat equation on a manifold.

Additionally, studying particle systems can help the study of other stochastic pro-
cesses on manifolds. We prove for instance the existence of a generalised Ornstein-
Uhlenbeck process on a compact Riemannian manifold. It is normally not straight-
forward to prove such a result, but in Chapter 5 we obtain the generalised Ornstein-
Uhlenbeck process as the limit of the fluctuation fields of SEP.

1.6.3 Available results

Before we describe our goals on a manifold, we give a brief overview of more or less
related results that have already been obtained, either before the start of this project
or during it.

i) Stochastic processes. Starting from general results, we point out that there is
a well-established theory of stochastic processes on manifolds. This includes
martingales and, in particular, Brownian motion. See for instance Hsu [86] or
Émery [49] in general and Hsu [87] for Brownian motion specifically. In Nursul-
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tanov et al. [122] the mean arrival times of a Brownian particle are studied. In
Lessa [106] Brownian motion is defined on a random manifold.

ii) Random walks. Then there are results about the manifold analogue of a random
walk: the geodesic random walk (more about this in Section 2.2.2). In Jørgensen
[93] and Blum [17] it is shown that a rescaled version of this random walk
converges to Brownian motion. More recently results have been obtained about
the large deviations of the geodesic random walk, see Kraaij et al. [100] and
Versendaal [154].

iii) Particles. Also systems of particles have been studied. Concentration inequali-
ties and large deviations for Coulomb gasses on compact manifolds are obtained
in Garćıa-Zelada [70], Garćıa-Zelada [71] and Berman [14]. Also Yavari and
Marsden [160] study particles with pairwise interaction on a manifold. All of
these models were studied on the manifold itself, not on a discretisation. We
will come back to this shortly. Also note that not all of these models have a
time component.

iv) Random fields. Random fields have been studied on general geometric structures
including manifolds, for an overview see for instance Adler and Taylor [2]. Here
a random field on a manifold is a collection of random variables taking values in
R, say, that is indexed by the manifold. However, in this thesis we will consider
random fields on discretisations of a manifold. We do study the convergence
to their continuum limit, but the limiting field (the GFF) is so rough that it
is distribution-valued, so it is also different from random fields in the function-
valued sense.

v) GFF. In Chen and Jakobson [28] a construction of the GFF on even-dimensional
manifolds is discussed. Further, in David et al. [35], the GFF is studied on the
two-dimensional sphere to construct Liouville Quantum Gravity on the sphere.
There are also already results about the approximation of the GFF on a man-
ifold (in two dimensions). For instance in Rivera [130] the GFF on a surface
is approximated by random sums of eigenfunctions of the Laplacian and in
Schramm and Sheffield [135] the GFF is discretised by projecting it on trian-
gulations. Both are different from the approach that we take in this thesis,
where we define the usual (zero-average) DGFF on grids that approximate the
manifold.

1.6.4 New challenges

To study IPS and the DGFF on a manifold, there are some challenges that do not
arise in a flat space.

Grids on a manifold
We have seen that it is important for the type of IPS that we study that they are
defined on a discrete space. Indeed, we consider models where particles jump between
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fixed locations. One of the reasons for this is to be able to define interaction. For
instance for the exclusion process, the interaction is provided by the restriction of
at most one particle in each position. Such interaction would not make sense in a
continuum, since particles would never be in the same location. Of course, other
types of interaction can be defined in a continuum, but these lead to other technical
problems. Therefore it is most common in our field to define particle systems on grids:
discrete approximations of the underlying space.

In a flat space it is easy to come up with a discretisation: just a lattice (like Zd)
will do. Moreover, such lattice can approximate the continuum by simply rescaling
it (so for instance by considering 1

NZd and letting N go to infinity). On a manifold
this is not so easy. One cannot simply impose an equally spaced, regular lattice on a
manifold. And even then it cannot be ‘rescaled’, multiplying a manifold position with
a constant does not mean anything. Therefore such grids must in the limit get finer
in a different way. We will do this by adding points (instead of rescaling the points
that are already there), for instance by sampling points uniformly from the manifold.

Jumping probabilities

The next problem is how to define the particle jumps on a manifold. In a lattice one
can simply say that particles jump to one of their neighbours with equal probability.
In a grid on a manifold, it is not clear what a neighbour means. And even then
the neighbours will not be positioned symmetrically around them, so it is not clear
with what probability the particles should jump to which points. We will see that a
useful requirement is that the graph Laplacians corresponding to the random walks
converge to the Laplace-Beltrami operator (the Laplace operator on a manifold).
We will show that such graph Laplacians can be constructed by defining jumping
probabilities depending on the distance between points.

An overview of different ways in which manifolds have been discretised will be given
in Chapter 3. There we also describe which properties the grids should have to study
the hydrodynamic limit and equilibrium fluctuations of SEP on it. It will turn out
that these properties also make it possible to define the DGFF on such grids and
prove convergence to the GFF.

Lack of translation invariance

The fact that a grid on a manifold will look different everywhere (as opposed to a
lattice that looks the same around each point) has another consequence, namely the
lack of translation invariance. A lot of proofs and results involving interacting particle
systems depend in some way or another on translation invariance. For instance, they
use that expressions are equal around each lattice point or that lattices or particle
configurations can be shifted. All of these actions are not possible on a manifold.

It is not only the lack of translation invariance but even of translation itself. For
instance in the case of random conductances on Zd (which make that the environment
is not translation invariant), one can still translate the whole environment and use
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its ergodicity properties under translation. In the case of a manifold, this is also not
possible.

Non-metrisable path space

A final challenge that we mention here comes up when we study equilibrium fluctu-
ations on a manifold. We will regard the fluctuation process as a random trajectory
of distributions acting on the smooth functions on a manifold. The space of these
trajectories is a Skorokhod space. Equipped with the Skorokhod topology, this is a
topological space that is not metrisable, so we have to find a smart way to deal with
it.

1.7 Goal and overview of the thesis

The goal of this thesis is to make the first steps in studying interacting particle
systems and discrete random fields like the DGFF on manifolds. We have seen that
an essential ingredient to do this is a good discretisation of the manifold. Therefore
we proceed as follows.

In Chapter 2 we introduce some mathematical tools and concepts that are used later
in the thesis.

In Chapter 3 we start with the construction of a class of grids with conductances
on a compact Riemannian manifold and we show that such grid can be obtained by
sampling points uniformly from the manifold.

Then in Chapter 4, we use this grid to define the Symmetric Exclusion Process on
a compact Riemannian manifold and we prove that the hydrodynamic limit satisfies
the heat equation on the manifold.

These two chapters are based on

[149] B. van Ginkel and F. Redig. Hydrodynamic limit of the Symmetric Exclusion
Process on a compact Riemannian manifold. Journal of Statistical Physics, 178
(1):75–116, 2020

Following the derivation of the hydrodynamic limit, we study the equilibrium fluctua-
tions of the Symmetric Exclusion Process in Chapter 5. We prove that the fluctuation
fields converge to a generalised Ornstein-Uhlenbeck process.
This chapter is based on

[150] B. van Ginkel and F. Redig. Equilibrium fluctuations for the Symmetric Exclu-
sion Process on a compact Riemannian manifold. arXiv preprint arXiv:2003.02111,
2020

In Chapter 6 we use the grids from Chapter 3 again to define the (zero-average)
Discrete Gaussian Free Field on a compact Riemannian manifold. We prove that it
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converges to the continuum Gaussian Free Field.
This chapter is based on

[32] A. Cipriani and B. van Ginkel. The discrete Gaussian free field on a compact
manifold. Stochastic Processes and their Applications, 130(7):3943–3966, 2020

The final chapter of the thesis stands more on its own. In Chapter 7 we study a class of
active particles (or persistent random walks). Their limiting diffusion coefficient and
large deviations rate functions are derived. Then we investigate the role of reversibility
of the underlying state process and prove that the diffusion coefficient and free energy
functions are maximal for reversible state processes.
This chapter is based on

[152] B. van Ginkel, B. van Gisbergen, and F. Redig. Run-and-tumble motion: the
role of reversibility. Journal of Statistical Physics, 183(3):1–31, 2021
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Chapter 2

Mathematical background

In this chapter we introduce a range of mathematical concepts and tools that are used
in this thesis. The goal is to give the reader an idea of their definitions and properties.
The reader who is familiar with any of these topics can skip them. For details and
proofs, we will point to some main references throughout the text.

2.1 Probabilistic tools

2.1.1 Markov processes, generators and semigroups

We first introduce Markov processes and their associated semigroup and generator.
These concepts are critical for all of this thesis, since almost all of the processes that
we encounter are Markov processes. Some good references include Blumenthal and
Getoor [18], Ethier and Kurtz [55] and Liggett [108]. Here we will just sketch some
basic elements of the theory.

Markov processes

The main property that makes a stochastic process a Markov process (the so-called
Markov property) is that the distribution of the future of the process given the past
only depends on the current state. Indeed, let X = (Xt, t ≥ 0) be a stochastic process
taking values in a state space S and let Ft = σ(Xs, 0 ≤ s ≤ t) be the corresponding
natural filtration (Ft can be viewed as all the information on the process X until time
t). Then we call X a Markov process if for every bounded and measurable function
f and for all s < t,

E[f(Xt)|Fs] = E[f(Xt)|Xs].

This means that the distribution at time t conditioned on all the information we have
at time s (Fs) only depends on the state at time s itself (Xs). We will restrict to the

33
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time-homogeneous case, so that the evolution of the process also does not depend on
the current time. This implies additionally that

E [f(Xt)|Xs] = EXs [f(Xt−s)] ,

where Ex[f(Xt)] = E[f(Xt)|X0 = x] denotes the expectation of the process started
from X0 = x. As examples, we mention two important classes of Markov processes.

Example 2.1 (Jump processes). A jump process is a stochastic process on a possibly
infinite state space S with the following dynamics. At each point x ∈ S , the process
waits for an exponential time with rate γx > 0 and then independently jumps to a
point y ∈ S with probability p(x, y). An alternative formulation is that the process
jumps from point x to y with rate γxp(x, y). Now the Markov property comes from
the fact that γx and p(x, ·) only depend on x (and hence not on the past of the
process) and that the exponential distribution is memoryless. In fact, the exponential
distribution is the only waiting time distribution that makes a jump process a Markov
process. In Section 2.1.3 we will see some properties of jump processes in the case
where S is a weighted graph.
A special case that we will analyse further in this chapter is the Simple Symmetric
Random Walk (SSRW) on Z. At each site, the random walk waits an exponential time
with rate 1 and then jumps to one of its neighbours with equal probability. Therefore
for the SSRW, γx = 1 for all x and p(x, y) = 1

2 for y ∈ {x− 1, x+ 1} and 0 otherwise.

Example 2.2 (Diffusion processes). A second class of processes is the diffusion pro-
cesses: stochastic processes with almost surely continuous sample paths and inde-
pendent and stationary increments. These properties give the processes the Markov
property. The canonical example in this case is Brownian motion on R. This is a
continuous stochastic process Bt with increments Bt − Bs ∼ N(0, t − s) for t > s
such that increments over non-overlapping time intervals are independent. We will
see later that it can be obtained as the limit of a Simple Symmetric Random Walk.

Semigroup
Now we can associate some mathematical objects to a Markov process X that are
very useful to study its behaviour. It will turn out that the Markov property gives
these objects a nice structure. First we introduce the operator St. It works on a
suitable normed space of functions (C, ‖ · ‖) as follows. For f ∈ C

Stf(x) = Ex[f(Xt)].

Recall that Ex denotes the expectation of Xt started from X0 = x. The classes of
functions C that are usually considered include the continuous functions, the bounded
continuous functions, the continuous functions vanishing at infinity or the functions
that are square-integrable with respect to a stationary measure (see Section 2.1.2
for more on stationary measures). The operator St is like a flow, it describes how
the expectation of a function applied to the process evolves through time. If we
know Stf(x) for a large enough class of functions f , we obtain information on the
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distribution of Xt starting from X0 = x. Now note that S0f(x) = f(x) trivially, so
S0 = I. Also the Markov property, together with time-homogeneity, implies that

Ss+tf(x) = Ex[f(Xs+t)] = Ex[E[f(Xs+t)]|Xs] = Ex[EXs [f(Xt)]]

= Ex[Stf(Xs)] = Ss(Stf)(x).

This shows that Ss+t = SsSt. A trajectory t 7→ St in the bounded linear operators
on C with these properties is called a semigroup. A semigroup corresponding to a
Markov process has additional properties, it satisfies the following for all f ∈ C and
s, t ≥ 0:

i) Identity at 0: S0 = I.

ii) Semigroup property: StSs = Ss+t = SsSt.

iii) Positivity: if f ≥ 0, then Stf ≥ 0.

iii) Contractivity: ‖Stf‖ ≤ ‖f‖.

If additionally for all f ∈ C, t 7→ Stf is right-continuous at 0 in the norm of the
function space C, then we call t → St a strongly continuous semigroup. There is
a well-established functional analytic theory about strongly continuous semigroups,
see for instance Engel and Nagel [50]. For more details on semigroups associated to
Markov processes, see Liggett [109].

We have seen so far that we can associate a semigroup to a Markov process. In fact,
we can also go the other way: we can construct the finite dimensional distributions
of the process from the semigroup by using the Markov property. This property is
very useful in probability theory, since it allows us to obtain information on Markov
processes by studying the corresponding semigroups.

Generator
An important property of a strongly continuous semigroup is that it is determined
completely by its ‘derivative at time 0’. This is called the generator L . It is an
operator that is defined on the set

D(L ) =

{
f ∈ C : lim

t↓0

Stf − f
t

exists in C

}
, (2.1)

which is called the domain of L . Here the limit is taken with respect to the norm of
C. If the semigroup is associated to a Markov process, D(L ) is dense in C. L acts
on functions f ∈ D(L ) as follows

L f = lim
t↓0

Stf − f
t

.

The generator encodes the instantaneous rate of change of the semigroup and hence
of the underlying Markov process.
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In general the domain D(L ) is a complicated set that is not easy to determine. To
deal with this, we usually define a generator first on a smaller set which we call a
core. A much used example of a core is the set of smooth functions. Then we extend
the definition by taking the closure of the generator defined on the core with respect
to an appropriate norm. Of course one needs to prove that the resulting operator
is indeed the generator of a semigroup, we will mention an important result on that
shortly. Also for other results (like the convergence result that we mention later) it
is often sufficient to reduce the computations and analysis to a core.

Relation with the semigroup
For f ∈ D(L ) the generator and semigroup commute, i.e. L Stf = StL f . Moveover,
for such f the trajectory t 7→ Stf satisfies

∂tStf = L Stf, S0f = f.

This is a differential equation with formal solution

Stf = eL tf. (2.2)

To interpret (2.2), one needs to define the exponential function applied to operators in
an appropriate way. For Markov processes with a finite state space, L is a matrix and
the exponential function is well-defined (for instance as a power series). However, in
general L is an unbounded operator and it is not straightforward how to give meaning
to (2.2). This is solved by the Hille-Yosida theorem, which characterises operators
that generate a strongly continuous semigroup and provides a construction of the
semigroup.

Example 2.3 (SSRW continued). Returning to the example of the SSRW on Z as
described in Example 2.1, we want to compute L . Note that to obtain this generator
we need to define an appropriate underlying function space, take limits with respect
to the corresponding norm and determine the domain of the generator. This is more
than just a formal task and it is not always clear which function space and norm are
suitable. However, since the goal of this example is to get an idea of the expression
of the generator, we will avoid these details and just perform a pointwise calculation.
Indeed, let f be a bounded, compactly supported function on Z and let Nt be the
amount of jumps of the particle up to time t. Then Nt has a Poisson distribution
with parameter t. We compute:

Ex[f(Xt)] = Ex[f(Xt)|Nt = 0]P(Nt = 0) + Ex[f(Xt)|Nt = 1]P(Nt = 1)

+ Ex[f(Xt)|Nt ≥ 2]P(Nt ≥ 2)

= f(x)e−t +
1

2
(f(x− 1) + f(x+ 1))te−t + Ex[f(Xt)|Nt ≥ 2]O(t2)

= f(x)(1− t+O(t2)) +
1

2
(f(x− 1) + f(x+ 1))(t+O(t2)) +O(t2)

= f(x) +
t

2
(f(x+ 1) + f(x− 1)− 2f(x)) +O(t2).
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Now we see that

L f(x) = lim
t↓0

1

t
(Ex[f(Xt)]− f(x)) =

1

2
f(x+ 1) +

1

2
f(x− 1)− f(x). (2.3)

We can interpret (2.3) as follows. At each point in time the particle jumps with rate
1
2 to the left (to x − 1) and with rate 1

2 to the right (to x + 1). It also jumps away
from x with rate 1. We will see this more generally in Section 2.1.3. It shows that
the generator L indeed encodes the instantaneous rate of change of the stochastic
process.

Example 2.4 (Brownian motion). We give a heuristic pointwise computation to
obtain the expression for the generator of Brownian motion. Using a Taylor expansion
around x ∈ R, we see

Ex[f(Bt)] = Ex
[
f(x) + (Bt − x)f ′(x) +

1

2
(Bt − x)2f ′′(x)

+
1

6
(Bt − x)3f (3)(x) +O((Bt − x)4)

]
= f(x) + 0 +

t

2
f ′′(x) + 0 +O(t2),

so

lim
t↓0

1

t
(Ex[f(Bt)]− f(x)) =

1

2
f ′′(x).

We see that in R, the generator of Brownian motion is 1
2

d2

dx2 = 1
2∆, a half times

the Laplace operator. In Rn a similar calculation can be made to obtain 1
2∆ as the

generator of Brownian motion. In fact, we will see that also Brownian motion on a
manifold has the manifold analogue of the Laplace operator as its generator.

Generator convergence
For us the semigroup and generator are important for the following reason. From a
time-homogeneous Markov process X, we can calculate its semigroup and the cor-
responding generator. Conversely, the semigroup corresponding to X determines
the distribution of X and the generator determines the semigroup. Therefore X,
(St, t ≥ 0) and L are all in a one-to-one relationship with each other. For this reason
we can call L the generator of X and X the process generated by L .

This one-to-one correspondence stays valid when taking limits. Indeed, we can use the
convergence of semigroups or generators to prove convergence of Markov processes,
see for instance the Trotter-Kurtz theorem (Kurtz [102]). Of course a lot of technical
details play a role, but we focus here on the main ideas.

Example 2.5 (SSRW continued). We can see the use of this again in the SSRW on
Z. If we rescale space by a factor 1

N and time by a factor N2, we obtain the generator

L Nf(x) =
N2

2

(
f
(
x+ 1

N

)
+ f

(
x− 1

N

)
− 2f(x)

)
.
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Now if we let N go to infinity, we obtain

lim
N→∞

L Nf(x) = lim
N→∞

N2

2

(
f
(
x+ 1

N

)
+ f

(
x− 1

N

)
− 2f(x)

)
=

1

2
f ′′(x).

Recall from Example 2.4 that 1
2

d2

dx2 is the generator of Brownian motion. We conclude
that the generator of the SSRW converges pointwise to the generator of Brownian mo-
tion. If we strengthen this convergence to convergence in the norm of the underlying
function space, the Trotter-Kurtz theorem allows us to conclude that the correspond-
ing semigroups converge to the semigroup of Brownian motion. This then implies
that the finite-dimensional distributions of the SSRW converge to those of Brownian
motion.

2.1.2 Invariant measures and reversibility

We will describe some properties that Markov processes and associated probability
measures can satisfy. As we will see, the semigroup and generator machinery provides
us with elegant ways to write down these properties. For more details we refer to the
books on Markov processes that were mentioned before or, for a shorter overview,
to Redig [129].

Stationary measure
We can start a Markov process from a deterministic point x (as in the definition of the
semigroup), but it can also start from a probability measure µ. This means that at
time 0 we pick a point from the state space according to µ and then start the process
from that point. Now some of these measures µ have a special property: when we
start the process from X0 ∼ µ (so the distribution of X0 is µ), at every later point
t in time still Xt ∼ µ. Such measure is called invariant or stationary for the process
X. In semigroup language this means that for every function f ∈ C,∫

Stfdµ =

∫
fdµ.

This implies that for all f ∈ D(L ),∫
L fdµ = 0.

In fact this is also a sufficient condition for stationarity. When we start the process
from an invariant measure, we say that the process is stationary. There can be mul-
tiple invariant measures associated to the same Markov process. In fact, any convex
combination of invariant measures is again invariant, which implies that the space of
invariant measures is convex. The extreme points of this set (so the invariant mea-
sures that cannot be obtained as a convex combination of other invariant measures)
have a special property that we will get to now.
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Ergodic measure
To introduce ergodic measures we first need to define invariant sets. A measurable
subset A of the state space S is called invariant if for all t > 0,

St1A = 1A.

Here 1A is the indicator function of the set A. The idea is that the state space of the
Markov process is split into two or more parts in such a way that if the process starts
in a part, it always stays in that part. These parts are the invariant sets. Now an
ergodic measure is a stationary measure of which the support is contained in exactly
one invariant set. To make this precise, we say that a measure µ is ergodic if every
invariant set has µ-measure either 0 or 1. Alternatively, we can define a function f
to be invariant for the Markov process if

Stf = f

for all t and call a stationary measure µ ergodic if all invariant functions are µ-a.s.
constant.

We already mentioned that the stationary measures form a convex set. It turns
out that the ergodic measures are exactly the extreme points of this convex set, i.e.
the stationary measures that cannot be obtained as a convex combination of other
stationary measures.

Example 2.6. As an example consider the state space S = {a, b, c, d} and a pro-
cess X that either jumps with contant rate γ between a and b or between c and d,
depending on where it started (see Figure 2.1). Now note that the Dirac measure
µ1 = δa is not stationary. Indeed, if we start from this measure, for every t > 0 there
is a positive probabiliy of being in state b, so Xt does not have distribution δa. The
uniform measure µ2 is stationary. Indeed it is not hard to see that if you start in
each state with probability 1

4 , then at every later point in time the probability to be
in each state is 1

4 . However, µ2 is not ergodic, since S1 = {a, b} and S2 = {c, d}
are both invariant sets and µ2 has support in both of them. The uniform measure
µ3 = 1

2 (δa + δb) on S1 is ergodic, it is both invariant and has support in exactly one
invariant set. In fact, µ4 = 1

2 (δc+δd) is the only other ergodic measure and the convex
combinations µ = λµ3 + (1− λ)µ4 for λ ∈ [0, 1] form all the invariant measures.

a

b

c

d

S1 S2

γ γ

γ γ

Figure 2.1: The situation of Example 2.6.
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Reversibility
Another possible property of Markov processes that we will use in this thesis is re-
versibility with respect to an invariant measure µ. The idea is that the process started
from µ at time 0 and run for time t has the same distribution as the process started
from µ at time t that is played backward till time 0. More precisely, we call a measure
µ reversible if for all f, g ∫

(Stf)gdµ =

∫
f(Stg)dµ. (2.4)

When a process has a reversible measure µ, we call the process reversible or symmetric
with respect to µ. Sometimes we will simply say that the process is reversible. If we
set g in (2.4) to be the constant function 1 and note that always St1 = 1, then (2.4)
directly implies that

∫
Stfdµ =

∫
fdµ. In other words: every reversible measure is

invariant.

It follows from (2.4) that for f, g ∈ D(L )∫
(L f)gdµ =

∫
f(L g)dµ,

so L is a self-adjoint operator on L2(µ). This is also a sufficient condition for re-
versibility.

Example 2.7 (RW on torus). As an example, consider a random walk on the torus
1
NGN = { 1

N ,
2
N , .., 1} that jumps to neighbouring points (and where 0 and 1 are

identified, so a particle can jump between 1 and 1
N ). Let p be the probability to jump

to the right and (1−p) the probability to jump to the left. Whatever the value of p is,
the uniform distribution µ on GN is invariant and ergodic. However, the reversibility
depends on p. If p > 1

2 , we will observe a drift to the right. In that case if we were to
let time run backwards, we would see a drift to the left and recognise that time runs
backward. Therefore µ is not reversible in that case. Similarly, µ is not reversible
for p < 1

2 . Only for the value p = 1
2 , the process is symmetric and we would not see

the difference between moving forward or backward through time. In that case the
process is reversible with respect to µ.

Example 2.8 (Ornstein-Uhlenbeck process). As a final example for Section 2.1.2,
we discuss the Ornstein-Uhlenbeck process. This process can be viewed as Brownian
motion that is attached to the origin with a spring. It is the solution to the following
Stochastic Differential Equation:

dXt = −θXtdt+ σdWt.

Here θ > 0 is the spring constant, Wt is a standard Brownian motion and σ determines
the variance of the Brownian motion and hence the strength of the noise. By first
solving the equation for Yt = e−θtXt and then rewriting, we obtain the explicit
solution

Xt = e−θtX0 + σ

∫ t

0

eθ(s−t)dWs. (2.5)
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Since the second term on the RHS of (2.5) is a deterministic function integrated with
respect to Brownian motion, it is Gaussian. Denoting Xt started from x ∈ R by Xx

t ,
we can write

Xx
t = e−θtx+ σN

(
0, 1−exp(−2θt)

2θ

)
, (2.6)

where the equality is in distribution. From this we can derive the following formula
for the semigroup corresponding to the Ornstein-Uhlenbeck process:

Stf(x) =

∫ ∞
−∞

f

(
e−θtx+ σy

√
1− exp(−2θt)

2θ

)
1√
2π

e
−y2
2 dy.

The corresponding generator L acts on smooth functions f as follows:

L f(x) = −θxdf

dx
(x) +

σ2

2

d2f

dx2
(x). (2.7)

Letting t go to infinity in (2.6), the initial value x vanishes and we are left with a

Gaussian distribution with mean 0 and variance σ2

2θ . We will call this distribution

µ := N
(

0, σ
2

2θ

)
.

µ is the unique stationary measure of the Ornstein-Uhlenbeck process. Indeed when
we set X0 ∼ µ, a computation shows that for each t > 0 also Xt ∼ µ. When started
from µ, the Ornstein-Uhlenbeck process is a Gaussian process. This implies that it is
uniquely determined by its covariance structure

E[Xt] = 0, Cov(Xs, Xt) =
σ2

2θ
e−θ|t−s|.

µ is also reversible and ergodic (for more about this see Section 7.3.2). Accordingly,
the generator (2.7) can be extended to a self-adjoint operator on L2(µ). We conclude
from the above that the Ornstein-Uhlenbeck process started from µ is a stationary,
time-homogeneous and Gaussian Markov process. In fact, it is the only stochastic
process with these properties.

We can also consider the Ornstein-Uhlenbeck process in Rd, where the positive con-
stant θ is replaced by a positive definite matrix. In that case similar methods can be
used to reach similar results. A difference that will be important in Chapter 7 is that
in the multidimensional case, the stationary distribution is not necessarily reversible.
In Example 7.12 we consider a one-parameter family of Ornstein-Uhlenbeck processes
with the same invariant measure, but only for one trivial choice of the parameter the
process is reversible.

Finally, there are infinite dimensional versions of the Ornstein-Uhlenbeck process,
where the constant θ is formally replaced by a positive operator. We will encounter
such process in Chapter 5. It is so rough that it takes values in the space of gen-
eralised functions or distributions and cannot be treated in the same way as the
finite-dimensional versions. It will be defined through a martingale problem instead.
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2.1.3 Random walks on graphs

We will now consider a context that we use a lot in this thesis and that is in some
sense a generalisation of the SSRW example of Section 2.1.1, namely random walks
on graphs.

Weighted graph
Let V be a finite edge-weighted graph on n vertices. With slight abuse of notation we
also denote by V the set of vertices of the graph. We denote the edge weight between
v, w ∈ V by cvw = cwv ≥ 0. These edge weights are also called conductances. The
reason for this is that we can interpret such a graph as an electric network with
connections between nodes and where the edge weights have the physical meaning of
conductance (i.e. the reciprocal of resistance) between the nodes. For a very nice
introduction to this point of view and a lot of useful connections, see Gaudillière [72].
We assume that between any two nodes there exists a path of edges with positive
conductance, so the graph is connected.

Random walk
Using these conductances, we can define a random walk on the graph as follows. The
walk starts from a (possibly random) node in V . Then it jumps to other points with
the rate of the conductance between them. More precisely, set for v ∈ V ,

dv =
∑
w

cvw,

the total rate with which the random walk jumps away from v (note that dv <∞ for
all v since V is finite). When the random walk arrives at v, it waits an exponential
time with rate dv, then chooses a neighbour w with probability cvw

dv
and jumps to

that neighbour. This defines a random walk X = (Xt, t ≥ 0) on V .

Graph Laplacian
As in the examples in Section 2.1.1, we can determine the generator L of this random
walk. Using a computation that is similar to the computation for the SSRW case, we
obtain that L acts on functions f as follows:

L f(v) =
∑
w

cvw(f(w)− f(v)).

This operator is called the graph Laplacian. Since we consider a finite graph, L can
be represented as a matrix and its domain is all of Rn. Because of the symmetry
requirement that cvw = cwv for all v, w ∈ V , L is a symmetric matrix. It also follows
from this requirement that the uniform measure is reversible and hence invariant for
X. Indeed, in the context of countable state spaces a measure µ is reversible if and
only if for all sites v, w ∈ V ,

µvcvw = µwcwv.
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This is called the detailed balance condition. In the present case with symmetric
conductances cvw = cwv, we see directly from this detailed balance condition that the
unique reversible measure is the uniform measure.

Since L is symmetric, it has real eigenvalues and there exists an orthogonal eigenbasis
for Rn. Moreover, it can be shown that −L is positive semidefinite, so the eigenvalues
of L are non-positive. There is at least one eigenvalue 0 (since L 1 = 0) and because
of the connectedness of V this is the only eigenvalue 0. Therefore we can write the
eigenvalues of L as

0 = λ1 > λ2 ≥ .. ≥ λn
with corresponding orthogonal eigenvectors φ1 = 1, φ2, .., φn.

Green’s function
We will now introduce the Green’s function on V and collect some of its properties.
For more details on Discrete Green’s functions, see Chung and Graham [31].

Fix a proper, non-empty subset V0 of V . Now define for v, w ∈ V the Green’s function
(matrix) as

G(v, w) = Ev
[∫ τ

0

1w(Xt)dt

]
, (2.8)

where τ is the first time X enters V0. In other words, G(v, w) is the total time that X
started from v spends in w before entering V0. Since our graph is finite, the Green’s
function would be infinite if the domain of integration in (2.8) was all of (0,∞).
Therefore the set V0 can be interpreted as the boundary set where the random walk
is killed, the walk stops when it enters that set. τ is the killing time that makes (2.8)
finite. A further analysis shows that G is the inverse of −L when restricted to V \V0.

The reason to study the Green’s function is that it is the covariance function of
the Discrete Gaussian Free Field on V , which we will consider in Chapter 6. On
the grids in Chapter 6, there is no natural choice for V0. Therefore, we will define
the Green’s function as the inverse of −L on the space of zero-average functions,
i.e. the functions f with

∑
v f(v) = 0. Indeed, since the only eigenvalue 0 of L

is on the constant functions and the eigenspaces are orthogonal, L is invertible on
the orthogonal complement of the constant function, which is the set of zero-average
functions. We set the Green’s function to be 0 on the constant functions. Therefore
the Green’s function will equal

G = −
n∑
i=2

1

λi
Pi, (2.9)

where the λi’s are the (ordered) eigenvalues of L and Pi is the projection on the
subspaced spanned by φi, the eigenvector corresponding to λi.

1 The advantage of
this definition is that we do not need a boundary set V0. The drawback, however, is
that there is no corresponding random walk interpretation as in (2.8).

1Note the difference of sign compared to (6.5). This comes from the extra minus in the definition
of the graph Laplacian in Chapter 6.
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2.1.4 Dynkin martingales

In this thesis we will frequently encounter martingales associated to Markov pro-
cesses, so-called Dynkin martingales. Also the generalised Ornstein-Uhlenbeck pro-
cess in Chapter 5 is defined by using such martingales. Before we introduce Dynkin
martingales, we will quickly recall the definitions of a martingale and its quadratic
variation. For a detailed introduction to martingales see Williams [158] and Rogers
and Williams [132].

Filtrations and martingales

The idea of a martingale is that the expected value of the process in the future given all
the information up to the current time is the current state of the process. To be more
precise, we need to introduce filtrations. A filtration is a collection F = (Ft, t ≥ 0)
of σ-algebras that is increasing in the sense that Ft contains Fs whenever t ≥ s.
Ft should be interpreted as the information up to time t. Indeed, given a stochastic
process X = (Xt, t ≥ 0), a natural way to build a filtration is to let Ft be the σ-
algebra generated by {Xs, 0 ≤ s ≤ t}. This is called the natural filtration generated
by X.

Now a martingale is a real-valued stochastic process M = (Mt, t ≥ 0) such that,

i) M is integrable: for all t ≥ 0, E[|Mt|] <∞.

ii) M is adapted: for all t ≥ 0, Mt is measurable with respect to Ft.

iii) M has the martingale property: for all 0 ≤ s ≤ t, E[Mt|Fs] = Ms.

The characterising property is the martingale property. It implies that martingales
are processes that have no drift. In fact, applying it with s = 0 shows that E[Mt] =
E[E[Mt|F0]] = E[M0], so the expected value of M is the same at each time point.

Example 2.9. As an example, we reconsider the Simple Symmetric Random Walk
X = (Xt, t ≥ 0) on Z as described in Example 2.1 with the natural filtration Ft =
σ({Xs, 0 ≤ s ≤ t}). This way X is adapted by construction. A direct computation
shows that X is also integrable. For the martingale property we see

E[Xt|Fs] = E[(Xt −Xs)|Fs] + E[Xs|Fs] = E[(Xt −Xs)] +Xs = Xs.

We used here that (Xt −Xs) is independent of Fs and has mean 0.

Note that in general being Markov or being a martingale are unrelated properties of
stochastic processes. Indeed, some processes are neither Markov nor a martingale,
some are one but not the other and some are both. For instance standard Brownian
motion is both Markov and a martingale, but as soon as we add a drift it is still
Markov but no longer a martingale.
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Quadratic variation

An important process that is associated to a martingaleM (or generally to a stochastic
process) is the quadratic variation process. It is defined as

〈M,M〉t = lim

n∑
i=1

(Mti −Mti−1
)2,

where the limit is in probability over all partitions 0 = t0 ≤ t1 ≤ .. ≤ tn = t of
[0, t] with mesh size tending to 0. The quadratic variation process is very useful in
stochastic calculus. For martingales the following property is important. If M is a
martingale with quadratic variation 〈M,M〉, then under some regularity conditions
the process N defined by

Nt = M2
t − 〈M,M〉t

is also a martingale. In particular E[M2
t ] = E[〈M,M〉t]. Because of this, one can

show that a martingale (or, more precisely, a sequence of martingales depending on
a parameter that goes to infinity) vanishes by showing that its quadratic variation
process vanishes. This will be used in Chapter 4.

Dynkin martingale

Although we saw that the Markov property and the martingale property in principle
have nothing to do with each other, the following result relates Markov processes
to martingales. Roughly, it says that a function applied to a Markov process can
be written as an additive functional of that process plus a martingale. To be more
precise, let (Xt, t ≥ 0) be a Markov process and assume that it generates a strongly
continuous semigroup (St, t ≥ 0) with generator L . Suppose that f is a function
such that f, f2 ∈ D(L ). Then M = (Mt, t ≥ 0) defined by

Mt = f(Xt)− f(X0)−
∫ t

0

L f(Xs)ds, (2.10)

is a martingale with respect to the natural filtration generated by X. This martingale
M is called a Dynkin martingale. Moreover, M has the following quadratic variation:

〈M,M〉t =

∫ t

0

(L f2 − 2fL f)(Xs)ds. (2.11)

We will now sketch the derivation of the martingale property of Mt. For the proof
of (2.11) we refer to for instance Seppäläinen [136, Section 8.1].

Sketch proof of (2.10). Fix a function f ∈ D(L ) and let Mt be as defined in (2.10).
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We want to show that for 0 ≤ s ≤ t,E[Mt|Fs] = Ms. First we compute

E[Mt|Fs] = E
[
f(Xt)− f(X0)−

∫ t

0

L f(Xr)dr

∣∣∣∣Fs

]
= E

[
f(Xt)− f(Xs)−

∫ t

s

L f(Xr)dr

∣∣∣∣Fs

]
(2.12)

+ f(Xs)− f(X0)−
∫ s

0

L f(Xr)dr, (2.13)

where we wrote f(Xt) = f(Xt) − f(Xs) + f(Xs) and used that functions of Xr for
r ≤ s are Fs-measurable. Now note that (2.13) equals Ms, so it remains to be shown
that (2.12) equals 0. Using the definition of the semigroup and the Markov property,
we see that (2.12) equals

E[f(Xt)|Xs]− E[f(Xs)|Xs]− E
[∫ t

s

L f(Xr)dr

∣∣∣∣Xs

]
= St−sf(Xs)− f(Xs)−

∫ t

s

Sr−sL f(Xs)dr. (2.14)

Now recall that for f ∈ D(L ), StL f = d
dtStf . Therefore∫ t

s

Sr−sL fdr =

∫ t−s

0

SrL fdr =

∫ t−s

0

d

dr
Srfdr = St−sf − f. (2.15)

This implies that (2.14) equals 0 and therefore (2.12) equals 0, which is what we
wanted to show.

In some cases, the quadratic variation formula (2.11) can be computed explicitly. We
give two examples, for a jump process and for a diffusion process.

Example 2.10. Let X be the random walk on the weighted graph V from Sec-
tion 2.1.3 and fix f : V → R. Then we obtain that

f(Xt)− f(X0)−
∫ t

0

L f(Xs)ds

is a martingale with quadratic variation
∫ t

0
γf (Xs)ds, where

γf (v) := L f2(v)− 2f(v)L f(v)

=
∑
w

cvw(f2(w)− f2(v))− 2f(v)
∑
w

cvw(f(w)− f(v))

=
∑
w

cvw(f(w)− f(v))2.



2.2. Differential geometry 47

Example 2.11. Now we consider a Brownian motion Bt in R and fix a smooth
function f . We assume that f is in the domain of the generator, e.g. f and its
first and second derivative vanish at infinity. Recall that the generator is given by
L f = 1

2f
′′. This gives

L f2(x)− 2f(x)L f(x) = f(x)f ′′(x) + f ′(x)2 − f(x)f ′′(x) = f ′(x)2. (2.16)

Therefore we obtain that

Mt := f(Bt)− f(B0)− 1

2

∫ t

0

f ′′(Bs)ds

is a martingale with quadratic variation

〈M,M〉t =

∫ t

0

f ′(Bs)
2ds.

The reader who is familiar with stochastic calculus may note that by Ito’s formula
we obtain the explicit expression Mt =

∫ t
0
f ′(Bs)dBs. Then Ito’s isometry

E

[(∫ t

0

f ′(Bs)dBs

)2
]

= E
[∫ t

0

f ′(Bs)
2ds

]
coincides with the identity E[M2

t ] = E[〈M,M〉t] that we mentioned earlier.

2.2 Differential geometry

In this thesis we will consider a variety of models on Riemannian manifolds. In order
to understand the coming chapters, some knowledge about differential geometry is
required. In this section, we will introduce the main concepts. For details and proofs,
we refer the reader to for instance the classic introduction in Spivak [140].

2.2.1 Basic geometric concepts

Smooth manifolds
As we noted in Chapter 1, an n-dimensional manifold (for some n ∈ N) can loosely
be described as a set that locally looks like Rn. This is precisely what the definition
intends to capture. Indeed, a n-dimensional manifold M is a metric space such that
every point of M has a neighbourhood U that is homeomorphic to an open subset
V of Rn. Recall that homeomorphic means that there exists an invertible function
f : U → V such that both f and f−1 are continuous.

A smooth manifold is a manifold M along with a set A that is called an atlas with
elements called charts. These charts are coordinate systems on the manifold. More
precisely, they are pairs (x, U) of an open subset U of M and a homeomorphism
x : U → x(U) ⊂ Rn such that two properties hold:
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i) Every point p ∈M is contained in at least one chart.

ii) If two charts (x, U) and (y, V ) have overlap, then the compositions x ◦ y−1 and
y ◦ x−1 are smooth (infinitely differentiable).

These charts provide us with coordinates on the manifold. Now we can say that a
function f : M → R is smooth at a point p if for a chart (x, U) that contains p the
composition f ◦ x−1 is smooth. Property ii) makes sure that this definition does not
depend on which chart we use. We define the partial derivatives of f at p as

∂f

∂xi
(p) = Di(f ◦ x−1)(x(p)).

Note that this definition depends on the chart (x, U). However if p is also contained
in some other chart (y, V ) it is easy to transform the expression using the chain rule:

∂f

∂yj
(p) =

∑
i

∂f

∂xi
∂xi

∂yj
. (2.17)

Expressions like these appear a lot in differential geometry. Therefore the convention
is to leave out the summation symbol whenever the same index appears both above
and below in an expression. So if we leave out the summation sign in (2.17), the
summation over i is implied by the two appearances of i.

Tangent spaces and vector fields

We can associate to each point p ∈M an n-dimensional vector space that we call the
tangent space at p. This concept generalises the notion of a tangent line to a smooth
curve in R2 or tangent plane to a smooth surface in R3. The tangent space TpM can
be viewed as the space of all possible tangent vectors to curves through M at p. The
union of all tangent spaces is called the tangent bundle TM . TM inherits a smooth
structure from the smooth structure of M . In fact, the tangent bundle is a manifold
itself.

Given a tangent vector v at p (so an element of TpM) and a smooth function f : M →
R, one can compute the directional derivative Dvf(p) of f at p in the direction of v.
The directional derivative operator Dv can be identified with v itself, so the tangent
space at p can be viewed as the space of all directional derivatives at p. If we fix a
coordinate chart (x, U) around p, the partial derivatives ∂i := ∂

∂xi form a basis for
TpM . Note that ∂i depends on p. Now we can write v ∈ TpM in local coordinates as
the unique vector (v1, .., vn) such that for all smooth f

Dvf(p) =
∑
i

vi
∂f

∂xi
(p),

or, written more compactly, Dv = vi∂i.
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Now let X : M → TM be a mapping that assigns to each p ∈ M a tangent vector
Xp ∈ TpM . If we fix a chart (x, U), we can write X restricted to U as

Xp = ai(p)∂i,

where the ai(p) are the coordinates of Xp with respect to the basis of TpM given by
the partial derivatives with respect to x. Now X is smooth if and only if the functions
ai are smooth. Such smooth mapping X : M → TM is called a smooth vector field
(or simply a vector field).

Riemannian metric
In this thesis we work with Riemannian manifolds. These are not special kinds of
manifolds, but rather have an additional structure defined along with them. To be
precise, a Riemannian manifold is a smooth manifold together with a Riemannian
metric: an inner product 〈·, ·〉p on each tangent space TpM . This inner product
varies smoothly in the sense that if X and Y are smooth vector fields, then the
mapping p 7→ 〈Xp, Yp〉p is smooth. We will sometimes leave out the subscript p when
the context is clear.

We can express the inner products in local coordinates (x, U) through the smooth
functions

gij(p) = 〈∂i, ∂j〉p.

For each p, we interpret these numbers as elements of the matrix G = (gij)
n
i,j=1, which

we call the metric matrix. The elements of the inverse of G are denoted by gij .

Length of a curve

The inner products provide us with a norm ‖v‖p = 〈v, v〉1/2p on TpM for each p.
Therefore we can measure the lengths of tangent vectors. This allows us to define the
length of a smooth curve γ : [0, 1]→M as∫ 1

0

∥∥∥∥dγ

dt

∥∥∥∥dt.

Now we assume that the manifold is connected. Then we can define a distance d on
M by setting d(p, q) to be the infimum of the lengths of curves from p to q. The
manifold M equipped with this distance is a metric space that is homeomorphic to
M with its original metric.

Geodesics and the exponential map
Since we just defined the distance between two points p and q to be the infimum of the
lengths of all curves from p to q, one might wonder whether this infimum is attained.
In other words: is there a shortest path between p and q? And if so, is it unique?
The answer to both questions is no, in general. However, under some conditions we
do get a positive answer.
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A curve γ that is the shortest curve between two points and additionally has con-
stant speed is called a geodesic and satisfies the following geodesic equations (in local
coordinates):

d2γk

dt2
+ Γkij

dγi

dt

dγj

dt
= 0.

Here Γkij are the Christoffel symbols

Γkij =
1

2

∑
l

gkl
(
∂gil
∂xj

+
∂gjl
∂xi
− ∂gij
∂xl

)
.

Geodesics are the manifold analogue of moving along a straight line. In fact, in Rn
the geodesics are exactly the straight lines. On a sphere, the geodesics are the great
circles.

Geodesics always exists locally, but they can sometimes be extended globally. If all
geodesics can be extended globally, we call a manifold geodesically complete. It has
been shown that a manifold is geodesically complete if and only if it is complete
with respect to the metric induced by the Riemannian structure. For a compact
Riemannian manifold this is always true. Therefore for every point p and every
v ∈ TpM there exists a geodesic γ : R → M through p that has tangent vector v at
p. This allows us to define the exponential map

expp : TpM →M

which maps a tangent vector v ∈ TpM to the point in M that is reached after
following the geodesic through p with tangent vector v for time 1. As a consequence,
the mapping t 7→ expp(tv) describes the corresponding geodesic. It is also worth
noting that expp maps the ball of radius ε around 0 in TpM to the ball of radius ε
around p in M . For ε small enough, this mapping is one-to-one. This will be useful
in Chapter 3.

It follows from geodesic completeness that between any two points p and q there
exists a geodesic. If p and q are close enough to each other, this geodesic is unique.
Otherwise there can be many different geodesics. A clear example is when we take
M to be the sphere and p and q the north pole and south pole, respectively. Every
curve from p to q that goes straight to the south with constant speed is a geodesic.
This implies that there are infinitely many shortest paths between p and q.

Normal coordinates

We can use the exponential map to define a very convenient coordinate chart. Fix
a point p and fix an orthonormal basis φ1, .., φn of TpM . Denote by H the function
that maps v ∈ TpM to its coordinates v1, .., vn with respect to φ1, .., φn, i.e. the real
numbers such that

v = viφi.
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Then there exists a neighbourhood U of p on which the following map is well-defined
and homeomorphic to its image:

x : U → Rn, q 7→ H ◦ exp−1
p (q).

Note that U must in particular be small enough such that geodesics from p to points
in U are unique. Now (x, U) defines a coordinate chart. We call these coordinates
normal coordinates centered at p. Note that they depend on the choice of orthonormal
basis.

The advantage of using normal coordinates is that some expressions are simplified.
Since gij = 〈∂i, ∂j〉p = 〈φi, φj〉p equals 1 for i = j and 0 otherwise, we see that by
construction the metric matrix G at p equals the identity matrix when it is expressed
in normal coordinates. Also, the first order partial derivatives of gij are 0 at p and
therefore the Christoffel symbols vanish at p. Note that these properties only hold
at p though, not at other points in U . Another nice property is that through these
normal coordinates a small enough ball around p is in one-to-one correspondence with
a ball in Rn.

Volume measure
To integrate on a manifold, we need a measure that measures the volume of (measur-
able) subsets of the manifold. In a general smooth manifold there is no canonical way
to do this, but the Riemannian structure induces a natural concept of volume. To de-
scribe it, we first specify the set Λ(M) of measurable subsets of M . A subset V ⊂M
is said to be measurable if for every chart (x, U) the set of coordinates x(U ∩ V ) is
Lebesgue measurable. In this way Λ(M) in particular contains the Borel measurable
subsets of M . Now we define the volume measure V in local coordinates (x, U) as

dV =
√
|G|dλ,

where |G(s)| is the determinant of the Riemannian metric matrix at x−1(s) expressed
in (x, U). This means that for a measurable function f with support in U∫

M

fdV =

∫
x(U)

f(x−1(s))
√
|G(s)|λ(ds).

For the existence and uniqueness of the volume measure as given by this expression
see Grigoryan [79]. To understand why the factor

√
|G| shows up, one has to go

through the theory of forms on a manifold, which we will not do here. We do mention
that this factor makes sure that the expression

√
|G|dλ is invariant under coordinate

transformations. Note that in Rn with the usual coordinates the matrix G is the
identity matrix, so dV reduces to dλ. In that sense the volume measure is a general-
isation of the Lebesgue measure to manifolds. The total volume V (M) of a manifold
can be infinite, but if the manifold is compact the volume is finite. Therefore on
a compact manifold we can normalise the volume measure by dividing by V (M) to
obtain a uniform probability measure, which we will denote by V .
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2.2.2 Brownian motion and related objects

So far we introduced general basic concepts on manifolds. Now we move to more
specialised and sometimes probabilistic notions. Unless noted otherwise, we assume
for the rest of this chapter that M is a complete, smooth, connected and compact
n-dimensional Riemannian manifold.

Laplace-Beltrami operator
In order to treat Brownian motion, the Green’s function and the heat equation on
a manifold, an object of central importance is the Laplace-Beltrami operator, the
manifold analogue of the Laplace operator. For more details about all of these topics
and for proofs we refer the reader to Grigoryan [79] and Canzani [24]. We will only
need to apply the Laplace-Beltrami operator to smooth functions, so we will define
it for smooth functions. As in Rd, the Laplace-Beltrami operator is the divergence of
the gradient. Therefore we will first define those concepts.

First let f be a smooth function. Then the gradient of f is the unique smooth vector
field ∇f such that for each point p and tangent vector v ∈ TpM , the directional
derivative at p in the direction of v satisfies

Dvf(p) = 〈v,∇f〉p.

As in Rn, the gradient of f at p is the vector that points in the direction of the largest
growth of f and of which the norm corresponds to the size of this growth.

Now let X be a smooth vector field on M . Then the divergence of X is the unique
smooth function divX such that for all smooth functions f∫

(divX)fdV = −
∫
〈X,∇f〉dV.

Note that this way the divergence is defined through the identity that is usually known
as the divergence theorem. The usual term containing an integral over the boundary
equals 0 because there is no boundary.

Now we can define the Laplace-Beltrami operator ∆M as the divergence of the gra-
dient, i.e. for a smooth function f

∆Mf = div(∇f),

which is again a smooth function on M .

The advantage of the descriptions of ∇, div and ∆M that we gave here, is that they
are independent of coordinates, so we are sure that they do not depend on which
chart we use to describe them. However, it is sometimes useful to express them in
local coordinates. For the Laplace-Beltrami operator this yields the following two
expressions:

∆M =
1√
|G|

∂j(
√
|G|gij∂i) = gij∂i∂j − gijΓkij∂k.
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In normal coordinates (x, U) centered at a point p the metric matrix is the identity
and the Christoffel symbols vanish, so the expression reduces to

∆Mf(p) =
∑
i

∂2
i f(p),

which is what we are used to in Rn. Note that this expression again only holds at the
point p itself. An alternative description of ∆M is obtained by fixing an orthonormal
basis v1, .., vn at p (for instance ∂1, .., ∂n from the normal coordinates (x, U) we just
used) and writing

∆Mf(p) =
∑
i

d2

dt2
f(expp(tvi))

∣∣∣∣
t=0

.

From what we saw above, we can interpret the Laplace-Beltrami operator as an
operator ∆M : C∞(M) → C∞(M) on the smooth functions on the manifold. ∆M

has eigenvalues 0 = λ1 ≥ λ2 ≥ ..., where the eigenvalue 0 comes from the fact that
∆M1 = 0. The corresponding eigenfunctions ϕ1 = 1, ϕ2, .. are smooth functions that
form an orthonormal basis for L2(M).

Heat semigroup, heat kernel and heat equation

The Laplace-Beltrami operator acting on the smooth functions can be closed both in
L2(M) and in C(M), the continuous functions on M . Now ∆M generates a strongly
continuous semigroup on L2(M) and on C(M). We call both of them the heat semi-
group and denote them by S = (St, t ≥ 0). This should not cause any confusion,
since the semigroup on L2(M) extends the semigroup on C(M), i.e. they agree on
the continuous functions. Moreover, we will usually only apply the semigroup to
smooth functions, where they agree by definition.

For f ∈ L2(M) and t > 0, Stf has a smooth version so we can take Stf to be smooth.
There also exists a function (t, p, q) 7→ pt(p, q) for t > 0 and p, q ∈ M that is smooth
jointly in all variables and symmetric in p and q such that for all f ∈ L2(M):

Stf(p) =

∫
M

pt(p, q)f(q)V (dq).

pt(x, y) is called the heat kernel on M .

We define the heat equation on M as in Rn:

∂tu(p, t) = ∆Mu(p, t), u(p, 0) = u0(p),

where u0 is the initial density and ∆M acts on the space variable of u. The function
(t, p) 7→ Stf(p) satisfies the heat equation with initial density f .
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Green’s function
With the tools developed so far, we can introduce the Green’s function on M . For
more details we refer to Aubin [4], Donaldson [45] and Grigoryan [79]. One would
like to define the Green’s function as the integral of the heat semigroup or as minus
the inverse of the Laplacian. However, on a compact manifold (without boundary),
the heat kernel is not integrable and the Laplace-Beltrami operator is not invertible.
The reason is that the heat kernel converges to a constant as t goes to infinity and
that ∆M1 = 0. However we can make adjustments to solve this.

The key to handling the Green’s function on a compact manifold is to reduce to
working with zero average functions. Then Stf still converges to a constant function,
but this constant is 0. Also ∆M is invertible on the smooth zero-average functions.
In Chapter 6 we will define the Green operator G as

G = −
∞∑
i=2

1

λi
Pi,

where Pi is projection onto the eigenspace spanned by the eigenfunction ϕi of ∆M .2

This way G is the inverse of ∆M on the space W of zero-average smooth functions
and it is 0 on the constant functions (compare with (2.9)). G can be extended to a
bounded, self-adjoint operator on L2(M). Finally it holds for f such that

∫
fdV = 0

that in L2(M)

Gf =

∫ ∞
0

Stfdt.

Alternatively, we could have defined the Green kernel as∫ ∞
0

(
pt(p, q)− 1

V (M)

)
dt (2.18)

and then Gf =
∫
g(p, q)f(q)V (dq). The idea in (2.18) is that the limiting density is

subtracted from the heat kernel to make sure that the integrand converges to 0 in the
limit of t to infinity.

Brownian motion
Now we want to introduce Brownian motion on a manifold. We will not directly
use it in this thesis (except in Appendix A), but Brownian motion on a manifold
is an important object in its own right and is closely related to the heat equation,
the Laplace-Beltrami operator and the random walk on a grid on a manifold that
particles perform in Chapter 4. We refer to Hsu [87] and Émery [49] for more details
and proofs.

Brownian motion on M can be defined as a Markov process B = (Bt, t ≥ 0) on M
that has pt/2(p, q) as its transition density function. If we do that, we find that the

2Note the difference of sign compared to (6.4). This comes from the extra minus in the definition
of the Laplace-Beltrami operator in Chapter 6.
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semigroup of Brownian motion is (St/2, t ≥ 0) and that this semigroup is generated

by 1
2∆M , like its counterpart in Rn. Also like in Rn, Brownian motion on M has

a version with continuous paths. Under our assumption that the manifold M is
compact, has no boundary and is complete we know that Brownian motion exists
for all time. In Rn Brownian motion has independent Gaussian increments. On
a manifold Brownian motion is still independent in non-overlapping time intervals,
but since it is not possible to subtract points of the manifold we cannot speak of
increments. However, the transition density function is the heat kernel (at time t

2 ),
which is the density for the normal distribution in Rn.

There are several other ways of constructing or characterising Brownian motion on a
manifold. One method is called ‘rolling without slipping’ (Elworthy [48], Hsu [86]).
It uses stochastic calculus and more specifically Stratonovich integrals. The idea is
that a Brownian motion process in Rd is ‘rolled out’ over the manifold in an appro-
priate way to obtain Brownian motion on the manifold. Next, Brownian motion can
be characterised as a martingale on the manifold with a certain quadratic variation
(Émery [49]). Finally, Brownian motion can be described locally in a coordinate
chart as a process that is generated by the Laplace-Beltrami operator expressed in
local coordinates. However, this description is only valid until the process leaves the
chart. For more general theory about (semi)martingales and stochastic calculus on
manifolds, see Hsu [86] and Émery [49].

Geodesic random walk

As in the Rn case, we can interpret Brownian motion on a manifold as the scaling
limit of a random walk. Of course one cannot interpret a random walk on a manifold
as a sum of i.i.d. random increments. Also, its path cannot be rescaled in the same
way as in Rn. It turns out that the right random walk concept on a manifold is the
geodesic random walk.

To define the geodesic random walk X, first specify a probability measure µp on each
tangent space TpM . Initialise the random walk by letting X0 = p0 be a possibly
random point on the manifold. After an exponential time with rate 1, pick a random
tangent vector v0 from Tp0M according to µp0 . Then jump to p1 = expp0(v0), i.e. the
point that is reached by following the geodesic from p0 in the direction of v0 for time
1. Now wait again for an exponential time, pick v1 from Tp1M according to µp1 and
jump to p2 = expp1(v1). Repeating this process yields the geodesic random walk.

As we said before, to rescale the random walk we cannot simply rescale its path.
Instead, for fixed N , we set the parameter for the exponential waiting times to N2.
This scales time with a factor N2. To rescale space with a factor N , we say that each
geodesic should be followed for time 1

N instead of time 1, or, equivalently, we scale the
tangent vectors that are picked at each point by 1

N . Now under some conditions (that
we will mention shortly) on the µp’s, the rescaled geodesic random walk converges to
Brownian motion on the manifold.
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This invariance result was obtained in Jørgensen [93] and Blum [17]. A sufficient
condition is for instance that each µp is the uniform measure on the unit ball of TpM .
In Appendix A we include a proof for more general jumping distributions that is
tailor-made to be applied later in this thesis.
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Particle systems and Gaussian
Free Fields on manifolds





Chapter 3

Uniformly approximating
grids

In this thesis we will use grids to define the Symmetric Exclusion Process and the
Discrete Gaussian Free Field on a compact Riemannian manifold. In this chapter1

these grids are introduced and we prove the necessary properties, the most important
of which is the convergence of the graph Laplacians to the Laplace-Beltrami operator.
We call these grids uniformly approximating grids.

3.1 Introduction

When considering an interacting particle system or a discrete field like the Discrete
Gaussian Free Field on a continuous space, we usually define them on a discretisation
of that space. We also discussed this in Chapter 1, in particular in Section 1.6.4. We
refer to such discretisations as grids. In the well-studied case of Rd (or the flat torus),
there is a very natural candidate grid, namely the lattice Zd. This grid has many nice
properties. It is very homogeneous, the grid looks the same from the point of view of
each grid point. In fact, it is symmetric around each point and translation invariant.
Moreover, it can be naturally rescaled simply by multiplying it with a constant 1

N ,
since 1

NZd is again a subset of Rd. And when N grows to infinity, 1
NZd approximates

Rd very evenly. The distance between neighbouring grid points is the same everywhere
on the grid and it diminishes monotonically. Also the empirical measure of the grid
points (i.e. 1

Nd
times the sum of Dirac measures on all grid points) approximates the

Lebesgue measure evenly (i.e. equally fast on compact boxes everywhere in Rd).

1This chapter is based on research that was first started in van Ginkel [148] and then continued
and finalised in van Ginkel and Redig [149].
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When we move to a manifold it is not straightforward to define a good grid. And when
we do, it will definitely not have all the nice lattice properties that we described above.
In fact properties like translation invariance cannot be hoped for since translation
itself has no fixed meaning on a manifold. However, we will also not need all of the
properties of lattices. Some properties make proofs and notation easier but are not
essential for treating interacting particle systems or discrete random fields. In this
chapter we will assess which properties we need and show how to obtain grids with
those properties. We will call these grids uniformly approximating grids.

For the rest of this chapter, let M be a complete, smooth, connected and compact
d-dimensional Riemannian manifold. We will show two results.

i) If a sequence (pn)∞n=1 in M is such that the empirical measures 1
N

∑N
i=1 δpi

converge to the uniform distribution in Kantorovich sense, then we can use the
sequence to construct a sequence of grids. We will let the grid GN be the first N
points of the sequence and define weights on the edges between the grid points
depending on the distance between the points. This is Theorem 3.4.

ii) If a sequence is sampled from the uniform measure on M , then with probability
1 the corresponding empirical measures converge to the uniform measure in
Kantorovich sense, i.e. we can apply Theorem 3.4. This is Theorem 3.13.

The structure of this chapter is as follows. In Section 3.2 we describe what kind of
properties the grids should satisfy. We mention other ways that have been used in
the literature to approximate manifolds and explain why they do not suffice for our
purposes. Then in Section 3.3 we introduce the grids that we will use and we state
the main theorem, Theorem 3.4. The idea of this main theorem is that if we are given
an appropriate sequence of points on the manifold, they can be used to construct
weighted graphs that satisfy the properties that are required in Section 3.2. The
proof of this theorem is given in Section 3.4 and Section 3.5. Then in Section 3.6 we
state and prove Theorem 3.13, so we show that an appropriate sequence of points is
obtained with probability 1 by sampling uniformly from the manifold. We conclude
with some notes and references in Section 3.7.

For the result of Section 3.5, we will need a result that forms the core of proving
the invariance principle for the geodesic random walk. For this we will refer to Ap-
pendix A.

3.2 Uniformly approximating grids

We will first explain which properties uniformly approximating grids should satisfy.
Then we will mention some already existing discretisations of manifolds or grids on
manifolds and we explain why they can not be used in our context.
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3.2.1 Requirements for the grids

As we said earlier, the goal of this thesis is to consider interacting particle systems
such as the Symmetric Exclusion Process (SEP) and the Discrete Gaussian Free Field
(DGFF) on a manifold. To do this we need a sequence of grids that approximate the
manifold. The fact that we want to construct SEP and the DGFF pose restrictions
on the grids that we use. These restrictions naturally lead to the following three
properties that the grids should satisfy.

Property 1: Symmetric conductances

First, both for SEP and for the GFF we need that the conductances between grid
points are symmetric. Having symmetric conductances implies that we can can re-
ally speak of the conductance between points without specifying a direction. In the
analysis of SEP, this means that we can view it as a process of flipping edges instead
of letting particles jump (see Chapter 4). For the DGFF it also makes sense to have
directionless conductances. The reason is that its density is a function of the weighted
total squared difference of the DGFF values in neighbouring nodes. It is natural, both
conceptually and for the calculations, that these edges weights only depend on the
pair of nodes and not on the direction.

Property 2: Convergence of the graph Laplacians to ∆M

This next property is probably conceptually the most important one. As we have
seen in Chapter 1 and 2, the graph Laplacians corresponding to weighted graphs are
crucial for the analysis of both SEP and the DGFF. In particular, we saw this in the
sketch of the proof for the hydrodynamic limit of SEP in Section 1.3.3. Convergence of
the graph Laplacians to the Laplace-Beltrami operator ∆M is an essential ingredient
to obtain the heat equation in the limit. Further, we saw in Section 1.5.4 that the
convergence of the DGFF depends on convergence of the Green’s functions. This in
turn is directly related to convergence of the graph Laplacians.

To define the convergence of the graph Laplacians to the Laplace-Beltrami operator
mathematically, let (GN )∞N=1 be a sequence of grids. For simplicity, we assume that
GN has size N and we write GN = (p1, .., pN )2. As we argued above, on each GN we
will place symmetric conductances or edge weights WN

ij . This defines the following
graph Laplacians:

LNf(pi) =

N∑
j=1

WN
ij (f(pj)− f(pi)). (3.1)

Now we need that there exists a scaling function a : N → [0,∞) and some constant
C > 0 such that

a(N)LN → C∆M (N →∞)

2Note that we should write pN1 , .., p
N
N , but since the meaning is clear in its context and we will

later have graphs where pNi is the same for all N (and for fixed i), we leave out the superscript.
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in the sense that for all smooth φ : M → R

lim
N→∞

1

N

N∑
i=1

∣∣∣∣∣∣a(N)

N∑
j=1

WN
ij (φ(pj)− φ(pi))− C∆Mφ(pi)

∣∣∣∣∣∣ = 0. (3.2)

This is what we mean by convergence of the graph Laplacians to the Laplace-Beltrami
operator.

Property 3: Convergence of the empirical measures to V
The final requirement is implied by the previous two, but it is good to mention it
separately. Consider for a moment the random walk XN = (XN

t , t ≥ 0) on GN that
jumps with rates given by WN . The symmetry of the conductances implies that the
uniform measure on the grid points is stationary and reversible for X. This means that
when started from the uniform distribution, XN spends roughly an equal amount of
time in each grid point. Since the graph Laplacians converge to the Laplace-Beltrami
operator, the random walk on the grids points should in some sense converge to
Brownian motion (see Remark 3.5). Since Brownian motion is reversible with respect
to the uniform measure V = V

V (M) on M , it spends an equal amount of time in regions

of equal volume. Combining these arguments, we see that for large N , XN spends
roughly the same amount of time in each grid point and should spend time in a set
proportional to the volume of the set. We conclude from this that the amount of
grid points in a subset of M should in the limit be proportional to its volume. This
suggests that we should have that

1

N

N∑
i=1

δpi → V (3.3)

where the limit is in the sense of weak convergence of measures.

Uniformly approximating grids
If a sequence of grids with corresponding weights (GN ,WN )∞N=1 satisfies all of these
conditions we will call them uniformly approximating grids. In other words, uni-
formly approximating grids are grids with conductances (GN ,WN )∞N=1 such that the
conductances are symmetric and (3.2) and (3.3) hold.

Remark 3.1 (Comparison with standard grids). To give an idea of how known
grids in Euclidean spaces can be incorporated in this framework, let S be the one-
dimensional torus. Let SN be the grid with grid points pk = k

N , k = 1, .., N . We see
directly that (3.3) holds. Now we can define a nearest neighbour random walk by
putting WN

ij = 1|pi−pj |=1/N . Note that these conductances are symmetric. Also set

a(N) = N2. Then we see for a point pi ∈ SN that

a(N)

N∑
j=1

WN
ij (φ(pj)− φ(pi)) = N2(φ(pi + 1/N) + φ(pi − 1/N)− 2φ(pi))

= φ′′(pi) +O(N−1).
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The compactness of the torus easily implies that this rest term can be bounded
uniformly. This implies that (3.2) holds. Later in this chapter we encounter sequences
of grids such that GN ⊂ GN+1. This property can be obtained here by considering
the grids S2m with m ∈ N.

3.2.2 Available grids

The problem of constructing weighted grids on a manifold such that the graph Lapla-
cians in some sense approximate the Laplace-Beltrami operator has been studied
within the analysis and statistics communities. We will get to the latter in the next
section. Within the analysis community, the goal is usually to find approximations of
the Laplace-Beltrami operator to obtain approximations of its eigenvalues. We men-
tion some ways in which this was done and why they do not work for our purposes.

i) Triangulations. First there is the idea of approximating a manifold by trian-
gulating it. Usually such triangulation is not intrinsic to the manifold but is
performed in some ambient space, which is not what we want. There is also
the idea of geodesic triangulations, which are intrinsic to the manifold, for in-
stance in Aubry [5]. However, these triangulations are still technically complex
and only spectral convergence is shown, not pointwise convergence of the graph
Laplacians.

ii) ε-nets. One can also approximate a manifold by using ε-nets, grids such that
each point of the manifold is within distance ε of a grid point and such that
the grid points are at distance larger than ε from each other. Such approach
is used in Burago et al. [22] and Fujiwara [66]. This ε-net property makes sure
that points are distributed evenly when it comes to distance from each other.
In a flat space, this can go together with being distributed according to volume.
However, this is not true in curved space. The reason is that the volume of a
ball of radius ε depends on the local curvature. Therefore an ε-net does not
satisfy (3.3).

iii) Poisson-Voronoi tesselations. To make sure that (3.3) is satisfied, one can sample
from the uniform distribution on the manifold (in fact, this is what we will
do later in this chapter). Then the corresponding Voronoi tesselation can be
constructed and points can be joined with an edge if the are in neighbouring
cells. Properties of such tesselation have been studied in for instance Calka et al.
[23]. However, in our case it is first not clear which weights should be put on
these edges such that the graph Laplacians converge to the Laplace-Beltrami
operator. Second, it is hard to prove pointwise convergence of these operators
in this case, because of the lack of symmetry of the grid around a fixed grid
point. See also Remark 3.2.

iv) Random geometric complexes. As in the previous point, one can sample uni-
formly from the manifold and join points with edges if they are a certain distance
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from each other. This is in fact similar to what we will do, but not the same.
For instance in Lerario and Mulas [105] such a grid is studied.

3.3 Model and motivation

In this section we introduce the grids that we will use in this thesis. To be more
precise, we will show how a suitable sequence of grids points can be used to construct
uniformly approximating grids. The requirement on this sequence of grid points is that
the corresponding empirical measures converge in Kantorovich sense to the uniform
distribution on the manifold. In Section 3.6, we will see how such sequence of points
can be obtained.

Before we explain this, we will start with a motivation and some references to litera-
ture where similar models are used.

3.3.1 Motivation

In statistical data analysis the following setting is known and used in various contexts
such as data clustering, dimension reduction, computer vision and statistical learning,
see: Singer [138], Von Luxburg et al. [155], Giné and Koltchinskii [74], Belkin and
Niyogi [11] and Belkin [8] and references therein for general background and various
applications. Suppose we have a manifold M that is embedded in Rm for some m
and we would like to recover the manifold from some observations of it, say an i.i.d.
sample of uniform random elements of M . To do this we can describe the observations
as a graph with as weight on the edge between two points a non-negative kernel with
bandwidth ε applied to the Euclidean distance between those points. Then it can be
shown that the graph Laplacian of the graph that is obtained in this way converges in
a suitable sense to the Laplace-Beltrami operator on M as the number of observations
goes to infinity and ε goes to 0.

We generalise this idea by taking a more general sequence of graphs, but our main
example (in Section 3.6) will be this random graph. The main distinction between
the statistical literature and our context is the following: for our purposes it is much
more natural to view the manifold M on its own instead of embedded in a possibly
high dimensional Euclidean space. This means that we have to use the distance that
is induced by the Riemannian metric instead of the Euclidean distance. The latter is
more suitable to purposes in statistics, because in that setting the Riemannian metric
on M is not known beforehand. Also, a lot is known about the behaviour of the
Euclidean distance in this type of situation and not so much about the distance on
the manifold. We will have to make things work in M itself.

3.3.2 Model

We repeat our assumption that M is a complete, smooth, connected and compact
d-dimensional Riemannian manifold.
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Sequence approximating the uniform distribution
We call a function f on M Lipschitz with Lipschitz constant Lf if

sup
p,q∈M

|f(p)− f(q)|
d(p, q)

= Lf <∞.

Let (pn)n≥1 be a sequence in M such that µN := 1
N

∑N
i=1 δpi converges in the Kan-

torovich sense to V (the uniform distribution on M), i.e.

W1(µN , V ) = sup
f∈F1(M)

{∫
M

fdµN −
∫
M

fdV

}
−→ 0,

where F1(M) denotes the set of Lipschitz functions f on M that have Lipschitz
constant Lf ≤ 1.

Weighted graphs

Define the N th grid VN as VN = {p1, .., pN}. Set

ε := ε(N) :=

(
sup
m≥N

W1(µm, V )

) 1
4+d

. (3.4)

This ε rescales the distance over which particles will jump. Naturally, ε ↓ 0 as N →
∞ (since W1(µN , V ) → 0). Let k : [0,∞) → [0,∞) be Lipschitz and compactly
supported (for instance k(x) = (1− x)1[0,1](x)), we will call such k a kernel. Define

W ε
ij = k(d(pi, pj)/ε)

as the jumping rate from pi to pj . Here d is the Riemannian metric on M . Note that
the only dependence on N is through ε, hence the notation W ε

ij instead of WN
ij . If

we regard two points pi, pj as having an edge between them if WN
ij > 0, we want the

resulting graph to be connected (to make sense of the random walk and later of the
particle systems defined on it). If we assume that there is some α such that k(x) > 0
for x ≤ α, one can show that the resulting graph is connected for N large enough.
The main reason is that the distance between points that are close to each other goes
to zero faster than ε. The details of the proof are in the appendix of this chapter (see
also Remark 3.2). These weights induce the following graph Laplacian

LNf(pi) =

N∑
j=1

W ε
ij(f(pj)− f(pi)). (3.5)

Scaling
Finally we define the scaling factor

a(N) = ε−2−dN−1.
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To see why the scaling a(N) is natural, we can rewrite

a(N)LNf(pi) =
1

ε2

N∑
j=1

k
(
d(pi,pj)

ε

)
Nεd

(f(pj)− f(pi)).

Since k is a kernel that is rescaled by ε inside, we need the 1
εd

to make sure the
integral of the kernel stays of order 1 as ε goes to 0. Since the number of points
that the process can jump to equals N , we also need the factor 1

N to make sure the
jumping rate is of order 1 as N goes to infinity. Also note that the typical distance
that a particle jumps with these rates is of order ε. This means that space is scaled
by ε. Hence it is very natural for a diffusive scaling that time is rescaled by 1

ε2 .

Note that in the calculations N is the main parameter and ε an auxiliary parameter
depending on N . However, conceptually, when the scaling is concerned, the most
important parameter is ε. N is just the total number of positions and simply has
to grow fast enough as ε goes to 0. To see why this is true, note in the rest of this
chapter that any sequence ε(N) that goes to 0 more slowly than what we use here
will also do. Hence ε should go to 0 slow enough with respect to N or, equivalently,
N should go to infinity fast enough with respect to ε.

Remark 3.2. We have noted that N must grow to infinity fast enough as ε goes to
0. In fact, the number of points in a ball of radius ε goes to infinity (even though ε
shrinks to 0). In particular, this means that the number of points that a particle can
jump to, goes to infinity. This is very different from the Rd case, where the number
of neighbours is constant. The reason why it should be different in the manifold case
is the following. In Rd, the natural grid 1

NZd is very symmetric. Indeed, we can split
the graph Laplacian into the contributions N2(f(x+ ei/N) + f(x− ei/N)− 2f(x)) in
each direction i, where ei it the unit vector in direction i. Now when applying Taylor
we see that the first order terms cancel perfectly, leaving us only with the second
order terms, which we want for the Laplacian. In a manifold such perfect cancellation
is not possible. Therefore the way to make the first order terms cancel is to sample
more and more points around a grid point, such that the sum over the linear order
terms becomes an integral that vanishes in the limit. This is exactly what happens
in our proof. For this reason we need the number of grid points in a ball of size ε to
go to infinity.

Remark 3.3. It is also possible to define WN
ij as pε(pi, pj), the heat kernel after time

ε, and rescale by ε−1 instead of ε−2−d. Then the result of Section 3.4 can be proven
in the same way by obtaining some good bounds on Lipschitz constants and suprema
of the heat kernel and choosing ε = ε(N) appropriately. We will follow this approach
in Chapter 6. There the result of Section 3.5 is a direct consequence of the fact that
the Laplace-Beltrami operator generates the heat semigroup. However, for purposes
of application/simulation the weights that we have chosen here are much easier to
calculate (since only the geodesic distances need to be known, not the heat kernel).
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3.3.3 Main result

We now state the main result.

Theorem 3.4. Let VN ,W
ε, a(N) be as defined above. Then (VN ,W

ε)∞N=1 is a se-
quence of uniformly approximating grids with scaling a(N).

By construction, the edge weights W ε
ij are symmetric. Also by assumption on the

underlying sequence, the empirical measures corresponding to the grids VN converge
in Kantorovich sense and therefore weakly to V . Therefore to prove that the grids
are uniformly approximating it remains to show (3.2), i.e. as the number of points N
goes to infinity (and hence the bandwidth ε goes to 0)

1

N

N∑
i=1

∣∣∣∣∣∣a(N)

N∑
j=1

W ε
ij(f(pj)− f(pi))− C∆Mf(pi)

∣∣∣∣∣∣ −→ 0 (N →∞).

In fact, in Section 3.4 and 3.5 we will prove the following slightly stronger result:

sup
1≤i≤N

∣∣∣∣∣∣a(N)

N∑
j=1

W ε
ij(f(pj)− f(pi))− C∆Mf(pi)

∣∣∣∣∣∣ −→ 0 (N →∞). (3.6)

We call (3.6) “convergence of the (rescaled) generators to ∆M uniformly in the pi’s
for i ≤ N” or just “convergence of the generators to ∆M uniformly for i ≤ N”. In
fact, we will show that the rate of convergence does not depend on pi, so we might as
well call it “uniformly in the pi’s”.

Remark 3.5. In fact, (3.6) implies more. Denote the semigroups corresponding to

the generators a(N)
∑N
j=1W

ε
ij(f(pj)−f(pi)) by SNt and the semigroup corresponding

to C∆M by St. Then (3.6) implies that uniformly on compact time intervals

sup
1≤i≤N

∣∣SNt f |GN (pi)− Stf(pi)
∣∣ −→ 0 (N →∞).

The proof is a straightforward application of Kurtz [102, Theorem 2.1] and a small
argument that the extended limit of the generators above (as described in [102]) equals
C∆ since they are equal on the smooth functions.

3.4 Replacing empirical measure by uniform mea-
sure

The first step to show (3.6), is to replace the summation over the grids points by
integration with respect to the volume measure. In other words, we will replace the
empirical measure corresponding to the grids by the uniform measure. We will use
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the Kantorovich convergence of the empirical measures together with the Lipschitz
property of the kernel k to show that the rest term vanishes.

To prove (3.6) we need to show that there is a C independent of i such that for all
smooth f

lim
N→∞

ε−2−dN−1
N∑
j=1

k(d(pj , pi)/ε) [f(pj)− f(pi)] = C∆Mf(pi)

uniformly in the pi’s. We can write

ε−2−dN−1
N∑
j=1

k(d(pj , pi)/ε) [f(pj)− f(pi)] = ε−2−d
∫
M

gε,idµN , (3.7)

where

gε,i(p) = k(d(p, pi)/ε) [f(p)− f(pi)]

and

µN =
1

N

N∑
i=1

δpi

is the empirical measure corresponding to GN . Now (3.7) equals

ε−2−d
∫
M

gε,idV + ε−2−d
∫
M

gε,id(µN − V ). (3.8)

We will show later that the first term converges to C∆Mf(pi) (uniformly in the pi’s)
as N → ∞. Therefore it suffices for now to show that the second term converges to
0, uniformly in the pi’s.

3.4.1 Replacement

Note that k is Lipschitz so it has some Lipschitz constant Lk <∞. This implies that∣∣∣∣k(d(q1, pi)

ε

)
− k

(
d(q2, pi)

ε

)∣∣∣∣ ≤ Lk ∣∣∣∣d(q1, pi)

ε
− d(q2, pi)

ε

∣∣∣∣ ≤ Lk
ε
d(q1, q2),

by the reverse triangle inequality, so k(d(·, pi)/ε) has Lipschitz constant Lk
ε . f is

smooth, so it is Lipschitz too with Lipschitz constant Lf . Since f(pi) is just a constant,
f(·)−f(pi) is also Lipschitz with Lipschitz constant Lf . Since they are both bounded
functions, we see for the Lipschitz constant of gε,j :

Lgε,j ≤ Lk(d(·,pi)/ε)||f(·)− f(pi)||∞ + ||k(d(·, pi)/ε)||∞Lf(·)−f(pi)

≤ 2Lk
ε
||f ||∞ + ||k||∞Lf .
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Note that k is bounded since it is Lipschitz and compactly supported, so ||k||∞ <∞.
This shows that:∣∣∣∣ε−2−d

∫
M

gε,id(µN − V )

∣∣∣∣ ≤ ε−2−d
(

2Lk
ε
||f ||∞ + ||k||∞Lf

)
W1(µN , ν)

= ε(N)−3−d (2Lk||f ||∞ + ε(N)||k||∞Lf )W1(µN , ν),

where we denoted the dependence of ε on N explicitly. By (3.4), W1(µN , ν) ≤
ε(N)4+d, so we obtain∣∣∣∣ε−2−d

∫
M

gε,id(µN − V )

∣∣∣∣ ≤ ε (2Lk||f ||∞ + ε||k||∞Lf ) .

Note that this bound does not depend on pi. Since ε→ 0, it follows that the second
term of (3.8) goes to 0 uniformly in the pi’s.

3.4.2 What remains

What we have seen above basically means that we can replace the empirical distri-
bution µN by the uniform distribution V . For convergence of the generators we still
have to show that

lim
ε↓0

ε−2−d
∫
M

k(d(p, pi)/ε) [f(p)− f(pi)]V (dp) = C∆Mf(pi)

uniformly in the pi’s. Note that we can replace N →∞ by ε ↓ 0, since the expression
only depends on N via ε and ε(N) ↓ 0 as N →∞. Since the pi’s are all in M we can
replace pi by q and require that the convergence is uniform in q ∈M .
Because of these considerations it remains to show that there exists C > 0 such that
uniformly in q ∈M :

lim
ε↓0

ε−2−d
∫
M

k(d(p, q)/ε) [f(p)− f(q)]V (dp) = C∆Mf(q). (3.9)

Note that for every ε > 0 this expression can be interpreted as the generator of a
jump process on the manifold M . The process jumps from p to a (measurable) set
Q ⊂M with rate

∫
Q
ε−2−dk(d(p, q)/ε)dV .

Remark 3.6. Note that this is easy to show in Rd. Indeed, using the transformation
u = (y − x)/ε and Taylor, we see

ε−2−d
∫
Rd
k

(
‖y − x‖

ε

)
(f(y)− f(x))dy

= ε−2

∫
Rd
k(‖u‖)(f(x+ εu)− f(x))du

= ε−1

∫
Rd
k(‖u‖)∇f(x) · udu+

1

2

∫
Rd
k(‖u‖)uTH(x)udu+O(ε),
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where H(x) is the Hessian of f in x. Now changing coordinates to integrate over each
sphere Br of radius r with respect to the appropriate surface measure Sr and then
with respect to r, we obtain

ε−1

∫
R
k(r)

∫
Br

∇f(x) · wSr(dw)dr +
1

2

∫
R
k(r)

∫
Br

wTH(x)wSr(dw)dr +O(ε).

Now because of symmetry the integrals of wi and of wiwj over spheres vanish for each
i 6= j. Moreover the integrals of w2

i do not depend on i, but only on r. Therefore the
first term vanishes and we are left with

1

2

∫
R
k(r)C(r)∆f(x)dr +O(ε) = C ′∆f(x) +O(ε).

This shows convergence (at least pointwise, for uniform convergence we have to be a
little more careful about the O(ε)).

3.5 Convergence result

As we argued above, it remains to show (3.9). Therefore let p ∈M be fixed (note that
we reverse the notation of p and q with respect to (3.9)). We will pull the integral
in (3.9) to the tangent space TpM . There we analyse the measure with respect to
which we integrate so that we can apply a result from Appendix A to obtain the
convergence result.

3.5.1 Integral on the tangent space

First, let us introduce some notation. We will write

B(p, r) = {q ∈M : d(p, q) < r} ⊂M
Bp(r) = {η ∈ TpM : ‖η‖ < r} ⊂ TpM
Bd(r) = {v ∈ Rd : ‖v‖ < r} ⊂ Rd.

Since k is compactly supported, let α > 0 be such that supp k ⊂ [0, α). Note that
the integrand in (3.9) is

q 7→ k(d(p, q)/ε)(f(q)− f(p)),

which equals 0 outside of B(p, αε). Now fix normal coordinates (x, U) centered at p.
For ε small enough B(p, αε) ⊂ U . In that case we even know that

expp : TpM ⊃ Bp(αε)→ B(p, αε) ⊂M
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is a diffeomorphism. Using this we see that∫
M

k
(
d(p,q)
ε

)
(f(q)− f(p))V (dq)

=

∫
B(p,αε)

k
(
d(p,q)
ε

)
(f(q)− f(p))V (dq)

=

∫
Bp(αε)

k
(
d(p,expp(η))

ε

)
(f(expp(η))− f(p))V ◦ exp(dη). (3.10)

Now note that d(p, expp(η)) = ‖η‖, so (3.10) equals∫
Bp(αε)

k
(
‖η‖
ε

)
(f(expp(η))− f(p))V ◦ exp(dη). (3.11)

Now if we denote multiplication by ε in TpM with λε, we see that (3.11) equals∫
Bp(α)

k(‖η‖)(f(expp(εη))− f(p))V ◦ expp ◦λε(dη). (3.12)

3.5.2 The measure V ◦ expp ◦λε
Now we study the measure V ◦ expp ◦λε a bit more closely. Using the coordinate
chart, we can write

V ◦ expp ◦λε = (V ◦ x−1) ◦ (x ◦ expp) ◦ λε. (3.13)

Now the measure V ◦ x−1 equals
√
|G|dλ by definition, where λ is the Lebesgue

measure on Rd. We will analyse this expression later. Further, on Bp(αε), the map-
ping x ◦ expp equals the isometry φ : TpM → Rd that maps a vector in TpM to its
coordinates with respect to (∂1, .., ∂d), as we see in the following lemma.

Lemma 3.7. x ◦ exp = φ on Bp(αε)p.

Proof. Since (x, U) are normal coordinates centered at p, the geodesics through p are
straight lines with respect to x. In other words, they are of the form x(γ(t)) = ta+ b
with a, b ∈ Rd. Let η ∈ Bp(α) and write η = ηi∂i. The geodesic starting at p with
tangent vector η at p should satisfy

b = x(p) = 0, ai = ηi = φi(η)

for all i. Therefore we obtain the formula x(γ(t)) = tφ(η). Setting t = 1, we see that
x(expp(η)) = φ(η). This implies that x ◦ expp = φ on Bp(α).

From the properties of φ it now follows that

x ◦ exp : Bp(αε)→ Bd(αε)
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is a homeomorphism. This situation is sketched in Figure 3.1. Therefore the inverse of
x ◦ exp is continuous, so in particular measurable. This implies that the pushforward
measure of

√
|G|dλ through (x ◦ exp)−1 is well-defined.

Lemma 3.7 implies that on Bp(α)

(x ◦ expp) ◦ λε = φ ◦ λε = λε ◦ φ. (3.14)

The last equality holds since φ is an isometry and λε is linear. We conclude from (3.13)
and (3.14) that on Bp(α)

V ◦ expp ◦λε =
√
|G|dλ ◦ λε ◦ φ. (3.15)

Finally, we find a useful expression for
√
|G|dλ ◦ λε.

p

00

TpM

M

Rd
expp

x

φ

B(p, αε)

Bp(αε) Bd(αε)

Figure 3.1: The situation in lemma 3.8. On Bp(αε): x ◦ exp = φ. The uniform

measure on B(p, αε) is moved via x to Bd(αε) using the formula
√
|G|dλ. This

measure can then be pulled back to B(0, αε) using φ. Since φ is an inner product
space isomorphism, it will be easy to deal with orthogonal transformations later, in
Lemma 3.11.

Lemma 3.8. There exist a function h : Rd → R such that for t tending to 0, h(t) =
O(||t||2) and √

|G|dλ ◦ λε = εd
1 + h(εt)

V (M)
λ(dt).

Proof. According to [157, Cor 2.3],
√
|G| can be expanded (in normal coordinates) as

1+h(x) where h is such that h(x) = O(||x||2). This implies that V ◦x−1 = 1+h(t)
V (M) λ(dt).
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Now a simple transformation with respect to multiplication with ε yields(
1 + h(t)

V (M)
λ(dt)

)
◦ λε = εd

(1 + h(εt))

V (M)
λ(dt).

Remark 3.9. We used [157, Cor 2.3] in the proof above. In these notes the expansion
of
√
|G(p, x)| is calculated around a point p in normal coordinates x centered at p:√

|G(p, x)| = 1− 1

6
Ric(p)klx

kxl +O
(
|x|3
)
. (3.16)

As can be seen, there are no linear terms in the expansion. The coefficients for the
quadratic terms are coefficients of the Ricci curvature of M in p. This implies that the
way that the uniform distribution on a ball around p in M is pushed to the tangent
space via the exponential map depends on the curvature of M in p. In particular,
if there is no curvature, M is locally isomorphic to a neighbourhood in Rd so the
same thing happens as in Rd. This means that we get a constant time the uniform
distribution on a ball around 0 in the tangent space.

Remark 3.10. We will need in Proposition 3.12 that the statement of Lemma 3.8
holds uniformly in all points of the manifold. This means that the difference between
the uniform measure on a ball in the tangent space and the pulled back uniform
measure on a geodesic ball in the manifold decays quadratically with ε uniformly
in the manifold. Note that this uniform convergence is intuitively clear, since the
difference between the two measures is caused by curvature and curvature is bounded
in a compact manifold. As in the proof of Lemma 3.8, one needs to write√

|G(p, x)| = 1 + hp(x)

for some function hp that is O(|x|2) independent of p. Here for each p, (x, U) is a
system of normal coordinates centered at p and G(p, x) is the metric matrix expressed
in local coordinates at the point with coordinate x. Note that this way for each p we
use a different set of normal coordinates. Since

√
and |.| (the determinant function)

are uniformly continuous in the right domains, it suffices to show that

G(p, x) = I +O(|x|2), (3.17)

where the O(|x|2) is independent of p. In other words we want that

||G(p, x)− I|| ≤ C||x||2, (3.18)

where C does not depend on p. For all p ∈ M (and for any system of normal
coordinates centered at p) we have the following Taylor expansion (note that for fixed
p, G(p, ·)ij is a map from a (subset of) Rd to R):

G(p, x)ij = δij +
1

3
Rijklx

kxl +
∑
|β|=3

3

β!

∫ 1

0

(1− t)2DβG(p, ·)ij(tx)dt · xβ . (3.19)



74 Uniformly approximating grids

From this we get (3.18) directly for fixed p, i.e. we have

||G(p, x)− I|| ≤ Cp||x||2.

In order to obtain uniformity of Cp in p, we note that the functions of p and x
appearing in the r.h.s. of (3.19) can be made smooth both in p and x. Smoothness
in x is obvious (within the injectivity radius) and smoothness in p follows from a
special choice of normal coordinates in such a way that they vary smoothly with p.
A choice of normal coordinates is equivalent to a choice of an orthonormal basis, so
one can construct smoothly varying normal coordinates by taking a smooth section
of the orthonormal frame bundle (this can only be done locally, but it is enough to
have the uniformity result locally, since then by compactness one has it globally). By
compactness, the injectivity radius is bounded from below by some δ > 0. Now for
all p ∈ M and ||x|| < δ, (3.19) holds and (locally) the quantities on the r.h.s. vary
smoothly and therefore (again by compactness) one can show that C := supp Cp is
finite.

3.5.3 Convergence to ∆M

We define the measures µ and µR on TpM by saying that

dµ =

(
1

V (M)
dλ

)
◦ φ and dµR =

(
h(ε·)
V (M)

dλ

)
◦ φ

on Bp(0, α) and 0 everywhere else. Then (3.15) and Lemma 3.8 imply that (3.12)
equals

εd
∫
Bp(0,α)

k(||η||)(f(expp(εη))− f(p))(µ+ µR)(dη).

Now we define dµk = k(||·||)dµ (so the measure which has density k(||·||) with respect
to µ) and analogously dµkR = k(|| · ||)dµR. Then we can write the integral above as

εd
∫
TpM

(f(expp(εη))− f(p))(µk + µkR)(dη).

In this way we transformed the integral to one that we work with in Section A.1 since
we wrote it as the generator of a geodesic random walk (see LN on page 191). 3 To
use the theory that we obtained in Appendix A, we need the following lemma. It
tells us that µk can be used as a stepping distribution for a geodesic random walk
and it gives us the constant speed of the Brownian motion to which it converges (see
section A.2).

3p(ε, η) in the Appendix is notation for expp(εη), so the point that is reached by following the

geodesic from p in the direction of η for time ε. Also ε = 1
N

in Appendix A, but that is not the same
N as in this chapter.
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Lemma 3.11. µk is canonical in the sense of Definition A.9. Moreover∫
TpM

||η||2µk(dη) =
2πd/2

V (M)Γ(d/2)

∫ ∞
0

k(r)rd+1dr.

Proof. First of all recall that k is continuous and compactly supported, so the integral
over k above makes sense and is finite. Define ν = 1

V (M)dλ on Bn(α) and 0 everywhere

else. Then we can write µ = ν ◦ φ. Since φ preserves the norm, we see that k(|| ·
||TpM ) ◦ φ−1 = k(|| · ||Rd). This means that µk = νk ◦ φ, where νk := k(|| · ||)ν.
Since φ preserves the inner product, the measure µk behaves the same with respect to
orthogonal transformations in TpM as νk with respect to orthogonal transformations
in Rd. Since νk is clearly preserved under such transformations, so is µk. This shows
that µk is canonical.
Now we calculate the corresponding constant.∫

TpM

||η||2TpMµ
k(dη) =

∫
Rd
||φ−1(v)||2TpMν

k(dv)

=

∫
Rd
||v||2Rdν

k(dv) =
1

V (M)

∫
Bd(α)

||v||2Rdk(||v||Rd)λ(dv).

The first step holds because µk = νk ◦ φ and the second step uses the fact that φ
preserves the norm. Now we change coordinates in Rd and use the fact that ||v|| is
constant on spheres around the origin to obtain

1

V (M)

∫ α

0

r2k(r)
2πd/2

Γ(d/2)
rd−1dr =

2πd/2

V (M)Γ(d/2)

∫ ∞
0

k(r)rd+1dr.

Here 2πd/2

Γ(d/2)r
d−1 is the area of rSd−1. In the last step we used that supp(k) ⊂ [0, α].

Now we use everything above to prove 3.9, which was the only remaining step to
prove Theorem 3.4.

Proposition 3.12. Set

C =
πd/2

V (M)dΓ(d/2)

∫ ∞
0

k(r)rd+1dr.

Then as ε→ 0 we have uniformly in p ∈M :

ε−2−d
∫
M

k(d(p, q)/ε) [f(q)− f(p)]V (dq) −→ C∆Mf(p).
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Proof. Let p ∈M . We can write∫
M

k(d(p, q)/ε)(f(q)− f(p))V (dq)

= εd
∫
TpM

(f(expp(εη))− f(p))(µk + µkR)(dη)

= εd
∫
TpM

(f(expp(εη))− f(p))µk(dη) + εd
∫
TpM

(f(expp(εη))− f(p))µkR(dη).

From the results in Section A.1 and A.2 (Prop A.14) and Lemma 3.11, we see for the
first term uniformly in p

lim
ε↓0

1

ε2+d
εd
∫
TpM

(f(expp(εη))− f(p))µk(dη)

= lim
ε↓0

1

ε2

∫
TpM

(f(expp(εη))− f(p))µk(dη)

=
1

d

2πd/2

V (M)Γ(d/2)

∫ ∞
0

k(r)rd+1dr · 1

2
∆Mf(p) = C∆Mf(p).

Now it suffices to show that the second term goes to zero at a rate independent of p.
Let ε′,K > 0 such that |h(s)| ≤ K||s||2 for s ∈ Bd(ε′). By Remark 3.10, K and ε′ do
not depend on p. Now note that for ε < ε′:

|µR| ≤

(
sup

t∈Bd(1)

|h(εt)|

)
µ ≤

(
sup

t∈Bd(1)

K||εt||2
)
µ

=

(
sup

t∈Bd(1)

Kε2||t||2
)
µ = Kε2µ.

Now we see:

lim
ε↓0

1

ε2+d
εd

∣∣∣∣∣
∫
TpM

f(expp(εη))− f(p)µkR(dη)

∣∣∣∣∣
≤ lim

ε↓0

1

ε2

∫
TpM

∣∣f(expp(εη))− f(p)
∣∣ k(||η||)|µR|(dη)

≤ lim
ε↓0

1

ε2

∫
TpM

d(expp(εη), p)Lfk(||η||)Kε2µ(dη)

≤ LfK lim
ε↓0

∫
TpM

ε||η||k(||η||)µ(dη)

= LfK

∫
TpM

||η||k(||η||)µ(dη) lim
ε↓0

ε = 0,

where we used that the integral is finite since k is bounded and has support in [0, α].
Combining everything above gives what we wanted.
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3.6 Example grid

So far, we have seen that a sequence of grids is suitable for the hydrodynamic limit
problem if the empirical distributions converge to the uniform distribution in the
Kantorovich topology. We conclude by giving examples of such grids. To be more
precise, we show that if one constructs a grid by adding uniformly sampled points
from the manifold, this grid is suitable with probability 1.

Theorem 3.13. Let (Pn)∞n=1 be a sequence of i.i.d. uniformly random points of M .

Recall that µN = 1
N

∑N
i=1 δPi . Now it holds that W1(µN , V )→ 0 as N →∞.

To prove the theorem, we follow [153, Example 5.15]. In Section 3.6.1 we will show
that the expectation of W1(µN , V ) goes to 0. Then we will show in Section 3.6.2 that
it goes to 0 almost surely.

Remark 3.14 (Comparison with standard grids). Recall the grids SN on the one-
dimensional torus S from Remark 3.1. We can show that the empirical measures
corresponding to these grids along the subsequence N = 2m,m = 0, 1, 2, .. converge
to the uniform measure on S with respect to the Kantorovich distance. To this
end let N = 2m be fixed, call the corresponding empirical measure µN and call the
uniform measure λ. Recall that the Kantorovich distance between these measures is
alternatively given by

W1(µN , λ) = inf
γ∈Γ(µN ,λ)

∫
S×S

d(x, y)γ(dx, dy),

where Γ(µN , λ) is the set of all couplings of µN and λ. Now let Y be a uniform
random variable on S and define

X = k/N ⇐⇒ Y ∈
[
k − 1/2

N
,
k + 1/2

N

)
.

Denote the joint distribution of (X,Y ) by ν. Then it is easy to see that ν ∈ Γ(µN , λ).
This implies that

W1(µN , λ) ≤
∫
S×S

d(x, y)ν(dx, dy) = Eν(d(X,Y )) ≤ 1

2N
.

This implies convergence with respect to the Kantorovich metric along the subse-
quence N = 2m,m = 0, 1, 2, ... Note, however, that the corresponding edge weights
as described in this section are not the same as those in Remark 3.1.

3.6.1 Convergence of the expectation

Let (Pn)∞n=1 be a sequence of i.i.d. uniformly random points of M and set µN =
1
N

∑N
i=1 δPi . For now, let N be fixed. Let F1 be the set of Lipschitz function on

M with Lipschitz constant ≤ 1. Then we define for f ∈ F1 the random variable
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Xf = µNf − V f . Note that both µN and V are probability distributions, so Xf (ω)
is Lipschitz in f for each ω:

|Xf −Xg| = |µNf − V f − (µNg − V g)| ≤ |µN (f − g)|+ |V (f − g)| ≤ 2||f − g||∞.

Now note that since f has Lipschitz constant ≤ 1:

sup
p∈M

f(p)− inf
q∈M

f(q) = sup
p,q∈M

|f(p)− f(q)| ≤ sup
p,q∈M

d(p, q) =: K.

M is compact, so K <∞. Since adding constants to f does not change Xf , it suffices
to consider f ∈ F1,K = {g ∈ F1 : 0 ≤ g ≤ K}. It follows that for each f ∈ F1,K by
writing

Xf =

N∑
i=1

f(Xi)− V f
N

,

we see that it is a sum of i.i.d. random variables taking values in [−KN ,
K
N ]. By

the Azuma-Hoeffding inequality, this implies that Xf is K2

N -subgaussian for each
f ∈ F1,K . Now [153, Lemma 5.7] shows that

E[W1(µN , V )] ≤ inf
ε>0

{
2ε+

√
2K2

N
logN(W, || · ||∞, ε)

}
,

where N(F1,K , || · ||∞, ε) is the minimal number of points in some space containing
F1,K such that the balls of radius ε with respect to the uniform distance around those
points cover F1,K .

We now need to estimate this covering number. To do this we need an upper bound
of the covering number N(M,d, ε) of M (note that the d in N(M,d, ε) denotes the
Riemannian metric on the manifold and should not be confused with the dimension
of the manifold). Since M is compact there exist a, δ > 0 such that for all 0 < ε < δ:
N(M,d, ε) ≤ aε−d (see for instance [112, Lemma 4.2]). Using this we can prove the
following.

Lemma 3.15. There is a c > 0 such that for all 0 < ε < δ:

N(F1,K , || · ||∞, ε) ≤ exp c/εd.

Proof. Fix ε > 0 and call m = N(M,d, ε/4). By definition of this number, we can
find points p1, .., pm ∈M such that ∪mi=1B(pi, ε/4) ⊃M . Now define V1 = B(p1, ε/4)
and for i ≥ 2: Vi = B(pi, ε/4) \ ∪i−1

j=1Vj . Now for f ∈ F1,K , define πf : M → R by

πf : Vi 3 p 7→ ε

(⌊
f(pi)

ε

⌋
+

1

2

)
.

Since each p ∈ M is contained in exactly one Vi (by construction), this map is well-
defined. Note that if kε ≤ f(pi) < (k+ 1)ε, then πf = (k+ 1/2)ε on Vi. In particular
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clearly |f(pi)− πf (pi)| ≤ ε/2. Now denote Y = {πf |f ∈ F1,K}.
Now fix f ∈ F1,K and p ∈M . Let i be such that p ∈ Vi. Then we see:

|πf (p)− f(p)| = |πf (pi)− f(p)| ≤ |πf (pi)− f(pi)|+ |f(pi)− f(p)|
≤ ε/2 + Lfd(pi, p) ≤ ε/2 + ε/4 < ε.

This shows that ||πf − f ||∞ ≤ ε, which implies that Y is an ε-net for F1,K . Hence
N(F1,K , || · ||∞, ε) ≤ #Y .

All we have to do now is estimate #Y .
First of all let πf ∈ Y . Note that if d(pi, pj) ≤ ε/2, we see

|πf (pi)− πf (pj)| ≤ |πf (pi)− f(pi)|+ |f(pi)− f(pj)|+ |f(pj)− πf (pj)|
≤ ε/2 + Lfd(pi, pj) + ε/2 = 3ε/2.

Since |πf (pi)−πf (pj)| = kε for some k ∈ Z, we conclude |πf (pi)−πf (pj)| ∈ {−ε, 0, ε},
so πf (pi) ∈ {πf (pj)− ε, πf (pj), π

f (pj) + ε}.

Now define a graph G with vertices p1, .., pm by putting an edge between pi and pj
whenever d(pi, pj) ≤ ε/2. Any πf is uniquely specified by its values on the nodes of
G. Note further that whenever we know πf for some point of the graph, there are
only 3 possible values left for each of its neighbours (since neighbours are at distance
at most ε/2). Now #Y is dominated by the amount of ways in which we can assign
values of the type (k+1/2)ε to nodes of G while keeping this restriction into account.
Define, for i ≤ 0, Si = {p ∈ G : dG(p1, p) = i}, where dG(p, q) denotes the minimum
amount of edges that need to be followed to walk from p to q in G.

Now we can start counting. For p1, there are at most dK/εe possible values (recall
that any f ∈ F1,K has 0 ≤ f ≤ K). Each node in S1 is a distance at most ε/2 from
p1, so each node can take at most 3 values. This brings the possible amount of value
assignments to (less than) dK/εe 3#S1 . Now each node in S2 is at distance at most
ε/2 of a node in S1, so each of these can take at most 3 different values. This brings
the number of options so far to at most dK/εe 3#S13#S2 . Continuing in this way, we
obtain that the number of ways to assign values is at most⌈

K

ε

⌉ ∞∏
i=1

3#Si =

⌈
K

ε

⌉
3
∑∞
i=1 #Si =

⌈
K

ε

⌉
3m−1 =

⌈
K

ε

⌉
3N(M,d,ε/4)−1.

Recall that m is the total amount of balls as we defined at the beginning of the proof,
which we chose equal to N(M,d, ε/4). Now we know that for 0 < ε < δ

N(F1,K , || · ||∞, ε) ≤
⌈
K

ε

⌉
3a/(ε/4)d−1 =

⌈
K

ε

⌉
3a4d/εd−1.

This implies that there exists c > 0 such that for all 0 < ε < δ,

N(F1,K , || · ||∞, ε) ≤ ec/ε
d

.
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Now we see that for any 0 < ε < δ :

E[W1(µN , V )] ≤ 2ε+

√
2K2

N
log exp c/εd = 2ε+

√
2cK2

N
ε−d/2.

Elementary methods show that this value takes a minimum at ε = c0N
−1
d+2 where c0

is some constant (take N large enough such that c0N
−1
d+2 < δ). This shows that the

optimal bound that we get is

2c0N
−1
d+2 +

√
2cK2

N

(
c0N

−1
d+2

)−d/2
= 2c0N

−1
d+2 + c1N

−1
d+2

where c1 is the product of some constants that don’t depend on N . This shows that

E[W1(µN , V )] ≤ (2c0 + c1)N
−1
d+2 → 0

as n→∞.

3.6.2 Almost sure convergence

It remains to show that W1(µN , V ) goes to zero almost surely. For a function f :
MN → R define

Dif(p1, .., pN ) = sup
z∈M

f(p1, .., pi−1, z, pi+1, .., pN )− inf
z∈M

f(p1, .., pi−1, z, pi+1, .., pN ).

Further, define the function H : MN → R by

(p1, .., pN ) 7→ sup
g∈F1

{
1

N

N∑
i=1

g(pi)−
∫
M

gdV

}
.

Note that H(p1, .., pN ) = W1(µN , V ).

Lemma 3.16. Set (as before) K = supp,q∈M d(p, q). Then for each 1 ≤ j ≤ N :
||DjH||∞ ≤ K/N .

Proof. Let 1 ≤ j ≤ N and fix p1, .., pN . Denote for p ∈M and g ∈ F1

Jj(g, p) =
1

N

 N∑
i=1,i6=j

g(pi) + g(p)

− ∫
M

gdV .

Now let p, q ∈M . Then for any g ∈ F1:

|Jj(g, p)− Jj(g, q)| = 1

N
|g(p)− g(q)| ≤ 1

N
d(p, q) ≤ K

N
.
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This shows that g 7→ Jj(g, p) and g 7→ Jj(g, q) are always at most K/N apart from
each other, which implies that∣∣∣∣∣ sup

g∈F1

Jj(g, p)− sup
g∈F1

Jj(g, q)

∣∣∣∣∣ ≤ K

N
.

Now DiH(p1, .., pN ) equals

sup
p∈M

H(p1, .., pi−1, p, pi+1, .., pN )− inf
q∈M

H(p1, .., pi−1, q, pi+1, .., pN )

= sup
p,q∈M

|H(p1, .., pi−1, p, pi+1, .., pN )−H(p1, .., pi−1, q, pi+1, .., pN )|

= sup
p,q∈M

∣∣∣∣∣ sup
g∈F1

Jj(g, p)− sup
g∈F1

Jj(g, q)

∣∣∣∣∣ ≤ K

N
.

Since P1, .., PN were arbitrary, we conclude that ||DjH||∞ ≤ K
N .

Now we are in position to prove the main result.

Proposition 3.17. W1(µN , V )→ 0 almost surely as N →∞.

Proof. Since P1, .., PN are independent, [153, Theorem 3.11] gives us that for any
t > 0

P(W1(µN , V )− EW1(µN , V ) > t) = P (H(P1, .., PN )− EH(P1, .., PN ) > t)

≤ exp

(
−2t2∑N

k=1 ||DkH||2∞

)
≤ exp

(
−2t2N

K2

)
,

where the last inequality follows from lemma 3.16. For reasons of symmetry we obtain

P
(∣∣W1(µN , V )− EW1(µN , V )

∣∣ > t
)
≤ 2 exp

(
−2t2N

K2

)
.

By a standard application of the Borel-Cantelli lemma, this implies that W1(µN , V )−
EW1(µN , V )→ 0 a.s. Since we have already seen that EW1(µN , V )→ 0, we conclude
that a.s. as N →∞

W1(µN , V )→ 0.

We conclude that sampling uniformly from the manifold yields a suitable grid with
probability 1.
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3.7 Notes and perspectives

The goal of this chapter was to construct grids on which we can consider the Sym-
metric Exclusion Process and the Gaussian Free Field later in this thesis. As we will
see in the coming chapters, the grids in this chapter will indeed suffice for that, so in
that sense we have been successful. However, there are still directions in which we
can improve.

First, as we mentioned in Remark 3.2, the amount of grid points within distance ε,
the typical jumping distance of a particle that follows the rates W ε, goes to infinity as
N goes to infinity. This is very different from the Rd case, where particles only jump
to the 2d nearest neighbours. As we explain in Remark 3.2, this is not a coincidence,
but it is something that we need in the proof of convergence of the graph Laplacians
to the Laplace-Beltrami operator. The reason is basically that the 2d neighbours
of each grid point of Zd are situated perfectly symmetrically with respect to each
other, which makes first order terms disappear. To get rid of this, we will need to
settle for something weaker than pointwise convergence of the graph Laplacians. This
possibility is supported by other grids that we mentioned in Section 3.2.2. For instance
the Poisson-Voronoi tesselations or constructions using ε-nets yield grids where the
degrees of the grid points do not grow with N , the amount of grid points. In the
cases of the ε-nets the spectra of the graph Laplacians converge to the spectrum of
the Laplace-Beltrami operator. The most difficult part of this approach would be to
find a proof for the hydrodynamic limit of SEP that depends in a less direct way on
the pointwise convergence of the graph Laplacians. For convergence of the DGFF, this
might be easier. In that case we only need convergence of the Green’s operator applied
to functions in an inner product. There pointwise convergence is less important, so
spectral convergence of the graph Laplacians might be enough.

Another aspect that is different from the Rd case is the lack of an explicit description
of a sequence of grids. Indeed, in Rd we can set the grids to be 1

NZd, which is very
straightforward and explicit. We know that on a manifold we obtain a suitable se-
quence of grids with probability 1 by sampling uniformly from the manifold. However,
it would be nice to have a way to deterministically construct such grids. A reason for
this is that the the rate with which ε can go to 0 depends on the distance W1(µN , V )
of the empirical measures corresponding to the grids to the uniform measure. If the
grids are not fixed, ε is not fixed (as a function of N). Also, one would like to use as
few grid points as possible to have a good approximation of the hydrodynamic limit.
For that it is important to find a sequence of grids for which W1(µN , V ) goes to 0
as fast as possible. It would be interesting to find an explicit way to construct grids
like that. Alternatively, one could think of not sampling the points on the manifold
uniformly and independently, but to let the distribution of point pN+1 depend on GN
by making the probability to sample from a region with few points higher.

So far we have considered a complete, smooth, connected and compact d-dimensional
Riemannian manifold M . Of all of these properties probably the only one that would
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make sense to let go is compactness. Indeed, instead of sampling uniformly from the
manifold, we could use a Poisson Point Process on a non-compact manifold. Compare
for instance with Faggionato et al. [58]. We could then try to prove the same results
as in this chapter. It is likely that we will need some other condition like curvature
bounds to ensure that the random walk on the grid does not ‘run away’ to infinity in
finite time. We might not be able to obtain uniform convergence in the non-compact
case, maybe again under curvature bounds. Otherwise we should consider the graph
Laplacians as operators acting on smooth functions that are compactly supported.

Finally, we mention that the requirements that the grid points approximate the man-
ifold uniformly, that the weights are symmetric and that the graph Laplacians ap-
proximate the Laplace-Beltrami operator are all in some sense due to the properties
of SEP. We explained this in Section 3.2.1. When considering other particle systems
on a manifold, one might be able to let some or all of these requirements go. However,
treating other IPS than SEP brings along other issues. See also Section 4.5.

Appendix

Lemma. Let (pi)
∞
i=1 be a sequence for which the empirical measures converge to the

volume measure in the Kantorovich sense. Define ε(N), WN
ij and k as in Section 3.3.

Additionally suppose that there exists some α > 0 such that k(x) > 0 for all x ≤
α. Say that there is an edge between pi and pj whenever WN

ij > 0. Then the
corresponding graphs are eventually connected (in other words: there is some N0

such that for all N ≥ N0, VN with edges as just defined is connected).

Proof. Define

GN (β) := graph obtained from VN by connecting vertices at distance ≤ β
βN := inf{β ≥ 0 : GN (β) is connected}.

Since GN (0) is not connected (for N > 1), GN (supp,q∈M d(p, q)) is connected and
GN (β1) contains all edges of GN (β2) for β1 ≥ β2 it is clear that βN is a finite number
strictly larger than 0. Further note that GN (βN ) is connected (so the infimum is
actually a minimum).

Now note that there must be two points p′, q′ ∈ VN such that p, q have an edge between
them for β = βN and are not connected for β < βN (we call p and q connected if
there is a path from p to q). Indeed if any pair p, q ∈ VN that has an edge between
them for β = βN is still connected by some path for some βpq < βN , we see that for
β′ = supp,q βpq < βN the graph GN (β′) is connected, which contradicts the definition
of βN (note that the supremum ranges over a finite amount of numbers, since VN is
finite). Fix such p′, q′ ∈ VN .

Now let sN be a point onM such that d(p′, sN ) = d(q′, sN ) = βN/2. ThenB(sN , βN/4)
does not contain any point of VN (since by the triangle inequality such point would
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have distance ≤ 3βN/4 to both p′ and q′ so p′ and q′ would be connected to each
other via this point in GN (3βN/4), which contradicts the choice of p′ and q′).

Now we define the following function lN : M → R

lN (p) =

{
d(p, sN )− βN

4 p ∈ B
(
sN ,

βN
4

)
0 otherwise

It is easy to see that |lN (p)− lN (q)| ≤ d(p, q), so lN is Lipschitz with LlN ≤ 1. This
implies that

W1(µN , V ) ≥
∫
lNdµN −

∫
lNdV .

Since lN is only non-zero on B(sN , βN/4) and this set does not contain points of VN ,
we see that ∫

lNdµN = 0.

Further, since lN is non-positive and lN ≤ −βN/8 on B(sN , βN/8, we see that∫
lNdV ≤ −V

(
B

(
sN ,

βN
8

))
βN
8
,

so we conclude that W1(µN , V ) ≥ V (B(sN , βN/8))βN/8. Since W1(µN , V ) goes to
zero, it is easy to deduce from this inequality that βN → 0. Hence there are constants
C ′, C ′′ > 0 (not depending on sN ), such that for N large enough

W1(µN , V ) ≥ V
(
B

(
sN ,

βN
8

))
βN
8
≥ C ′′

(
βN
8

)d
βN
8

= C ′βd+1
N .

Now we see there is a C > 0 such that for N large enough

εN =

(
sup
m≥N

W1(µm, V )

) 1
4+d

≥W1(µN , V )
1

4+d ≥ Cβ
d+1
d+4

N .

This implies that there is some N0 such that for all N ≥ N0, αεN ≥ βN . By our
choice of k, all points at distance αεN or less are joined by an edge, so this inequality
combined with the definition of βN shows that for all N ≥ N0, VN with edges as
defined in the lemma statement is connected.



Chapter 4

Hydrodynamic limit of the
Symmetric Exclusion Process

The main goal of this chapter1 is to define the Symmetric Exclusion Process (SEP)
on a manifold and prove that its hydrodynamic limit is the heat equation on the
manifold. To do this, we will use uniformly approximating grids. In Chapter 3 we
saw that such grids exist (and how they can be obtained by sampling points from the
manifold and using the distance between points to define edge weights).

4.1 Introduction

Hydrodynamic limits of interacting particle systems is a well established subject. A
large variety of parabolic equations (such as the non-linear heat equation) and hy-
perbolic conservation laws have been obtained from microscopic stochastic particle
systems; see Kipnis and Landim [96], De Masi and Presutti [36], Seppäläinen [136]
for overviews. Usually, the setting here is that in the underlying particle system
the particles move on the lattice Zd, and after rescaling the limiting partial differen-
tial equation is defined on Rd, or on a subdomain of Rd such as an interval, where
then equations with boundary conditions on the ends of the interval are derived (e.g.
Dirichlet boundary conditions for the case where at the right and left end the system
is coupled to a reservoir fixing the density of particles, see Gonçalves [75]).

Motivated e.g. by the study of the motion of proteins in a cell-membrane, or more
general motion of particles on curved interfaces, it is clear that there are many rele-
vant physical systems of which the macroscopic motion takes place on a Riemannian

1This chapter is based on research that was first started in van Ginkel [148] and then continued
and finalised in van Ginkel and Redig [149].
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manifold rather than on Euclidean space. It is the aim of this chapter to provide first
steps in this direction, by considering the simplest interacting particle system on a
suitable discretisation of a Riemannian manifold and proving its hydrodynamic limit.
The Symmetric Exclusion Process (SEP) is a well-known and well-studied interacting
particle system for which in standard setting it is rather straightforward to obtain
the hydrodynamic limit. As was explained in the introduction of this thesis (in Sec-
tion 1.3.3), an important reason for this is the fact that the microscopic equation for
the expectation of the density field is already a closed equation. The complexity in
this chapter comes from the fact that the underlying space is curved. We consider
SEP on a suitable discretisation (a notion defined more precisely below) of a com-
pact Riemannian manifold and prove that its empirical density field, after appropriate
rescaling, converges to the solution of the heat equation on the manifold.

We start in Section 4.2 by defining SEP on a sequence of uniformly approximating
grids on a compact Riemannian manifold. Then, in Section 4.3, we define the hydro-
dynamic limit in this context and state the main result: Theorem 4.3. This result is
proven in Section 4.4, where we generalise the strategy that is used in [136, Chapter
8] for the Euclidean case. We end the chapter with some notes and perspectives in
Section 4.5.

4.2 Symmetric Exclusion Process on uniformly ap-
proximating grids

First we introduce the Symmetric Exclusion Process (SEP). SEP is an interacting
particle system that was introduced in Spitzer [139] and studied in detail in Liggett
[109, Chapter 8]. The idea is that there is some (possibly countably infinite) number
of particles on a (possibly countably infinite) graph G. The particles are considered
identical. Each particle jumps after independent exponential times with parameter 1
from x to y with probability p(x, y), provided that the place that it wants to jump
to is not already occupied. Otherwise, the jump is suppressed. We assume that
p(x, y) = p(y, x). Let ηt ∈ {0, 1}G denote the configuration of the particles at time
t, i.e. ηt(x) = 1 if there is a particle at place x ∈ G at time t and 0 else. We will
sometimes write η(p, t) = ηt(p). For any configuration η and points x, y define ηxy by

ηxy(z) =


η(x) if z = y

η(y) if z = x

η(z) if z 6= x, y

.

An equivalent description of this process is the following. The edges have independent
exponential clocks with rate p(x, y) = p(y, x) for x, y ∈ G. Whenever a clock rings, the
particles that are at either side of the corresponding edge jump along the edge (and
the clock is restarted). This means that if there are no particles, nothing happens. If
there is one particle, it jumps. If there are two particles, they switch places. Since



4.2. Symmetric Exclusion Process on uniformly approximating grids 87

we are not interested in individual particles, the configuration stays the same in the
latter case. Note that in this way there can never be more than two particles at the
same place. Using the notation introduced above, we see that the generator of this
process is defined on the core of local functions as

Lf(η) =
1

2

∑
x,y

p(x, y)(f(ηxy)− f(η)).

The factor 1
2 is there since we count every edge twice.

Before we can define SEP on a manifold, we need to introduce the grids. Let M be a
complete, smooth, connected and compact n-dimensional Riemannian manifold. Let
(GN ,WN )∞N=1 be a sequence of uniformly approximating grids with corresponding
weights. In particular we assume the following. Let (pn)∞n=1 be a sequence in M such
that the corresponding empirical measures converge weakly to the uniform measure
V on the manifold. Set GN = {p1, .., pN}. On each GN , there is a random walk XN

which jumps from pi to pj with (symmetric) rate WN
ij . We assume that there exists

some function a : N→ [0,∞) and some constant C > 0 such that for each smooth φ

a(N)

N∑
j=1

WN
ij (φ(pj)− φ(pi)) −→ C∆Mφ(pi) (N →∞)

where the convergence is in the sense that for all smooth φ

lim
N→∞

1

N

N∑
i=1

∣∣∣∣∣∣a(N)

N∑
j=1

WN
ij (φ(pj)− φ(pi))− C∆Mφ(pi)

∣∣∣∣∣∣ = 0. (4.1)

By dividing a(N) by C if necessary, we can assume that C = 1.

Remark 4.1. Note that for the result of this section it is not necessary to construct
grids from a sequence. Any sequence of finite grids such that (4.1) holds would do.
However, since the grid that we constructed in Chapter 3 is of this form, we formulate
our results in this chapter in the same way.

We now define the SEP ηN = (ηNt )t≥0 on GN through the generator

LNh(η) =
a(N)

2

N∑
i,j=1

WN
ij (h(ηij)− h(η)), h : {0, 1}G

N

→ R.

Here ηij := ηpipj . It follows from our considerations above that this process describes
particles that perform independent random walks according toXN with the restriction
that jumps to occupied sites are suppressed. As initial configuration we set ηN0 (pi) =
Xi, where (Xi)

∞
i=1 is some sequence of (possibly degenerate) random variables taking

values in {0, 1}.
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4.3 Hydrodynamic limit

We will use this section to give the basic definitions concerning the hydrodynamic
limit. At a microscopic scale, the particles are just random walkers with some inter-
action, but at the macroscopic scale (where limits are taken in space and time), the
behaviour is deterministic: it is described by a partial differential equation (in our
case the heat equation). The goal is to prove this rigorously.

4.3.1 Trajectories of empirical measures

Write R(M) for the space of Radon measures on M with the vague topology and let
D = D([0,∞), R(M)) denote the space of all paths γ : [0,∞) → R(M) such that γ
is right continuous and has left limits. On this space we can define the Skorokhod
metric (see for instance Seppäläinen [136, Appendix A.2.2]). Since R(M) is a Polish
space, it can be shown that D with the Skorokhod metric is a Polish space too. Define

µNt =
1

N

N∑
i=1

δpiη
N
t (pi),

where δp is the Dirac measure which places mass 1 at p ∈ M . It puts a point mass
at each particle and rescales it by the amount of possible positions, which represents
the particle configuration ηNt at time t. In particular µNt is a sub-probability measure
and is in R(M).

Instead of dealing with this problem pointwise for each t, we will look at trajectories.
As the particles move according to the SEP, γN : [0,∞)→ R(M) defined by t 7→ µNt
is a random trajectory and hence a random element of D. It represents the positions
of the particles over time. The initial configuration X1, .., XN and the dynamics of the
SEP determine a distribution QN on D. In this way we obtain a sequence (QN )∞N=0

of measures on D.

4.3.2 Initial configuration

We assume that there exists a measurable function ρ0 : M → R such that 0 ≤ ρ0 ≤ 1
and µN0 converges vaguely to ρ0dV in probability, i.e. for any continuous φ as N →∞:∫

M

φdµN0 →
∫
M

ρ0φdV in probability. (4.2)

If this is the case, we say that ρ0dV is the density profile corresponding to the con-
figurations ηN0 . Note that using measures here to represent the particles provides a
bridge between separate particles (discrete measures) and density profiles (measures
that are absolutely continuous with respect to V ). We would like to show that if this
initial condition is given, then at any time t the configurations ηNt have a correspond-
ing density profile ρtdV . Moreover, we want to show that t 7→ ρt solves the heat
equation with initial condition ρ0.
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Example 4.2. The weak convergence of the empirical measures corresponding to
the grids GN implies that for any continuous f : 1

N

∑N
i=1 f(pi) →

∫
M
fdV . Define

the random variables (Xi)
∞
i=1 to be independent Bernoulli random variables with

EXi = ρ0(pi) for some continuous function ρ0 : M → R with 0 ≤ ρ0 ≤ 1. Then we
see as N →∞:

E
[∫

φdµN0

]
= E

[
1

N

N∑
i=1

φ(pi)η
N
0 (pi)

]
=

1

N

N∑
i=1

φ(pi)EηN0 (pi)

=
1

N

N∑
i=1

φ(pi)ρ0(pi)→
∫
φρ0dV ,

since φ and ρ0 are continuous. Further,

Var

[∫
φdµN0

]
= Var

[
1

N

N∑
i=1

φ(pi)η
N
0 (pi)

]
=

1

N2

N∑
i=1

φ(pi)Var(ηN0 (pi))

=
1

N2

N∑
i=1

φ(pi)ρ0(pi)(1− ρ0(pi))→ 0.

Together this implies that (4.2) holds here for any continuous φ.

4.3.3 Main result

After all these definitions, we can state the main result of this section.

Theorem 4.3. Let M be complete, smooth, connected and compact n-dimensional
Riemannian manifold and let (GN ,WN )∞N=1 be a sequence of uniformly approximat-
ing grids with corresponding weights. Let ηNt be particle configurations that behave
according to the SEP on (GN ,WN ) and let µNt be its measure valued representation.
Suppose that µN0 has density profile ρ0dV for some measurable function ρ0. Then the
trajectory t 7→ µNt converges in probability to the trajectory t 7→ ρtdV in the Skorokhod
topology, where t 7→ ρt satisfies the heat equation on M with initial condition ρ0.

4.4 Convergence result

The proof of the hydrodynamic limit follows the line of Seppäläinen [136, Chapter
8] which is a canonical method that is also discussed in Kipnis and Landim [96].
However, in our context, there are several new technical difficulties along the way
which we have to tackle. The core idea is to rewrite integration of a test function
with respect to the empirical measure process as an equation with a martingale. Then
we can rewrite this equation and show that in the limit the martingale vanishes and
the equation that is left is the heat equation. For the latter we need convergence of
the graph Laplacians to the Laplace-Beltrami operator.
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4.4.1 Dynkin martingale

First of all fix a smooth function φ on M . Define for η ∈ {0, 1}GN : fN (η) =
1
N

∑N
i=1 η(pi)φ(pi) = µ(φ), where µ = 1

N

∑n
i=1 δiη(pi). Note that since LN is the

generator of a random walk on a finite space of configurations, its domain consists of
all functions on those configurations, so in particular fN and (fN )2 are in it. Apply-
ing the Dynkin martingale theorem (as described in Chapter 2.1.4) in this situation
shows that MN defined by

MN
t = fN (ηNt )− fN (ηN0 )−

∫ t

0

LNf(ηNs )ds (4.3)

is a martingale with quadratic variation
〈
MN ,MN

〉
t

=
∫ t

0
γ(s)ds, where γ(s) =

(LN (fN )2 − 2fNLNfN )(ηs). Some basic manipulations show that

fN (ηij)− fN (η) = − 1

N
(φ(pj)− φ(pi))(η(pj)− η(pi). (4.4)

Inserting definitions and leaving out some indexes (to keep everything clear) shows
that the right hand side of (4.3) equals

1

N

N∑
i=1

φ(pi)(ηt(pi))−
1

N

N∑
i=1

φ(pi)(η0(pi))

−

−∫ t

0

a(N)

2N

N∑
i,j=1

WN
ij (φ(pj)− φ(pi))(ηs(pj)− ηs(pi))ds


= µNt (φ)− µN0 (φ)−

∫ t

0

a(N)

N

N∑
i,j=1

WN
ij (φ(pj)− φ(pi))ηs(pi)ds

= µNt (φ)− µN0 (φ) (4.5)

−
∫ t

0

1

N

N∑
i=1

ηs(pi)

a(N)

N∑
j=1

WN
ij (φ(pj)− φ(pi))

 ds.

4.4.2 Using convergence of the graph Laplacians

By (4.1), we can write for any pi:

a(N)

N∑
j=1

WN
ij (φ(pj)− φ(pi)) = ∆Mφ(pi) + Epi(N), (4.6)

where

E(N) :=
1

N

N∑
i=1

|Epi(N)| → 0 (N →∞). (4.7)
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This shows that ∫ t

0

1

N

N∑
i=1

ηs(pi)

a(N)

N∑
j=1

WN
ij (φ(pj)− φ(pi))

 ds

=

∫ t

0

1

N

N∑
i=1

ηs(pi) (∆Mφ(pi) + Epi(N)) ds

=

∫ t

0

1

N

N∑
i=1

ηs(pi)∆Mφ(pi)ds+

∫ t

0

1

N

N∑
i=1

ηs(pi)Epi(N)ds

=

∫ t

0

µs(∆Mφ)ds+

∫ t

0

1

N

N∑
i=1

ηs(pi)Epi(N)ds.

Plugging this into (4.5) and (4.3), we obtain:

µNt (φ)− µN0 (φ)−
∫ t

0

µNs (∆Mφ)ds = MN
t +

∫ t

0

1

N

N∑
i=1

ηNs (pi)Epi(N)ds, (4.8)

so for any T > 0:

sup
0≤t≤T

∣∣∣∣µNt (φ)− µN0 (φ)−
∫ t

0

µNs (∆Mφ)ds

∣∣∣∣
≤ sup

0≤t≤T

∣∣MN
t

∣∣+ sup
0≤t≤T

∣∣∣∣∣
∫ t

0

1

N

N∑
i=1

ηNs (pi)Epi(N)ds

∣∣∣∣∣ . (4.9)

We want to show that this expression converges to 0 in probability. We will deal with
the terms on the right hand side separately.

First of all∣∣∣∣∣
∫ t

0

1

N

N∑
i=1

ηNs (pi)Epi(N)ds

∣∣∣∣∣ ≤
∫ t

0

1

N

N∑
i=1

|ηNs (pi)||Epi(N)|ds

≤
∫ t

0

E(N)ds = tE(N),

so

sup
0≤t≤T

∣∣∣∣∣
∫ t

0

1

N

N∑
i=1

ηs(pi)Epi(N)ds

∣∣∣∣∣ ≤ TE(N)→ 0 (by (4.7)).

4.4.3 Vanishing of the martingale term

Now for the other term. Since the trajectory t 7→ µNt is càdlàg, so is MN . Hence by
Doob’s inequality we see:

P
(

sup
0≤t≤T

∣∣MN
t

∣∣ > δ

)
≤ E|MN

T |
δ

. (4.10)
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To show that E|MN
T | goes to 0, it suffices to show that E

〈
MN ,MN

〉
T

goes to 0 (since

then E
[
(MN

T )2
]

= E
〈
MN ,MN

〉
T
→ 0 and hence E|MN

T | → 0). This is what the
following lemma tells us.

Lemma 4.4. For any T > 0:

lim
N→∞

E
〈
MN ,MN

〉
T

= 0.

Proof. Recall that
〈
MN ,MN

〉
T

=
∫ T

0
(LN (fN )2−2fNLNfN )(ηs)ds. By writing out,

one simply obtains

(LN (fN )2 − 2fNLNfN )(η) =

N∑
i,j=1

a(N)

2
WN
ij (f(ηij)− f(η))2.

Using (4.4), we see

(f(ηij)− f(η))2 ≤
(

1

N
(φ(pj)− φ(pi))(η(pj)− η(pi))

)2

≤ 1

N2
(φ(pj)− φ(pi))

2,

since η(pi) ∈ {0, 1} for all i. This shows that

0 ≤
〈
MN ,MN

〉
T

=

∫ T

0

(LN (fN )2 − 2fNLNfN )(ηs)ds

≤
∫ T

0

a(N)

2N2

N∑
i,j=1

WN
ij (φ(pj)− φ(pi))

2ds = T
a(N)

2N2

N∑
i,j=1

WN
ij (φ(pj)− φ(pi))

2.

This implies that also

0 ≤ E
〈
MN ,MN

〉
T
≤ T a(N)

2N2

N∑
i,j=1

WN
ij (φ(pj)− φ(pi))

2. (4.11)

We can estimate this term by using (4.7). Some basic manipulations show that

a(N)

2

N∑
i,j=1

WN
ij (φ(pj)− φ(pi))

2 = −
N∑
i=1

φ(pi)a(N)

N∑
j=1

WN
ij (φ(pj)− φ(pi))

= −
N∑
i=1

φ(pi) (∆Mφ(pi) + Epi(N)) = −
N∑
i=1

φ(pi)∆Mφ(pi)−
N∑
i=1

φ(pi)Epi(N),



4.4. Convergence result 93

where the Epi ’s are as before. This implies that

lim sup
N→∞

∣∣∣∣∣∣a(N)

2N2

N∑
i,j=1

WN
ij (φ(pj)− φ(pi))

2

∣∣∣∣∣∣
≤ lim sup

N→∞

{
1

N2

N∑
i=1

|φ(pi)||∆Mφ(pi)|+
1

N2

N∑
i=1

|φ(pi)||Epi(N)|

}

≤ lim sup
N→∞

1

N
||φ||∞||∆Mφ||∞ + lim sup

N→∞

1

N
||φ||∞E(N) = 0,

where in the last step we used (4.7). So we obtain

lim
N→∞

a(N)

2N2

N∑
i,j=1

WN
ij (φ(pj)− φ(pi))

2 = 0.

Together with (4.11) this gives the result.

We conclude from the lemma that the right hand side of (4.10) goes to zero as N goes
to infinity and ε goes to zero, so

lim
ε↓0

lim
N→∞

sup
0≤t≤T

∣∣MN
t

∣∣ = 0

in probability.

Combining everything above and using (4.9), we conclude that

lim
N→∞

sup
0≤t≤T

∣∣∣∣µNt (φ)− µN0 (φ)−
∫ t

0

µNs (∆Mφ)ds

∣∣∣∣ = 0

in probability. In particular, for any δ ≥ 0, define

Hδ =

{
α ∈ D : sup

0≤t<T

∣∣∣∣αt(φ)− α0(φ)−
∫ t

0

αs(∆Mφ)ds

∣∣∣∣ ≤ δ} .
It can be shown, as in Seppäläinen [136, Chapter 8], that Hδ is closed for any δ > 0.
Recall from page 88 that we write the distribution of t 7→ µNt as QN . Then the
convergence result above implies that for any δ > 0:

lim
N→∞

QN (Hδ) = 1.

4.4.4 Tightness

We will need that the sequence of distributions (QN )∞N=1 is tight. This can be shown
in exactly the same way as Kipnis and Landim [96, p.55-56]. In fact all the most
crucial calculations have already been performed above.
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Lemma 4.5. The sequence of distributions (QN )∞N=1 is tight.

Proof. It needs to be shown that the two conditions of [96, Chapter 4 Thm 1.3] are
satisfied. Note that for any continuous f we can map a path ν ∈ D([0, T ], R(M)) to
the path in D([0, T ],R) given by t 7→ νt(f). This induces a sequence of distributions
QNf−1 on D([0, T ],R). By [96, Chapter 4 Prop 1.7] and the fact that the smooth
functions are uniformly dense in the set of continuous functions on a manifold, it
suffices to prove the conditions of [96, Chapter 4 Thm 1.3] for {QNf−1, N ≥ 0}
for all smooth f . Fix such f . Since each path stays in the set of sub-probability
measures, the first condition is easily satisfied. For the second condition, it suffices
to prove Aldous’ tightness criterion, i.e. that

lim
γ→0

lim sup
N→∞

sup
τ∈IT ,θ≤γ

QN
[∣∣µNτ (f)− µNτ+θ(f)

∣∣ > ε
]

= 0, (4.12)

where IT denotes the set of all stopping times bounded by T . We know from equa-
tion (4.8) that there exists a martingale M (depending on f) such that

µNt (f)− µN0 (f)−
∫ t

0

µNs (∆Mf)ds︸ ︷︷ ︸
(I)

= MN
t︸︷︷︸

(II)

+

∫ t

0

1

N

N∑
i=1

ηNs (pi)Epi(N)ds︸ ︷︷ ︸
(III)

.

It therefore suffices to check the tightness criterion for the RHS of this equation and
for the integral on the LHS (since the only other term is constant). Now we can make
the following estimations.

(I). First of all, since µNs is a sub-probability measure and ∆Mf is bounded:∣∣∣∣∣
∫ τ+θ

0

µNs (∆Mf)ds−
∫ τ

0

µNs (∆Mf)ds

∣∣∣∣∣ ≤ θ||∆Mf ||∞.

This implies that

sup
τ∈IT ,θ≤γ

QN

[∣∣∣∣∣
∫ τ+θ

0

µNs (∆Mf)ds−
∫ τ

0

µNs (∆Mf)ds

∣∣∣∣∣ > ε

]

≤ QN

[
sup

τ∈IT ,θ≤γ

∣∣∣∣∣
∫ τ+θ

0

µNs (∆Mf)ds−
∫ τ

0

µNs (∆Mf)ds

∣∣∣∣∣ > ε

]

≤ QN

[
sup

τ∈IT ,θ≤γ
θ||∆Mf ||∞ > ε

]
≤ QN [γ||∆Mf ||∞ > ε] = 1γ||∆Mf ||∞>ε.

This implies that the limit in (4.12) is smaller than

lim
γ→0

lim sup
N→∞

1γ||∆Mf ||∞>ε = lim
γ→0

1γ||∆Mf ||∞>ε = 0,
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so (I) satisfies the tightness criterion.

(II). For the second term, we first estimate E
[
(MN

τ+θ −MN
τ )2

]
(as is done in [96,

p.56]). Naturally, the expectation is taken with respect to QN . Note that because of
the martingale property:

0 ≤ E
[
(MN

τ+θ −MN
τ )2

]
= E(MN

τ+θ)
2 − E(MN

τ )2

= E
〈
MN ,MN

〉
τ+θ
− E

〈
MN ,MN

〉
τ
.

We see from the calculations in the proof of Lemma 4.4 that

E
〈
MN ,MN

〉
τ+θ
− E

〈
MN ,MN

〉
τ
≤ θa(N)

2N2

N∑
i,j=1

WN
ij (φ(pj)− φ(pi))

2.

Since the term after θ converges to 0, we see that it is bounded by some constant α.
By Chebyshev’s inequality we obtain:

QN
(
|MN

τ+θ −MN
τ | > ε

)
≤

E
[
(MN

τ+θ −MN
τ )2

]
ε2

≤ θα

ε2
.

Since

lim
γ→0

lim sup
N→∞

sup
τ∈IT ,θ≤γ

θα

ε2
= lim
γ→0

lim sup
N→∞

γα

ε2
= lim
γ→0

γα

ε2
= 0,

this part satisfies (4.12) too.

(III). Now for the last term we see∣∣∣∣∣
∫ τ+θ

0

1

N

N∑
i=1

ηNs (pi)Epi(N)ds−
∫ τ

0

1

N

N∑
i=1

ηNs (pi)Epi(N)ds

∣∣∣∣∣ ≤ θE(N) ≤ θK.

Here K is some positive number which exists, because of (4.7). This part satis-
fies (4.12) in the same way as part (I).

4.4.5 Limiting equation and continuity

We have just shown that (QN )∞N=1 is a tight sequence of measures on D. This
implies that every one of its subsequences is also tight and therefore has a weakly
convergent subsequence. If these all have the same limit, then it follows from a
basic result in metric spaces that the sequence itself converges weakly to that limit.
It therefore suffices for weak convergence of (QN )∞N=1 to show that every weakly
convergent subsequence of (QN )∞N=1 has the same limit. Let (QNk)∞k=1 be any weakly
convergent subsequence and denote its limit by Q. Since Hδ is closed, we know for
any δ > 0 that

Q(Hδ) ≥ lim sup
k→∞

QNk(Hδ) = 1,
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so Q(Hδ) = 1. Since this holds for any δ > 0, we see

Q(H0) = Q

( ∞⋂
m=1

H
1
m

)
= 1−Q

( ∞⋃
m=1

(H
1
m )C

)
≥ 1−

∞∑
m=1

Q

((
H

1
m

)C)
= 1.

This means that

Q

(
α ∈ D : sup

0≤t<T

∣∣∣∣αt(φ)− α0(φ)−
∫ t

0

αs(∆Mφ)ds

∣∣∣∣ = 0

)
= 1.

By doing this for a countable set of functions φ that is dense in C∞ with respect to
|| · ||∞ + ||∆M · ||∞ and arguing that this implies the same for any smooth function
we see:

Q

(
α ∈ D : sup

0≤t<T

∣∣∣∣αt(φ)− α0(φ)−
∫ t

0

αs(∆Mφ)ds

∣∣∣∣ = 0 ∀φ ∈ C∞
)

= 1.

Since this holds for any T > 0, we see that Q−a.s. for every t ≥ 0 and for all smooth
φ:

αt(φ)− α0(φ) =

∫ t

0

αs(∆Mφ)ds. (4.13)

Note that (4.13) is a weak, measure-valued formulation of the heat equation. We will
argue and use shortly that this equation uniquely determines the trajectory t 7→ αt
given the initial conditions.

Before we arrive at uniqueness, we also need to know that the trajectory is continuous.
For the Rn case this is shown in Seppäläinen [136, Lemma 8.6]. The result can be
shown in exactly the same way in our case, so we will not provide all the details. The
topology on the space of measures is generated by the following metric:

dM (µ, ν) =

∞∑
j=1

2−j (1 ∧ |µ(φj)− ν(φj)|) ,

for some sequence φj ∈ C∞(M). It suffices to control

sup
t≥0

e−tdM (µNt , µ
N
t−).

Doing that can be reduced to showing that for any T > 0 and ψ ∈ C∞(M):

lim
δ→0

lim sup
n→∞

E

[
sup

0≤s,t≤T,|s−t|<δ

∣∣µNs (φ)− µNt (φ)
∣∣2] .

This can be done by using the Dynkin martingale representation (4.8) and bounding
all the differences as in the proof of tightness. The only term that needs some attention
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is (MN
t −MN

s )2, but it can be controlled using Doob’s maximal inequality:

E

[
sup

0≤s,t≤T,|s−t|<δ
(MN

t −MN
s )2

]
≤ E

[
sup

0≤t≤T
4(MN

t )2

]
≤ 16E(MN

T )2 = 16E
〈
MN ,MN

〉
T
,

which goes to zero according to Lemma 4.4.

4.4.6 Uniqueness

To obtain uniqueness of limits of subsequences of QN , we need to know that there
is a unique continuous solution to (4.13) that has initial condition ρ0dV . We know
that t 7→ ρtdV is a continuous solution to (4.13) with the right initial condition if
t 7→ ρt satisfies the heat equation with initial condition ρ0. Therefore it suffices to
show that this solution is unique. This result is proven with a boundedness condition
in [136, Thm A.28]. The main idea of the proof is that the measure valued path
αt is smoothed by taking its convolution with some smooth kernel with bandwidth
ε > 0. Then it is shown that this trajectory of functions satisfies the heat equation
with initial condition ρ0 in the strong sense (by interchanging integral and derivatives
and using that these identities are known for sufficiently many φ), so it must equal
t 7→ ρt. Then by letting ε go to zero, it is shown that the original trajectory t 7→ αt
must equal t 7→ ρtdλ, where λ is the Lebesgue measure.

To obtain the analogous result in our setting, we cannot use convolution, since this is
not well-defined on a manifold. However, we can smooth the measures by integrating
the heat kernel at time ε with respect to the measures. Using this smoothing, we can
follow exactly the same approach, i.e. showing that the smoothed trajectory satisfies
the heat equation in a strong sense and then letting ε go to 0. The boundedness
condition is a bound on volumes, which is needed for some estimations in Seppäläinen
[136] and for the uniqueness of the strong solution to the heat equation. Since we work
in a compact setting and with probability measures, such a bound is not necessary.
The uniqueness of the strong solution to the heat equation is a standard result in
our case (so for a compact and connected Riemannian manifold). See for instance
Grigoryan [79, Thm 8.18]. Results on the heat kernel on a manifold can also be found
in [79].

4.4.7 Conclusion

Now let t 7→ ρt be the solution to the heat equation on M with initial condition
ρ0 and call β := (t 7→ ρtdV ). Recall that (4.13) holds Q−a.s. By the uniqueness
result above, this implies that Q is a Dirac distribution with β as its support. Since
this does not depend on QNk , it must be the same for any convergent subsequence,
so with arguments given above, we conclude that QN → Q weakly. Let γN denote
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the random trajectory t 7→ µNt . Since Q is degenerate, the weak convergence implies
convergence in probability, so γN → β in probability. This is what we wanted to
show.

4.5 Notes and perspectives

We have seen in this chapter that it is possible to generalise the Symmetric Exclusion
Process to a process on a manifold. We have proved that the hydrodynamic limit is
the heat equation on the manifold. The grids that we developed in Chapter 3 were
suitable for this purpose. We will now mention some directions in which these results
could be extended and possible related research questions.

The first few ideas that we mention are related to those in Section 3.7. We could
extend the results to the non-compact case. In particular, this would include Rn
itself again. As we mentioned before, this require some bounds on the curvature of
the manifold. Further, we could try to use different grids than the one in this chapter
to retrieve properties from Rn like nearest neighbour jumps. As we mentioned in 3.7,
we need a different proof method for the hydrodynamic limit in this case, one that does
not require pointwise convergence of the graph Laplacians to the Laplace-Beltrami
operator.

Next, we could consider other IPS. The first idea would be to try to prove a hydro-
dynamic limit result for gradient models, since there are well-established methods in
Rn in this case, as described in for instance Kipnis and Landim [96]. To follow these
proofs, we need to prove the one block and two block estimates on our grids on a
manifold. The idea of these estimates is that quantities are replaced by averages over
blocks of grids points. Intuitively, there does not seem to be a reason for this not to be
possible on a manifold. After all, in small neighbourhoods of a point on a manifold,
the space is very close to Rn and in the limit we expect that (at least locally) the
same averaging should work. However, the proofs in Rn heavily use the possibility
of translating the grids and particle configurations. This translation is not defined
on a manifold. Also in general a grid on a manifold looks different around each grid
point. Therefore any possible ‘blocks’ on a manifold would look very different from
each other. This complicates the proofs a lot.

Now that the hydrodynamic limit has been established, the logical next step is to
study the fluctuations around the hydrodynamic limit. This is done in Chapter 5.
It might be possible to also obtain a large deviations result. However, the proof
probably requires again the existence of one block and two block estimates to follow
for instance Kipnis et al. [98].

Further, it could be interesting to study more closely the behaviour of the particle
configurations in the presence of curvature. We know for example about random
fields (Adler and Taylor [2]) and diffusion semigroups (Wang [156]) that they are
closely related to properties of the manifold. If such relations can be established for
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interacting particle systems, one could for instance ‘explore’ a manifold by letting an
interacting particle system run on it.

Finally, we mention the concept of a tagged particle. The idea is that one lets SEP run,
but tags one particle and studies its trajectory. One might expect that the dynamics
of such particle are subdiffusive, since its jumps are hindered by the presence of other
particles. However, in Rn it turns out that in dimension ≥ 2 and in the non-symmetric
case in dimension 1, the trajectory actually scales to Brownian motion. It would be
interesting to generalise this to a manifold. Again, the main issue that one needs
to address here is the lack of translation and translation invariance. The reason for
this is that the main idea from the proof in the Rn case, as described in Kipnis
and Varadhan [97], is to view the particle configuration from the perspective of the
tagged particle. To do that, the whole configuration is shifted along with the particle
whenever it jumps. Such shifts are not defined on a manifold. A first step could be to
consider this problem in Rn or the flat torus where the underlying grid is a Poisson
Point Process (compare with Faggionato et al. [58]). In that case the grid itself is not
translation invariant, but its distribution is.





Chapter 5

Equilibrium fluctuations of
the Symmetric Exclusion
Process

In this chapter1 we study again the Symmetric Exclusion Process on a compact Rie-
mannian manifold, as introduced in Chapter 4. There it was shown that the hydro-
dynamic limit satisfies the heat equation. In this chapter we study the equilibrium
fluctuations around this hydrodynamic limit. We define the fluctuation fields as func-
tionals acting on smooth functions on the manifold and we show that they converge
in distribution in the path space to a generalised Ornstein-Uhlenbeck process. This
is done by proving tightness and by showing that the limiting fluctuations satisfy the
corresponding martingale problem.

5.1 Introduction

In the study of interacting particle systems, one of the main targets is to understand
the emergence of macroscopic phenomena from the underlying stochastic microscopic
dynamics of the individual particles. The study of hydrodynamic limits concerns the
derivation of the PDEs that govern macroscopic quantities from the (rescaled) dynam-
ics of microscopic particle configurations. Hydrodynamic limits have been obtained
for a large variety of interacting particle systems and by now there are multiple well-
established methods to do this (see for instance De Masi and Presutti [36], Kipnis and
Landim [96]). One can think of a hydrodynamic limit as a generalised law of large
numbers. The natural question that one would like to answer after obtaining such re-
sult is how the limiting density field fluctuates around its deterministic hydrodynamic

1This chapter is based on van Ginkel and Redig [150].
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limit. In other words: one would like to find a corresponding (infinite dimensional)
central limit theorem. For these so-called fluctuations a lot of models have been stud-
ied and by now standard methods have been established (see for instance Kipnis and
Landim [96, Chapter 11]).

Most of the results that were described above are set in (a subset of) some Eu-
clidean space. However, some phenomena are naturally modelled in a space that
is not Euclidean. One could for example think of the motion of proteins along cell
membranes. Apart from motivation from potential physics applications, it is also
an important mathematical challenge to understand the influence on hydrodynamic
limits and their fluctuations of geometric properties of the underlying space such
as curvature. Therefore, it is worthwhile to extend the study of interacting parti-
cle systems to non-Euclidean spaces. Here one could think of spaces with a fractal
structure, such as the Sierpinski gasket. In this area results about the Symmetric Ex-
clusion Process have been obtained in for instance Jara [90] and Chen and Gonçalves
[26]. An advantage of fractals such as the Sierpinski gasket is that there is a natural
discretisation available in the definition of the fractal.

In this chapter, we are interested in this kind of results on Riemannian manifolds.
In van Ginkel and Redig [149] (Chapter 4 of this thesis) it was shown that one can
set up the theory of hydrodynamic limits on a compact Riemannian manifold by
defining suitable grid approximations of the manifold to define the microscopic particle
systems. More precisely, we proved that the hydrodynamic limit of the Symmetric
Exclusion Process on these grids is the heat equation on the manifold. Moreover, we
showed that such grid approximations exist and can be obtained by sampling points
uniformly from the manifold, and connecting them with edge weights depending on
the Riemannian distance.

In this chapter, we continue the study of the exclusion process on compact Rieman-
nian manifolds by looking at the trajectory of the fluctuation fields. We consider
the Symmetric Exclusion Process started from equilibrium (so from the product of
Bernoulli measures with fixed intensity ρ) and we show that the corresponding fluc-
tuation fields converge in law in the space of distribution-valued trajectories to a
generalised Ornstein-Uhlenbeck process. To do this, we follow the method that is de-
scribed in Kipnis and Landim [96, Chapter 11], i.e. we show tightness and we prove
that any limiting distribution satisfies the same martingale problem.
Working on a manifold instead of Rd or the torus poses several new challenges. The
first challenge is how to discretise the manifold in a suitable way. As we mentioned
earlier, this was dealt with in van Ginkel and Redig [149] (Chapter 3 of this thesis).
The second challenge is to make sense of the fluctuation fields in the right space.
The computations for tightness in a negatively indexed Sobolev space as performed
in Kipnis and Landim [96] become intrinsically more involved on a manifold due to
the absence of notions like translation and translation invariance, which implies that
one cannot rely on standard Fourier analysis for discrete and continuous Laplacians.
Therefore we resort to defining the fluctuation fields as elements of the dual of the
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smooth functions C∞(M) on the manifold. The advantage of this approach is that
C∞(M) is a nuclear space (see for instance Becnel and Sengupta [7] for more on nu-
clear spaces), which ensures that we only need to prove tightness of the distribution-
valued trajectories applied to test functions. The drawback, however, is that the dual
of C∞(M) does not have a norm and that the space of càdlàg trajectories is not
even metrisable. Therefore we must be careful when treating the convergence of the
martingales in Section 5.5.
Finally, note that the result of this chapter is also a constructive proof for the exis-
tence of generalised Ornstein-Uhlenbeck processes on compact Riemannian manifolds.
This type of processes have been studied (through their corresponding SPDEs) in for
instance Christensen [30]. In our work, we show that the fluctuation fields converge
to a well-defined limiting random field and that this field satisfies the martingale
problem that is associated to a generalised Ornstein-Uhlenbeck process.

Overview of the chapter

In Section 5.2 we define the grids that approximate the manifold, the Symmetric
Exclusion Process on the grids and the corresponding fluctuation fields as random el-
ements of D([0, T ], (C∞)′). We also state the main theorem and give a brief overview
of the proof. Then in Section 5.3 we study the Dynkin martingale associated to
the fluctuation fields. In Section 5.4 we prove tightness of the distributions on
D([0, T ], (C∞)′) of the fluctuation fields. Next, in Section 5.5, we show that all possi-
ble limiting measures of subsequences are the same, by showing that they satisfy the
same martingale problem with the same initial conditions. We conclude the chapter
with some notes and perspectives in Section 5.6.

5.2 Preliminaries

In all of this chapter we fix a complete, smooth, connected and compact d-dimensional
Riemannian manifold M . In this section we will introduce approximating grids on M
and the Symmetric Exclusion Process on these grids. Further we state the theorem
and give an outline of its proof.

5.2.1 Definitions

In order to define interacting particle systems on a manifold, we need a suitable
discretisation of the manifold. In Rd such discretisation is easily obtained by taking
1
NZd (or something similar). A manifold, however, does not have these nice scaling
properties, so another path must be taken (this is explained further in Chapter 3).

Let (GN , cN )∞N=1 be a sequence of grids with GN = {pN1 , .., pNN} ⊂ M (we usually
write simply pi instead of pNi ) and edge weights cN = {cNij}i,j≤N where cNij is the

weight of the edge between pNi and pNj and we assume that cNij = cNji ≥ 0 for all
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i, j ≤ N . We denote by L N the corresponding graph Laplacians

L Nf(pi) =

N∑
j=1

cNij (f(pj)− f(pi)).

Note that L N (acting on functions GN → R) generates a random walk on GN with
jumping rates cN . We assume that the graph Laplacians converge to the Laplace-
Beltrami operator ∆M in a uniform way, i.e. for all f ∈ C∞

lim
N→∞

sup
1≤i≤N

∣∣∣∣∣∣
N∑
j=1

cNij (f(pj)− f(pi))−∆Mf(pi)

∣∣∣∣∣∣ = 0. (5.1)

It will be convenient later to have the following notation for fixed smooth f

Ef (N) = sup
i≤N

∣∣L Nf(pi)−∆Mf(pi)
∣∣ .

Note that by assumption (5.1) for each smooth f , Ef (N) goes to 0 as N goes to
infinity.

Finally we assume that the empirical measures corresponding to the gridsGN converge
weakly to the normalised volume measure V on M , i.e. for all continuous f

1

N

N∑
i=1

f(pi) =

∫
fd

(
1

N

N∑
i=1

δpi

)
→
∫
fdV (N →∞).

Remark 5.1. Note that usually for results about hydrodynamic limits or fluctuations
there is an explicit time scaling visible in the equations, i.e. in the diffusive case (like
for the Symmetric Exclusion Process) one would typically consider N2L N . However,
in our case this rescaling is hidden in the conductances cNij because of the assumption
in (5.1). The reason for this approach is that it is less straightforward to define the
space scale in a more general grid than a lattice. To see how the (diffusive) space and
time scales do show up in a particular construction of such grid, see the paragraph
on scaling in Section 3.3.2.

Remark 5.2. We formulate the results of this chapter in terms of these general
uniformly approximating grids. Recall that these grids can always be obtained. It
was shown in Chapter 3 that sampling a sequence of i.i.d. uniformly random elements
from the manifold and setting GN to be the first N of these elements yields a suitable
sequence of grids with probability 1. Here the conductances cNij between points pi
and pj can be chosen as a function of the distance between pi and pj .

We can now define the Symmetric Exclusion Process (SEP) on GN . The idea of
this process is that it describes particles that perform independent random walks
according to the jumping rates cN with the restriction that jumps to occupied sites are
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suppressed. Note that in this way every site contains at most one particle. Therefore

the SEP ηN = (ηNt )t≥0 takes values in {0, 1}GN , where 1 denotes the presence of a
particle and 0 the absence. An equivalent way to describe the process is by saying
that the edges have clocks that ring according to the rates cN and that if particles
are present at either ends of the edge, they jump to the other end. Therefore the
dynamics are defined through the generator

LNh(η) =
1

2

N∑
i,j=1

cNij (h(ηij)− h(η)), h : {0, 1}G
N

→ R, (5.2)

where ηij := ηpipj denotes the configuration obtained from η by exchanging the values
at pi and pj .

Since we want to consider equilibrium fluctuations, we want to initialise the process
from a stationary measure. Therefore fix ρ ∈ (0, 1) and set as the initial configuration
νNρ : the product of N Bernoulli distributions with parameter ρ. It is well known that
SEP is reversible with respect to this measure, so in particular that this measure is
invariant for SEP.

Now we define the fluctuation field Y N as follows. For f ∈ C∞ we write

Y Nt (f) =
1√
N

N∑
i=1

f(pi)(η
N
t (pi)− ρ). (5.3)

This way we can interpret Y Nt as a distribution acting on smooth functions, i.e. as
an element of (C∞)′. Now when t varies we obtain a càdlàg trajectory in (C∞)′,
so Y N := (Y Nt , 0 ≤ t ≤ T ) is an element of D([0, T ], (C∞)′), the space of càdlàg
trajectories in (C∞)′. The topology of D([0, T ], (C∞)′) is described in Mitoma [120].
We will also sometimes use the subspace of continuous trajectories C([0, T ], (C∞)′),
the topology of which is also described in Mitoma [120]. The law of the underlying
process η induces a law LN of the fluctuation field Y N on D([0, T ], (C∞)′).

Remark 5.3. To see that (5.3) is the right object with the right scaling, note the
following. First of all, at fixed times ηNt is distributed like a product of Bernoulli
measures, so it is a very rough object and it makes sense to regard it as acting on
functions (instead of considering its pointwise values). Second, the expectation of
ηNt (pi) equals ρ for every grid point, so the right quantity is subtracted. This makes
sure that for any f , EY Nt (f) = 0. Finally, VarY Nt (f) equals

Var

(
1√
N

N∑
i=1

f(pi)(η
N
t (pi)− ρ)

)
=

1

N

N∑
i=1

f2(pi)ρ(1− ρ)→ ρ(1− ρ)

∫
f2dV ,

where we use that f is continuous and that the empirical measure of the grid points
converges to the uniform measure on the manifold. This motivates that 1√

N
provides

the right scaling to get a meaningful, non-degenerate limit.
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It is natural to expect that the fluctuation field converges to a generalised stationary
Ornstein-Uhlenbeck process. Loosely, this process is the solution of the following
(formal) SPDE

dYt = ∆Ytdt+
√

2ρ(1− ρ)∇dWt, (5.4)

where Y takes values in D([0, T ], (C∞)′) and Wt is space-time white noise. A process
Y is then a mild solution of (5.4) if for any f ∈ C∞

Yt(f) = Y0(Stf) +
√

2ρ(1− ρ)

∫ t

0

∇St−sfdWs.

Here (St, t ≥ 0) is the heat semigroup that is generated by the Laplace operator ∆.
The solution should be a Gaussian process that is stationary with respect to white
noise W0 with covariance

Cov(W0(f),W0(g)) = ρ(1− ρ)〈f, g〉

and with stationary covariance

Cov(Yt(f), Ys(g)) = ρ(1− ρ)〈f, S|t−s|g〉. (5.5)

More precisely, we define this Ornstein-Uhlenbeck process via the following martingale
problem. We call a random trajectory Y ∈ C([0, T ], (C∞)′) a generalised stationary
Ornstein-Uhlenbeck process if for each smooth test function f the following are mar-
tingales with respect to the natural filtration generated by Y = (Yt, 0 ≤ t ≤ T ):

Mf
t (Y ) := Yt(f)− Y0(f)−

∫ t

0

Ys(∆Mf)ds (5.6)

Nf
t (Y ) := (Mf

t )2 − 2tρ(1− ρ)

∫
(∇f)2dV .

Here (∇f)2 should be interpreted as 〈∇f,∇f〉, i.e. the function p 7→ 〈∇f(p),∇f(p)〉p,
where 〈·, ·〉p is the inner product on TpM .

5.2.2 Main theorem and overview of the proof

The main theorem of this chapter is the following.

Theorem 5.4. There exists a random element Y of C([0, T ], (C∞)′) ⊂ D([0, T ], (C∞)′)
with corresponding law L on D([0, T ], (C∞)′) such that LN → L as N goes to infinity.
Moreover, this Y is a generalised stationary Ornstein-Uhlenbeck process solving the
martingale problem (5.6).

In other words, the theorem says that as N approaches infinity the trajectories of
fluctuations converge to a generalised stationary Ornstein-Uhlenbeck process.
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Remark 5.5. Note that Theorem 5.4 implies the existence of solutions to (5.6) and
hence of the generalised stationary Ornstein-Uhlenbeck process. In Section 5.5 we
will also need uniqueness of solutions (given the initial condition). This is explained
in Proposition 5.14.

The proof consists of two parts. In Section 5.4 we will show tightness of (LN , N ∈ N).
By the first part of the proof of Proposition 5.1 from Mitoma [120], this implies that
every subsequence of (LN , N ∈ N) has a further subsequence that converges to some
limit. Then in Section 5.5 we show that all limiting points are the same. This is
done by showing that any limiting measure satisfies the same martingale problem
with the same initial condition. This martingale problem also characterises the lim-
iting process as a generalised stationary Ornstein-Uhlenbeck process like described
above and we compute the limiting covariance to confirm this. Together these results
imply Theorem 5.4. To do all this, we start by analysing martingales involving the
fluctuation fields in Section 5.3.

5.3 Dynkin martingale

We know that ηN is a Markov process with generator given by (5.2) (we will usually
leave out the superscript N). Now if we fix f ∈ C∞, we can define the function

φN,f : {0, 1}G
N

−→ R, η 7→ 1√
N

N∑
i=1

f(pi)(η(pi)− ρ).

Now we know that both the Dynkin martingale

MN,f
t := φN,f (ηt)− φN,f (η0)−

∫ t

0

LNφN,f (ηs)ds

and

NN,f
t :=

(
MN,f
t

)2

−
∫ t

0

(
LN (φN,f )2(ηs)− 2φN,f (ηs)L

NφN,f (ηs)
)

ds

are martingales with respect to the natural filtration generated by η (for this well-
known result and approach see for instance Seppäläinen [136] or Kipnis and Landim
[96]). Since these martingales will have an important role in the calculations later,
we will calculate the components that are involved and study their limits.

5.3.1 The martingale MN,f

First of all note that

φN,f (ηt) = Y Nt (f).
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Second we want to calculate LNφN,f (η) for η ∈ {0, 1}GN . To do this, first we see

φN,f (ηij)− φN,f (η)

=
1√
N

N∑
k=1

f(pk)(ηij(pk)− ρ)− 1√
N

N∑
k=1

f(pk)(η(pk)− ρ)

=
1√
N

N∑
k=1

f(pk)(ηij(pk)− η(pk))

=
1√
N

(f(pi)(η(pj)− η(pi)) + f(pj)(η(pi)− η(pj)))

=
1√
N

(η(pi)(f(pj)− f(pi)) + η(pj)(f(pi)− f(pj))).

Now we obtain that

LNφN,f (η) =
1

2

N∑
i,j=1

cNij
1√
N

(η(pi)(f(pj)− f(pi)) + η(pj)(f(pi)− f(pj))).

By symmetry of the weights, this equals

N∑
i,j=1

cNij
1√
N
η(pi)(f(pj)− f(pi)) =

1√
N

N∑
i=1

η(pi)

N∑
j=1

cNij (f(pj)− f(pi))

=
1√
N

N∑
i=1

η(pi)L
Nf(pi), (5.7)

where we recall that L N is the generator of the random walk according to the weights
cNij on GN . Now note that

1√
N

N∑
i=1

ρL Nf(pi) =
ρ√
N

N∑
i,j=1

cNij (f(pj)− f(pi)) = 0

to see that (5.7) equals

1√
N

N∑
i=1

L Nf(pi)(η(pi)− ρ).

This implies that

MN,f
t = Y Nt (f)− Y N0 (f)−

∫ t

0

Y Ns (L Nf)ds. (5.8)

The next lemma shows that as N grows to infinity we can replace L N by ∆M .
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Lemma 5.6. For all f ∈ C∞,

lim
N→∞

E
(∫ t

0

Y Ns (L Nf)ds−
∫ t

0

Y Ns (∆Mf)ds

)2

= 0.

Proof. First we see

E
(∫ t

0

Y Ns (L Nf)ds−
∫ t

0

Y Ns (∆Mf)ds

)2

= E
(∫ t

0

Y Ns (∆Mf −L Nf)ds

)2

≤ t

∫ t

0

EY Ns (∆Mf −L Nf)2ds. (5.9)

Now, using that ηt is a vector of independent Bernoulli random variables, we compute

EY Ns (∆Mf −L Nf)2 =
1

N

N∑
i=1

(
∆Mf(pi)−L Nf(pi)

)2
ρ(1− ρ)

≤ ρ(1− ρ)Ef (N)2,

so (5.9) is bounded by t2ρ(1− ρ)Ef (N)2, which vanishes in the limit.

5.3.2 The martingale NN,f

Now we analyse the second martingale. First we calculate the integrand, which we
will denote by ΓN,f (s), and its expectation and variance.

Lemma 5.7. For all f ∈ C∞,

lim
N→∞

EΓN,f (s) = 2ρ(1− ρ)

∫
(∇f)2dV .

Moreover, EΓN,f (s) does not depend on s, so in particular the convergence is uniform
in s.

Proof. Note that EΓN,f (s) only depends on s through the distribution of ηs, which
is the same for each s, because it is stationary. Therefore EΓN,f (s) does not depend
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on s. We calculate

ΓN,f (s) = LN (φN,f )2(ηs)− 2φN,f (ηs)L
NφN,f (ηs) (5.10)

=
1

2

N∑
i,j=1

cNij
(
φN,f (ηijs )− φN,f (ηs)

)2
=

1

2

N∑
i,j=1

cNij

(
1√
N

[
ηs(pi)(f(pj)− f(pi)) + ηs(pj)(f(pi)− f(pj))

])2

=
1

2N

N∑
i,j=1

cNij (ηs(pj)− ηs(pi))2(f(pj)− f(pi))
2 (5.11)

= − 1

N

N∑
i,j=1

cNij (f(pj)− f(pi))f(pi)(ηs(pj)− ηs(pi))2.

Now we take the expectation and, using that E(ηs(pj) − ηs(pi))
2 = 2ρ(1 − ρ), we

obtain

EΓN,f (s) = − 1

N

N∑
i,j=1

cNij (f(pj)− f(pi))f(pi)E(ηs(pj)− ηs(pi))2

= −2ρ(1− ρ)

N

N∑
i=1

f(pi)

N∑
j=1

cNij (f(pj)− f(pi))

= −2ρ(1− ρ)

N

N∑
i=1

f(pi)L
Nf(pi). (5.12)

Note that ∣∣∣∣∣ 1

N

N∑
i=1

f(pi)L
Nf(pi)−

1

N

N∑
i=1

f(pi)∆Mf(pi)

∣∣∣∣∣
≤ 1

N

N∑
i=1

|f(pi)|
∣∣L Nf(pi)−∆Mf(pi)

∣∣
≤ ‖f‖∞Ef (N) −→ 0 (N →∞).

This implies that

lim
N→∞

1

N

N∑
i=1

f(pi)L
Nf(pi) = lim

N→∞

1

N

N∑
i=1

f(pi)∆Mf(pi) =

∫
f∆MfdV . (5.13)

Combining this with (5.12), we conclude that

lim
N→∞

EΓN,f (s) = −2ρ(1− ρ)

∫
f∆MfdV = 2ρ(1− ρ)

∫
(∇f)2dV . (5.14)
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Next, we want to prove that Var(ΓN,f (s)) vanishes in the limit, but we first need the
following lemma and corollary.

Lemma 5.8. For all f ∈ C∞,

lim
N→∞

sup
1≤i≤N

∣∣∣∣∣∣
N∑
j=1

cNij (f(pj)− f(pi))
2 −

(
∆M (f2)(pi)− 2f(pi)∆Mf(pi)

)∣∣∣∣∣∣ = 0. (5.15)

Proof. By writing (f(pj)− f(pi))
2 = f(pj)

2 − f(pi)
2 − 2f(pi)(f(pj)− f(pi)) and the

triangle inequality we see that (5.15) is bounded by

sup
1≤i≤N

∣∣∣∣∣∣
N∑
j=1

cNij (f(pj)
2 − f(pi)

2)−∆M (f2)(pi)

∣∣∣∣∣∣
+ 2‖f‖∞ sup

1≤i≤N

∣∣∣∣∣∣
N∑
j=1

cNij (f(pj)− f(pi))−∆Mf(pi)

∣∣∣∣∣∣ ,
which goes to 0 by (5.1).

Corollary 5.9. For all f ∈ C∞, there exists a constant C (depending on f) such
that for all N ∈ N

sup
1≤i≤N

N∑
j=1

cNij (f(pj)− f(pi))
2 ≤ C.

Proof. For all i ≤ N by Lemma 5.8

N∑
j=1

cNij (f(pj)− f(pi))
2 ≤ sup

1≤i≤N

∣∣∆M (f2)(pi)− 2f(pi)∆Mf(pi)
∣∣

+ sup
1≤i≤N

∣∣∣∣∣∣
N∑
j=1

cNij (f(pj)− f(pi))
2 −

(
∆M (f2)(pi)− 2f(pi)∆Mf(pi)

)∣∣∣∣∣∣
≤ ‖∆Mf

2‖∞ + 2‖f‖∞‖∆Mf‖∞ + hf (N),

where hf (N) = o(1). Since this bound does not depend on i and is bounded in N ,
the result follows.

Now we can prove the following lemma.

Lemma 5.10. For all f ∈ C∞,

lim
N→∞

VarΓN,f (s) = 0.

Moreover, VarΓN,f (s) does not depend on s, so in particular the convergence is uni-
form in s.
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Proof. Like in Lemma 5.7, VarΓN,f (s) only depends on s through the distribution of
ηs, which is the same for each s because it is stationary. Therefore VarΓN,f (s) does
not depend on s. Using (5.11), we see that the variance of (5.10) equals

1

4N2

N∑
i,j,k,l=1

cNij c
N
kl(f(pj)− f(pi))

2(f(pl)− f(pk))2

·Cov((ηs(pj)− ηs(pi))2, (ηs(pl)− ηs(pk))2).

Now note that |Cov((ηs(pj)−ηs(pi))2, (ηs(pl)−ηs(pk))2)| ≤ 1 since both random vari-
ables in the covariance take values in {0, 1}. Moreover (denoting “not independent”
by 6⊥),

Cov((ηs(pj)− ηs(pi))2, (ηs(pl)− ηs(pk))2) 6= 0

=⇒ (ηs(pj)− ηs(pi))2 6⊥ (ηs(pl)− ηs(pk))2

=⇒ (i = k or i = l or j = k or j = l).

Together, this implies that

|Cov((ηs(pj)− ηs(pi))2, (ηs(pl)− ηs(pk))2)| ≤ δik + δil + δjk + δjl.

Now by positivity of the summands and symmetry it suffices to show that

1

4N2

N∑
i,j,k,l=1

cNij c
N
kl(f(pj)− f(pi))

2(f(pl)− f(pk))2δik (5.16)

goes to 0. By rearranging we see that (5.16) equals

1

4N2

N∑
i,j=1

cNij (f(pj)− f(pi))
2
N∑
l=1

cNil (f(pl)− f(pi))
2. (5.17)

By Corollary 5.9, there exists C = C(f) > 0 such that (5.17) is bounded by

C

4N2

N∑
i,j=1

cNij (f(pj)− f(pi))
2

= − C

2N

1

N

N∑
i=1

f(pi)

N∑
j=1

cNij (f(pj)− f(pi))

−→ 0 ·
∫
f∆MfdV = 0,

where in the last line we used (5.12) and (5.13). This implies that

lim
N→∞

Var
(
ΓN,f (s)

)
= 0. (5.18)
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Putting this together, we can prove the following.

Lemma 5.11. For all f ∈ C∞,

lim
N→∞

E
(∫ t

0

ΓN,f (s)ds− 2tρ(1− ρ)

∫
(∇f)2dV

)2

= 0.

Proof. Combining Lemma 5.7 and 5.10 (and using the independence of s), we obtain

E
(∫ t

0

ΓN,f (s)ds− 2tρ(1− ρ)

∫
(∇f)2dV

)2

≤ t

∫ t

0

E
(

ΓN,f (s)− 2ρ(1− ρ)

∫
(∇f)2dV

)2

ds

= t2

(
VarΓN,f (0) +

(
EΓN,f (0)− 2ρ(1− ρ)

∫
(∇f)2dV

)2
)
→ 0.

We used here that for a constant c, E(X − c)2 = Var(X) + (EX − c)2.

5.4 Tightness

In this section we show tightness. Note that for fixed N ∈ N and f ∈ C∞, Y N (f)
is a trajectory in D([0, T ],R) (where Y (f) := (Yt(f), 0 ≤ t ≤ T )). Since C∞ is a
nuclear space, by Mitoma [120, Thm 4.1] it suffices to prove for fixed f ∈ C∞ that
(Y N (f), N ∈ N) is a tight collection of random elements of D([0, T ],R). By Kipnis
and Landim [96, Section 4.1] it suffices to show that Aldous’ criterion holds, i.e. that

i) for each t ∈ [0, T ] and ε > 0, there is a compact K(t, ε) ⊂ R such that

sup
N
LN (Y Nt (f) /∈ K(t, ε)) ≤ ε

ii) for all ε > 0

lim
γ→0

lim sup
N→∞

sup
τ∈TT ,θ≤γ

LN
(∣∣Y Nτ (f)− Y Nτ+θ(f)

∣∣ > ε
)

= 0,

where TT is the set of all stopping times with respect to the natural filtration of Y N

that are bounded by T . Further, for ease of notation Y Nt should be interpreted as
Y NT whenever t > T .

Proof. We study more carefully the distribution of Y Nt (f). Since νNρ is invariant under
the SEP dynamics, we know that the ηt(pi)’s are i.i.d. Bernoulli with parameter ρ.
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This means that (ηt(pi) − ρ) has mean 0 and variance ρ(1 − ρ). Since they are
independent, we see that Y Nt (f) has mean 0 and variance

Var

(
1√
N

N∑
i=1

f(pi)(ηt(pi)− ρ)

)
=

1

N

N∑
i=1

f2(pi)ρ(1− ρ).

By the central limit theorem, the distribution of Y Nt (f) converges to the

N

(
0, ρ(1− ρ)

∫
f2dV

)

distribution (where N(µ, σ2) as usual denotes the normal distribution with mean µ
and variance σ2). This implies tightness of (Y Nt (f), N ∈ N), which is (i). For (ii) we
use the Dynkin martingale representation (5.8) to write

Y Nt (f) = MN,f
t + Y N0 (f) +

∫ t

0

Y Ns (L Nf)ds. (5.19)

It suffices to show (ii) for the integral term and the martingale term of (5.19). For
the integral term we first calculate the following.

E

(∫ τ+θ

τ

Y Ns (L Nf)ds

)2

≤ θE
∫ τ+θ

τ

(
Y Ns (L Nf)

)2
ds

≤ θE
∫ T+θ

0

(
Y Ns (L Nf)

)2
ds = θ

∫ T+θ

0

E
(
Y Ns (L Nf)

)2
ds

= θ

∫ T+θ

0

1

N

N∑
i=1

L Nf(pi)
2ρ(1− ρ)ds = θ(T + θ)ρ(1− ρ)

1

N

N∑
i=1

L Nf(pi)
2.

(5.20)

Now we write Epi(N) =
∣∣L Nf(pi)−∆Mf(pi)

∣∣ and note that

1

N

N∑
i=1

L Nf(pi)
2 ≤ 1

N

N∑
i=1

(|∆Mf(pi)|+ Epi(N))2

≤ 2

N

N∑
i=1

∆Mf(pi)
2 +

2

N

N∑
i=1

Epi(N)2

≤ 2

N

N∑
i=1

∆Mf(pi)
2 + 2Ef (N)2 → 2

∫
(∆Mf)2dV + 0,
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which implies that there exists some C > 0 independent of N such that (5.20) is
bounded by θ(T + θ)ρ(1− ρ)C. Now we see that

lim
γ→0

lim sup
N→∞

sup
τ∈TT ,θ≤γ

LN
(∣∣Y Nτ (f)− Y Nτ+θ(f)

∣∣ > ε
)

≤ lim
γ→0

lim sup
N→∞

sup
τ∈TT ,θ≤γ

1

ε2
E

(∫ τ+θ

τ

Y Ns (L Nf)ds

)2

≤ lim
γ→0

lim sup
N→∞

sup
τ∈TT ,θ≤γ

θ(T + θ)ρ(1− ρ)C

ε2

= lim
γ→0

lim sup
N→∞

γ(T + γ)ρ(1− ρ)C

ε2
= 0.

Now for the martingale term, by the martingale property we see that

E
(
MN,f
τ+θ −M

N,f
τ

)2

= E
(
〈MN,f ,MN,f 〉τ+θ − 〈MN,f ,MN,f 〉τ

)
= E

∫ τ+θ

τ

LN (φN,f )2(ηs)− 2φN,f (ηs)L
NφN,f (ηs)ds.

By (5.11), the latter equals

1

2N

N∑
i,j=1

cNij (f(pj)− f(pi))
2 E
∫ τ+θ

τ

(ηs(pi)− ηs(pj))2ds

≤ 1

2N

N∑
i,j=1

cNij (f(pj)− f(pi))
2θ = −θ 1

N

N∑
i,j=1

cNij (f(pj)− f(pi))f(pi)

= −θ 1

N

N∑
i=1

f(pi)L
Nf(pi) −→ −θ

∫
f∆MfdV = θ

∫
(∇f)2dV ,

where in the last line we used (5.13). This implies that there exists some C > 0
independent of N such that

LN
(∣∣∣MN,f

τ+θ −M
N,f
τ

∣∣∣ > ε
)
≤ 1

ε2
E
(
MN,f
τ+θ −M

N,f
τ

)2

≤ θC

ε2
.

As with the integral term, this implies (ii).

5.5 Uniqueness of limits of subsequences

Now let L∗ be the limit of a subsequence LNk . We want to show that L∗ satisfies cer-
tain initial conditions and a martingale problem, which will then uniquely determine
it.



116 Equilibrium fluctuations of SEP

First of all the initial condition can be shown to be a Gaussian field in exactly the
same way as Kipnis and Landim [96, Chapter 11 Lemma 2.1], i.e. L∗ restricted to
F0 (the natural filtration at time 0) is a Gaussian field with covariance

E[Y0(f)Y0(g)] = ρ(1− ρ)

∫
fgdV . (5.21)

We will need the following lemma.

Lemma 5.12. Let Y have distribution L∗. Then for each smooth f , Y (f) is contin-
uous almost surely.

Proof. Fix f ∈ C∞. Recall that for a real-valued trajectory X = (Xt, 0 ≤ t ≤ T ) the
continuous and càdlàg modulus of continuity wδ and w′δ are defined as

wδ(X) = sup
|s−t|<δ

|Xt −Xs|, w′δ(X) = inf
0=t0≤t1≤..≤tr=1

ti−ti−1>δ

max
1≤i≤r

sup
ti−1≤s≤t≤ti

|Xt −Xs|.

By Aldous’ tightness criterion (which we showed in Section 5.4), we know that

lim
δ→0

lim sup
N→∞

LN (w′δ(Y
N (f)) ≥ ε) = 0.

Now note that

wδ(X) ≤ 2w′δ(X) + sup
t
|Xt −Xt−|.

Since in our case the last term can be a.s. bounded by 2N−1/2‖f‖∞, we get

lim
δ→0

lim sup
N→∞

LN (wδ(Y
N (f)) ≥ ε) = 0.

This implies a.s. continuity of Y (f).

Now we can show that Y satisfies a martingale problem under L∗.

Proposition 5.13. Recall from (5.6) that we define for Y ∈ D([0, T ], (C∞)′) and
f ∈ C∞,

Mf
t (Y ) := Yt(f)− Y0(f)−

∫ t

0

Ys(∆Mf)ds

Nf
t (Y ) := (Mf

t )2 − 2tρ(1− ρ)

∫
(∇f)2dV .

Denote by Y ∗ the random element of D([0, T ], (C∞)′) with law L∗. Then for each

f ∈ C∞, Mf
t (Y ∗) and Nf

t (Y ∗) are martingales with respect to the natural filtration
F = (Ft, 0 ≤ t ≤ T} generated by Y ∗ = (Y ∗t , 0 ≤ t ≤ T ).
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Proof. The proof is analogous to the proof of Kipnis and Landim [96, Chapter 11
Prop 2.3]. Recall

MN,f
t = Y Nt (f)− Y N0 (f)−

∫ t

0

Y Ns (L Nf)ds

NN,f
t = (MN,f

t )2 −
∫ t

0

ΓN,f (s)ds.

Fix 0 ≤ s ≤ t ≤ T . We want to show that

E[Mf
t (Y ∗)|Fs] = Mf

s (Y ∗) and E[Nf
t (Y ∗)|Fs] = Nf

s (Y ∗).

Fix n ∈ N, s ≥ 0, 0 ≤ s1 ≤ .. ≤ sn ≤ s,H1, ..,Hn ∈ C∞,Ψ ∈ Cb(Rn) and define

I : D([0, T ], (C∞)′)→ R
I : Y 7→ Ψ(Ys1(H1), .., Ysn(Hn)).

Now it suffices to show that

lim
N→∞

EMN,f
t I(Y N ) = EMf

t (Y ∗)I(Y ∗), lim
N→∞

ENN,f
t I(Y N ) = ENf

t (Y ∗)I(Y ∗),

(5.22)

since then by the martingale property of MN,f
t

EMf
t (Y ∗)I(Y ∗) = lim

N→∞
EMN,f

t I(Y N ) = lim
N→∞

EMN,f
s I(Y N ) = EMf

s (Y ∗)I(Y ∗)

and analogous for the Nf
t (Y ∗) case, which implies that Mf

t (Y ∗) and Nf
t (Y ∗) are

martingales with respect to F .

We start with the first martingale. First we show that we can replace MN,f
t by

Mf
t (Y N ) in the first expectation in (5.22). Indeed, using Jensen we see that(

EMN,f
t I(Y N )− EMf

t (Y N )I(Y N )
)2

≤ ‖Ψ‖2∞E(MN,f
t −Mf

t (Y N ))2

= ‖Ψ‖2∞E
(∫ t

0

Y Ns (∆Mf)ds−
∫ t

0

Y Ns (L Nf)ds

)2

,

which goes to 0 by Lemma 5.6. Now it remains to show that

lim
N→∞

EMf
t (Y N )I(Y N ) = EMf

t (Y ∗)I(Y ∗).

First of all note that

E(Mf
t (Y N ))2 ≤ 4

(
EY Nt (f)2 + EY N0 (f)2 + E

(∫ t

0

Y Ns (∆Mf)ds

)2
)

≤ 2ρ(1− ρ)

∫
f2dV + t2ρ(1− ρ)

∫
(∆Mf)2dV + o(1),
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which implies that there exists C > 0 such that

sup
N∈N

E(Mf
t (Y N )I(Y N ))2 ≤ ‖Ψ‖2∞ sup

N∈N
E(Mf

t (Y N ))2 ≤ C <∞.

This implies that the Mf
t (Y N )I(Y N ) are uniformly integrable, so it suffices to show

that Mf
t (Y N )I(Y N ) converges to Mf

t (Y ∗)I(Y ∗) in distribution.

We proceed in steps. The idea is that we would like to apply the Portmanteau the-
orem, i.e. show that Mf

t I is a map of which the set of discontinuities has measure
0 (under L∗) and conclude from the convergence in distribution of Y N to Y ∗ that

Mf
t (Y N )I(Y N ) converges in distribution to Mf

t (Y ∗)I(Y ∗). However, the path space
D([0, T ], (C∞)′) is not metrisable, so the Portmanteu theorem does not apply. There-

fore we construct two mappings P1 and P2 such that P2 ◦ P1 = Mf
t I and P1 maps

continuously to a metric space where we can apply the Portmanteau theorem to P2.
First of all, consider the mapping

P1 : D([0, T ], (C∞)′) −→ D([0, T ],R)n+2

Y 7−→ (Y (f), Y (∆Mf), Y (H1), .., Y (Hn)).

By Jakubowski [88, Thm 1.7] each of the components is continuous, hence P1 is
continuous. This implies that P1(Y N ) converges in distribution to P1(Y ∗). Now
consider the mapping

P2 : D([0, T ],R)n+2 −→ R

(X1, X2, .., Xn+2) 7−→ (X1
t −X1

0 −
∫ t

0

X2
sds)Ψ(X3

s1 , .., X
n+2
sn ).

We want to show that the set of discontinuities of P2 has measure 0 under the law
of P1(Y ∗). Suppose (Xm)m≥1 is a sequence in D([0, T ],R)n+2 (denoting Xm =
(Xm,1, .., Xm,n+2)) that converges toX ∈ D([0, T ],R)n+2 such thatXi is a continuous
path for each i ≤ n + 2. Note that this implies that for each i ≤ n, Xm,i converges
uniformly to Xi. So in particular for fixed i ≤ n and t ∈ [0, T ], Xm,i

t converges

to Xi
t and, because of the uniform convergence,

∫ t
0
Xm,i
s ds converges to

∫ t
0
Xi
sds.

Combining all of this with the knowledge that Ψ is continuous, we obtain that P2(Xm)
converges to P2(X). By Lemma 5.12, for each f , Y (f) is continuous with probability
1. Therefore we see that under the measure on D([0, T ],R)n+2 induced by L∗ through
P1 (i.e. the law of P1(Y ∗)), almost every X ∈ D([0, T ],R)n+2 has the property that
Xi is a continuous path for each i ≤ n+ 2. Therefore the set of discontinuities of P2

has measure 0 under this measure. Hence, by the Portmanteau theorem (and the fact
that P1(Y N )→ P1(Y ∗) in distribution), we conclude that

Mf
t (Y N )I(Y N ) = P2(P1(Y N )) −→Mf

t (Y ∗)I(Y ∗)

in distribution, which is what we wanted. Note (again) that the Portmanteau theorem
is only valid in the context of metric spaces, which was the reason for the reduction
to the (metric!) space D([0, T ],R)n+2.
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The proof for the second martingale is similar. To replace NN,f
t I(Y N ) with

Nf
t (Y N )I(Y N ), we calculate

E
(
NN,f
t −Nf

t (Y N )
)2

= E
((

(MN,f
t )2 −

∫ t

0

ΓN,f (s)ds

)
−

(
(Mf

t (Y N ))2 − 2tρ(1− ρ)

∫
(∇f)2dV

))2

≤ 2E
(

(MN,f
t )2 − (Mf

t (Y N ))2
)2

+ 2E
(∫ t

0

ΓN,f (s)ds− 2tρ(1− ρ)

∫
(∇f)2dV

)2

.

The right term goes to 0 by Lemma 5.11. For the left term note that

E
(

(MN,f
t )2 − (Mf

t (Y N ))2
)2

= E(MN,f
t −Mf

t (Y N ))2(MN,f
t +Mf

t (Y N ))2

≤
(
E(MN,f

t −Mf
t (Y N ))4E(MN,f

t +Mf
t (Y N ))4

)1/2

≤
(

8E(MN,f
t −Mf

t (Y N ))4
(
E(MN,f

t )4 + E(Mf
t (Y N ))4

))1/2

(where we used that (a+ b)4 ≤ 8(a4 + b4)). Now we calculate

E(MN,f
t −Mf

t (Y N ))4

= E
(∫ t

0

Y Ns (L Nf −∆Mf)ds

)4

≤ t3
∫ t

0

E
(
Y Ns (L Nf −∆Mf)

)4
ds

(5.23)

= t4
1

N2

N∑
i,j,k,l=1

(L Nf −∆Mf)(pi)..(L
Nf −∆Mf)(pl)

·EN (η0(pi)− ρ)..(η0(pl)− ρ), (5.24)

where we used that the expectation in the first line does not depend on s, so we can
just set s = 0. Now note that the expectation in the last line is only non-zero if every
index is present either 2 or 4 times. This gives O(N2) non-zero terms. This means
that there is some constant C > 0 such that

E(MN,f
t −Mf

t (Y N ))4 ≤ t4C
(

sup
i≤N
|L Nf −∆Mf)(pi)|

)4

= t4CEf (N)4, (5.25)

which goes to zero as N goes to infinity.
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Now we show that E(MN,f
t )4 is uniformly bounded, the term with Mf

t (Y N ) can be
treated analogously.

E(MN,f
t )4 ≤ 64

(
EY Nt (f)4 + EY N0 (f)4 + E

(∫ t

0

Y Ns (L Nf)ds

)4
)
.

All these terms can be bounded as in (5.23) to (5.25), i.e. by writing the terms as a
sum over four indices with O(N2) non-zero terms and bounding the non-zero terms
using the supremum norm of f and L Nf , respectively. One should further use that

sup
i≤N
|L Nf(pi)| ≤ ‖∆Mf‖∞ + Ef (N) = O(1).

All of this implies (like for the MN,f
t case earlier in this proof) that NN,f

t I(Y N )

can be replaced with Nf
t (Y N )I(Y N ). With the same kind of computations, one can

show that Nf
t (Y N )I(Y N ) has uniformly bounded second moments, so is uniformly

integrable. Then using the same kind of continuity arguments as withMf
t (Y N )I(Y N ),

we can conclude that

Nf
t (Y N )I(Y N ) −→ Nf

t (Y ∗)I(Y ∗)

in distribution. Therefore

ENf
t (Y N )I(Y N ) −→ ENf

t (Y ∗)I(Y ∗),

which is what we wanted.

Now we finally need to know that the martingale problem has unique solutions (given
the initial conditions).

Proposition 5.14. The martingale problem (5.6) together with the initial condi-
tion (5.21) uniquely determine L∗ as a measure on D([0, T ], (C∞)′).

Proof. The proof of this theorem follows exactly like the proof of Kipnis and Landim
[96, Chapter 11 Theorem 0.2], which is given in Paragraph 4 of the same chapter.
The idea of the proof is that for fixed f ∈ C∞ one can use the martingales Mf

and Nf from the martingale problem to calculate the transition probabilities for the
corresponding process Y = (Yt, t ≥ 0). Since this process is Markov, the transition
probabilities combined with the initial condition uniquely determine it.

We conclude that every convergent subsequence LNk converges to the same limit L∗.
This implies that LN converges to L∗. Moreover, since L∗ satisfies the martingale
problem (5.6), the limiting field is a generalised Ornstein-Uhlenbeck process.
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To conclude this section, we directly calculate the covariance structure of the limiting
field. This is indeed the covariance given in (5.5) that one would expect from a
generalised Ornstein-Uhlenbeck process.

Proposition 5.15. For all f, g ∈ C∞, t, s ≥ 0

E[Yt+s(f)Ys(g)] = ρ(1− ρ)

∫
(Stf)gdV ,

where (St, t ≥ 0) is the heat semigroup generated by ∆M .

Proof. We start to calculate the following covariance. To do this we need to use
duality of SEP with a random walk, as is shown in Liggett [108, Thm 4.74]. Denote
by XN the random walk on the grid GN that is generated by L N . Then, using the
duality argument, we see

E [(ηt(pi)− ρ)(η0(pj)− ρ)] =

∫
Eη′ [ηt(pi)− ρ] (η′(pj)− ρ)νρ(dη

′)

=

∫
Epi

[
(η′(XN

t )− ρ)
]

(η′(pj)− ρ)νρ(dη
′)

= Epi
[∫

(η′(XN
t )− ρ)(η′(pj)− ρ)νρ(dη

′)

]
= Epi1XNt =pjρ(1− ρ) = ρ(1− ρ)Ppi(XN

t = pj),

where Epi is the expectation with respect to the law of XN starting from pi. Now we
calculate the covariance of the fluctuation fields.

E[Y Nt (f)Y N0 (g)] =
1

N

N∑
i,j=1

f(pi)g(pj)E [(ηt(pi)− ρ)(η0(pj)− ρ)]

=
ρ(1− ρ)

N

N∑
i=1

f(pi)

N∑
j=1

Ppi(XN
t = pj)g(pj)

=
ρ(1− ρ)

N

N∑
i=1

f(pi)S
N
t g(pi),

where (SNt , t ≥ 0) is the semigroup corresponding to the random walk XN on the
grid points. By Remark 3.5, for each f ∈ C∞,

lim
N→∞

sup
1≤i≤N

∣∣SNt f |GN (pi)− Stf(pi)
∣∣ = 0.

Using this and stationarity of η, we obtain

E[Yt+s(f)Ys(g)] = lim
N→∞

E[Y Nt+s(f)Y Ns (g)] = lim
N→∞

E[Y Nt (f)Y N0 (g)]

= lim
N→∞

ρ(1− ρ)

N

N∑
i=1

f(pi)S
N
t g(pi) = ρ(1− ρ)

∫
fStgdV .
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The first equality follows from convergence in distribution and uniform integrability,
which can be derived with methods similar to the proof of Proposition 5.13.

5.6 Notes and perspectives

In this chapter we continued our study of the Symmetric Exclusion Process on a com-
pact manifold and proved that the equilibrium fluctuations around the hydrodynamic
limit converge to the solution of a generalised Ornstein-Uhlenbeck process. We will
now mention some ways in which these results can be improved and directions for
further study.

First, we defined the fluctuations fields as acting on smooth functions. Because of
this they are elements of a non-metrisable topological space. It would be interesting
to extend these definitions to a Sobolev space of negative index, since this is a Hilbert
space and hence has a much nicer structure. To prove the same results in this setting
requires proving tightness of the fluctuations fields in the Sobolev space. In the
tightness proof in a flat space, which can be found in Kipnis and Landim [96, Chapter
11], an important ingredient is translation invariance. Since such property is not
available on a manifold, this poses technical difficulties. However, we do not see a
more conceptual reason why it would not hold. Therefore it would be interesting to
see if the technical challenges can be dealt with.

Next, we could try to extend the proof to a non-compact space. For this we cannot
work with the whole set of smooth functions as in this chapter, since the smooth
functions in general do not form a nuclear space. Probably it could still work if we
require the smooth functions to vanish rapidly at infinity.

As we mentioned in Section 4.5, after establishing the equilibrium fluctuations a logical
next step would be to prove a large deviations principle. However, as we explained
there, we need results like the one block and two block estimates for that.

Further, it would be interesting to consider other interacting particle systems, such
as gradient systems. To do this, we need a Boltzmann-Gibbs principle. However,
to prove such principle one probably runs into problems similar to the problems for
the one and two blocks estimates. In particular there is no translation and the grids
look different around each grid point. Therefore it is for instance not clear how to
partition the grids in a useful way, as is done in the proof of the Boltzmann-Gibbs
principle in Kipnis and Landim [96, Chapter 11].



Chapter 6

Scaling limit of the Discrete
Gaussian Free Field

In this chapter1 we define the discrete Gaussian free field (DGFF) on a compact
manifold. Since there is no canonical grid approximation of a manifold, we use grids
like the grids from Chapter 3 to replace the square lattice Zd in Euclidean space,
and prove that the scaling limit of the DGFF is given by the manifold continuum
Gaussian free field (GFF). Furthermore using Voronoi tessellations we can interpret
the DGFF as element of a Sobolev space and show convergence to the GFF in law
with respect to the strong Sobolev topology.

6.1 Introduction and main results

The discrete Gaussian free field has received a lot of attention over the last years
thanks to its connections with several areas of mathematics. An on-the-fly definition of
it can be given by means of a multivariate centered Gaussian variable on a finite graph,
whose covariance matrix is the inverse of the graph laplacian. The DGFF is considered
the discrete version of a random distribution, the Gaussian free field, and the interplay
between the two has been highlighted in the mathematics literature starting with the
work of Sheffield [137]. As far as the authors know, the DGFF has been considered
mainly on lattices due to the reason that, outside of the Euclidean setting, it is difficult
to choose a canonical grid that approximates space (see the question on Mathoverflow
[116]). If one wants to construct the DGFF on a Riemannian manifold for example,
one possible strategy to define it is to begin directly with the GFF on the manifold,
then construct a triangulation of the space and project the GFF on test functions
that are affine on triangles. This procedure is originally contained in Schramm and

1This chapter is based on Cipriani and van Ginkel [32].
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Sheffield [135]. The drawback of this construction is that it does not link the DGFF to
a metrised graph, in particular it does not give information on the edge weights that
the underlying graph should have. We, on the other hand, start by setting the edge
weights and from there constructing the DGFF. Another approximation of the GFF is
obtained via a truncation of its Wiener series representation in terms of eigenfunctions
of the Laplace–Beltrami operator, as done in Rivera [130]. This approach is analytical
and does not yield a DGFF, which is the object we want to use to discretise the GFF.

Our contributions Indeed, the goal of our work is to approximate the GFF on a
manifold by an appropriately defined DGFF. The main difficulty here is to create the
right setting in which to make the necessary constructions. In particular this means
finding a graph on which we can define the DGFF. However, grids on manifolds are
in general far from regular, translation invariance and scaling properties are usually
lacking. These properties are not directly necessary to define the DGFF, but studying
the analogous proofs in Rd shows that they are key ingredients used in the scaling
limit. In particular it is more complicated to assign suitable edge weights to obtain the
GFF in the limit without these properties. Another object which plays a crucial role in
the Euclidean case is the Green’s function, for which one needs pointwise convergence
to the continuum Green’s function and upper bounds. These are however not available
for our weighted graphs. Therefore we aimed at, and succeeded in, finding different
conditions under which Green’s functions converge in a weaker way, but still strong
enough to ensure the scaling limit. These assumptions (as listed in Theorem 6.1 and
as elaborated upon shortly) are natural, in the sense that a grid uniformly sampled
from the manifold exhibits these properties with probability one (see Theorem 6.3).
In contrast to the Rd case, showing this relies on a result on the spectral convergence
of graph laplacians, which is found in the literature of spectral clustering.

Our construction starts by considering a sequence of weighted graphs for which the
random walk semigroups converge in the sense described in Theorem 6.1. Another
quite natural assumption we make is that the grid approximates the manifold in the
sense of measures, that is, the empirical measure on the grid points converges to the
uniform measure on the manifold. Given this, we have to add one final ingredient
to the picture: a uniform bound from below on the spectral gap of the discrete
laplacians. The reason behind this condition is that one wishes to stay in the region
of the spectrum away from zero, where the graph laplacian is invertible.

We can now begin by giving the mathematical exposition of our results. Throughout
we will be working with a connected and compact Riemannian manifold M of dimen-
sion d ≥ 1 with normalised volume measure V . We will use the space of smooth and
zero-mean test functions, that is to say the set

W :=

{
f ∈ C∞(M) :

∫
M

fdV = 0

}
.

For a graph V with positive symmetric edge weights cvw we define the graph laplacian
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acting on functions f : V → R as

Lf(v) := −
∑
w∈V

cvw(f(w)− f(v)), v ∈ V. (6.1)

The laplacian L generates a simple random walk on V with associated semigroup
(SVt )t≥0. We define the zero-average discrete Gaussian free field φV on V as the
Gaussian field indexed by V whose covariance function is the inverse of L (for proper
definitions see Subsection 6.2.2).

The first Theorem we present is concerned with the convergence of the zero-average
DGFF to its continuum counterpart: the Gaussian free field on M , that is, the
generalised Gaussian field φ with mean zero and covariance matrix G, the Green’s
function of the Laplace–Beltrami operator on M (these notions will be specified in
Section 6.2). While the first two conditions in the Theorem specify how to choose a
suitable graph laplacian approximating the Laplace–Beltrami operator, the third one
regards the dispersion of the grid points.

Theorem 6.1. Let a sequence of graphs (VN )N∈N be given such that VN = (pNi )Ni=1

and set the graph laplacians L = LN as in (6.1). Define φN to be the zero-average
DGFF on VN and recall that φ denotes the GFF on M . Assume that the following
conditions hold.

1. Denoting by λN2 the spectral gap of LN , we require infN λ
N
2 > 0.

2. For any f : M → R, set

fN := f |VN −
1

N

N∑
i=1

f |VN (pNi ).

and assume that for all f ∈W and t ≥ 0

lim
N→∞

1

N
(fN , S

N
t fN ) = (f, Stf), (6.2)

where (St)t≥0 is the heat semigroup of the Laplace-Beltrami operator.

3. The following weak limit of measures holds:

lim
N→∞

1

N

N∑
i=1

δpNi = V ,

where V is the uniform measure on M .

Then
√
NφN converges to φ in law in the space W ′ equipped with the weak* topology.

We will show (see Remark 6.11) that canonical grids in flat space satisfy the above
mentioned assumptions, for example the equally spaced grid on the d-dimensional flat
torus Td.
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Remark 6.2. It will follow from our proofs that we do not necessarily have to work
with the Laplace–Beltrami operator. In general, two properties are essential: first of
all the operator needs to be symmetric and positive semi-definite. This ensures that
we can use its (possibly generalised) inverse as covariance of a Gaussian field, as we
are going to do in Section 6.2. Further the operator must generate a suitably regular
semigroup for our approach to work. Then if we have a sequence of discrete approx-
imations of this operator in the sense of Theorem 6.1 with the analogous properties,
we get convergence of the corresponding Gaussian fields.

The second Theorem exhibits an example of a graph satisfying Assumptions (1)-(3).
As it often happens in statistics and manifold learning (Singer [138], Belkin and Niyogi
[9], Hein et al. [82], Giné and Koltchinskii [74] are only a few of the numerous works
on the topic), the points (pNi ) of the grid are obtained as uniform observations of
the manifold, and edges between them are weighted by a semi-positive kernel with
bandwidth t applied to the distance between those grid points. As the number of
observations grows and the bandwidth goes to zero, one should be able to capture the
convergence of the graph laplacian to the continuum one, and in turn the scaling limit
of the random field. Concretely, we sample points uniformly from V and we define
the vertex set of the N th grid to be the first N points. We connect any two vertices
with an edge and choose our kernel to be the heat kernel pt(·, ·) on M divided by t
(the more precise definitions are in Subsection 6.2.1). Given the sequence of grids we
set a bandwidth t that satisfies

W1(µN , V ) = o
(
t
d
2 +2
)
, (6.3)

where W1 denotes the Kantorovich or 1-Wasserstein metric and µN is the empirical
measure on (pNi )Ni=1.2 Finally, we modify the bandwidth so that it goes to 0 slowly
enough to get convergence of the spectral gaps of the graph laplacians to the con-
tinuum one (see Subsection 6.3.2.3 for the details). We formulate the result in the
following Theorem.

Theorem 6.3. Let VN := (pNi )Ni=1 be a sequence of i.i.d. points sampled from the
normalised volume measure on M . Let pt(·, ·) be the heat kernel on M . Choose tN
such that (6.3) holds and the spectral gaps converge to the continuum one. Define the
weights in (6.1) as

cvw :=
ptN (v, w)

NtN
, v, w ∈ VN .

Then Assumptions (1)-(3) are satisfied almost surely in the law of the sampled grid
points.

Finally we extend the result to convergence in a stronger sense, namely in the Sobolev
space H−s(M) for some s > 0. To do this we lift φN using Voronoi cells with centers

2Note the similarity of the rates of convergence in (6.3) and (3.4).
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(pi)
N
i=1 to a random distribution in H−s(M) by specifying the action

〈φ̃N , f〉 :=
1

N

N∑
i=1

φN (pi)
1

vi

∫
Ci

f(p)V (dp)

with vi the volume of the cell Ci. We also extend the definition of the CGFF φ to let
it act on Hk functions. Then we get the following theorem.

Theorem 6.4. Assume the conditions of Theorem 6.1. Then
√
Nφ̃N converges to φ

in law in the strong topology of H−s for s > d− 1/2.

Structure of the chapter In Section 6.2 we will give the precise definitions of the
Gaussian fields we consider, as well as the necessary background on the geometry of
the manifold and further insight on Assumptions (1)-(3). Section 6.3 is devoted to
showing the first two main Theorems, respectively in Subsections 6.3.1 and 6.3.2.
The result in H−s(M) is stated and proved in Section 6.4. We conclude the chapter
with some notes and perspectives in Section 6.5.

Notation In the following we will use C, c, c′, . . . as absolute constants whose value
may change from line to line even within the same equation. The norms with subscript
N are those on the graphs VN . We will also use square brackets to denote dual pairings
and round brackets for inner products.

6.2 Preliminaries: definitions and assumptions

6.2.1 The manifold

We assume M to be a compact, connected and d-dimensional Riemannian manifold
(for all of the following definitions see for instance Grigoryan [79]). The Riemannian
structure induces the metric d(·, ·). We denote the volume measure on M by V and
the uniform measure by V := V/V (M) (note that M is compact, so V (M) <∞). On
M we can define the heat semigroup3 (St, t ≥ 0) generated by the Laplace–Beltrami
operator ∆M and the corresponding heat kernel pt(p, q) such that

Stf(p) =

∫
M

pt(p, q)f(q)V (dq), f ∈ L2.

Recall from the introduction that W ⊂ C∞(M) consists of the zero-average smooth
functions on M . It is equipped with the topology that is generated by the seminorms

sup
K
|∂αu|,

3Note that one can construct the heat semigroup on either C(M) or L2(M). We will need both
representations in what follows. However since we will evaluate the semigroups on the set of smooth
functions, where they agree, we do not need to specify which one we are using.
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where K ranges over the compact sets that are contained in charts and ∂α ranges
over partial derivatives in charts containing K. For f, g ∈ L2(M) we denote

(f, g) :=

∫
M

f(p)g(p)dV .

We recall some basic facts on the Green’s function of −∆M (for more details we refer
the reader to Aubin [4, Chapter 4], Donaldson [45], Grigoryan [79, Chapter 13]). One
knows that on a compact manifold the spectrum of −∆M is discrete, and is given by
0 = λ1 < λ2 ≤ λ3 . . .. The Green kernel on M is given by the following sum in L2(M):

G :=
∑
j≥2

1

λj
Pj (6.4)

with Pj the projection on the j-th eigenspace of −∆M . We also recall that on a
compact Riemannian manifold without boundary f = Gρ solves −∆Mf = ρ for the
input datum ρ ∈ W and the solution is normalised to have integral zero. Moreover
in that case f ∈W .

6.2.2 The zero-average discrete Gaussian free field

We will now recall some definitions concerning the discrete Gaussian free field. The
idea behind the construction follows the use of fundamental matrices to define Gaus-
sian processes (Aldous and Fill [3, Section 14.6.2]) and has been applied for example
in studying the zero-average DGFF on the torus by Abächerli [1] .

Let V be a finite graph. For v, w ∈ V, let cvw = cwv ≥ 0 be the conductance between
v and w. Assume that V is connected in the sense that for any v, w ∈ V there is a path
from v to w such that each edge that is traversed has strictly positive conductance.
We define the graph laplacian acting on functions f : V → R by

Lf(v) = −
∑
w∈V

cvw(f(w)− f(v)), v ∈ V.

Since the graph is symmetric all the eigenvalues are non-negative and the correspond-
ing eigenspaces are orthogonal. Moreover, we can conclude from the connectedness
that there is exactly one eigenvalue 0 (see for instance Chung and Graham [31, Chap-
ter 1]) with eigenfunction the constant function 1. Because of this, the following
definition makes sense.

Definition 6.5 (Discrete Green’s function). We define the Green’s operator as the
linear operator on functions f : V → R uniquely defined by the following action on
two linear subspaces

GVf :=

{
L−1f f ⊥ 1

0 f = c1
.
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Here 1 is the function constantly equal to one. There is also an explicit characterisa-
tion of GV , which we are going to use in the following. Assume that V has n points.
Denote the eigenvalues of L by 0 = λn1 < λn2 ≤ . . . ≤ λnn, possibly with multiplicities.
Since 1 is exactly the eigenspace corresponding to λn1 we can write

GV =

n∑
j=2

1

λnj
Pnj . (6.5)

Here Pnj is the projection on the eigenspace corresponding to the j-th eigenvalue of
L.

Now that we have introduced the Green’s function, we can make the following defi-
nition.

Definition 6.6 (DGFF as a multivariate Gaussian). The zero-average Gaussian free
field φV on V is the Gaussian vector indexed by V with mean 0 and covariance matrix
GV .

Note that GV is symmetric and positive definite on {f ⊥ 1} (since L is) and 0 on
the rest. Therefore φV lives in an (n− 1)-dimensional space and is degenerate in the
direction of the constant vectors. Indeed, as the name indicates, φV has average 0
almost surely. One can see this since

Var

(∑
v∈V

φV(v)

)
= 1TG1 = 0

so
1

|V|
∑
v∈V

φV(v) = 0 a.s.

One of the most important properties of the DGFF is the Markov property, i.e. that
the DGFF restricted to a subset of the underlying graph only depends on the rest
of the graph through the boundary of that subset (Sznitman [144, Proposition 2.3]).
In a zero-average DGFF this is no longer true, since the total average should be
zero. Moreover, the restriction of a zero-average DGFF to a subset is not even a
zero-average DGFF. However, we can still study the restriction of the zero-average
DGFF to a subset when we subtract the harmonic interpolation of its values on the
boundary. This turns out to be a DGFF, as it is shown in Abächerli [1, Lemma 1.7]
for the zero-average DGFF on the torus. The same proof works in our case, given
a few generalisations of the definitions that are involved. We will now formulate the
statement. To this end, let X = (Xt, t ≥ 0) denote the random walk on V generated
by −L, denote by Ev and Pv the expectation and law of X started from v ∈ V,
respectively, and set TU = inf{t : Xt /∈ U} .

Lemma 6.7. Let U ⊂ V be a proper subset and for v ∈ V define

φU (v) := φV(v)− Ev[φV(XTU )].
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Then φU is a centered Gaussian field with covariance matrix

GU (v, w) = Ev

[∫ TU

0

1{Xt=w}dt

]
.

Proof. The proof of this Lemma is essentially the same of Abächerli [1], with two
main remarks that we want to stress now. Firstly let us note that we have to use the
continuous-time random walk (as opposed to the situation in [1]), since the rates of
the exponential waiting times do not have to be equal. Secondly, to be able to mimic
the proof given on the d-dimensional flat torus we need to prove that our Green’s
function is the same as Abächerli [1], i.e. that

GV(v, w) =

∫ ∞
0

(Pv[Xt = w]− 1/n) dt =: HV(v, w). (6.6)

To show (6.6), note first of all that HV1 = 0. So it remains to show that HV = L−1

on W = {f : f ⊥ 1}. First of all note that for f ∈W

HVf(v) =

∫ ∞
0

[∑
w∈V

Pv(Xt = w)f(w)− 1

n

∑
w∈V

f(w)

]
dt =

∫ ∞
0

Stf(v)dt,

where St = exp(−tL) is the semigroup corresponding to X. In particular∑
v∈V

HVf(v) =

∫ ∞
0

∑
v∈V

Stf(v)dt = 0

since by symmetry of the random walk∑
v∈V

Stf(v) =
∑
v∈V

∑
w∈V

Pv(Xt = w)f(w) =
∑
w∈V

f(w)
∑
v∈V

Pw(Xt = v)

=
∑
w∈V

f(w) = 0.

This implies that HV maps W into W . Moreover for f ∈W

LHVf = L

∫ ∞
0

Stfdt =

∫ ∞
0

LStfdt =

∫ ∞
0

d

dt
(−Stf) dt = −Stf |∞0 = f.

Note that we used that limt→∞ Stf = 0, since f is zero-average. This finishes the
proof.

Now suppose our graph V consists of points of a manifold (which we generally denote
by p or q). To speak of convergence of the DGFF to the GFF, we need to define them
as comparable objects. To this end, we interpret them as random linear functionals
on W . For the DGFF φV this means introducing the following definition.
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Definition 6.8 (DGFF as random distribution). For f ∈W , we write

〈φV , f〉 :=
1

|V|
∑
p∈V

f(p)φV(p).

This defines φV as a random distribution on M , i.e. a random element of W ′ with
the strong topology.

Proof. Note that, for each ω in the underlying probability space, φV(ω) is a well-
defined linear functional on W , so an element of W ′. To see that φV is a well-
defined random element of W ′ (on the Borel sets generated by the strong topology)
it suffices to show that the mapping RV → W ′ that maps the vector φV(ω) to the
linear functional φV(ω) is continuous. By linearity, it suffices to show for fixed p that
the mapping

H : R −→W ′

x 7−→ (f 7−→ f(p)x)

is continuous. Since R is a metric space, it suffices to show sequential continuity.
Also, recall that the strong topology of W ′ is the topology of uniform convergence on
bounded sets. Now let xN → x in R and let B ⊂W be bounded. Since B is bounded
in W , it is in particular bounded in the supremum norm, i.e.

sup
f∈B
‖f‖∞ =: C <∞.

Therefore we see that

sup
f∈B
|H(xN )(f)−H(x)(f)| = sup

f∈B
|f(p)xN − f(p)x|

= sup
f∈B
|f(p)||xN − x| ≤ C|xN − x|,

which goes to 0 as N goes to infinity. This concludes the proof.

6.2.3 The continuum GFF

Recall W = {f ∈ C∞(M) :
∫
M
fdV = 0}. We now give the following definition.

Proposition 6.9 (GFF on M). There exists a unique centered Gaussian random
distribution φ := {〈φ, f〉 : f ∈ W} on W ′ with the weak∗ topology with covariance
kernel G given in (6.4), that is, for all f, g ∈W ,

E [〈φ, f〉〈φ, g〉] = (f, Gg).

We call this distribution the GFF on M .
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Proof. Note that W is a nuclear space, being a subspace of the nuclear space C∞(M)
(see for instance Becnel and Sengupta [7] for a collection of properties of nuclear
spaces). By the Bochner–Minlos theorem for nuclear spaces, Umemura [147, Theorem
A]4, it suffices to show that the characteristic functional

Lφ : W → R

f 7→ exp

(
−1

2
(f, Gf)

)
is continuous around 0, positive definite and satisfies Lφ(0) = 1. The latter is clear.
To show positive definiteness one can use Lodhia et al. [111, Proposition 2.4], which
says that Lφ is positive definite if

f 7→ (f, f)G := (f, Gf)

is an inner product on W . This follows from the fact that G is a self-adjoint positive
definite operator on W (compare (6.4)). Finally, since f = Gρ ∈ L2(M) is the unique
solution with integral zero to the Poisson equation with input datum ρ ∈ L2(M), also
with integral zero, one can use the Poincaré inequality and

‖∇f‖22 = (∆Mf, f) ≤ ‖f‖2‖ρ‖2

to conclude that G is a bounded and hence continuous operator on the set of zero-
average square integrable functions on M . Since convergence in W implies con-
vergence in L2, it is immediate to see with Cauchy-Schwarz that f 7→ (f, Gf) is
continuous and hence that Lφ is continuous.

6.2.4 Comments on Assumptions (1)-(3)

Let (VN )∞N=1 be a sequence of finite subsets of the manifold M with corresponding
conductances cNpq = cNqp ≥ 0 for p, q ∈ VN such that each VN is connected in the
sense described in Subsection 6.2.2. Throughout this chapter we assume that VN
consists of N points, which we label pN1 , . . . , , p

N
N ∈ M .5 Let (LN )∞N=1, (GN )∞N=1

and (φN )∞N=1 be the sequences of corresponding generators, Green’s functions and
zero-average discrete Gaussian free fields on VN , respectively, and for each N let
{SNt , t ≥ 0} denote the semigroup on VN that is generated by LN . Note that we can
also interpret φN as a random function on W ′, as we described in Definition 6.8.
Let us comment more on the necessity of Assumptions (1)-(3) of Theorem 6.1. First
of all, as we discussed above, all eigenvalues of LN are non-negative and only one
eigenvalue equals 0. We denote the second smallest eigenvalue (or the spectral gap)

4This is Problem A on page 16 of Umemura [147], which is solved for nuclear spaces in Theorem
A on page 24.

5This is not an essential requirement, it just makes our notation less involved. For instance, for
some natural sequences of grids the amount of points in VN is Nd where d is the dimension of the
ambient space. With some straightforward changes our results hold in those cases too.
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by λN2 . Then we know that λN2 > 0, so each spectral gap is positive. Assumption (1)
says that the spectral gaps are uniformly positive, i.e.

inf
N
λN2 > 0.

Without this condition what could happen is that the spectrum of the graph laplacian
would eventually capture the 0-eigenvalue of −∆M (compare Von Luxburg et al. [155,
Result 3] for a case in which spectral convergence fails). In this case, we would not be
anymore in the domain of invertibility of the Green’s function. Secondly, we define
the zero-average discrete version of any function f : M → R to be

fN : VN → R

pNi 7→ f(pNi )− 1

N

N∑
i=1

f(pNi ).

Moreover, we define an inner product on RVN by (f, g) =
∑N
i=1 f(pNi )g(pNi ). Now

Assumption (2) states that for each f ∈W

lim
N→∞

1

N
(fN , S

N
t fN ) = (f, Stf).

Assumption (2) is probably the most natural one would expect in a convergence-to-
GFF-type result: as we will see, it implies that the bilinear forms induced by the
Green’s functions converge pointwise (see Equation (6.7) for the precise statement).
One can ensure this limit via a stronger result, namely the uniform convergence
of the discrete laplacian to the continuum one. This will be our strategy in the
proof of Theorem 6.3. Finally, the third Assumption makes sure that the empirical
measures corresponding to the grids converge weakly to the uniform distribution on
the manifold. Therefore summing over grid points approximates integrating over the
manifold in the same way as discrete lattice sums in Zd approximate integrals in Rd.

6.3 Proofs

Here we present the proofs of our main results. In Subsection 6.3.1 we will show that
Assumptions (1)-(3) entail the convergence of the rescaled DGFF to the continuum
one. We will show, using a spectral decomposition, that the variance of the distri-
bution φN tested against smooth functions converges to that of the continuum field
under Assumption (2). Assumptions (1) and (3) will ensure enough regularity to get
this convergence. Note that we will not use here the potential theory for the random
walk to prove the scaling limit, in contrast to the Zd case (a proof in d = 2 is for
example carried out in Biskup [16, Section 1.4]).

Theorem 6.3 will be shown in Subsection 6.3.2. We will sample uniform points from
the manifold, and choose as conductances the heat kernel as explained in the In-
troduction. The proof of the validity of Assumptions (1)-(3) is in three steps (each



134 Scaling limit of the Discrete Gaussian Free Field

step shows one assumption). First we will use the fact that the empirical measures
corresponding to the grids almost surely converge in Kantorovich sense to the uni-
form measure V , which implies weak convergence. Then we will show that the graph
laplacians converge, uniformly over the grid points, to the Laplace–Beltrami operator.
This will be done by choosing the bandwidth tN appropriately, following the ideas of
van Ginkel [148], van Ginkel and Redig [149] (Chapter 3 of this thesis), here we will
need again the Kantorovich convergence of the empirical measures. Finally, to show
the bound on the spectral gap, we will use techniques developed in Von Luxburg et al.
[155], Belkin and Niyogi [10] by proving convergence to an “intermediate” operator
whose eigenvalues approximate those of the Laplace–Beltrami. This will yield a sec-
ond condition on the rate of growth of tN , and by combining the two we will obtain
the final result.

6.3.1 Proof of Theorem 6.1

We would like to prove that
√
NφN → φ in law in W ′. Since W is a nuclear Fréchet

space, by Meyer [119, Theorem 2] it suffices to prove pointwise convergence of the
characteristic functional, i.e. that for any f ∈W

E exp
(

i
〈√

NφN , f
〉)
→ E exp(i 〈φ, f〉).

Remark 6.10. To be a bit more precise, note that we defined the φN ’s as random
elements of W ′ with the strong topology (i.e. their laws are measures on the Borel
sets that are generated by the strong topology). Therefore they are in particular also
well-defined random elements when restricted to W ′ with the topology of uniform
convergence on convex, compact subsets, which is used in Meyer [119]. Now Meyer
[119, Theorem 2] yields a limiting random element φ∗ of W ′ with the latter topology,
which we can restrict to W ′ with the weak∗ topology. Since the restriction of φ∗

then has the same characteristic functional as the GFF φ from Proposition 6.9, we
conclude from the uniqueness of φ that φ∗ is an extension of φ. Note, moreover, that
then the restrictions of the φN ’s to W ′ with the weak∗ topology converge in law to φ.

Recall that we define fN : VN → R by fN := f |VN − 1/N
∑N
i=1 f |VN (pNi ). We could

subtract any constant from f |VN since φN has average 0, but we choose to subtract
the discrete average since it ensures that fN belongs to the discrete counterpart of
W . We can abbreviate

GN (i, j) := GN (pNi , p
N
j )

and we see that

E exp
(

i
〈√

NφN , f
〉)

= E exp

(
i

1

N

N∑
i=1

f(pNi )
√
NφN (pNi )

)

= exp

− 1

2N

N∑
i,j=1

fN (pNi )fN (pNj )GN (i, j)

 = exp

(
− 1

2N
(fN , GNfN )

)
.
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Further E exp(i 〈φ, f〉) = exp(−1/2(f, Gf)) (by definition of φ). Therefore it suffices
to show that

1

N

N∑
i,j=1

fN (pNi )fN (pNj )GN (i, j)→ (f, Gf) (6.7)

for every f ∈W .

We now want to make use of the spectral decomposition of the Green’s function. Let
0 < λN2 ≤ λN3 ≤ . . . ≤ λNN be the non-zero eigenvalues of LN . Define the measure µfN
on σ(LN ) by

µfN (A) :=

N∑
j=2

1A(λNi )‖Pj,NfN‖22,N

for A ⊂ σ(LN ). The total mass of the measure µfN is

N∑
j=2

‖Pj,NfN‖22,N = ‖fN‖22,N .

Similarly define µf (A) on σ(L) by

µf (A) :=

∞∑
j=2

1A(λi)‖Pjf‖22

for A ⊂ σ(L) and λ2 ≤ λ3 ≤ . . . the positive eigenvalues of −∆M . This is a measure
with total mass

∞∑
j=2

‖Pjf‖22 = ‖f‖22.

Note that since Pj,N is a projection and since P1,NfN = 0 by construction of fN , we
see by (6.5) that

(fN , GNfN ) =

N∑
j=2

1

λNj
(fN , Pj,NfN ) =

N∑
j=2

1

λNj
(Pj,NfN , Pj,NfN )

=

N∑
j=2

1

λNj
‖Pj,NfN‖22, N =

∫
σ(LN )

y−1µfN (dy). (6.8)

Analogously, by (6.4) one deduces

(f,Gf) =

∫
y−1µf (dy).

Now note that by Tonelli’s theorem

1

N
(fN , GNfN ) =

1

N

∫
σ(LN )

y−1µfN (dy) =
1

N

∫
σ(LN )

∫ ∞
0

e−tydt µfN (dy)

=

∫ ∞
0

1

N

∫
σ(LN )

e−tyµfN (dy)dt. (6.9)
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Denote δ := infN λ
N
2 > 0 by Assumption (1). Then we see that

0 ≤ 1

N

∫
σ(LN )

e−tyµfN (dy) ≤ 1

N
µfN (σ(LN ))e−tλ

N
2 ≤ 1

N
‖fN‖22,Ne−tδ.

Now note that

1

N
‖fN‖22,N =

1

N

N∑
i=1

f(pNi )− 1

N

N∑
j=1

f(pNi )

2

≤ 1

N

N∑
i=1

f(pNi )2.

By the continuity of f and Assumption (3), the last term converges to ‖f‖22. Therefore
there exists a C > 0 such that for all N

0 ≤ 1

N

∫
σ(LN )

e−tyµfN (dy) ≤ Ce−δt.

Since
∫∞

0
Ce−δtdt <∞, by the dominated convergence theorem, this implies that

lim
N→∞

∫ ∞
0

1

N

∫
σ(LN )

e−tyµfN (dy)dt =

∫ ∞
0

lim
N→∞

1

N

∫
σ(LN )

e−tyµfN (dy)dt

=

∫ ∞
0

lim
N→∞

1

N
(fN , S

N
t fN )dt. (6.10)

Now we conclude thanks to Assumption (2):

lim
N→∞

1

N
(fN , GNfN )

(6.8)
= lim

N→∞

1

N

∫
σ(LN )

y−1µfN (dy)

(6.9),(6.10)
=

∫ ∞
0

lim
N→∞

1

N
(fN , S

N
t fN )dt =

∫ ∞
0

(f, Stf)dt = (f, Gf).

Note that in the last equality we have used the fact that f has average zero on M .

Remark 6.11 (Compatibility with known grids). For any integer N ∈ N consider
the quotient space SN := Z/NZ. A finite product of d copies of SN defines a discrete
torus TdN of side-length N . This object is naturally connected to the d-dimensional
(flat) torus Td given by a product of d copies of S1. The rescaled graph Laplacian
LN on N−1TdN is the sum of the Laplacians LN on each discrete N−1SN component.
More precisely, LN is defined for any f : N−1SN → R by the following difference
operator:

LNf(k) :=
N2

4π2
[(f(k)− f(k − 1/N)) + (f(k)− f(k + 1/N))] , k ∈ N−1SN .
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The spectra of LN and LN are thus given by

σ(LN ) =

{
N2

π2
sin2

(
πk

N

)
: k ∈ {0, 1, . . . , N − 1}

}
,

σ(LN ) =

{
N2

π2

d∑
i=1

sin2

(
πki
N

)
: ki ∈ {0, 1, . . . , N − 1}, i ∈ {1, . . . , d}

}
.

One can show that, with the rescaling N2, the eigenvalues of LN converge to those
of the Laplace–Beltrami operator on Td as N grows. Since the spectral gap of the
Laplace-Beltrami operator is strictly positive, this ensures Assumption (1). A Taylor
expansion yields that

LNf(k) =
f ′′(k)

4π2
+O

(
N−1

)
and theO-term can be bounded uniformly in k due to the compactness of the torus and
the translation invariance of the situation. By summing over d coordinate directions,
we obtain the approximation to the Laplace–Beltrami operator on Td (which is simply
the sum of the second derivatives). A theorem of Trotter and Kurtz gives convergence
of the corresponding semigroups, after which Assumption (2) follows from a direct
computation (see Corollary 6.17 and Proposition 6.18 for the details in the manifold
case). Finally, Assumption (3) is a consequence of the approximation of integrals via
Riemann sums in Rd.

6.3.2 Proof of Theorem 6.3

Since the proof of Theorem 6.3 is divided into three steps, the next three paragraphs
will be dedicated to showing the validity of each assumption separately.

Remark 6.12 (Quenched results). Note that all the upcoming assertions and quan-
tities like the bandwidths depend on the realisation of (pNi )Ni=1. We will show a
quenched result, meaning that we assume from now on that the grid points are fixed
on M . Thus all the statements of this Subsection are meant in an almost-sure sense
in the law of the grid points.

6.3.2.1 Assumption (3) holds
This Assumption, in the case of uniformly sampled grid points, is bypassed by the
following stronger convergence result, which is proved in Section 3.6.

Lemma 6.13. Let (pNi )Ni=1 be a sequence of i.i.d. points sampled from the normalised
volume measure on M and let µN be the corresponding empirical measure. Then

lim
N→∞

W1(µN , V ) = 0.

6.3.2.2 Assumption (2) holds
This Subsection is based on proving one key Proposition:
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Proposition 6.14. Set the bandwidth parameter t′N to satisfy (6.3). Then the graph
laplacian LN on VN is such that for all f ∈W the following holds:

lim
N→∞

∥∥LNf |VN − ((−∆M )f
)
|VN
∥∥
∞,N = 0.

In order to prove Proposition 6.14 we begin with a few remarks based on the approach
of van Ginkel and Redig [149, Section 3.2] (Section 3.4 of this thesis), which we recall
here for completeness. Choose i ∈ {1, . . . , N}. We see that

−LNf(pNi ) =

∫
M

gt
′
N , i(p)µN (dp)

where

gt
′
N , i(p) :=

pt′N (p, pNi )

t′N
(f(p)− f(pNi )), p ∈M.

To avoid cumbersome notation we will now drop the N sub/superscript in t′N and
pNi . It is clear that one can write

− LNf(p) =

∫
M

gt
′, i(p)V (dp) +

∫
M

gt
′, i(p)(µN − V )(dp). (6.11)

The strategy of the proof consists in showing that the first term converges to (−∆M )f ,
and the second one becomes negligible in the limit N →∞. To this purpose, we need
a bound on the supremum norm and the Lipschitz constant of the heat kernel. In the
following we use Lf to denote the Lipschitz constant of a function f .

Lemma 6.15. For t small enough one has

sup
x, y∈M

|pt(x, y)| ≤ Ct− d2

and
sup

x, y∈M
Lpt(x, y) ≤ Ct−

d
2−1

where C depends only on the curvature of the manifold and on the dimension.

Proof. Let us first recall the classical Gaussian bound on the heat kernel (Li and Yau
[107, Corollary 3.1]):

pt(x, y) ≤ C e−
d2(x, y)
Ct +CKt√

V (x,
√
t)V (y,

√
t)

(6.12)

where K ≥ 0 is such that Ric(M) ≥ −K and where V (x, r) denotes the volume of
the ball around x ∈ M with radius r > 0 in the geodesic distance. Note that such
K exists in our situation, since M is compact. A simple argument (comparing with
a space of constant curvature) shows that there is a C > 0 that does not depend
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on x such that infx∈M V (x,
√
t) ≥ Ctd/2 > 0 for every x when t is small enough.

This immediately entails the sup-norm bound for the function pt(·, ·). As far as the
gradient is concerned, we use the bound in Engoulatov [51, Theorem 1] to deduce
that

∇pt(x, y) = ∇ log pt(x, y) · pt(x, y)

(6.12)

≤ C(R, d)

(
D

t
+

1√
t

+K
√
t

) e−
d2(x, y)
Ct +CKt√

V (x,
√
t)V (y,

√
t)

 (6.13)

and D := diam(M) < ∞. Bounding the exponential term by an absolute constant
and plugging this in (6.13) one obtains that

∇pt(x, y) ≤ C
(
D

t
+

1√
t

+R
√
t

)
t−

d
2

which concludes the proof.

This entails easily that the second summand on the right-hand side of (6.11) goes to
zero as t′ goes to zero, namely one can derive the following.

Corollary 6.16. Uniformly over i ∈ {1, . . . , N} one has

lim
t→0

∣∣∣∣∫
M

gt
′, i(p)d(µN − V )(dp)

∣∣∣∣ = 0.

Proof. Observe that

Lgt′, i ≤
1

t′
(
Lpt′ (·, pi)‖f(·)− f(pi)‖∞ + ‖pt′(·, pi)‖∞Lf(·)−f(pi)

)
.

Note that Lf <∞ exists since f is smooth and that Lf(·)−f(pi) = Lf since f(pi) is a
constant. Therefore∣∣∣∣∫

M

gt
′, i(p)(µN − V )(dp)

∣∣∣∣
≤ 1

t′
(
Lpt′ (·, pi)‖f(·)− f(pi)‖∞ + ‖pt′(·, pi)‖∞Lf

)
W1(µN , V )

≤ C

t′

(
(t′)−

d
2−1C‖f‖∞ + (t′)−

d
2Lf

)
W1(µN , V )

where in the last line we have used Lemma 6.15. The conclusion is a consequence
of (6.3). Uniformity follows since the bounds do not depend on i.

We can now begin with the proof of Proposition 6.14.
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Proof of Proposition 6.14. Considering the break-up of the graph laplacian as in (6.11)
and Corollary 6.16 (remember that t′ = t′N is infinitesimal as N grows), all that is
left to show is that

lim
N→∞

sup
1≤i≤N

∣∣∣∣(−∆M )f(pi)−
∫
M

gt
′, i(p)V (dp)

∣∣∣∣ = 0.

Now observe that ∫
M

gt
′, i(p)V (dp) = −

(
1− St′
t′

f

)
(pi).

Since ∆M generates (St, t ≥ 0), we know for any smooth f that(
St′ − 1

t′
f

)
(p)→ ∆Mf(p)

uniformly in p ∈ M as t′ goes to 0 (see for instance Grigoryan [79, Theorem 7.13]),
so in particular uniformly in the pi’s. Since t′ goes to 0 as N goes to infinity, this
concludes the proof.

As a consequence we obtain the following.

Corollary 6.17. For all t > 0 and f ∈W

lim
N→∞

‖SNt f |VN − (Stf)|VN ‖∞,N = 0.

Proof. The proof is a direct application of Theorem 2.1 from Kurtz [102] and Propo-
sition 6.14, combined with an argument that the extended limit of LN (as defined
in Kurtz’s paper) equals the Laplace-Beltrami operator. The reason is that they are
both generators and they agree on the set of smooth functions (by Proposition 6.14
they agree on W and it is easy to see that they are both 0 on constant functions),
which forms a core for the Laplace-Beltrami operator.

We are now ready to show Assumption (2).

Proposition 6.18. For all f ∈W , Assumption (2) holds.

Proof. Denote f |VN by f |N and 1
N

∑N
i=1 f(pi) (both the constant and the constant

function) by f
N

. Then fN = f |N − f
N

, which implies that

(fN , S
N
t fN ) = (fN , S

N
t f |N )− (f |N , SNt f

N
) + (f

N
, SNt f

N
). (6.14)

Since f
N

is constant, SNt f
N

= f
N

. Thus we see for the second summand above that

1

N
(f |N , SNt f

N
) =

1

N
(f |N , f

N
) =

1

N

N∑
i=1

f(pi)
1

N

N∑
j=1

f(pj)

−→
∫
M

fdV

∫
M

fdV = 0.
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For the same reason, we see for the third summand in (6.14)

1

N
(f
N
, SNt f

N
) =

1

N
(f
N
, f
N

)→
∫
M

fdV

∫
M

fdV = 0.

Now we deal with the first summand of the right-hand side of (6.14):

(fN , S
N
t f |N ) = (fN , (Stf)|N ) + (fN , S

N
t f |N − (Stf)|N ) (6.15)

The first term gives

1

N
(fN , (Stf)|N ) =

1

N
(f |N , (Stf)|N )− 1

N
(f
N
, (Stf)|N )

=
1

N

N∑
i=1

f(pi)Stf(pi)−
1

N

N∑
i=1

f
N
Stf(pi)

−→
∫
M

fStfdV −
∫
M

fdV

∫
M

StfdV = (f, Stf)− 0.

Now we need to show that the last term in the right-hand side of (6.15) goes 0. Note
that

|(fN , SNt f |N − (Stf)|N )| ≤
N∑
i=1

|fN (pi)|||SNt f |N − (Stf)|N ||N,∞. (6.16)

Recall that ||SNt f |N − (Stf)|N ||N,∞ → 0 by Corollary 6.17. Moreover,

1

N

N∑
i=1

|fN (pi)| ≤
1

N

N∑
i=1

|f(pi)|+
∣∣∣fN ∣∣∣→ ∫

M

|f |dV + |
∫
fdV | =

∫
|f |dV <∞.

Combining these results with (6.16) yields

lim sup
N→∞

1

N
|(fN , SNt f |N − (Stf)|N )| ≤

∫
|f |dV · 0 = 0.

We conclude that (f, Stf) is the only non-zero remaining term when taking the limit
N →∞ in (6.14), which was to be shown.

6.3.2.3 Assumption (1) holds
For this proof, we denote the graph laplacian as LtN , thus now highlighting the de-
pendence on both N and t:

LtNf(v) = −
∑
w∈VN

pt(v, w)

Nt
(f(w)− f(v)).

The idea is that, by letting firstN to infinity and then t to 0, we prove that the spectral
gaps λtN,2 of LtN converge to the spectral gap of the Laplace–Beltrami operator, i.e.

lim
t→0

lim
N→∞

λtN,2 = λ2.
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From this we will extract a sequence tN such that the spectral gap of LN = LtNN
converges (i.e. λN,2 → λ2). We will show that this sequence can be constructed in
such a way that the convergence of Assumption (2) still holds. We will base our
proof on the ideas employed by Belkin and Niyogi [10] to prove convergence of the
graph laplacian eigenmaps to the continuum ones. In the article, the authors use the
“intermediate” operator Lt : L2(M)→ L2(M), t > 0, defined via

Ltf(p) := t−1

∫
M

pt(p, q)(f(p)− f(q))V (dq)

whose eigenvalues we denote by λt1 ≤ λt2 ≤ . . . In their case, the heat kernel edge
weights were replaced by the Gaussian kernel in some Euclidean ambient space. In-
stead, with our choices note that

Lt =
1− St
t

.

Therefore the i-th eigenvalue of Lt equals t−1(1− exp(−tλi)), with λi the i-th eigen-
value of the Laplace–Beltrami, so in particular we see

lim
t→0

λt2 = λ2. (6.17)

Using Von Luxburg et al. [155, Theorem 21, Proposition 23] analogously to what is
done by Belkin and Niyogi [10, Theorem 3.2], one also obtains that

lim
N→∞

λtN,2 = λt2 a.s. (6.18)

Note that this is an almost sure result in the law of the grid points. Since the
intersection of two probability one sets still has probability one, we can safely assume
that for the grid that was fixed in Remark 6.12 the limit above holds.

Now we want to construct a sequence (tN )∞N=1 such that we can reduce (6.17)- (6.18)
to one limit:

lim
N→∞

λtNN,2 = λ2 (6.19)

We constructed the sequence (t′N )∞N=1 in Subsubsection 6.3.2.2 to prove pointwise
convergence of the Laplacians. It is direct from those calculations that any sequence
that goes to 0 more slowly than (t′N )∞N=1 would also suffice. Therefore we first con-
struct (tN )∞N=1 to ensure (6.19) and such that tN ≥ t′N for each N , after which we
can simply replace t′N in Subsubsection 6.3.2.2 by tN .

Lemma 6.19. There exists a sequence (tN )∞N=1 such that the following hold:

• tN ↓ 0 as N →∞,

• limN→∞ λtNN,2 = λ2,

• tN ≥ t′N for every N ∈ N.
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Proof. For j ∈ N choose nj such that:

(i) nj > nj−1 for j ≥ 2,

(ii) |λ1/j
n,2 − λ

1/j
2 | ≤ 1/j for all n ≥ nj ,

(iii) nj ≥ min{k ∈ N : t′k ≤ 1/j}.

Such nj exists because of (6.18) and because t′N → 0. Now for N ∈ N define j(N) ∈ N
such that

nj(N) ≤ N < nj(N)+1

and set

tN :=
1

j(N)
.

First of all j(N) is well-defined for each N because of (i). Moreover, we directly see
that j(N) ↑ ∞, so tN ↓ 0. Note that it follows from (iii) and the fact that t′N is
decreasing that t′nj ≤ 1/j. Using this and the monotonicity of t′N , we see

tN =
1

j(N)
≥ t′nj(N)

≥ t′N .

We also see
|λtNN,2 − λ2| ≤ |λtNN,2 − λ

tN
2 |︸ ︷︷ ︸

=:(I)

+ |λtN2 − λ2|︸ ︷︷ ︸
=:(II)

.

(II) goes to 0 because of (6.17) and the fact that tN ↓ 0. Further we see

(I) =
∣∣∣λ1/j(N)
N,2 − λ1/j(N)

2

∣∣∣ ≤ 1

j(N)
,

because of (ii) and the assumption N ≥ nj(N) by construction. Since 1/j(N) → 0,
the result follows.

6.4 Convergence of the Voronoi extension

In this Section we would like to state and prove Theorem 6.4. The proof consists of
two main blocks: tightness in H−s(M) and finite-dimensional convergence.

We start with the necessary definitions.

6.4.1 Definitions

For s ≥ 0 we define the space Hs := Hs(M) as the closure of W with respect to the
norm

‖f‖2s :=

∞∑
j=2

λsj‖Pjf‖22 =

∞∑
j=2

λsj(f, ej)
2,
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and the corresponding inner product

(f, g)s =

∞∑
j=2

λsj(f, ej)(g, ej),

where (ej , j ≥ 0) is an L2(M)-orthonormal basis of eigenfunctions of the Laplace-
Beltrami operator. Note that all the ej ’s are smooth. We denote by H−s the Hilbert
space dual of Hs.

We will need the following properties.

Lemma 6.20. Our definition of Hs coincides with the usual definition of Sobolev
space on M (as described in for instance Canzani [24, Section 6] for s > 0, for s < 0
they are just the dual of H−s). Moreover the canonical norm on H−s induced by Hs

satisfies

‖ψ‖2−s =

∞∑
j=2

λ−sj 〈ψ, ej〉
2, ψ ∈ H−s.

Proof. The first statement follows from Canzani [24, Proposition 56].

For all ψ ∈ H−s by Riesz representation theorem, there exists fψ ∈ Hs such that
〈ψ, g〉 = (fψ, g)s for all g ∈ Hs. Also by isometry we have that ‖ψ‖−s = ‖fψ‖s. Now
note that

〈ψ, ej〉 = (fψ, ej)s =

∞∑
k=2

λsk(fψ, ek)(ej , ek) = λsj(fψ, ej)

Hence we have

‖ψ‖2−s = ‖fψ‖2s =

∞∑
j=2

λsj(fψ, ej)
2 =

∞∑
j=2

λ−sj 〈v, ej〉
2.

Furthermore, we will need the following classical result to prove tightness (its proof
is analogous to Roe [131, Theorem 5.8]).

Theorem 6.21 (Rellich’s theorem). If s < t then the inclusion operator Ht ↪→ Hs

is compact.

Now let {CNi , i = 1, . . . , N} be the Voronoi tessellation corresponding to the vertex
set VN := (pi)

N
i=1, i.e.

CNi = {p ∈M : d(p, pi) ≤ d(p, pj) ∀ j ≤ N}, i = 1, . . . , N.

Also denote vNi = V (CNi ). We will usually leave out the superscript N to ease
notation.
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Definition 6.22 (The DGFF in H−s). Let φN be the zero-average DGFF on VN as

in Theorem 6.1. We define φ̃N ∈ H−s by the following action on f ∈ Hs:〈
φ̃N , f

〉
:=

1

N

N∑
i=1

φN (pi)
1

vi

∫
Ci

f(p)V (dp).

Note that if we define

f̃N : VN → R

pi 7→ f̃N (pi) :=
1

vi

∫
Ci

f(p)V (dp)

then we can write
〈φ̃N , f〉 = N−1(φN , f̃N ) = 〈φN , f̃N 〉 (6.20)

with a slight abuse of notation (since φN acts on W , but in fact this action depends
only on grid values). In order to prove Theorem 6.4 first of all we will show that the

sequence {φ̃N , N ∈ N} is tight in H−s (Subsection 6.4.2). From this it follows that
every sequence has a convergent subsequence. Then what remains is to show that the
limit is unique. Since the limit is Gaussian, it is characterised by its finite-dimensional
distributions. By the theory of abstract Wiener spaces, already described for example
in Cipriani et al. [33, Section 3.2], it suffices to show that for all f, g ∈ H1

E
(
〈
√
Nφ̃N , f〉〈

√
Nφ̃N , g〉

)
→ (f, Gg)

as N →∞. This will be done in Subsection 6.4.3.

6.4.2 Tightness of φ̃N

We prove the following Proposition.

Proposition 6.23. The collection {φ̃N , N ∈ N} is tight in H−s for any s > d− 1/2.

Proof. We will first prove that for s > d − 1/2 and for every ε > 0, there exists
R = R(ε) > 0 such that for all N

P(‖
√
Nφ̃N‖2−s > R) ≤ ε. (6.21)

First of all by Chebyshev’s inequality

P(‖
√
Nφ̃N‖2−s > R) ≤ 1

R
E(‖
√
Nφ̃N‖2−s).

It suffices then to show that E(‖
√
Nφ̃N‖2−s) is bounded by some constant. We write

E

 ∞∑
j=2

λ−sj 〈
√
Nφ̃N , ej〉2

 =

∞∑
j=2

λ−sj E
(
〈
√
Nφ̃N , ej〉2

)
.
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Now note that for any h ∈W

E
(
〈
√
Nφ̃N , h〉2

)
(6.20)

= E
(
〈
√
NφN , h̃N 〉2

)
=

1

N
(h̃N , GN h̃N ) ≤ 1

N
‖h̃N‖2‖GN‖

(6.22)

where ‖GN‖ is the operator norm of GN from `2(VN ) to itself and ‖h̃N‖ is the `2(VN )-
norm. Since ‖GN‖ = (λN2 )−1 by Assumption (1) we can bound it by some constant
independent of N . Moreover

1

N
‖h̃N‖2 =

1

N

N∑
i=1

(
1

vi

∫
Ci

h(p)V (dp)

)2

≤ ‖h‖2∞.

Now by Canzani [24, Theorem 82] ‖ej‖∞ ≤ Cλ
(d−1)/4
j , so applying the previous

argument to the bound (6.22) with h := ej we see that

∞∑
j=1

λ−sj E
(
〈
√
Nφ̃N , ej〉2

)
≤
∞∑
j=1

λ−sj ‖GN‖‖ej‖
2
∞ ≤ C

∞∑
j=1

λ
(d−1)/2−s
j .

Canzani [24, Theorem 72] states Weyl’s lemma with the asymptotic λj ∼ Cj2/d as
j →∞, which shows that

C

∞∑
j=1

λ
(d−1)/2−s
j ≤ C

∞∑
j=1

j2/d((d−1)/2−s).

This series is bounded as long as 2/d((d − 1)/2 − s) < −1, so for s > d − 1/2. This
means we have shown (6.21).

To conclude the argument, fix s > d− 1/2. Let s′ be such that s > s′ > d− 1/2 and
let ε > 0. We know there exists R > 0 such that (6.21) holds, i.e. for all N

P(φ̃N /∈ B−s′(0, R)) ≤ ε,

where B−s′(0, R) is the closed ball with radius R in H−s
′
. Now by Theorem 6.21, we

see that B−s′(0, R) is compact in H−s (since s > s′), so we have shown tightness in
H−s.

6.4.3 Convergence of finite dimensional distributions

As mentioned before, we need to show that for all f, g ∈ H1

E
(
〈
√
Nφ̃N , f〉〈

√
Nφ̃N , g〉

)
→ (f, Gg).

Since W is dense in H1 and by a polarisation argument, it suffices to show the
following.
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Proposition 6.24. For all f ∈W

E
〈√

Nφ̃N , f
〉2

→ (f, Gf).

Before we move on to the proof, we prove the following technical lemma.

Lemma 6.25. Define

εN := sup
1≤i≤N

sup
p∈CNi

d(p, pi).

Then εN goes to 0 as N →∞.

Proof. To derive a contradiction, suppose that εN does not go to 0. This means that
there is some δ > 0 such that εN > 2δ for infinitely many N . Consequently for each
such N , there exists 1 ≤ i ≤ N and p ∈ Ci such that d(p, pi) ≥ δ. Since p ∈ Ci, pi
is the nearest grid point to it. This implies that B(p, δ) does not contain any grid
points. We conclude from this that

(i) for infinitely many N ∈ N there must be a ball with radius δ that does not
contain a grid point of VN .

Now fix p ∈ M and r > 0 and suppose that B(p, r) does not contain grid points
of VN for infinitely many N . Now fix some positive non-zero continuous function f
which has support contained in B(p, r). Then

∫
fdµN = 0 for infinitely many N , but∫

fdV > 0. However, by assumption (3),∫
fdµN →

∫
fdV (N →∞).

This is a contradiction. We conclude that

(ii) for every fixed ball B in M there exists an N0 such that B contains grid points
of VN for every N ≥ N0.

To finish the argument let B(q1, δ/2), B(q2, δ/2), . . . , B(qm, δ/2) be a finite number
of balls of radius δ/2 that cover M . By (ii), each of these balls will eventually contain
a grid point. This means that there exists an N0 such that for all N ≥ N0 each of
these balls contains a grid point of VN . Now let N ≥ N0 and let p be any point of the
manifold. Since p is at distance less than δ/2 from some qi and there is a grid point
of VN at distance less than δ/2 from qi, it follows that B(p, δ) contains at least one
grid point of VN . This implies that every ball of radius p contains at least one grid
point of VN , which contradicts (i).

Proof of Proposition 6.24. First of all

E
〈√

Nφ̃N , f
〉2 (6.20)

= E〈
√
NφN , f̃N 〉2 =

1

N
(f̃N , GN f̃N ).
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Recall the notations f |N = f |VN , f
N

= 1/N
∑N
i=1 f(pi) and fN = f |N − f

N
. We

have shown in Section 6.3.1 that

1

N
(f |N , GNf |N )→ (f, Gf)

(actually we have shown this for fN , but since G maps constant vectors to 0 this does
not make a difference). Hence by the triangular inequality it suffices to show that∣∣∣∣ 1

N
(f̃N , GN f̃N )− 1

N
(f |N , GNf |N )

∣∣∣∣→ 0.

By linearity and Cauchy–Schwarz, we see that∣∣∣∣ 1

N
(f |N , GNf |N )− 1

N
(f̃N , GN f̃N )

∣∣∣∣
≤ 1

N

(
|(f |N − f̃N , GNf |N )|+ |(f̃N , GN (f |N − f̃N ))|

)
≤ 1

N
‖f |N − f̃N‖‖GN‖‖f |N‖+

1

N
‖f̃N‖‖GN‖‖f |N − f̃N‖. (6.23)

Now we see that (
1√
N
‖f |N‖

)2

=
1

N

N∑
i=1

f(pi)
2 ≤ ‖f‖2L∞

and (
1√
N
‖f̃N‖

)2

=
1

N

N∑
i=1

(
1

vi

∫
Ci

f(p)V (dp)

)2

≤ 1

N

N∑
i=1

‖f‖2L∞ = ‖f‖2L∞ .

Also ‖GN‖ = (λN2 )−1. Further, we see that for all p ∈ Ci,

f(pi)− Lf εN ≤ f(pi)− Lfd(p, pi) ≤ f(p) ≤ f(pi) + Lfd(p, pi) ≤ f(pi) + Lf εN ,

which implies that∣∣∣∣f(pi)−
1

vi

∫
Ci

f(p)V (dp)

∣∣∣∣ ≤ 1

vi

∫
Ci

|f(pi)− f(p)|V (dp) ≤ Lf εN .

Now we see that(
1√
N
‖f |N − f̃N‖

)2

=
1

N

N∑
i=1

(
f(pi)−

1

vi

∫
Ci

f(p)V (dp)

)2

≤ 1

N

N∑
i=1

L2
f ε

2
N = L2

f ε
2
N ,
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which goes to 0 as N → ∞. Putting everything together, we deduce that (6.23) is
bounded by

Lf εN
1

λN2
‖f‖∞ + ‖f‖∞

1

λN2
Lf εN =

2εNLf‖f‖L∞
λN2

,

which goes to 0 as N → ∞, since by lemma 6.25 εN → 0 and by Assumption (1)
infN λ

N
2 > 0.

6.5 Notes and perspectives

In this chapter we defined the zero-average DGFF on grids on a manifold and proved
that it converges to the GFF on the manifold. We regarded it first as acting on
smooth functions and later as random element of a Sobolev space of negative index.
To define the DGFF we used the grids from Chapter 3. However, in order to find a
lower bound on the spectral gaps, we needed to use different conductances. Instead
of defining edge weights depending on the distance between points we used the heat
kernel on the manifold. We will now mention some further aspects of these models to
be studied and some possible directions for generalisation or improvement.

First, it would be interesting to study properties of the DGFF and the GFF on a
manifold. We defined the DGFF as a normal distribution with the Green’s function
on the grid as its covariance function. Then we showed that it satisfies a version of
the Markov property. However, it would be interesting to study its further properties
and compare them to the DGFF on a flat space. An example would be to study the
maxima and level sets of the DGFF on a manifold.

We know for instance from Adler and Taylor [2] that there is a close connection
between properties of random fields and the manifolds on which they are defined. It
would be interesting to study to which extent such relations can be found also for the
DGFF and the GFF, for example with the curvature of the manifold.

Further, as we mentioned in previous chapters, we could try to generalise to non-
compact manifolds. However, for the DGFF this leads to problem of definition, since
we would need to define it as a distribution on countably many points. Whether
this is possible probably depends on the dimension of the underlying manifold. An
additional complication is that the smooth functions on a non-compact manifold are
generally not a nuclear space. One probably needs conditions on how rapidly the
functions vanish at infinity.

As we mentioned in Section 3.7, we can use more general grids if we relax the as-
sumption of pointwise convergence of the graph Laplacians to the Laplace-Beltrami
operator. An alternative could be convergence of the spectra of the graph Laplacians
to the spectrum of the Laplace-Beltrami operator. Such convergence results have
been shown for several alternative grids that we mention in Chapter 3. This might
suffice to prove convergence of the DGFF to the GFF. The reason for this is that we
only need to show convergence of the Green’s function applied to test functions in
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an inner product. This inner product can be expressed in terms of eigenvalues and
projections on eigenspaces of the graph Laplacians, as we did in Section 6.3.1.

Next, the way in which we extended the DGFF convergence to Sobolev spaces was by
letting the DGFF act on averages of test functions over Voronoi cells. This helped us
formulate this action in terms of inner products that we used earlier in the chapter.
Perhaps a more natural way to extend the DGFF on a Voronoi tesselation is by letting
it be a piecewise constant random function of which the constant value on a Voronoi
cell equals the value at the grid point in that cell. This leads to an action on test
functions that is slightly different from our case. It would be interesting to see if also
in this case it is possible to prove convergence to the GFF in Sobolev norm.

Another way to generalise is to consider a different field. For instance we could
consider the membrane model on a manifold. This would amount to replacing the
Laplacian by the bilaplacian, the Laplacian squared. However, the covariance matrix
of the membrane model cannot be represented as the Green’s function corresponding
to a random walk. This means that there is no underlying semigroup, which makes the
study of the membrane model different from the Gaussian Free Field. Therefore we
need to find another method of proof. Perhaps an approach using spectral convergence
as mentioned above would be worth trying for the membrane model.
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Active particles





Chapter 7

Active particles and the role
of reversibility

In this chapter1 we study a model of active particles that perform a simple random
walk and on top of that have a preferred direction determined by an internal state
which is modelled by a stationary Markov process. First we calculate the limiting
diffusion coefficient. Then we show that the ‘active part’ of the diffusion coefficient
is in some sense maximal for reversible state processes. Further, we obtain a large
deviations principle for the active particle in terms of the large deviations rate function
of the empirical process corresponding to the state process. Again we show that the
rate function and free energy function are (pointwise) optimal for reversible state
processes. Finally, we show that in the case with two states, the Fourier-Laplace
transform of the distribution, the moment generating function and the free energy
function can be computed explicitly. Along the way we provide several examples.

7.1 Introduction

In this chapter we study run-and-tumble motion, which is often used as a model
of active particles. The particle motion has two ingredients: first the particle per-
forms a symmetric random walk, and second, independently it moves in a direction
dictated by an internal state process. This internal state process is assumed to be
a continuous-time stationary Markov process. In the sequel we will first describe
how our results relate to various results on run-and-tumble particles in the literature.
Next, we will briefly sketch how our model relates to the broader literature on active
matter, stochastic slow-fast systems and directionally reinforced random walks.

1This chapter is based on van Ginkel et al. [152].
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7.1.1 Model and contributions

The model that we study in this chapter is an instance of what is more generally called
run-and-tumble motion. These are models of particles that follow a preferred direction
which is reversed at random points in time. Recent articles include Großmann et al.
[80], Demaerel and Maes [40], Malakar et al. [113], Le Doussal et al. [104], Dhar et al.
[43] and Garcia-Millan and Pruessner [69].

We study an active particle of which the state process (that determines the preferred
direction) is a stationary Markov process (under some technical assumptions), started
from its unique ergodic measure. Then our main contribution is twofold. First we
are able to calculate closed form formulas for the limiting diffusion coefficient of the
active particle. This formula holds in great generality, including also the case where
the state process is a diffusion (we will provide examples where an Ornstein-Uhlenbeck
process or Brownian motion on a circle form the state process). In this formula we
can interpret the different terms and observe where the activity is manifested. We
also calculate the large deviations free energy function and rate function in the case
where the state process has a finite state space.

Second, we study the role of reversibility of the state process in the diffusion coefficient
and large deviations of the active particle (again for finite state spaces). In particular,
we show that reversible processes in some sense optimise those quantities. To be more
precise, we show that among all processes with the same symmetric part and the same
stationary measure, the reversible process maximises the diffusion coefficient and the
free energy function (pointwise) and minimises the large deviations rate function (also
pointwise). The last two results are obtained by showing a pointwise inequality for
the Donsker-Varadhan rate function of the empirical processes corresponding to the
reversible and non-reversible state processes, respectively.

The calculations that we present are for an active particle in R, but we explain for
all of our results how they generalise to Rd and we also provide the explicit formulas
in the Rd setting.

7.1.2 Context and related literature

First of all, the run-and-tumble motion is often used as a model of active matter. As
we said before, our active particle performs a symmetric random walk and a random
walk with preferred directions that are switched. The part of the motion that follows
the internal state is called the active part of the motion, because for the switching
between internal states some internal source of energy is needed. The passive part
of the motion is the symmetric random walk part and comes from collisions with
surrounding molecules.

Note that active particles should not be confused with activated random walk. In
those models particles perform random walks, but fall asleep after a random time and
are awakened (activated) when other particles jump to their position.
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Second, the active particle motion studied in this chapter is an example of a stochas-
tic slow-fast system. These are well-studied systems where coupled quantities evolve
on different time scales. If one rescales the position of the active particle diffusively,
the underlying state process behaves as a fast process and the (rescaled) particle
position is a slow process. Asymptotically the fast state process averages out and
has a deterministic influence on the slow process: the limiting diffusion coefficient
will depend on the state process only through the stationary distribution and the
covariance function. For an introduction to stochastic slow-fast systems see for in-
stance Berglund and Gentz [13]. The large deviation results that we obtain are related
to more general results for large deviations of slow-fast systems that were studied in
for instance Freidlin and Wentzell [65] or, more recently, in Kraaij and Schlottke [99].

Third, the active particle motion studied in this chapter has strong similarities with
a directionally reinforced random walk. This model was first studied by Coppersmith
and Diaconis [34] and a multidimensional version in Mauldin et al. [117]. Then in
Horváth and Shao [85] and (in a more general context) Ghosh et al. [73] it was shown
for a process of this type that it converges to a multidimensional Brownian motion
when rescaled diffusively.

Also we will compare the diffusion coefficients and large deviations rate functions for
active particles with state processes that are either reversible or non-reversible with
respect to the same invariant measure. In particular we will show that the Donsker-
Varadhan rate function of reversible processes is dominated by the rate functions
of non-reversible processes with the same symmetric part and the same invariant
measure. A similar result (in a different context) was obtained in Pinsky [125].

7.1.3 Structure of this chapter

In Section 7.2, we introduce the active particle process as a stochastic integral. We
split it into a random walk part, a martingale part and an active part.

In Section 7.3, we obtain the limiting diffusion coefficient of the active particle and
show that it is the sum of the contributions of the random walk part, the martingale
part and the active part. Then we generalise the formulas to the multidimensional
case. The limiting diffusion coefficient (or matrix) is then calculated for several con-
crete examples, both with finite and with infinite state spaces. Finally, we sketch how
one obtains a Central Limit Theorem for the active particle.

Next, in Section 7.4, we restrict ourselves to finite space spaces and study the active
part of the diffusion coefficient, which is proportional to an inner product with the
inverse of the generator of the state process. We show that among all stationary
processes with respect to the same invariant measure and with equal symmetric part,
the active part of the diffusion coefficient is maximal for the reversible process. We
use the 1-dimensional case to show that this also holds for the active part of the
diffusion matrix in higher dimensions.
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Then in Section 7.5, we move to large deviations (still for finite state spaces). We
compute the large deviations free energy function. Using Varadhan’s lemma, we
derive an expression for the free energy function of the active particle in terms of the
Donsker-Varadhan rate function for the empirical process corresponding to the state
process (which in turn gives us the large deviations rate function as the Legrende
transform of the free energy). We show that the free energy function is maximal and
the rate function is minimal in the reversible case (similar to the situation for the
diffusion coefficient) by showing that Donsker-Varadhan rate function is maximal for
reversible processes.

In Section 7.6 we give an analysis of the situation where the state space is {−1, 1}.
In this two-state case we can explicitly calculate the Fourier-Laplace transform of the
distribution of the active particle process, the moment generating function and the
large deviations free energy function.

We conclude the chapter with notes and perspectives in Section 7.7.

7.2 Preliminaries

We consider the position (Xt, t ≥ 0) of a particle that moves in continuous time and
space (see also Remark 7.1). For now we assume Xt ∈ R, but we will generalise to
Rd later. The particle has the following dynamics.

a) With rate 2κ the particle performs a simple symmetric random walk.

b) Independently, with rate λ the particle jumps in a preferred direction indicated
by an inner state. If such jump occurs at time t, the particle jumps from Xt to
Xt + vγt .

c) This internal state evolves with ‘rate’ γ according to a stationary Markov pro-
cess.

Because of the jump to a preferred direction based on the inner state, we call the
particle an active particle.

To make this more precise we make the following definitions. We will assume that the
processes in the coming definitions are jointly defined on a probability space (Ω,F ,P).

i) Random walk part. Let Y = (Yt, t ≥ 0) be a simple symmetric random walk,
i.e. a random walk that starts from the origin (Y0 = 0), jumps with rate 1 and
jumps 1 to the left or to the right with equal probability. Fix a constant κ > 0.
Then the random walk part of the process is Y2κt.

ii) Internal state process. Let (Mt, t ≥ 0) be a stationary Markov process (indepen-
dent of the random walk) on a state space S with ergodic measure µ. We will
call this process the state process. Since we will always start M from µ, we can
assume without loss of generality that µ is the unique ergodic (and hence the
unique invariant) measure of M . Denote by (St, t ≥ 0) and A the corresponding
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semigroup and Markov generator on L2(µ), respectively, and denote the inner
product on L2(µ) by (·, ·) and the corresponding norm by ‖ · ‖.

iii) Speed function. Let v be an element of L2(µ). We will call v the speed function.
For simplicity, we assume that

∫
vdµ = 0, meaning that the average of the speed

with respect to the stationary measure on the internal state space is 0. This is
not essential though, we will make some remarks on what happens without this
assumption. The idea is that v : S → R is a mapping that indicates for each
internal state the jump vector in case of an active jump when the particle has
that internal state. In the simplest possible case, the state space S is the set
{−1, 1} and v is the identity function. In Section 7.3.2 we will see this example
(Example 7.8) and several others, for instance where v maps three internal states
to three numbers that sum to 0 (in Example 7.9) or where v is the sine function
(in Example 7.11).

iv) Speed process. Fix a constant γ > 0. We define vγt = v(Mγt) and call (vγt , t ≥ 0)
the speed process. Note that this speed process does not need to be a Markov
process. In the special case for γ = 1, we will simply write vt. Note that
(vγt , t ≥ 0) is the process (vt, t ≥ 0) speeded up by the factor γ. We make the
following two technical assumptions on the speed process.

a) First we assume that

lim
t→∞

∫ t

0

Srvdr exists in L2(µ). (7.1)

This implies that the limit u :=
∫∞

0
Stvdt satisfies u ∈ D(A) and −Au = v,

so we will write
∫∞

0
Stvdt = −A−1v. We need this assumption to ensure

that the limiting variance is finite. If it does not hold, there may not be
a diffusive scaling limit. Sufficient conditions for Assumption (7.1) are for
instance that the spectral gap of A is positive or that there exist c, C > 0
such that

‖Stv‖ ≤ Ce−ct.

The latter is a condition on the speed of relaxation, it ensures that the
internal state process reaches equilibrium fast enough, which avoids large
temporal covariances. In any case, Assumption (7.1) requires that Stv goes
to 0 fast enough that it is integrable.

b) The second assumption is that for all t > 0

lim
δ↓0

sup
0≤s,s′≤t
|s−s′|<δ

E[(vs − vs′)2] = 0. (7.2)

In other words: the speed process must be uniformly continuous in L2.
This assumption is purely technical, we will use it in Lemma 7.29 to show
that the integral in (7.3) is well-defined.
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Both of these assumptions are automatically satisfied in the case that the state
space S of M is finite. Other internal state processes that satisfy these assump-
tions (with a suitable choice of v) include diffusion processes such as Brownian
motion and the Ornstein-Uhlenbeck processes that we encounter in the examples
in Section 7.3.2.

v) Active jumps. Finally, fix a constant λ > 0 and let (Nt, t ≥ 0) be a Poisson
process with rate λ (independent of the random walk and the state process).
This process marks the times at which the particle jumps in a preferred direction.

With these components we can define

Xt = Y2κt +

∫ t

0

vγs dNs, (7.3)

where the integral is defined as a limit in L2(P) (see in Lemma 7.29 how the well-
definedness of the integral follows from Assumption (7.2)). This expression matches
with our description above: Y2κt is the random walk part and on top of that whenever
the Poisson process N has a jump at time t, say, the number vγt is added to Xt. Note
that (7.3) implies that X0 = 0. Also, we can write (7.3) as

Xt = Y2κt +

∫ t

0

vγs dNs + λ

∫ t

0

vγs ds, (7.4)

where N t = Nt − λt is a compensated Poisson process. We call the first, second and
third term of (7.4) the random walk part, the martingale part and the active part,
respectively. This division will become more clearly visible in the diffusion coefficient.

Remark 7.1. Note that if v is integer-valued, Xt stays in the lattice Z. In case v is
not integer-valued, we can also directly consider a continuous process and define

Xc
t = B2κt + λ

∫ t

0

vγs ds, (7.5)

where (Bt, t ≥ 0) is Brownian motion (independent of the state process) and where
the speed process is followed continuously in time. As will become clear later, the
change to Brownian motion is mostly aesthetic. However, the change from dNt to
λdt leaves out the martingale part of Xt, which will have consequences for both the
limiting diffusion coefficient and for the large deviations. We will makes remarks on
this later, after the results concerned.
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7.3 Diffusion coefficient

A first observation is that the expectation of Xt is 0. Indeed, using independence of
the processes vγs and Ns and the fact that Evγs = 0, we compute

EXt = EY2κt + E
∫ t

0

vγs dNs = 0 + lim
n→∞

n−1∑
i=0

E[vγs (Nsi+1
−Nsi)]

= lim
n→∞

n−1∑
i=0

Evγsiλ(si+1 − si) = 0.

In this section we determine the limiting diffusion coefficient of the active particle
and extend this result to active particles in higher dimensions. Then we provide some
examples. Finally, we discuss the invariance principle.

7.3.1 Calculating the diffusion coefficient

As a first result, we compute the limiting variance of the position of the active particle.

The 1-dimensional case
We start in dimension 1. Recall that (·, ·) denotes the inner product on L2(µ).

Theorem 7.2. The active particle has the following limiting diffusion coefficient

lim
t→∞

Var(Xt)

t
= 2κ+ λ

∫
v2dµ+

2λ2

γ
(v,−A−1v). (7.6)

Proof. First of all, note that the random walk part of Xt is independent of the rest.
Second, note that using Lemma 7.29 and the independence of vγ and N ,

Cov

(∫ t

0

vγs dNs, λ

∫ t

0

vγs ds

)
= lim

n→∞

n−1∑
i,j=0

Cov
(
vsi(Nsi+1

−Nsi), λvsj (sj+1 − sj)
)

= lim
n→∞

n−1∑
i,j=0

λvsj (sj+1 − sj)Cov
(
vsi , vsj

)
E
[
Nsi+1 −Nsi

]
= 0.

This implies that

Var(Xt) = Var(Y2κt) + Var

(∫ t

0

vγs dNs

)
+ Var

(
λ

∫ t

0

vγs ds

)
.

In other words, each of the parts of Xt in (7.4) has its own contribution to the variance
of Xt and hence to the limiting diffusion coefficient. Similar to before, we will refer
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to these as the random walk part, the martingale part and the active part of the
diffusion coefficient. We will now calculate these contributions.

First, Y2κt is the difference of two independent Poisson random variables with rate
κt. Therefore

lim
t→∞

Var(Y2κt)

t
= lim
t→∞

κt+ κt

t
= 2κ. (7.7)

Second, using Lemma 7.29, the independence of vγ and N and the fact that Evγs =
E
[
Nsi+1

−Nsi

]
= 0, we see

Var

(∫ t

0

vγs dNs

)
= lim

n→∞

n−1∑
i,j=0

Cov
(
vsi(Nsi+1

−Nsi), vsj (Nsj+1
−Nsj )

)
= lim

n→∞

n−1∑
i=0

Var
(
vsi(Nsi+1

−Nsi)
)

= lim
n→∞

n−1∑
i=0

Var (vsi) Var
(
Nsi+1 −Nsi

)
= lim

n→∞

n−1∑
i=0

∫
v2dµλ(si+1 − si) = λt

∫
v2dµ.

Therefore

lim
t→∞

Var
(∫ t

0
vγs dNs

)
t

= lim
t→∞

λt
∫
v2dµ

t
= λ

∫
v2dµ. (7.8)

For the third part we calculate the limiting variance of an additive functional of
a Markov process. This formula was already obtained for instance in Kipnis and
Varadhan [97, Corollary 1.9] and De Masi et al. [38, Lemma 2.4] (for reversible Markov
processes). In fact, it is known as Green-Kubo relations, which go back to Green [78]
and Kubo [101]. For completeness, we provide the calculations for our specific context
here. Using the stationarity of vγ and the symmetry of covariance, we compute

Var

(∫ t

0

vγs ds

)
=

∫ t

0

∫ t

0

Cov(vγs , v
γ
r )drds = 2

∫ t

0

∫ s

0

Cov(vγs , v
γ
r )drds

= 2

∫ t

0

∫ s

0

Cov(vγs−r, v
γ
0 )drds = 2

∫ t

0

∫ s

0

Cov(vγr , v
γ
0 )drds

= 2

∫ t

0

∫ t

r

Cov(vγr , v
γ
0 )dsdr = 2

∫ t

0

(t− r)Cov(vγr , v
γ
0 )dr

=
2

γ

∫ γt

0

(t− r)Cov(v(Mr), v(M0))dr =
2

γ

∫ γt

0

(t− r)(v, Srv)dr.

(7.9)
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To compute this, first note that with Assumption (7.1) we see that

lim
t→∞

∫ t

0

(v, Srv)dr =

(
v, lim
t→∞

∫ t

0

Srvdr

)
=
(
v,−A−1v

)
. (7.10)

Note that the convergence of
∫ t

0
(v, Srv)dr also implies that

lim
t→∞

∫ t

0

r

t
(v, Srv)dr = 0. (7.11)

Combining (7.9), (7.10) and (7.11), we obtain

lim
t→∞

Var
(
λ
∫ t

0
vγs dNs

)
t

= lim
t→∞

2λ2

γ

∫ γt

0

(v, Srv)dr + lim
t→∞

2λ2

∫ γt

0

r

γt
(v, Srv)dr

=
2λ2

γ
(v,−A−1v). (7.12)

Now combining (7.7), (7.8) and (7.12), we obtain the result.

Higher dimensions
So far we considered an active particle that only moves in one dimension. However,
we can just as well treat a higher dimensional situation. To this end fix a dimension
d ∈ N. Let Y be a d-dimensional simple random walk, i.e. each component of Y is an
independent copy of the Y that we had in the 1-dimensional situation. Let the speed
function v be an element of L2((Ω, µ),Rd) such that

∫
vdµ = 0 (in Rd). We denote

by Σ the covariance matrix of v under µ, i.e.

Σij = Cov(v(M0)i, v(M0)j).

Let again Xt denote the position of the active particle, now in Rd, with random walk
part Y and speed function v. The internal state process remains the same as the
1-dimensional case. To find the limiting diffusion matrix of the active particle, we can
show that similar to the 1-dimensional case

Cov((Xt)i, (Xt)j) = Cov((Y2κt)i, (Y2κt)j) + Cov

(∫ t

0

(vγs )idNs,

∫ t

0

(vγs )jdNs

)
+ Cov

(∫ t

0

(vγs )ids,

∫ t

0

(vγs )jds

)
.

Now if we go through calculations that are very similar to the 1-dimensional case, we
obtain the following.

Theorem 7.3. Let Xt be the position in Rd of the active particle that we just defined.
Then

lim
t→∞

Cov((Xt)i, (Xt)j)

t
= 2κδi,j + λΣij +

λ2

γ
[((v)i,−A−1(v)j) + ((v)j ,−A−1(v)i)].

(7.13)
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Remark 7.4. The sum of inner products in (7.13) equals 2((v)i,−sym(A−1)(v)j)
(where for an operator B on L2(µ), sym(B) = (B + B∗)/2 is the symmetric part).
Note that the 1-dimensional case can be retrieved from this by realising that for any
operator B and function w, (w,Bw) = (w, sym(B)w).

Interpretation
We now briefly discuss the various terms appearing in the RHS of (7.6). First of
all, as is clear directly from the definition of the process, the random walk part is
independent of the rest and therefore produces the term 2κ.

Now, to understand the other two terms, let us first consider what happens in the
limit of γ to infinity. In that case the state process is speeded up so much that it
reaches equilibrium between subsequent jumps of the N -process. Therefore the jump
sizes are just independent copies of v(M0) (so v under the stationary measure µ),
so the process is simply a random walk with jump rate λ and jump size distribution
v(M0). In this case the diffusion coefficient should be λVar(v(M0)) = λ

∫
v2dµ, which

is indeed what we find when we let γ go to infinity in (7.6).

Finally, the third term of (7.6) corresponds to the case where γ is finite. Therefore
this term comes from the dependence between the active jumps due to the temporal
dependence in the state process. Hence this term comes from the activity of the
particle. These considerations justify the name ‘active part’ for the third part of (7.6).
This is the only part that depends on the state process through more than just its
stationary distribution. We will analyse this term more thoroughly in Section 7.4.

Remark 7.5. Note that for Xc (see Remark 7.1), the random walk part of Xc
t has

variance 2κt, the martingale part is left out and the active part is the same as in X,
so we obtain

lim
t→∞

Var(Xc
t )

t
= 2κ+

2λ2

γ
(v,−A−1v).

Remark 7.6. Note that instead of writing (v,−A−1v), we could also have kept the
covariance in the expression in (7.9) to obtain in a similar way that the active part of
the limiting diffusion coefficient equals

2λ2

γ

∫ ∞
0

Cov(v0, vr)dr.

This might be easier to calculate for processes of which the covariance function is
explicitly known.

Remark 7.7. The assumption that
∫
vdµ = 0 makes sure that EXt = 0. Considering

a speed function that does not have average 0 is equivalent to setting the speed
function to be v + c where c is a constant and v still satisfies

∫
vdµ = 0. In this case

the expectation equals EXt = cλt. Of course the random walk part is not affected
by this choice. Now it is easy to see following our calculations above that with the
new speed function the expectation of the martingale part remains the same, but
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the variance changes. Contrarily, the expectation of the active part changes, but
the variance stays the same (since the change is deterministic). Overall, the limiting
diffusion coefficient becomes:

lim
t→∞

Var(Xt)

t
= 2κ+ λ

(∫
v2dµ+ c2

)
+

2λ2

γ
(v,−A−1v).

7.3.2 Examples

Now we give some examples. We start with two cases where the state process M is a
Markov chain with 2 or 3 states. Then we take M to be an Ornstein-Uhlenbeck pro-
cess and Brownian motion on a circle and finally we consider an Ornstein-Uhlenbeck
process in R2.

First, in these examples we need to calculate (v,−A−1v) (cf. (7.6)). Now write u =
−A−1v and recall that this means u =

∫∞
0
Stvdt, which implies −Au = v. In order to

compute (v,−A−1v), we can procede as follows. First we find a function w such that
−Aw = v. Then (v, w) = (v,−A−1v). Indeed, since µ is the unique ergodic measure,
the only h ∈ D(A) with Ah = 0 are constant functions, so if −Au = −Aw, u and w
only differ by a constant. Therefore (v, w) = (v, u + c1) = (v,−A−1v) + c

∫
vdµ =

(v,−A−1v).

Second, for all of the examples, we need to verify Assumptions (7.1) and (7.2). In
Example 7.8 and 7.9, the state space is finite so both assumptions always hold. In
Example 7.10, 7.11 and 7.12, Assumption (7.2) can be verified by a direct computa-
tion, since the correlation functions for Brownian motion and the Ornstein-Uhlenbeck
process are explicitly known. As we noted before, for Assumption (7.1), it suffices
to find constants c, C > 0 such that ‖Stv‖ ≤ C exp(−ct). This is implied by the
Poincaré inequality (see van Handel [153, Thm 2.18]). The Poincaré inquality for
the Ornstein-Uhlenbeck process is proved in van Handel [153, Lem 2.22, Thm 2.25]
(and holds similarly in the higher dimensional case). By van Handel [153, Rem 2.19],
the Poincaré inequality for Brownian motion with drift on the circle follows from the
Poincaré inequality for driftless Brownian motion on the circle. The exponential er-
godicity (and the corresponding Poincaré inequality) in this case is known and can
be shown using Fourier analysis.

Example 7.8 (2 states). We start with the case where M is a Markov chain on
S = {1,−1} where the state switches with rate 1 and v is the identity function
[1,−1]T . Then µ = (δ−1 + δ1)/2,

A =

[
−1 1
1 −1

]
and indeed

∫
vdµ = 0. Now choose w = [1, 0], then −Aw = v. So (v,−A−1v) =

(v, w) = 1/2 ∗ (1 ∗ 1) + 1/2 ∗ (−1 ∗ 0) = 1/2. Also we compute
∫
v2dµ =

∫
1dµ = 1.
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Now applying Theorem 7.2 yields

lim
t→∞

Var(Xt)

t
= 2κ+ λ

∫
v2dµ+

2λ2

γ
(v, w) = 2κ+ λ+

λ2

γ
.

Note that the same diffusion coefficient is found in the calculation in Section 7.6.

Example 7.9 (3 states). Now let M be a Markov chain on the triangle with nodes
S = {n1, n2, n3} where the state switches with rate 1 and jumps to the right with
probability 1/2 +a and to the left otherwise (where |a| ≤ 1/2). Here µ = (δn1 + δn2 +
δn3)/3, v = [v1, v2, v3] such that v1 + v2 + v3 = 0 and A is −1 1

2 + a 1
2 − a

1
2 − a −1 1

2 + a
1
2 + a 1

2 − a −1

 .
Now to find w we solve the linear system 1 − 1

2 − a − 1
2 + a v1

− 1
2 + a 1 − 1

2 − a v2

− 1
2 − a − 1

2 + a 1 v3

 ,
Note that the last row is redundant. Therefore we can leave it away and set w3 = 0,
which leads us to solve [

1 − 1
2 − a v1

− 1
2 + a 1 v2

]
,

which yields

w =

[
v1 + (a+ 1/2)v2

3/4 + a2
,

(1/2− a)v1 + v2

3/4 + a2
, 0

]
.

This gives

(v, w) =
v2

1 + v1v2 + v2
2

3(3/4 + a2)
=
v2

1 + v1v2 + v2
2 + v3(v1 + v2 + v3)

3(3/4 + a2)

=
(v1 + v2 + v3)2 − (v1v2 + v2v3 + v1v3)

9/4 + 3a2
= −v1v2 + v2v3 + v1v3

9/4 + 3a2
, (7.14)

where we used in the last step that v1 + v2 + v3 = 0. Also we compute
∫
v2dµ =

(v2
1 + v2

2 + v2
3)/3. Now applying Theorem 7.2 yields

lim
t→∞

Var(Xt)

t
= 2κ+ λ

∫
v2dµ+

2λ2

γ
(v, w)

= 2κ+
λ

3
(v2

1 + v2
2 + v2

3) +
2λ2

γ

(−v1v2 − v2v3 − v1v3)

9/4 + 3a2
.
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Example 7.10 (Ornstein-Uhlenbeck process). Now let us consider a different kind
of example where M is a continuous process, namely an Orstein-Uhlenbeck process
satisfying

dMt = −θMtdt+ σdBt,

where Bt is a Brownian motion independent of everything else (note that a similar
process is studied in Szamel [143]). This process has stationary distribution µ ∼
N(0, σ2/(2θ)). We take v(x) = x (indeed

∫
xdµ = 0). We know that the generator

equals

A = −θx d

dx
+
σ2

2

d2

dx2

and has as domain D(A) all functions in L2(µ) of which the first and second (weak)
derivative are also in L2(µ). A quick inspection shows that if we set w(x) = x/θ, then
w in D(A) and −Aw = v. Now we compute (v, w) =

∫
x2/θdµ = σ2/(2θ2). Also∫

v2dµ =
∫
x2dµ = σ2/(2θ). Now Theorem 7.2 gives us

lim
t→∞

Var(Xt)

t
= 2κ+ λ

∫
v2dµ+

2λ2

γ
(v, w) = 2κ+

λσ2

2θ
+
λ2

γ

σ2

θ2
.

Note that the constant (v, w) = σ2/(2θ2) could also have been directly obtained by
calculating

Var

(
λ

∫ t

0

vγs ds

)
= λ2

∫ t

0

∫ t

0

Cov(vγs , v
γ
r )dsdr (7.15)

followed by rescaling and taking limits, since the covariance of the Ornstein-Uhlenbeck
process is explicitly known. This yields the same result. Alternatively, one could have
used the expression in Remark 7.6 to see

(v,−A−1v) =

∫ ∞
0

Cov(v0, vt)dt =

∫ ∞
0

σ2

2θ
exp(−θt)dt =

σ2

2θ2
.

Example 7.11 (Sine of Brownian motion with drift). In this example we want the
speed process vt to be sin(Mt) where Mt = B2at + bt, (Bt, t ≥ 0) is Brownian motion
and a, b > 0 are constants. However, Xt does not have a stationary (probability)
distribution. Therefore we take M to be B2at + bt on a circle S with radius 1 and
we set v(θ) = sin(θ). Now µ = 1

2πdθ, so indeed
∫
vdµ = 0. The generator is given by

A = a
d2

dθ2
+ b

d

dθ

with domain D(A) containing all smooth functions on S . Substituting w(θ) =
c sin(θ) + d cos(θ) and solving for c, d shows that

w(θ) =
a

a2 + b2
sin(θ) +

b

a2 + b2
cos(θ)
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satisfies −Aw = v with w ∈ D(A). Now we calculate and see that
∫
v2dµ =

1
2π

∫ 2π

0
sin2(θ)dθ = 1/2 and

(v, w) =
1

2π

∫ 2π

0

sin(θ)

(
a

a2 + b2
sin(θ) +

b

a2 + b2
cos(θ)

)
dθ =

a

2(a2 + b2)
,

so applying Theorem 7.2, we see:

lim
t→∞

Var(Xt)

t
= 2κ+ λ

∫
v2dµ+

2λ2

γ
(v, w) = 2κ+

λ

2
+

2λ2

γ

a

a2 + b2
. (7.16)

Note that first of all the last term vanishes when either a or b goes to infinity, similar to
what happens when γ goes to infinity (see the considerations at the end of Section 7.3).
However, note that this part also vanishes when a goes to 0, even when b > 0. Indeed,
when a = 0, the speed process is sin(M0 + bt), where M0 is sampled from µ. Now it

is easy to see that
∫ t

0
vγs ds is bounded in t, so Var(

∫ t
0
vγs ds)/t goes to 0. In that sense

the particle is not active in the limit.

Example 7.12. As example for the higher dimensional case, we take M to be the
two-dimensional stationary Ornstein-Uhlenbeck process given by

dMt = −ΘMtdt+ σdWt,

where Wt is a two-dimensional Brownian motion,

Θ =

[
1 a
−a 1

]
and σ, a > 0 are constants. The invariant distribution is N(0, σ2/2I). We set v to be
the identity function. The corresponding generator is

Af = −(∇f)TΘx+
σ2

2
∆f.

First we see that Σ = σ2

2 I. Now set

u1(x) =
1

1 + a2
(x1 − ax2), u2(x) =

1

1 + a2
(ax1 + x2),

then −Au1(x) = x1 = (v)1(x) and −Au2(x) = x2 = (v)2(x). Using these we obtain

((v)1,−A−1(v)1) + ((v)1,−A−1(v)1) = 2
1

1 + a2
(x1, x1 − ax2)

=
2

1 + a2
(x1, x1) =

σ2

1 + a2
.

Also

((v)1,−A−1(v)2) + ((v)2,−A−1(v)1) = (x1, ax1 + x2) + (x2, x1 − ax2)

= a(x1, x1)− a(x2, x2) = 0.
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Here we used that under µ, (x1, x1) = (x2, x2) = σ2/2 and (x1, x2) = (x2, x1) = 0.

Applying Theorem 7.3, we see that the limiting diffusion matrix equals

(2κ+ λ
σ2

2
+
λ2

γ

σ2

1 + a2
)I. (7.17)

7.3.3 Invariance principle

So far we have calculated the limiting diffusion coefficient of the active particle. In a
lot of cases one can in fact show a Central Limit Theorem (CLT) for (the trajectory
of) the active particle. This type of problem has been dealt with in a lot of generality
under several sets of assumptions before, so we will not provide all the details.

As we noted before the active particle process decomposes naturally into three parts.
First of all, there is the random walk part, which is independent of the rest. The CLT
for this case is well-known.

Then there is the martingale part ∫ t

0

vγs dNs.

As the name suggests, this term is actually a martingale with respect to the filtration
Ft = σ{(Mγs, Ns), 0 ≤ s ≤ t} (see Remark 7.13). Moreover, the active part

λ

∫ t

0

vγs ds,

is an additive functional of a stationary Markov process and can (under some technical
assumptions) be approximated by a martingale with respect to the filtration F ′t =
σ{Mγs, 0 ≤ s ≤ t} and hence (by independence of N and the active part) also with
respect to Ft. This type of result was obtained in Gordin and Lif̌sic [77], Kipnis and
Varadhan [97], Tóth [146] and Maxwell and Woodroofe [118].

Therefore the sum of the martingale part and the active part∫ t

0

vγs dNs

can be approximated by a martingale with respect to Ft. Since the martingale part
has a source of randomness (the Poisson process N) that is independent of the active
part, the martingales cannot cancel each other out. Finally, as is done in the papers
that were just cited, one can apply functional martingale central limit theorems such
as in Durrett and Resnick [47] and Helland [83] to obtain the CLT for the active
particle.
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Remark 7.13. The fact that the martingale part is actually a martingale with re-
spect to Ft can be shown from a direct computation. However, this martingale also
naturally shows up as a Dynkin martingale. Because of the underlying state process,
the position Xt itself is not a Markov process. However, the pair (Xt,M

γ
t ) is (where

Mγ
t is M speeded up by a factor γ). The corresponding generator L is given by

Lf(x,m) = λ(f(x+ v(m),m)− f(x,m)) + γ(Af(x, ·))(m).

Setting g(x,m) = x, we see that the following is (formally) a martingale with respect
to the natural filtration of (Xt,M

γ
t ):

Mt := g(Xt,M
γ
t )− g(X0,M

γ
0 )−

∫ t

0

Lg(Xs,M
γ
s )ds

= Xt −X0 −
∫ t

0

λvγs ds =

∫ t

0

vγs dNs.

The quadratic variation of this martingale equals∫ t

0

(Lg2 − 2gLg)(Xs, v
γ
s )ds = λ

∫ t

0

(vγs )2ds.

Note that by ergodicity of M we have that almost surely

lim
t→∞

λ

t

∫ t

0

(vγs )2ds = λ

∫
v2dµ,

which confirms that the martingale part converges to a Brownian motion with diffu-
sion coefficient λ

∫
v2dµ.

7.4 Diffusion coefficient: the role of reversibility

Now that we found an expression for the limiting diffusion coefficient of the active
particle, we want to understand how it depends on the internal state process. In
particular we want to understand the role of reversibility of the internal state process
with respect to the stationary measure µ. Recall that we say that the state process
Mt is reversible with respect to µ if the generator A is a self-adjoint operator on its
domain in L2(µ). We will fix the stationary measure µ and study processes with this
stationary measure. We will also assume in the rest of this section that the internal
state space S is finite, this is mainly to avoid technical complications.

When we inspect the different terms of the diffusion coefficient (7.6), we see the
following.

a) The random walk part, 2κ, does not depend on the internal state process.

b) The martingale part, λ
∫
v2dµ, only depends on the internal state process

through its stationary measure µ.



7.4. Diffusion coefficient: the role of reversibility 169

c) The active part, 2λ2

γ (v,−A−1v) depends on the whole internal state process, i.e.
its stationary measure as well as its generator.

We conclude that given a stationary measure µ, only the active part might depend

on the reversibility of the state process with respect to µ. Since also the factor 2λ2

γ is
fixed, we will dedicate the rest of this section to studying the behaviour of the term(

v,−A−1v
)
.

To further specify our results, note that the generator A can be decomposed into
a symmetric part sym(A) = (A + A∗)/2 and an antisymmetric part asym(A) =
(A− A∗)/2, where A∗ denotes the adjoint of A as operators on L2(µ). In particular
the internal state process is reversible with respect to µ if sym(A) = A and accordingly
asym(A) = 0. We will show the following.

i) In Section 7.4.2 we will consider state processes with the same symmetric part.
We will show that the active part of the diffusion coefficient is maximal for
the process generated by the symmetric part itself, for any choice of the speed
function v. In other words: the diffusion coefficient is maximal for the reversible
process. Mathematically this means that we will prove that for all v that satisfy∫
vdµ = 0, (

v,−A−1v
)
≤
(
v,−sym(A)−1v

)
.

This is Proposition 7.17. We also generalise this to active particles in higher
dimensions.

ii) In Section 7.4.3 we will consider reversible processes with the requirement that
the total jumping rate from each point is the same. We will show that in this
case there is no reversible process that maximises the diffusion coefficient for
each choice of the speed function. In other words: within the class of reversible
processes (with the same total jumping rates) there is no optimal reversible
process.

Before this, we will start with some motivating examples in Section 7.4.1.

Remark 7.14. Note that the active part of the diffusion coefficient only depends on
the “zero-average”-part of the speed function (see Remark 7.7). Therefore it remains
the same when we replace the speed function v by v+ c, where c is a constant. Simi-
larly, the active part of the diffusion coefficient is the same for Xc (from Remark 7.1).
Because of this, if we replace v by v + c or if we consider the process Xc instead of
X, the results of this section are still valid.

7.4.1 Motivation

As a motivating example, let us look back at Example 7.9. Note that for each a ∈
[−1/2, 1/2], the state process has the same stationary distribution, namely the uniform
distribution. However, only for a = 0 the process is reversible, whereas for a = 1/2
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or a = −1/2 the process is completely asymmetric (it only jumps to the right or only
to the left, respectively). Hence we can think of a as the parameter that tunes the
non-reversibility of the state process. The expression that we found earlier (see (7.14))
is

(v,−A−1v) =
−(v1v2 + v2v3 + v1v3)

9/4 + 3a2
.

Since −(v1v2 + v2v3 + v1v3) ≥ 0 for v with
∫
vdµ = 1/3(v1 + v2 + v3) = 0, this

expression is maximal for a = 0, the reversible case, and decreases like 1/(1 + a2) for
a away from 0. We conclude that out of this family of state processes, the reversible
process maximises the diffusion coefficient.

Now for a more general result, we go back to the three states example and note that
the symmetric part of the generator (as an operator in L2(µ)) was the same for each
a and the antisymmetric part varied with a, indeed:

1

3

 −1 1
2 + a 1

2 − a
1
2 − a −1 1

2 + a
1
2 + a 1

2 − a −1

 =
1

3

−1 1
2

1
2

1
2 −1 1

2
1
2

1
2 −1

+
a

3

 0 1 −1
−1 0 1
1 −1 0

 .
We want to show that this is true in general: out of all processes (with the same
stationary measure µ) of which the symmetric part of the generator is the same, the
purely reversible process (so the purely symmetric one) maximises (v,−A−1v).

Remark 7.15. Even though we restrict ourselves in this section to finite state spaces
(mainly for technical reasons), notice that the same behaviour (the fact that the
diffusion coefficient is maximal for reversible state processes) occurs in Example 7.11
and 7.12.

Indeed, in Example 7.11 the state process consists of a reversible part scaled with a
constant a and an non-reversible part with constant b (so in particular the process is
reversible if and only if b = 0). The active part of the diffusion coefficient in (7.16)
equals

2λ2

γ

a

a2 + b2
.

So when we keep a fixed, the active part is maximised in the reversible case.

In Example 7.12 the active part of the diffusion matrix in (7.17) equals

λ2

γ

σ2

1 + a2
I.

This matrix is maximal for a = 0, which is the reversible case.
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7.4.2 Comparing reversible and non-reversible processes

In order to prove the main result, Proposition 7.17 below, we first need the following
lemma.

Lemma 7.16. Let C be a skew-symmetric matrix. Then both I + C and I − C2 are
invertible and for all w

(w, (I + C)−1w) = (w, (I − C2)−1w) ≤ (w,w).

Proof. The invertibility of I+C and I−C2 is known, but we repeat it for completeness.
Suppose that I +C is not invertible. Then there exists v 6= 0 such that (I +C)v = 0,
so v = −Cv. Then (v, v) = −(v, Cv) = 0, which is a contradiction. Similarly if
(I − C2)v = 0, then v = C2v, so (v, v) = (v, C2v) = −(Cv,Cv) ≤ 0, which is a
contradiction.

Now let w be arbitrary and set g = (I −C2)−1w and h = (I +C)−1w, which implies
that (I − C)g = h. Then we see

(w, (I + C)−1w) = ((I + C)h, h) = (h, h) + (Ch, h) = (h, h)

and

(w, (I − C2)−1w) = ((I − C2)g, g) = ((I + C)(I − C)g, g)

= ((I + C)h, g) = (h, g) + (Ch, g)

= (h, g)− (h,Cg) = (h, (I − C)g) = (h, h),

which proves the equality.

To prove the inequality, first note that −C2 is positive semidefinite. Therefore the
eigenvalues of I−C2 are greater than 1, so the eigenvalues of (I−C2)−1 are between
0 and 1, so ‖(I − C2)−1‖ ≤ 1, which implies that (w, (I − C2)−1w) ≤ (w,w).

Since we want to compare a Markov generator with its symmetric part (in L2(µ)),
we recall some properties of this symmetric part. First of all, the symmetric part is
again a Markov generator. Moreover, if the original generator has a unique ergodic
measure, then the symmetric part generates a reversible process with the same unique
ergodic measure. These properties are known, but for the reader’s convenience we
collect them with a proof in Lemma 7.30 in the appendix.

Now we can prove the following proposition.

Proposition 7.17. Let A be the generator of a Markov process on a finite state space
with unique ergodic measure µ. Then for all v such that

∫
vdµ = 0

(v,−A−1v) ≤ (v,−sym(A)−1v),

where sym(A) = (A+A∗)/2 is the symmetric part of A in L2(µ). As a consequence,
the diffusion coefficient (7.6) is maximised for reversible state processes.
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Proof. Let B = (−A + (−A)∗)/2 be the symmetric part of −A and D = (−A −
(−A)∗)/2 the skew-symmetric part (in L2(µ)). Let v such that

∫
vdµ = 0. Note that

B is (strictly) positive definite on the subspace of w such that
∫
wdµ = 0, so B−1

and B−1/2 exist and are symmetric (in L2(µ)). Now we see

(v,−A−1v) = (v, (B +D)−1v) = (v, (B1/2(I +B−1/2DB−1/2)B1/2)−1v)

= (v,B−1/2(I +B−1/2DB−1/2)−1B−1/2v)

= (B−1/2v, (I +B−1/2DB−1/2)−1B−1/2v).

Now write w = B−1/2v and C = B−1/2DB−1/2, so

(v,−A−1v) = (w, (I + C)−1w).

Note that for all u, u′

(u,Cu′) = (u,B−1/2DB−1/2u′) = (B−1/2u,DB−1/2u′)

= −(DB−1/2u,B−1/2u′) = −(B−1/2DB−1/2u, u′) = −(Cu, u′),

so C is skew-symmetric. Therefore applying Lemma 7.16 gives us that

(v,−A−1v) = (w, (I + C)−1w) ≤ (w,w)

= (B−1/2v,B−1/2v) = (v,B−1v) = (v,−sym(A)−1v).

Remark 7.18. If we assume that ‖B−1/2DB−1/2‖ < 1, we use the Taylor expansion
and obtain the more explicit formula:

(v,−A−1v) = (v,−sym(A)v) + (w,C2(I − C2)−1w),

where w and C are as in the proof of Proposition 7.17. Indeed in that case

(w, (I + C)−1w) =

(
w,

∞∑
n=0

(−1)nCnw

)
=

∞∑
n=0

(−1)n(w,Cnw)

=

∞∑
n=0

(−1)2n(w,C2nw) =

(
w,

∞∑
n=0

(C2)nw

)
= (w,w) +

(
w,

∞∑
n=1

(C2)nw

)

= (w,w) +

(
w,C2

∞∑
n=0

(C2)nw

)
= (v,−sym(A)−1v) + (w,C2(I − C2)−1w).

Note that in the third equality we used that Cn is skew-symmetric, so (w,Cnw) = 0
for n odd.
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Now that we have Proposition 7.17 for active particles in R, we can use it to generalise
to d dimensions. Recall from Theorem 7.3 that the active part of the limiting diffusion
matrix of an Rd-valued random walk is (2λ2/γ)DA, where

DA
ij := ((v)i,−A−1(v)j) + ((v)j ,−A−1(v)i).

The next proposition tells us that in the same context as Proposition 7.17, this quan-
tity is optimal for the reversible process.

Corollary 7.19. Let A and µ be as in Proposition 7.17. Then for all Rd-valued v such
that

∫
vdµ = 0 (in Rd), DA is dominated by Dsym(A) in the sense that Dsym(A)−DA

is positive definite.

Proof. It suffices to show that for all α ∈ Rd, αTDAα ≤ αTDsym(A)α. Let α ∈ Rd.
Then α · v is an R-valued function such that

∫
(α · v)dµ = α · (

∫
vdµ) = 0. Therefore,

using Proposition 7.17, we see

αTDAα =

d∑
i,j=1

αiαj(((v)i,−A−1(v)j) + ((v)j ,−A−1(v)i))

= 2((α · v),−A−1(α · v))

≤ 2((α · v),−sym(A)−1(α · v)) = αTDsym(A)α.

7.4.3 Comparing reversible processes

Proposition 7.17 tells us that among all generators with the same symmetric part, the
symmetric part itself maximises the diffusion coefficient of the active particle. Now
one might wonder whether there are classes of reversible internal state processes that
yield the same diffusion coefficient for each speed function v. The following lemma
shows us that this is not the case.

Lemma 7.20. Let A and B be Markov generators with reversible measure µ. Suppose
that for every v with

∫
vdµ = 0, (v,−A−1v) = (v,−B−1v). Then A = B.

Proof. Define the following linear subspaces of L2(µ): Vµ := {v|
∫
vdµ = 0} and

V1 = {c1|c ∈ R}. Note that Vµ and V1 are orthogonal in L2(µ) and in fact Vµ is the
orthogonal complement of V1 in L2(µ), so the action on Vµ and V1 together fully define
A and B. Also note that A and B are 0 on V1 and are invertible when restricting to
Vµ → Vµ. It suffices to show that A and B are equal on Vµ, so in turn it suffices to
show that A−1 and B−1 are equal on Vµ. For this let v, w ∈ Vµ. Then

(v,−A−1w) =
1

2
((v + w),−A−1(v + w))− (v,−A−1v)− (w,−A−1w))

=
1

2
((v + w),−B−1(v + w))− (v,−B−1v)− (w,−B−1w)) = (v,−B−1w).
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This shows that A−1 = B−1 on Vµ, so we conclude that A = B.

Now that we know that different reversible processes cannot yield the same diffusion
coefficients, it could still be that certain reversible processes yield larger diffusion
coefficients than others. To answer this question, we need to normalise in some way.
Otherwise if we replace the generator A by cA for some constant c > 1, the diffusion
coefficient is divided by that constant c, so A trivially yields larger diffusion coefficients
than cA. We normalise here by comparing reversible processes that have the same
total jumping rate from each point. The next lemma tells us that in that case no
process strictly dominates all the others, it depends on the speed function v.

Lemma 7.21. Let A and B be Markov generators on a finite state space that are
reversible with respect to µ. Additionally assume that the total jump rate from each
state is the same for A and B. Then either A = B or there exist v, w ∈ Vµ such that

(v,−A−1v) > (v,−B−1v) and (w,−A−1w) < (w,−B−1w).

Proof. Let A and B be as stated. Now assume that there are no v, w ∈ Vµ such
that (v,−A−1v) > (v,−B−1v) and (w,−A−1w) < (w,−B−1w). Without loss of
generality assume that for all v ∈ Vµ, (v,−A−1v) ≥ (v,−B−1v). This implies that
−A−1 ≥ −B−1 (in the sense that −A−1− (−B−1) is symmetric and positive definite
on Vµ). With the fact that −A,−B are positive definite, this in turn implies that
−B ≥ −A, so A−B ≥ 0 on Vµ. Since also Av = Bv = 0 for v ∈ V1, this implies that
A−B ≥ 0 on L2(µ). Now if we define D to be the diagonal matrix with Dii = µi, then
D(A − B) ≥ 0 and D(A − B) is symmetric with respect to the usual inner product
in Rd. Also, A − B and (hence) D(A − B) have zeroes on the diagonal (because
of the equal jump rates), so the trace of D(A − B) is 0. Therefore the eigenvalues
of D(A − B) are non-negative and sum to 0, so they are all 0. This implies that
D(A−B) = 0, so A = B.

7.5 Large deviations

In this section we derive a large deviation principle (LDP) for Xt/t.
2 The active

particle that we are studying is what is called a slow-fast system in the literature and
a lot of research has already been done about its large deviations. Because of this it
is not our goal here to present this result in the highest possible generality. We would
rather see which formulas are obtained and study their behaviour, in particular the
relation between the rate function and the reversibility of M . Therefore we reduce (as
in Section 7.4) to the case where the state space S of M is finite (and hence where
(vγ , s ≥ 0) is bounded).

Remark 7.22. Note that we don’t need anywhere in this section that
∫
vdµ = 0.

2For the definition of the Large Deviation Principle and for Varadhan’s lemma and the Gaertner-
Ellis theorem, see for intance Dembo and Zeitouni [41] or Den Hollander [42].
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Since we will express the rate function for Xt/t in terms of the rate function of the
empirical process corresponding to the underlying state process, we quickly recall
some results that we will use. We write

χt =
1

t

∫ t

0

δMsds

and denote by Pt the distribution of χt in the space of probability measures on S .
Then we know from Donsker and Varadhan [46] that (Pt, t ≥ 0) satisfies an LDP with
good rate function Ie given by

Ie(ξ) = sup
u>0

(
−

n∑
i=1

ξi
(Au)i
ui

)
. (7.18)

In case A is symmetric, this reduces to

Ie(ξ) = (u,−Au), (7.19)

where ui =
√
ξi/µi (note that we assumed that µ has full support, so µi > 0 for all

i) and the inner product is (as usual) with respect to µ.

7.5.1 Large deviations rate function

To obtain the large deviations rate function of Xt/t, we start by calculating the
logarithmic moment generating function (log-mgf) of Xt: Ft(α) = logE

[
eαXt

]
for

α ∈ Rd. To calculate it we first observe that by independence of Y and the rest,

Ft(α) = logE
[
eα(
√

2κYt+
∫ t
0
vγs dNs)

]
= logE

[
exp(α

√
2κYt)

]
+ logE

[
exp

(
α

∫ t

0

vγs dNs

)]
. (7.20)

The first term is just the log-mgf of a simple random walk speeded up with a factor
2κ. Therefore at time t it equals the difference of two independent Poisson random
variables with parameter κt, so we obtain that

logE [exp(αY2κt)] = log(exp(κt(eα − 1)) exp(κt(e−α − 1))) = 2κt(cosh(α)− 1).
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To calculate the second term, we first condition on vγ = (vγs , 0 ≤ s ≤ t) and obtain

E
[

exp

(
α

∫ t

0

vγs dNs

)∣∣∣∣ vγ] = lim
n→∞

E

[
exp

(
α

n−1∑
i=0

vγsi(Nsi+1 −Nsi)

)∣∣∣∣∣ vγ
]

= lim
n→∞

n−1∏
i=0

E
[
exp

(
αvγsi(Nsi+1

−Nsi)
)
|vγ
]

= lim
n→∞

n−1∏
i=0

exp
(
λ
(

eαv
γ
si − 1

)
(si+1 − si)

)
= lim

n→∞
exp

(
n−1∑
i=0

λ
(

eαv
γ
si − 1

)
(si+1 − si)

)
= exp

(
λ

∫ t

0

(
eαv

γ
s − 1

)
ds

)
.

Therefore we see that the second term of (7.20) equals

logE exp

(
λ

∫ t

0

(
eαv

γ
s − 1

)
ds

)
.

We conclude that

Ft(α) = 2κt(cosh(α)− 1) + logE exp

(
λ

∫ t

0

(
eαv

γ
s − 1

)
ds

)
. (7.21)

Now we can compute the large deviation free energy function F (α) as the limit of
Ft(α)/t. We see for the first term that

lim
t→∞

2κt(cosh(α)− 1)

t
= 2κ(cosh(α)− 1). (7.22)

Now for the second term define hα as a function on measures on S given by

hγα(ξ) =
λ

γ

∫
S

(
eαv(x) − 1

)
ξ(dx).

This enables us to rewrite the second part of Ft(α) and use Varadhan’s lemma to
obtain

lim
t→∞

1

t
logE exp

(
λ

γ

∫ γt

0

(
eαv(Ms) − 1

)
ds

)
= lim

t→∞

1

t
logE exp

(
tγ
λ

γ

∫
S

(
eαv(x) − 1

)( 1

γt

∫ γt

0

δMs
ds

)
(dx)

)
= γ lim

t→∞

1

γt
logE exp (γthγα(χγt)) = γ sup

ξ
(hγα(ξ)− Ie(ξ)).

Note that the latter equals

sup
ξ

(λ(ϕξ(α)− 1)− γIe(ξ)), (7.23)
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where ϕξ(α) =
∫

S exp(αv(x))ξ(dx) denotes the mgf of v under ξ evaluated at α.
Taking together (7.22) and (7.23), we conclude that

F (α) = lim
t→∞

Ft(α)

t
= 2κ(cosh(α)− 1) + sup

ξ
(λ(ϕξ(α)− 1)− γIe(ξ)). (7.24)

Using the Gaertner-Ellis theorem, we now obtain the large deviation principle for
Xt/t with rate function given by the Legendre transform of F (α):

I(x) = sup
α

(αx− F (α)) = sup
α

(αx− 2κ(cosh(α)− 1)− sup
ξ

(λ(ϕξ(α)− 1)− γIe(ξ))).

Remark 7.23. A very similar computation shows that a similar expression holds in
the multidimensional case. Indeed, if we set Ft(α) = logE exp(α ·Xt) for α ∈ Rd, we
obtain

F (α) = lim
t→∞

Ft(α)

t
= 2κ

d∑
i=1

(cosh(αi)− 1) + sup
ξ

(λ(ϕξ(α)− 1)− γIe(ξ)),

where

ϕξ(α) =

∫
S

eα·v(x)ξ(dx).

Then again we can take the Legendre transform to find the rate function I.

Example 7.24. We return to Example 7.8 to obtain an explicit expression for the
large deviations free energy function. Note that the state process is reversible with
respect to the stationary measure µ = (1/2, 1/2). Using (7.19), fixing a probability
measure ξ on {1,−1} and setting ui =

√
(ξi/(1/2) =

√
2ξi, we see

Ie(ξ) = (u,−Au) =
1

2
(
√

2ξ1 −
√

2ξ−1)2 = (
√
ξ1 −

√
ξ−1)2 = 1− 2

√
ξ1ξ−1.

Parametrising ξ = (r, 1− r), we see

sup
ξ

(λ(ϕξ(α)− 1)− γIe(ξ))

= sup
0≤r≤1

(λ(reα + (1− r)e−α − 1)− γ(1− 2
√
r(1− r)))

= λ(e−α − 1)− γ + sup
0≤r≤1

(2λ sinh(α)r + 2γ
√
r(1− r)).

A simple calculation shows that the latter equals

λ(e−α − 1)− γ +

√
γ2 + λ2 sinh2(α) + λ sinh(α)

= λ(cosh(α)− 1) +

√
γ2 + λ2 sinh2(α)− γ,

so with (7.24), we see

F (α) = (2κ+ γ)(cosh(α)− 1) +

√
γ2 + λ2 sinh2(α)− γ. (7.25)
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Remark 7.25. In the case of Xc (from Remark 7.1), the calculations become a
bit easier. Instead of the symmetric random walk Y2κt we directly work with the
continuous limit B2κt. But more importantly, there is no additional randomness from
the Poisson process N . Following the analogous computations for this part, we find
the same results with ϕξ(α) replaced by α

∫
v(x)ξ(dx).

In this section we worked with a finite state space, so all the computations and
quantities here are well-defined. However, for a more general state process, for the
original process X one would need

E exp

(
λ

∫ t

0

(
eαv

γ
s − 1

)
ds

)
<∞

to get a finite free energy. Setting t� 1, this implies that we need something like

Eeev0 <∞,

which is a very strong assumption that for instance for the Ornstein-Uhlenbeck process
is not satisfied.

Changing to Xc means getting rid of the Poisson jumps, which takes away one of the
exponentials. So we expect that an LDP holds for a lot more state processes in the
Xc case than for the original process X.

7.5.2 The role of reversibility

Our goal now is to show a result that is similar to Proposition 7.17. Indeed, we show
that if an active particle has a state process generated by some generator A, then the
rate function of this active particle is greater (pointwise) than the rate function of the
active particle of which the state process is generated by the symmetric part of A. In
other words: a reversible state process yields a lower rate function. Before we show
this, we will prove the following lemma about a similar result for the rate functions
of the empirical measures corresponding to the state processes.

Lemma 7.26. Let A be a Markov generator with unique ergodic measure µ and let
sym(A) be its symmetric part (in L2(µ)). Denote the rate functions of the corre-

sponding empirical processes by IAe and I
sym(A)
e , respectively. Then for all probability

measures ξ, I
sym(A)
e (ξ) ≤ IAe (ξ).

Proof. Let ξ be a probability measure on S . We set ui =
√
ξi/µi ≥ 0. Also define

for m ∈ N, umi = ui if ui > 0 and umi = 1/m otherwise. Note that umi > 0 for all
i and that um → u in L2(µ) (since it converges pointwise and S is finite). Finally
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note that ξi/u
m
i = µiui for all i. Now, using (7.18), we see that for all m

IAe (ξ) = sup
u′>0
−

n∑
i

ξi
(Au′)i
u′i

≥ −
n∑
i

ξi
(Aum)i
umi

= −
n∑
i=1

µiui(Au
m)i = (u,−Aum).

Therefore, using (7.19), we conclude

IAe (ξ) ≥ lim
m→∞

(u,−Aum) = (u,−Au) = (u,−sym(A)u) = Isym(A)
e (ξ).

Now we use this to prove the following result.

Corollary 7.27. Let A be a Markov generator with unique ergodic measure µ and let
sym(A) be its symmetric part (in L2(µ)). Denote the rate functions of the correspond-
ing active particle processes by IA and Isym(A) and the free energy functions of those
processes by FA and F sym(A), respectively. Then for all α ∈ R : FA(α) ≤ F sym(A)(α)
and for all x ∈ R : Isym(A)(x) ≤ IA(x).

Proof. Since for all ξ, I
sym(A)
e (ξ) ≤ IAe (ξ), it follows that for all α,

sup
ξ

(λ(ϕξ(α)− 1)− γIsym(A)
e (ξ)) ≥ sup

ξ
(λ(ϕξ(α)− 1)− γIAe (ξ)),

so F sym(A)(α) ≥ FA(α). Since this holds for all α, similary it follows that for all x,
Isym(A)(x) ≤ IA(x).

Note that the proof for the higher dimensional case is exactly the same.

Remark 7.28. In the case that F (α) is sufficiently smooth, the limiting diffusion
coefficient (or matrix, in the higher dimensional case) is given by the second derivative,
or, more generally, the Hessian of F (α) in 0. By Corollary 7.27, the free energy
function is dominated by the free energy function of the active particle with state
process generated by the symmetric part pointwise everywhere and they are equal
for α = 0. Therefore we see in that case that the Hessian at 0 (and therefore the
limiting diffusion matrix) is dominated by the Hessian of the symmetric version. This
is consistent with the results of Proposition 7.17 and Corollary 7.19.

7.6 The 2-state case: explicit formulas

In the case where there are just two states, we can compute a lot of things explicitly
with different methods. Therefore this section is dedicated to the active particle
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with two states. In this case the active particle has a position x ∈ Z and a velocity
v ∈ {−1, 1}. The process {(Xt, vt) : t ≥ 0} is described via the generator

Lf(x, v) = λ(f(x+ v, v)− f(x, v))

+ κ(f(x+ 1, v) + f(x− 1, v)− 2f(x, v))

+ γ(f(x,−v)− f(x, v)). (7.26)

This is interpreted as follows: with rate λ the process makes a jump in the direction
of the velocity, with rate κ it makes a random walk jump and with rate γ it flips
velocity v → −v. If we denote by µ(x, t, v) the probability to be at location x ∈ Z
with velocity v ∈ {−1, 1} at time t > 0, the generator (7.26) corresponds to the
master equation (or Kolmogorov forward equation)

dµ(x, t, v)

dt
= λµ(x− v, t, v) + κ(µ(x− 1, t, v) + µ(x+ 1, t, v))

+ γµ(x, t,−v)− (2κ+ λ+ γ)µ(x, t, v). (7.27)

7.6.1 The Fourier Laplace transform of the distribution

The master equation (7.27) can be solved using a Fourier-Laplace transform. We
define

µ̂(q, t, v) =
∑
x

eiqxµ(x, t, v)

and view this quantity as a two-column, denoted µ(q, t, ·) indexed by row index v =
1,−1. The master equation (7.27) then becomes, after a Fourier transform:

d

dt
µ(q, t) = M(q)µ(q, t) (7.28)

with M(q) a symmetric two by two matrix of the form

M(q) =

(
a b
b a∗

)
, (7.29)

where ∗ denotes complex conjugate and where

a = (2κ+ λ)(cos(q)− 1)− γ + iλ sin(q)

b = γ. (7.30)

For the analysis of the scaling behaviour of the position of the particle, it is convenient
to further Laplace transform µ(q, t), i.e. we define for z > 0 the column vector

µ̂(q, z) =

∫ ∞
0

µ(q, t)e−zt dt. (7.31)
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Then, from (7.28) we find

µ̂(q, z) = (zI −M(q))−1µ0(q).

For the initial position and velocity we choose X0 = 0, and v = ±1 with probability
1/2. Then we have, µ0(q) = 1

2 (1, 1)T where T denotes transposition. We further
define the Fourier Laplace transform of the distribution of the particle position:

S(q, z) =

∫ ∞
0

EeiqXte−zt dt =
∑
v

µ̂(q, z, v) = (1, 1)µ̂(q, z).

Then we have, using (7.31)

S(q, z) = (µ̂(q, z, 1)) + (µ̂(q, z,−1)) =
1

2
(1, 1)(zI −M(q))−1(1, 1)T .

Using the explicit formulas (7.29), (7.30), we obtain

S(q, z) =
2γ + z − (λ+ 2κ)(cos(q)− 1)

(γ + z − (λ+ 2κ)(cos(q)− 1))2 − γ2 + λ2 sin2(q)
. (7.32)

For a more general velocity distribution at time zero, i.e., X0 = 0, and v = 1, resp.
v = −1, with probability α, resp. 1− α, we find

S(q, z) =
iλ(2α− 1) sin(q) + 2γ + z − (λ+ 2κ)(cos(q)− 1)

(γ + z − (λ+ 2κ)(cos(q)− 1))2 − γ2 + λ2 sin2(q)
.

7.6.2 The limiting diffusion coefficient

We can now use the explicit formula (7.32) to obtain the limit distribution of εXε−2t

as ε → 0. This amounts to understanding the scaling behaviour of ε2S(εq, ε2z). In
particular εXε−2t → N (0, σ2t) as ε → 0 (in distribution), where N (0, σ2t) denotes a
normal with mean zero and variance σ2t, corresponds to the limiting scaling behaviour

lim
ε→0

ε2S(εq, ε2z) =
1

z + q2

2 σ
2
.

If we obtain this scaling behaviour, we call σ2 the (limiting) diffusion constant. Indeed,
we compute from the exact formula (7.32)

lim
ε→0

ε2S(εq, ε2z) =
1

z + q2

2 σ
2

with the limiting diffusion constant

σ2 = 2κ+ λ+
λ2

γ
. (7.33)

This is consistent with the limiting diffusion coefficient that we obtained in Exam-
ple 7.8.
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7.6.3 Moment generating function and large deviations

We choose the starting point X0 = 0 and with random initial velocity, i.e., v = ±1
with probability 1/2. This allows us to compute the moment generating function via

E(eαXt) =
1

2
(1, 1)etM(−iα)(1, 1)T . (7.34)

This amounts to computing the exponential of the matrix M(q) from (7.29) which
can be done using diagonalisation, and results in

etM(q) =
etA

2γB
G(t, q),

where G(t, q) is given by the symmetric two by two matrix

G(t, q) =

(
A11 A12

A12 A∗11

)
,

where

A11 = −2γλi sin(k) sinh(Bt) + 2γB cosh(tB)

A12 = 2γ2 sinh(tB)

and where

A = (cos(k)− 1)(2κ+ λ)− γ

B =

√
γ2 − λ2 sin2(k).

Moreover, we see from (7.34) that the free energy function

F (α) = lim
t→∞

1

t
logE

(
eαXt

)
is equal to the largest eigenvalue of the symmetric matrix M(−iα), which is explicitly
given by(

(2κ+ λ)(cosh(α)− 1) + λ sinh(α)− γ γ
γ (2κ+ λ)(cosh(α)− 1)− λ sinh(α)− γ

)
.

This gives

F (α) = (2κ+ λ)(cosh(α)− 1) +

√
γ2 + λ2 sinh2(α)− γ, (7.35)

which agrees with (7.25).

Let us look at three relevant limiting cases for the “free energy function” F from
(7.35).
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a) Expanding the free energy function F around α ≈ 0 gives

F (α) =
1

2
Dα2 +O(α4)

with D = 2κ + λ + λ2

γ . This is consistent with the diffusion constant found

in Example 7.8 and in (7.33). The function F (α) in (7.35) can be analytically
extended in a neighbourhood of the origin in the complex plane, and as a con-
sequence, we can reobtain the central limit theorem (which we found via the
scaling behavior of the characteristic function) from the large deviation free
energy, see Bryc [21].

b) In the limit γ →∞ the free energy function becomes

F (α) = (cosh(α)− 1)(2κ+ λ),

which corresponds to the large deviations of a symmetric random walk jumping
with rates κ + λ/2 to the right or left. This is indeed the (slow-fast) scaling
limit of the process as we saw before. For large values of γ we have

F (α) = (cosh(α)− 1)(2κ+ λ) +
λ2

2γ
sinh2(α) + o(1/γ).

Remark also that F in (7.35) is non-increasing as a function of γ.

c) In the continuum limit we rescale λ→ ελ, γ → ε2γ, Xt → εXε−2t, we find

lim
ε→0

lim
t→∞

1

t
logEελ,ε

2γ
(
eαεXε−2t

)
= κα2 +

√
γ2 + λ2α2 − γ2, (7.36)

which corresponds to the large deviation free energy of the continuum model
(see also Pietzonka et al. [124]), i.e., the limits ε → 0 and t → ∞ in (7.36)
commute.

7.7 Notes and perspectives

In this chapter we obtained the diffusion coefficient for an active particle process
with a quite general underlying internal state process. In the case of a finite internal
state space, we also obtained the large deviations rate function. Moreover, we found
that both the diffusion coefficient and the large deviation free energy are maximal for
reversible internal state processes. Here we will point to some possible generalisations
and further questions to study.

First, as we just mentioned, to study the behaviour of the diffusion constant and
to obtain the large deviations rate function we restricted ourselves to finite internal
state spaces. The reasons for this are mostly computational. Moreover, the goal of
this chapter was not to find the most general results for the diffusion coefficient or
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the large deviations rate function, but rather to find expressions that we can work
with and to analyse their behaviour. However, we do not see a reason why these
results would not hold in more generality. In fact, we have seen that also in the case
where the internal state process is a multidimensional Ornstein-Uhlenbeck process, the
reversible process maximises the diffusion coefficient. Therefore it could be interesting
to repeat the proof of Proposition 7.17 for non-finite state spaces, or, in other words,
for general Markov generators. For the large deviations result some extra attention
has to be paid in the non-finite case to see when the free energy is finite, see also
Remark 7.25.

Further, the process that is considered in this chapter could be generalised by letting
the dynamics of the internal state process depend on the position of the particle and
possibly also on time. Of course in this case the rescaled process will not converge to
Brownian motion, but will in the limit probably satisfy an SDE. However, it might be
possible also in that case to analyse how this limiting SDE depends on the internal
state process. In particular we could call the state process reversible if it is reversible
for fixed values of the position of the particle. Then we can try to use the insights
from this chapter to see how the limiting SDE depends on this reversibility.

Another interesting further step would be to let the state process be a metastable
process. An easy example can be constructed by letting the state evolve with rate of
order N between clusters of states and with rate N2 within those clusters. If time is
rescaled in such a way that the jumps between clusters happen on a macroscopic time
scale and the jump within clusters on a microscopic time scale, the active particle
should scale to a Brownian motion process that has a varying diffusion constant.
The constant will depend on the cluster of the current state and will switch after
exponential times, when the state switches to different clusters. After considering
these somewhat artificial examples, one can probably show similar results for more
general metastable state processes.

Appendix

Integral approximation in L2(P)

First we show how it follows from Assumption (7.2) that the integral (7.3) is well-
defined. An alternative more abstract way to establish the well-definedness of this
integral is as follows. From Assumption (7.2) follows that vγs admits a càdlàg version
and hence the integral can be interpreted as an ordinary Riemann-Stieltjes integral
of a càdlàg function against an integrator of bounded variation.

Lemma 7.29. Let Ws be Ns, Ns or λs. Then Assumption (7.2) implies that

lim
n→∞

n∑
i=1

vγsi(Wsi+1
−Wsi) =:

∫ t

0

vγs dWs, (7.37)
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exists as a limit in L2(P) and the si = sni are partitions of [0, t] of which the mesh
sizes go to 0.

Proof. Without loss of generality, set γ = 1. By linearity it suffices to let W be
either N or Ws = s. By the completeness of L2(P), it suffices to show that for
each ε > 0 there exists δ > 0 such that if the meshes of two partitions are under δ,
the L2-distance between the corresponding Riemann sums is smaller than ε. Indeed,
this implies both that for each sequence of partitions (with mesh going to 0), the
Riemann sums form a Cauchy sequence in L2(P) (and hence has a limit) and that
every sequence of partitions yields the same limit.

Let ε > 0. Choose δ > 0 such that for all 0 ≤ s, s′ ≤ t with |s−s′| < δ, E[(vs−vs′)2] ≤
ε.

Now let s1 = (s1
i )
n
i=0 and s2 = (s2

i )
m
i=0 denote partitions of [0, t]. Assume that s1 is

such that mesh(s1) ≤ δ and that s2 is a refinement of s1. Denote by s1
i∗ the largest

partition element of s1 that is smaller than or equal to s2
i and note that for all i,

|s2
i − s1

i∗| ≤ mesh(s1) ≤ δ. In particular for all i, j, using Cauchy-Schwarz,

|E[(vs2i − vs1i∗)(vs2j − vs1j∗)]| = |Cov(vs2i − vs1i∗ , vs2j − vs1j∗)| ≤
√
ε2 = ε.

Now

m−1∑
i=0

vs2i (Ws2i+1
−Ws2i

)−
n∑
i=1

vs1i (Ws1i+1
−Ws1i

) =

m−1∑
i=0

(vs2i − vs1i∗)(Ws2i+1
−Ws2i

).

Therefore,

E

(
m−1∑
i=0

vs2i (Ws2i+1
−Ws2i

)−
n∑
i=1

vs1i (Ws1i+1
−Ws1i

)

)2

=

m−1∑
i,j=0

E
[
(vs2i − vs1i∗)(Ws2i+1

−Ws2i
)(vs2j − vs1j∗)(Ws2j+1

−Ws2j
)
]
. (7.38)

In case W = N , using the independence of v and N and the fact that N has increments
with expectation 0, (7.38) equals

m−1∑
i=0

E(vs2i − vs1i∗)
2E(Ws2i+1

−Ws2i
)2 ≤

m−1∑
i=0

ελ(s2
i+1 − s2

i ) = λtε.

In the case Ws = s, (7.38) equals

m−1∑
i,j=0

E
[
(vs2i − vs1i∗)(vs2j − vs1j∗)

]
(s2
i+1 − s2

i )(s
2
j+1 − s2

j )

≤
m−1∑
i,j=0

ε(s2
i+1 − s2

i )(s
2
j+1 − s2

j ) = λt2ε.
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Set C = max(λt, t2). Then in both cases

E

(
m−1∑
i=0

vs2i (Ws2i+1
−Ws2i

)−
n∑
i=1

vs1i (Ws1i+1
−Ws1i

)

)2

≤ Cε,

so the L2 distance between the Riemann sums is smaller than
√
Cε. Now if s1 and

s2 are any partitions of [0, t] with mesh smaller than δ (so if it is not necessarily the
case that one is a refinement of the other), let s3 be a refinement of both. Then
mesh(s3) ≤ δ, so the Riemann sum corresponding to s3 is close to the Riemann sums
of both s1 and s2. Now the triangle inequality gives the desired result.

Properties of the symmetric part of a Markov generator

Since we want to compare a Markov generator with its symmetric part, we will intro-
duce this symmetric part and show some of its relevant properties in the next lemma.
In particular, the symmetric part is again a Markov generator.

Lemma 7.30. Let A be a Markov generator with unique ergodic measure µ on a finite
state space and denote by A∗ its adjoint in L2(µ). Assume that µ has full support.
Then sym(A) := (A+A∗)/2 is also a Markov generator with unique ergodic measure
µ. Moreover sym(A) is reversible with respect to µ.

Proof. Denote by ei the ith unit vector. Then for every matrix B

(ei, Bej) =

n∑
k=1

eik(Bej)kµk = Bijµk.

Therefore

sym(A)ij =
1

µi
(ei, sym(A)ej) =

1

2µi
((ei, Aej) + (ej , Aei)) =

1

2µi
(µiAij + µjAji).

(7.39)
Since Aij ≥ 0 for all i 6= j, (7.39) implies that sym(A)ij ≥ 0 for i 6= j. Also, setting
i = j, we obtain sym(A)ii = Aii ≤ 0.

Since µ is a stationary distribution for A, we know that for all v,

(A∗1, v) = (1, Av) =

∫
Avdµ = 0,

so A∗1 = 0. Therefore

sym(A)1 =
1

2
(A1 +A∗1) = 0.

We conclude (so far) that sym(A) has negative diagonal elements, positive off-diagonal
elements and 0 row sums, so sym(A) is a Markov generator.
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By construction, sym(A) is self-adjoint in L2(µ), so sym(A) is reversible with respect
to µ and in particular µ is stationary for sym(A).

Finally, since A has a unique ergodic measure with full support, (the Markov process
generated by) it is irreducible. Since (by (7.39)) for all i, j, Aij 6= 0 =⇒ sym(A)ij 6=
0, this implies that also (the Markov process generated by) sym(A) is irreducible.
Therefore it can have at most one invariant measure, which implies that µ is the
unique invariant measure and hence the unique ergodic measure.





Conclusions

We concluded each chapter of this thesis with notes and perspectives on the results
of the chapter. We mean to avoid repetition of those comments here. However, we do
want to collect some of the overarching themes and make some concluding remarks
as to the goal of the thesis as a whole.

As we wrote in the introduction (in Section 1.7), the goal of this thesis was to make
the first steps in studying interacting particle systems and discrete random fields like
the DGFF on manifolds. We believe that we have been successful in this goal. Indeed,
we succeeded to define SEP and the DGFF on compact manifolds in such a way that
we were able to replicate or generalise important results from the flat case. These
results are new and form an important first step towards a more general theory of
interacting particle systems and discrete random fields on manifolds.

The backbone of the results of the Chapters 4 through 6 is provided by the uniformly
approximating grids that we constructed in Chapter 3. The most important property
of these grids is that the graph Laplacians converge uniformly in the grid points to
the Laplace-Beltrami operator. This is the key ingredient that we used to first derive
the hydrodynamic limit and then also the equilibrium fluctuations for SEP. From the
convergence of the graph Laplacians, we could additionally derive the convergence of
the corresponding semigroups and eventually the Green’s functions, which allowed us
to prove convergence of the DGFF to the GFF.

This observation leads us to three main next steps that we recommend to further
strengthen and expand our results. First, as we noted above, we rely on the conver-
gence of the graph Laplacians in a somewhat strong sense: pointwise convergence,
or even uniformly in the grid points. As we noted in Chapter 3 (Remark 3.2), this
requires a certain symmetry of the grid around each grid point. The way that we
obtain this symmetry is by letting the amount of points that a particle can jump to
in a single jump go to infinity. It would be natural to use a more nearest-neighbour
kind of grid. To get the same results with such grid will probably require methods
that only rely on the convergence of the graph Laplacians in a weaker sense or maybe
just on convergence of for instance the semigroups. As we pointed out before (in
Section 6.5), the DGFF might be the most logical first candidate for such approach.
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Second, in our analysis of SEP we used that it directly yields a closed hydrodynamic
equation. For more general systems, one needs results such as one block and two block
estimates where quantities are replaced by averages (as we mentioned in Section 4.5).
For a more general theory of interacting particle systems on manifolds, it would
therefore be good to investigate how such results can be obtained. The most important
difficulty to overcome here is the lack of translation invariance.

This brings us to the third point. When studying these models on manifolds, one
encounters many examples of nice properties of flat spaces in general and of lattice-
like grids in particular that are not available on a manifold. Some of these are mostly
technical, but one particularly conceptually challenging aspect of manifolds is the lack
of translation invariance and even of translation itself. For this reason it would be
interesting to generalise any result that usually relies on translation invariance to the
manifold case. Here one can think of the one block and two block estimates that
we just mentioned, but also of a result on a tagged particle (like we mentioned in
Section 4.5).



Appendix A

Invariance principle for
geodesic random walks

Let M be an n-dimensional, compact and connected Riemannian manifold. Then
we know that M is complete and hence geodesically complete. The main purpose of
this section is to define the geodesic random walk and to show that it approximates
Brownian motion when appropriately rescaled (in time and space). Such random
walks and this so-called invariance principle have been studied in Jørgensen [93] and
in a special case Blum [17]. The results in this Appendix were obtained in van Ginkel
[148] and were published in the current form in van Ginkel and Redig [149]. The main
reason for including these results in the Appendix of this thesis is for completeness,
since they are tailor-made to apply them in Chapter 3. In particular, general assump-
tions are obtained on the jumping distributions of the geodesic random walk for it to
converge to Brownian motion. In Section A.1, we define the geodesic random walk
and show convergence of the generators to the generator of Brownian motion under
certain assumptions on the jumping distributions. Section A.2 is devoted to finding
out which distributions satisfy these assumptions.

A.1 Convergence of the generators

The process
Let {µp, p ∈M} be a collection of positive, finite measures where each µp is a measure
on TpM . The measure µp represents the rate to jump in a particular direction of TpM .
More precisely, the Markov process XN = {XN

t , t ≥ 0} associated to {µp, p ∈ M}
has generator

LNf(p) =

∫
TpM

f(p(1/N, η))− f(p)µp(dη),

191
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p0

η0
p1

η1

p2

η2

p3

η3

p4

M = S2

Figure A.1: Left: geodesic random walk on a sphere. Right: Brownian motion on a
sphere (source: https://en.wikipedia.org/wiki/Brownian_motion, picture made
by Christian Bayer and Thomas Steiner).

where for a vector ξ ∈ TpM we denote the geodesic through p with tangent vector ξ
at p by p(·, ξ). We denote the corresponding semigroup by

SNt f(p) = Epf(XN
t ).

Both of these have the continuous functions on the manifold C(M) as their domain.

We interpret this process as follows. When the process XN is at a point p, it chooses
a random direction η from TpM with rates given by µp (i.e. it waits for an exponen-
tial time with rate µp(TpM) and then independently picks a vector according to the
probability distribution

µp
µp(TpM) ). Then the process jumps to the position p(1/N, η)

that is reached by following the geodesic through p in the direction of η for time 1
N .

This situation is sketched in figure A.1. We assume that choosing random directions
happens independently. In this Section we will specify restrictions that the measures
µp should satisfy. Later (in Section A.2), we will show that we can take µp to be for
instance the uniform distribution on the unit tangent vectors at p.

The Rn case
Before we go into the general case, we illustrate the above in Rn. In Rn the exponen-
tial map is simply addition if we identify TpRn with Rn itself. So in that case from a
point p the process moves to p(1/N, η) = p+ 1

N η where η is chosen from TpRn = Rn
randomly. This means that the discrete time jumping process when jumping as de-
scribed above, can be denoted by SNm =

∑m
i=1

1
N ηi = 1

N

∑m
i=1 ηi where ηj is drawn
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from TSj−1
Rn = Rn according to some distribution. Now let {Nt, t ≥ 0} be a Poisson

process with rate one and define XN
t = SNt . Then X makes the same jumps as S,

but after independent exponential times. We see that XN = {XN
t , t ≥ 0} satisfies the

description above. Now the invariance principle tells us that under some conditions
on the jumping rates XN

tN2 → Bt in distribution as N goes to infinity, where B is
Brownian motion. We show the analogous result in the more general setting of a
manifold.

Aim
We denote the Laplace-Beltrami operator on the manifold by ∆M . The rest of this
section will be devoted to the proof of the following result.

Proposition A.1. Suppose that in the situation above we have:

• supp∈M supη∈suppµp ||η|| <∞

• supp∈M µp(TpM) <∞

•
∫
ηiµp(dη) = 0 and

∫
ηiηjµp(dη) = gij(p) in each coordinate system around p

Then for f ∈ C∞: N2LNf → 1
2∆Mf uniformly on M .

The first assumption requires that the supports of the measures and their total masses
are bounded uniformly over all points of the manifold. We will loosely say that the
measures are uniformly compactly supported and uniformly finite. Since C∞(M) is a
core for 1

2∆M (Strichartz [142]), the Trotter-Kurtz theorem (see Kurtz [102]) implies
the following corollary.

Corollary A.2. In the situation of Proposition A.1 the geodesic random walk con-
verges to Brownian motion in distribution in D([0,∞),M) (the space of càdlàg maps
[0,∞)→M).

Note that if we denote the random variable corresponding to µp by ζp, the sec-
ond requirement of Proposition A.1 is that (in any coordinate system) Eζip = 0 and

Cov(ζip, ζ
j
p) = gij(p). This shows that the mean vector m of ζp satisfies m = 0 and

the covariance matrix Σ satisfies Σ = (gij)(p). In Rn, this simplifies to Eζip = 0 and

Cov(ζip, ζ
j
p) = δij . This is satisfied for instance when µp is the uniform distribution on

the sphere with radius
√
N in Rn. Section A.2 deals with the question which measures

satisfy the restrictions above. Some examples will be given at the end of that section
as well.

Remark A.3. Although we study the jumping distributions later, something that
can already be seen now, is that we do not require any relation between jumping
measures at different points of the manifold (apart from the uniform bounds on the
support and the total mass). This means that our result does not require the jumping
measures to be identically distributed, so it really generalises Jørgensen [93].



194 Invariance principle for geodesic random walks

Choosing suitable charts
Let f be a fixed smooth function from now on. Since we want the convergence
N2LNf → 1

2∆Mf to be uniform on M , we cannot just consider this problem point-
wise. To deal with this, we will choose specific coordinate charts.
Let ρ denote the original metric of the manifold and let d denote the metric that
is induced by the Riemannian metric. Recall that these metrics induce the same
topology. This means that we do not cause confusion when we speak about open
and closed sets, continuous maps and compactness without explicitly mentioning the
metric. For each p ∈M , let (xp, Up) be a coordinate chart for M around p. Up is open
with respect to ρ and hence with respect to d. This means that there is some εp > 0

such that Gp := Bd(p, εp) ⊂ Up. Now define Op = Bd(p, ε/2). Since M is compact,
we can find p1, .., pm such that M ⊂ ∪iOpi . We have the following easy statement.

Lemma A.4. Let (gk)∞k=1 and g be functions M → R. If gk → g uniformly on each
Opi , then gk → g uniformly on M .

Proof. Let ε > 0. For each i there is an Ni ∈ N such that for all k ≥ Ni :
supOpi

|gk(q) − g(q)| < ε. Set N = max1≤i≤mNi and let q ∈ M . Then there is

a j such that q ∈ Opj . Now for all k ≥ N , we see k ≥ Nj , so |gk(q) − g(q)| ≤
supOpi

|gk(s) − g(s)| < ε. This shows that supM |gk(q) − g(q)| ≤ ε. Hence gk → g
uniformly on M .

Now let j ∈ {1, ..,m} be fixed. Call O := Opj , ε := εpj , x := xpj , G := Gpj and
U := Upj (this situation is shown in figure A.2). Because of the lemma, it suffices to
show that N2LNf → 1

2∆Mf uniformly on O.

Technical considerations
To obtain good estimations later, we will need that p(s, η) is still in our coordinate
system (x, U) and even in the set G when |s| ≤ 1

N for N large enough. Since the
convergence must be uniform, how large N must be can not depend on the point p.
The following lemma tells us how to choose such N .

Lemma A.5. Call K = supp∈M supη∈suppµp ||η|| < ∞ (by assumption). Choose

Nε ∈ N such that 1
Nε

< ε
2K . Then for all p ∈ O and N ≥ Nε we see

∀|s| ≤ 1

N
: p(s, η) ∈ G.

Proof. Let N ≥ Nε and let p ∈ O. The situation of the proof is visually represented
in figure A.2. Fix s ∈ (− 1

N ,
1
N ). Without loss of generality assume s > 0. Note that

the speed of the geodesic p(·, η) equals ||η||, so at time s, it has traveled a distance
s||η|| from p. This means that there is a path of length s||η|| from p(s, η) to p, so
d(p(s, η), p) ≤ s||η|| ≤ 1

NK ≤
1
Nε
K < ε/2. Since p ∈ O, we know d(p, pj) < ε/2. Now
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the triangle inequality shows that d(pj , p(s, η)) ≤ d(pj , p)+d(p, p(s, η)) < ε/2+ ε/2 =
ε. This implies that p(s, η) ∈ Bd(pj , ε) ⊂ G.

Fix Nε as in the lemma and take N larger than Nε.

U

pj

G

ε

O

ε
2

p

ε
2

pη

Figure A.2: The chart (x, U) with closed ball G and open ball O around pj . As is
shown in Lemma A.5, pη = p(t, η) does not leave the ball around p with radius ε/2,
as long as |t| ≤ 1/N for N ≥ Nε. The importance for uniformity is that it does not
matter where we choose p (in O).

Taylor expansion
Now fix p ∈ O and η ∈ TpM . Write pη for the map R → M that takes t to p(t, η).
We can locally write f ◦ pη = (f ◦ x−1) ◦ (x ◦ pη), which is a composition of smooth
maps. This means that f ◦ pη is just a smooth map R → R, so we can use a Taylor
expansion and obtain

f(p(1/N, η)) = f(p) +
1

N

d(f ◦ pη)

dt
(0) +

1

2N2

d2(f ◦ pη)

d2t
(0) +

1

6N3

d3(f ◦ pη)

d3t
(tN,η,p),



196 Invariance principle for geodesic random walks

where tN,η,p ∈ (0, 1/N) is a number depending on N , η and p. This gives us

N2LNf(p) = N2

∫
Mp

f(p(1/N, η))− f(p)µp(dη)

= N2

∫
1

N

d(f ◦ pη)

dt
(0) +

1

2N2

d2(f ◦ pη)

d2t
(0)

+
1

6N3

d3(f ◦ pη)

d3t
(tN,η,p)µp(dη)

= N

∫
d(f ◦ pη)

dt
(0)µp(dη) +

1

2

∫
d2(f ◦ pη)

dt2
(0)µp(dη)

+
1

6N

∫
d3(f ◦ pη)

dt3
(tN,η,p)µp(dη). (A.1)

We will examine these terms separately.

The first term
Recall that p ∈ O and that O is contained in a coordinate chart (x, U). Since N ≥ Nε,
Lemma A.5 guarantees us that p(s, η) stays in the coordinate chart for |s| < 1

N . Writ-

ing η =
∑n
i=1 η

i ∂
∂xi |p, we see for |s| < 1

N :

d(f ◦ pη)

dt
(s) =

d

dt
[(f ◦ x−1) ◦ (x ◦ pη)](s)

=

n∑
i=1

Di(f ◦ x−1)(x(pη(s))
d(xi ◦ pη)

dt
(s)

=

n∑
i=1

∂f

∂xi
(pη(s))

d(xi ◦ pη)

dt
(s).

Now setting s = 0, this becomes:

n∑
i=1

∂f

∂xi
(p)ηi =

n∑
i=1

ηi
∂

∂xi
|pf = η(f),

since pη(0) = p(0, η) = p and the tangent vector to the geodesic p(·, η) at 0 is η (so
the ith coordinate with respect x is just ηi). Now the first term of (A.1) becomes:

N

∫
η(f)µp(dη) = N

∫ n∑
i=1

ηi
∂

∂xi
|pfµp(dη) = N

n∑
i=1

∂

∂xi
|pf
∫
ηiµp(dη).

By assumption these integrals are 0. This shows that the first term of (A.1) vanishes.

The second term
Now we want to show that the remaining term equals 1

2∆Mf(p). Similarly to above
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we see for |s| < 1
N (leaving out the arguments to keep things clear):

d2(f ◦ pη)

dt2
=

d

dt

n∑
i=1

∂f

∂xi
d(xi ◦ pη)

dt

=

n∑
i=1

{(
d

dt

∂f

∂xi

)
d(xi ◦ pη)

dt
+
∂f

∂xi

(
d

dt

d(xi ◦ pη)

dt

)}

=

n∑
i=1


n∑
j=1

∂2f

∂xj∂xi
d(xj ◦ pη)

dt

d(xi ◦ pη)

dt
+
∂f

∂xi
d2(xi ◦ pη)

dt2

 .

Since pη is a geodesic, we know that it satisfies the geodesic equations. This shows
that for each i = 1, .., n we have

d2(xi ◦ pη)

dt2
+

n∑
k,l=1

Γikl
d(xk ◦ pη)

dt

d(xl ◦ pη)

dt
= 0.

Using this yields the following expression for the second derivative:

n∑
i=1


n∑
j=1

∂2f

∂xj∂xi
d(xj ◦ pη)

dt

d(xi ◦ pη)

dt
− ∂f

∂xi

n∑
k,l=1

Γikl
d(xk ◦ pη)

dt

d(xl ◦ pη)

dt

 ,

so

d2(f ◦ pη)

dt2
(0) =

n∑
i=1


n∑
j=1

∂2f

∂xj∂xi
(p)ηjηi − ∂f

∂xi
(p)

n∑
k,l=1

Γikl(p)η
kηl

 .

Using linearity of the integral, we obtain the following expression for the second term
of (A.1):

1

2

n∑
i=1


n∑
j=1

∂2f

∂xi∂xj
(p)

∫
ηiηjµp(dη)− ∂f

∂xi
(p)

n∑
k,l=1

Γikl(p)

∫
ηkηlµp(dη)

 .

Note that we also changed the order of the derivatives of f , this can be done since f
is smooth. Now we want the term above to equal

1

2
∆Mf(p) =

1

2

{
gij

∂2f

∂xixj
− gklΓikl

∂f

∂xi

}

=
1

2

n∑
i=1


n∑
j=1

∂2f

∂xi∂xj
(p)gij(p)− ∂f

∂xi
(p)

n∑
k,l=1

Γikl(p)g
kl(p)

 .

This is true, since we required that for any coordinate chart around p and for all i, j:∫
Mp

ηiηjµp(dη) = gij(p).
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The rest term
If the last term goes to 0 uniformly on O, we have the result. Let N still be larger
then Nε.∣∣∣∣ 1

6N

∫
d3(f ◦ pη)

dt3
(tN,η,p)µp(dη)

∣∣∣∣ ≤ 1

6N

∫ ∣∣∣∣d3(f ◦ pη)

dt3
(tN,η,p)

∣∣∣∣µp(dη)

≤ K ′

6N
sup

η∈suppµp

∣∣∣∣d3(f ◦ pη)

dt3
(tN,η,p)

∣∣∣∣
whereK ′ = supp∈M µp(TpM) <∞ (by assumption). We know that tN,η,p ∈ [0, 1/N ] ⊂
[0, 1/Nε]. This means that the above is smaller than:

K ′

6N
sup

η∈suppµp

sup
t∈[0,1/Nε]

∣∣∣∣d3(f ◦ pη)

dt3
(t)

∣∣∣∣ ≤ K ′

6N
sup

η:||η||≤K
sup

t∈[0,1/Nε]

∣∣∣∣d3(f ◦ pη)

dt3
(t)

∣∣∣∣ .
Because of the 1/N in front of the equation, we only need to know that the rest
is uniformly bounded to obtain uniform convergence. It thus suffices to show that
d3(f◦pη)

dt3 (t) is bounded as a function of η with ||η|| < K and t ∈ [0, 1/Nε]. Lemma A.5
shows that p(t, η) stays in G for all such η and t. We will use this fact multiple times.

We first express d3(f◦pη)
dt3 in local coordinates for |t| ≤ 1/N .

d3(f ◦ pη)

dt3
=

d

dt

d2(f ◦ pη)

dt2

=
d

dt

n∑
i=1


n∑
j=1

∂2f

∂xj∂xi
d(xj ◦ pη)

dt

d(xi ◦ pη)

dt
+
∂f

∂xi
d2(xi ◦ pη)

dt2

 . (A.2)

To make notation more compact, we introduce the following notation (and fi, fijk
analogously):

fij :=
∂2f

∂xj∂xi
, pik :=

dk(xi ◦ pη)

dtk
.

Combining this with Einstein summation, we can write (A.2) as

d

dt
(fijp

i
1p
j
1 + fip

i
2) = (fijkp

k
1)pi1p

j
1 + fij(p

i
1p
j
2 + pi2p

j
1) + (fijp

j
1)pi2 + fip

i
3

= fijkp
k
1p
i
1p
j
1 + fij(p

i
1p
j
2 + 2pi2p

j
1) + fip

i
3.

Now, as before, we can deal with second derivatives of geodesics using the geodesic
equations:

pi2 = −Γirsp
r
1p
s
1.

We can also calculate the third derivative:

pi3 =
d

dt
pi2 =

d

dt
(−Γirsp

r
1p
s
1) = −

(
d

dt
Γirs

)
pr1p

s
1 − Γirs(p

r
1p
s
2 + pr2p

s
1).
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This shows us that d3(f◦pη)
dt3 is a combination of products and sums of the following

types of expressions: fi, fij , fijk, pi1, Γirs and d
dtΓ

i
rs. If we can bound all of these on

the right domains (independent of p and η), we are done.

Bounding fi, fij and fijk
First of all, note that f is a smooth function on U . Further, ∂i defines smooth vector
field on U . Since fi = ∂f

∂xi is obtained by applying ∂i on U to f , it is a smooth function
on U . Continuing in this way, we see that fij and fijk are also smooth functions on
U . In particular, they are smooth functions on G (since it is a subset of U). G is
a closed subset of the compact M and is hence compact itself. This implies that fi,
fij and fijk are (for each choice of i, j, k) bounded on G. Since we evaluate these
functions in the points p(s, η) for 0 ≤ s ≤ 1/N , N ≥ Nε and ||µ|| ≤ K, our discussion
above shows that we only evaluate them in points of G. This means that we have
found bounds for fi, fij and fijk.

Bounding pi1
We start with a technical lemma.

Lemma A.6. Let q ∈M and let (y, V ) be a coordinate chart around q. Let v ∈ TqM
and write v = vi∂i. Then |vi| ≤

√
gii(q)||v||.

Proof. Fix some 1 ≤ i ≤ n. We see in the tangent space at q:〈
v, gij∂j

〉
=
〈
vk∂k, g

ij∂j
〉

= vkgijgkj = vkδik = vi.

Further,
||gij∂j ||2 =

〈
gij∂j , g

ik∂k
〉

= gijgikgjk = gijδij = gii.

Using the relations above and the Cauchy-Schwarz inequality, we obtain:

|vi| = |
〈
v, gij∂j

〉
| ≤ ||v|| · ||gij∂j || =

√
gii||v||.

Now we can use this to show the following.

Lemma A.7. |pi1(t)| =
∣∣∣d(xi◦pη)

dt (t)
∣∣∣ ≤√gii(p(t, η))||η||.

Proof. The first equation is just a change of notation. Further we see

d(xi ◦ pη)

dt
=

(
pη∗

d

dt

)
(xi) =

dpη

dt
(xi) =

(
dpη

dt

)i
.

This means that d(xi◦pη)
dt is just the ith coordinate with respect to (x, U) of the tangent

vector to pη at time t so at the point p(t, η) ∈M . Using Lemma A.6, we see∣∣∣∣d(xi ◦ pη)

dt
(t)

∣∣∣∣ ≤√gii(p(t, η))

∣∣∣∣∣∣∣∣dpηdt

∣∣∣∣∣∣∣∣ . (A.3)
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Since pη is a geodesic, it has constant speed. Its speed at p is ||η||, so this must be its

speed anywhere else along the trajectory. Hence ||dp
η

dt || = ||η||. Inserting this in (A.3)
yields the result.

We can now easily obtain a bound for pi1. For 0 ≤ t ≤ 1/N and ||η|| ≤ K, we know
p(t, η) stays in G. gii is a smooth and hence continous function on U , so it is bounded
on G (since G is compact). This means that

√
gii(p(t, η)) is bounded by some Ki for

||η|| ≤ K and 0 ≤ t ≤ 1/N . Now we see |pi1| ≤
√
gii(p(t, η))

∣∣∣∣∣∣dpηdt

∣∣∣∣∣∣ ≤ KiK.

Bounding Γirs and d
dtΓ

i
rs

Each gij is a smooth function on U . This means that
∂gij
∂xk

is a smooth function on U .
This implies that Γirs is just combination of products and sums of smooth functions,
so it is smooth itself. Now, as before, Γirs is bounded on G. Since we only evaluate
it in p(t, η) with 0 ≤ t ≤ 1/N and ||η|| ≤ K, we only evaluate it in G, so we have
bounded Γirs.
Now d

dtΓ
i
rs can be written as

d

dt
Γirs =

∂Γirs
∂xj

d(xj ◦ pη)

dt
= (Γirs)jp

j
1,

with notation as above. Since Γirs is smooth function U → R, this expression can be
bounded in exactly the same way as expressions like fjp

j
1 above.

A.2 Stepping distribution

Constraints for a stepping distribution
The question now is which distributions µp on TpM satisfy the assumptions of Propo-
sition A.1. From here on we fix p ∈ M and simply write µ for µp. Being compactly
supported and finite are rather natural constraints, but the other assumptions are
harder, especially since they involve local coordinates. In this section we address the
question which distributions satisfy the other assumptions, i.e. for every coordinate
system around p: ∫

ηiµ(dη) = 0 ∀i = 1, .., n∫
ηiηjµ(dη) = gij ∀i, j = 1, .., n.

(A.4)

To generalise this a bit, suppose µ satisfies the following for some c > 0 for every
coordinate system: ∫

ηiµ(dη) = 0 ∀i = 1, .., n∫
ηiηjµ(dη) = cgij ∀i, j = 1, .., n.

(A.5)
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Following the proof in the previous section, one sees directly that in this case the
generators converge to the generator of Brownian motion that is speeded up by a
factor c. We will look into this generalised situation and at the end we will see how
to determine c.

Independence of (A.5) of coordinate systems
The following lemma shows that if (A.5) holds for a single coordinate system, it holds
for any coordinate system.

Lemma A.8. If (A.5) holds for some c > 0 and for some coordinate system (x, U)
around p, then it holds for the same c for all coordinate systems around p.

Proof. Let (x, U) be a coordinate system around p for which (A.5) holds with c > 0
and let (y, V ) be any other coordinate system around p. It suffices to show that (A.5)
holds with the same c for y. Denote the metric matrix with respect to x by g and the
one with respect to y by ĝ. For any η ∈ TpM define η1, .., ηn as the coefficients of η
with respect to x, so such that η =

∑
i η
i ∂
∂xi . Analogously let η̂1, .., η̂n be such that

η =
∑
i η̂
i ∂
∂yi . Let J = ∂(x1,..,xn)

∂(y1,..,yn) . If η ∈ TpM , then

η̂j = η(yi) =
∑
i

ηi
∂

∂xi
yi =

∑
i

ηi
∂yj

∂xi
.

This shows that for any j∫
η̂jµ(dη) =

∫ n∑
i=1

ηi
∂yj

∂xi
µ(dη) =

n∑
i=1

∂yj

∂xi

∫
ηiµ(dη) = 0,

since for any i:
∫
ηiµ(dη) = 0. Moreover, for any i, j:

∫
ηiηjµ(dη) = cgij , so for any

i, j: ∫
η̂iη̂jµ(dη) =

∫ n∑
k=1

ηk
∂yi

∂xk

n∑
l=1

ηl
∂yj

∂xl
µ(dη) =

n∑
k,l=1

∂yi

∂xk
∂yj

∂xl

∫
ηkηlµ(dη)

=

n∑
k,l=1

∂yi

∂xk
∂yj

∂xl
cgkl = c(J−1G−1(J−1)T )ij .

Since J−1G−1(J−1)T = J−1G−1(JT )−1 = (JTGJ)−1 = Ĝ−1, we see that
∫
η̂iη̂jµ(dη) =

cĝij . We conclude that (A.5) holds for y with the same c.

Orthogonal transformations and canonical measures
We now introduce a class of measures.
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Definition A.9. Let V be an inner product space and let T be a linear map V → V .
We call T an orthogonal transformation if for any u, v ∈ V : 〈Tu, Tv〉 = 〈u, v〉.
We call a measure µ on TpM canonical if for any orthogonal transformation T on
TpM and for any coordinate system:∫

ηiµ(dη) =

∫
(Tη)iµ(dη) and

∫
ηiηjµ(dη) =

∫
(Tη)i(Tη)jµ(dη).

Remark A.10. In the same way as above, one can show that µ has the property above
with respect to some coordinate system if and only if it has the property with respect
to every coordinate system. Moreover, since −I always satisfies (−I)TG(−I) = G,
we see that

∫
ηiµ(dη) =

∫
(−η)iµ(dη) =

∫
−ηiµ(dη) = −

∫
ηiµ(dη), so

∫
ηiµ(dη) is 0

for any canonical µ.

In words, µ is canonical if orthogonal transformations do not change the mean vec-
tor and the covariance matrix of a random variable that has distribution µ. Re-
mark A.10 shows that in fact the mean vector must be 0. Note that in particular
measures that are invariant under orthogonal transformations are canonical, since
then

∫
(Tη)iµ(dη) =

∫
ηi(µ ◦ T−1)(dη) =

∫
ηiµ(dη) and the other equation follows

analogously. However a simple example shows that the converse is not true. Let
M = R and let µ be any non-symmetric distribution on TpM = R with mean 0. The
only orthogonal transformation (apart from the identity) is t 7→ −t. Under this trans-
formation the mean (which is 0) and the second moment are obviously left invariant,
but µ is not symmetric, so it is not invariant. We will give an example for Rn later.

If (x, U) is some coordinate system around p and G = (gij) is the matrix of the
metric in p with respect to x, we can write a linear transformation T : TpM → TpM
as a matrix (which we will also call T ) with respect to the basis ∂

∂x1 , ..,
∂
∂xn . We see

that

〈Tη, Tξ〉 =
∑
i,j

gij(Tη)i(Tξ)j =
∑
i,j

gij
∑
k

Tikη
k
∑
l

Tjlξ
l

=
∑
k,l

∑
i,j

gijTikTjl

 ηkξl.

If T is orthogonal, this must equal

〈η, v〉 =
∑
k,l

gklη
kξl,

so we see that gkl =
∑
i,j gijTikTjl = (TTGT )kl and hence G = TTGT .

Now for a measure µ on TpM and a coordinate system (x, U), define the vector Aµ
and the matrix Bµ by Aiµ =

∫
ηiµ(dη) and Bijµ =

∫
ηiηjµ(dη). Then we have the

following.



A.2. Stepping distribution 203

Lemma A.11. Let µ be a measure on TpM . Then the following are equivalent.

(i) µ is canonical.

(ii) For every linear transformation T and every coordinate system (x, U): if G =
TTGT , then Aµ = TAµ and Bµ = TBµT

T .

Proof. (i) ⇔ (ii) because (ii) is just the definition of being canonical written in
local coordinates. Indeed, we already saw that orthogonality or T translates in local
coordinates to G = TTGT , the other expressions follow in a similar way from the
following equations:

Aiµ =

∫
(Tη)iµ(dη) =

∫ ∑
k

Tikη
kµ(dη) =

∑
k

Tik

∫
ηkµ(dη) =

∑
k

TikA
k
µ

and

Bijµ =

∫
(Tη)i(Tη)jµ(dη) =

∫ ∑
k

Tikη
k
∑
l

Tjlη
lµ(dη)

=
∑
k,l

TikTjl

∫
ηkηlµ(dη) =

∑
k,l

TikTjlB
kl
µ .

Canonical measures are stepping distributions
Now we have the following result.

Proposition A.12. Let µ be a probability measure on TpM . Then µ is canonical if
and only if it satisfies (A.5) for some c > 0.

Proof. First assume that µ is canonical and let (x, U) be normal coordinates centered
at p. Because of Lemma A.8 it suffices to verify (A.5) for x, so we need to show that
Aµ = 0 and Bµ = cG−1 = cI for some c > 0.
The fact that Aµ = 0 is just Remark A.10. Now note that since Bµ is symmetric,
it can be diagonalised as TBµT

−1 where T is an orthogonal matrix (in the usual
sense). This means that TT = T−1 and that TTGT = TT IT = TTT = I = G, so
Lemma A.11 tells us that the diagonalisation equals TBµT

T = Bµ. This implies that

Bµ is a diagonal matrix. Now for i 6= j let I
ij

be the n×n-identity matrix with the ith

and jth column exchanged. It is easy to see that (I
ij

)T I
ij

= I, so we must also have

Bµ = I
ij
Bµ(I

ij
)T . The latter is Bµ with the ith and jth diagonal element exchanged.

This shows that these elements must be equal. Hence all diagonal elements are equal
and Bµ = cI for some c ∈ R. Since c = B11

µ =
∫
η1η1µ(dη) ≥ 0, we know that c ≥ 0.

If c = 0, then Bµ = 0, so µ = 0, which is not possible. We conclude that c > 0.
Conversely let (x, U) be a coordinate system with corresponding metric matrix G and
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assume that µ satisfies (A.5) for some c > 0. Let T be such that G = TTGT . Then
Aµ = 0 = T0 = TAµ. We also see: TTGT = G ⇐⇒ G = (TT )−1GT−1 ⇐⇒ G−1 =
TG−1TT ⇐⇒ cG−1 = T (cG−1)TT =⇒ Bµ = TBµT

T (since Bµ = cG−1), so by
Lemma A.11 µ is canonical.

Now we know that if the stepping distribution is canonical (and finite and compactly
supported, uniformly on M), the generators converge to the generator of Brownian
motion that is speeded up by some factor c > 0 (depending on µ). The question
remains what this c is. The following lemma answers this question.

Lemma A.13. Suppose µ satisfies (A.5) for some c > 0. Then c =
∫
||η||2µ(dη)

n .

Proof. We calculate the following (with respect to some coordinate system (x, U)):∫
||η||2µ(dη) =

∫
〈η, η〉µ(dη) =

∫ 〈∑
i

ηi
∂

∂xi
,
∑
j

ηj
∂

∂xj

〉
µ(dη)

=
∑
i,j

〈
∂

∂xi
,
∂

∂xj

〉∫
ηiηjµ(dη) =

∑
i,j

gijcg
ij

= c
∑
i

∑
j

gijg
ji = c

∑
i

1 = cn.

Hence c =
∫
||η||2µ(dη)

n .

The nice part of this lemma is that the expression for c does not involve a coordinate
system, only the norm (and hence inner product) of TpM . In particular we see that
c = 1 is equivalent to

∫
||η||2µ(dη) = n. We summarise our findings in the following

result.

Proposition A.14. A probability measure µ on TpM satisfies (A.5) for some c > 0

if and only if it is canonical and c =
∫
||η||2µ(dη)

n . In particular, it satisfies (A.4) if
and only if it is canonical and

∫
||η||2µ(dη) = n.

Remark A.15. Note that all we need of the jumping distributions is that their mean
is 0, their covariance matrix is invariant under orthogonal transformations, they are
(uniformly) compactly supported and they are (uniformly) finite. We don’t need the
measures to be similar in any other way, so we do not at all require the jumps to have
identical distributions in the sense of Jørgensen [93].

Examples
We conclude with some examples.

Example A.16. To satisfy (A.4) for every coordinate system, by Lemma A.8 it
suffices to choose a coordinate system and construct a distribution that satisfies (A.4)
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for that coordinate system. Let (x, U) be any coordinate system around some point
in M with corresponding metric matrix G in that point. Let X be any random
variable in Rn that has mean vector 0 and covariance matrix G−1 (for instance let
X ∼ N(0, G−1)). Now let µ be the distribution of

∑
iX

i ∂
∂xi . Then by construction∫

ηiµ(dη) = EXi = 0 and
∫
ηiηjµ(dη) = EXiXj = EXiXj − EXiEXj = gij .

Example A.17. In the previous example (A.4) is immediate. Let us now con-
sider an example that illustrates the use of Proposition A.14. Let µp be the uni-
form distribution on

√
nSpM (the vectors with norm

√
n). By definition of such a

distribution, it is invariant under orthogonal transformations (rotations and reflec-

tions), so it is a canonical distribution. Since also
∫
||η||2µ(dη) =

∫ √
n

2
µ(dη) = n,

we conclude that the uniform distribution on
√
nSpM satisfies (A.4). Moreover,

supp∈M supη∈suppµp ||η|| =
√
n < ∞ and supp∈M µp(TpM) = 1 < ∞. Together this

shows that the µp’s satisfy the assumption of Proposition A.1.

Example A.18. Let us conclude by showing for Rn that the class of canonical dis-
tributions is strictly larger than the class of distributions that are invariant under
orthogonal transformations, even with the restriction that

∫
||η||2µ(dη) = n. It

suffices to find a distribution µ with mean 0 and covariance matrix I (since then
µ satisfies (A.4) and Proposition A.14 then tells us that µ is canonical and has∫
||η||2µ(dη) = n) and an orthogonal T such that µ 6= µ ◦ T−1. Let ν be the distri-

bution on R given by ν = 1
5δ−2 + 4

5δ1/2. Then, using the natural coordinate system,∫
tν(dt) = 1

5 (−2)+ 4
5

1
2 = 0 and

∫
t2µ(dt) = 1

5 (−2)2+ 4
5 ( 1

2 )2 = 1. Now let µ = ν×..×ν
(n times). Then we directly see that the mean vector is 0 and the covariance matrix
is I. However T = −I is an orthogonal transformation and µ ◦ (−I)−1 equals the
product of n times 1

5δ2 + 4
5δ−1/2, so obviously µ 6= µ ◦ (−I)−1.
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Summary

In this thesis we study the Symmetric Exclusion Process (SEP) and the Discrete
Gaussian Free Field (DGFF) on compact Riemannian manifolds. In particular, we
obtain the hydrodynamic limit and the equilibrium fluctuations of SEP and we show
that the DGFF converges to its continuous counterpart. To define these discrete mod-
els, we construct grids with edge weights that approximate the underlying manifold
in a suitable way. Additionally, we study a model of an active particle and the role
of reversibility for its limiting diffusion coefficient and large deviations rate function.

Context and motivation

An important concept in statistical physics is that many natural objects and phenom-
ena can be described on different scales. One of its goals is to derive the macroscopic
properties (density, temperature, magnetisation) of matter and the equations that
govern them from the microscopic behaviour, properties and/or interactions of the
particles that they are made of. In mathematical statistical physics often, for simplic-
ity, we use probabilistic models for the description on the microscopic level. Therefore
also the tools and methods to relate them to macroscopic models come from proba-
bility theory.

The main probabilistic framework in which we analyse questions from statistical
physics is interacting particle systems. The idea is that we want to model a space
through which particles move randomly and where they influence each other. For
this purpose, the continuum space is discretised into a grid and particles can jump
between grid points (also called sites). The particle system that we study in this
thesis is the Symmetric Exclusion Process (SEP). It consists of particles that perform
independent random walks on a grid with the rule that there is a maximum of one
particle per site, so jumps to occupied sites are suppressed. This induces a repulsion
between the particles. This model is well-studied and in some sense has the most
basic interaction rule. The difficulty in this thesis comes from the fact that we study
it in a new setting, namely on a manifold. This poses a range of challenges, both of
a conceptual and of a technical nature.
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To pass from a microscopic description in terms of particle configurations to a macro-
scopic description in terms of densities and PDEs, the particle system needs to be
rescaled. The grid on which it evolves should become finer and should approximate
the continuum, while time is rescaled appropriately. Then we can relate sequences of
particle configurations on grids that approximate the continuum to a density profile
on the continuum space. We would then like to prove that if at time 0 the particle
configurations have an associated density profile, then they will have an associated
density profile at every later macroscopic time point and that, moreover, the density
profiles satisfy a PDE. This PDE is then called the hydrodynamic limit of the par-
ticle system under consideration. When the hydrodynamic limit is obtained, we can
rescale and study how the system fluctuates around the hydrodynamic limit. One
aims to show that these so called equilibrium fluctuations satisfy an SPDE.

In addition to interacting particle systems, we study the Gaussian Free Field. The
Discrete Gaussian Free Field (DGFF) is a random field on a graph that penalises
the squared difference of the values of the DGFF at neighbouring vertices, scaled
with the edge weight between those vertices. This induces a normal distribution with
the Green’s function on the graph as the covariance matrix. It can be viewed as a
Gaussian fluctuation of a harmonic graph function. The DGFF is the discrete counter
part of the continuum Gaussian Free Field (GFF). This continuum field is so rough
that it takes values in the distributions, i.e. its realisations cannot be described by
functions and it is not pointwise a random variable. In flat space it is known that the
DGFF can be rescaled to obtain the GFF in the limit. We aim to show the same on
a manifold.

The models that we discuss have been studied mostly on flat spaces, i.e. subsets of
Rn or the flat torus. In this thesis we consider them on a manifold. The first motiva-
tion comes from the point of view of applications: since manifolds are ubiquitous in
nature we would like to understand how particle systems and random fields behave
on them. The second motivation is that there has been shown to be an interesting
interplay between stochastics and geometry. Therefore understanding particle sys-
tems on manifolds could teach us more about geometry. Finally, studying models in a
more general context like curved space helps us understand better what the essential
ingredients are of the known results and their proofs.

Uniformly approximating grids

The main issue that one needs to address to define these models on a manifold is the
absence of a natural discretisation or grid on a manifold. In Chapter 3, we study
what we call uniformly approximating grids. We first argue that for our models the
underlying grids should be such that their empirical measures converge weakly to
the uniform measure on the manifold. Moreover, the edge weights or conductances
should be symmetric and such that the corresponding graph Laplacians converge to
the Laplace-Beltrami operator.
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We then show that such grids can be constructed in the following way. We start with
a sequence in the manifold for which the corresponding empirical measures converge
to the uniform measure in Kantorovich sense. Then the N th grid is defined to be the
set of the first N points of the sequence. Next, we place weights on the edges between
the grids points by applying a fixed function to the distance between the points, scaled
by a parameter ε. ε represents the typical jumping distance of the random walk on
the grid and goes to 0 as the number of grid points N goes to infinity.

The only thing that needs to be proven in this case is the convergence of the graph
Laplacians. First we require that ε decreases slowly enough that the number of grid
points within a ball of radius ε goes to infinity. Doing that allows us to replace the
empirical measure corresponding to the grid points by the uniform measure on the
manifold, so we are left with an integral on M . Then we fix a point p and push
the integral over the space around p to the tangent space at p. We show that the
resulting measure satisfies properties that allow us to use a result from the appendix.
This result is related to the invariance principle of the geodesic random walk and lets
us conclude that the graph Laplacians converge to the Laplace-Beltrami operator.

We started the construction with a sequence such that the corresponding empirical
measures converge to the uniform measure. We conclude the chapter with a proof
that such sequences are obtained almost surely by sampling i.i.d. points from the
uniform distribution on the manifold.

Hydrodynamic limit of SEP

In Chapter 4 we use the uniformly approximating grids from Chapter 3 to define the
Symmetric Exclusion Process (SEP) on a manifold. We then generalise the strategy
of Kipnis and Landim [96, Chapter 4] to prove that the hydrodynamic limit of SEP
is the heat equation on the manifold.

First we note that integration with respect to the empirical measures corresponding
to the particle configurations is a function of the particle configurations. Therefore
we can write it in terms of a Dynkin martingale. Then we show that this martingale
vanishes in the scaling limit by studying its quadratic variation and that the remaining
equation is the heat equation written in a weak form. Here we need convergence of
the graph Laplacians to the Laplace-Beltrami operator. Together with tightness of
the distributions of trajectories of particle configurations and uniqueness of solutions
to the heat equation, this yields the desired result.

Equilibrium fluctuations of SEP

Having established the hydrodynamic limit of SEP, we proceed with the fluctuations
in Chapter 5. We start SEP from its equilibrium measure: we place a particle at
each site independently with probability ρ. Then we subtract the constant ρ from
the particle configurations and rescale to study the fluctuations around the constant
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density profile ρ. We generalise the strategy of Kipnis and Landim [96, Chapter 11]
to prove that the limiting fields are a generalised Ornstein-Uhlenbeck process.

However, because of a lack of translation invariance it is harder to prove tightness
when we interpret the fluctuation fields as elements of a Sobolev space of negative
index. Therefore we consider them as distributions acting on smooth functions on the
manifold. The advantage is that we only need to prove tightness of the trajectories
obtained by applying the fluctuations field trajectories to a test function. The disad-
vantage is that the Skorokhod space of fluctuation field trajectories is a non-metrisable
topological space, which is harder to treat.

In addition to tightness, we need to prove uniqueness of possible limit points. We
rewrite the fluctuation fields acting on a smooth function as a Dynkin martingale as
in Chapter 4. Because of the different scaling, the martingales do not vanish and
we obtain a martingale problem in the limit. This martingale problem characterises
the generalised Ornstein-Uhlenbeck process, which shows that any possible limit is
unique.

The DGFF and convergence to the GFF

In Chapter 6 we use the uniformly approximating grids from Chapter 3 again, this
time to construct the Discrete Gaussian Free Field (DGFF) on a manifold. Since
there is no natural boundary on a manifold without boundary, we define a zero-
average DGFF on the grids. We prove a property similar to the Markov property for
this DGFF.

We want to take its limit and show that the DGFF converges to the continuum
GFF. Initially, we interpret the DGFF and the GFF as random distributions acting
on smooth functions on the manifold. The advantage of that is that the smooth
functions on a compact manifold form a nuclear space. This allows us to reduce to
proving pointwise convergence of the characteristic functional. For this we need to
show convergence of the discrete Green’s functions to their continuous counterpart.
We prove that if the graph Laplacians have a lower bound on the spectral gap and
the corresponding semigroups converge, then the DGFF converges to the GFF.

Next, we show that if we change the weights on the uniformly approximating grids
from Chapter 3 to weights depending on the heat kernel on the manifold, we obtain
grids that satisfy the assumptions above. In other words, on top of convergence of
the graph Laplacians to the Laplace-Beltrami operator, the spectral gaps are bounded
from below.

Finally, we extend the definition of the DGFF to a random field that takes values
in a Sobolev space of negative index. We show that also in this case the DGFF
converges to the continuum GFF. The first step here is showing tightness. Then we
prove convergence of finite dimensional distributions. To do this we need to show
that the Green’s function applied to test functions in an inner product converges
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to the continuum Green’s function. We do this by proving that this inner product
approximates the case with smooth functions that we discussed above.

Active particles and the role of reversibility

We conclude the thesis in Chapter 7 with a topic of a somewhat different nature. We
study the motion of a particle that performs a random walk and on top of that has a
preferred direction that is described by an internal state. This internal state process
is assumed to be a stationary Markov process. This kind of model is known in the
literature as run-and-tumble motion or as a directionally reinforced random walk.

We describe the position process of the active particle as a sum of three parts: a
random walk part, a martingale part and an active part. Then we calculate the
limiting diffusion coefficient and show that each of the parts that we just mentioned
contributes a term of this coefficient. The active part of the diffusion coefficient is
the only part that depends on the internal state process through more than just the
stationary measure.

Next, we consider internal state processes with a finite state space and we analyse the
effect that the reversibility of the internal state process has on the limiting diffusion
coefficient. We show that out of all internal state processes with the same stationary
measure and the same symmetric part of the generator, the reversible process produces
the largest diffusion coefficient.

Finally, we derive a large deviations principle for the active particle, still with a
finite internal state space. We show that the large deviations free energy is again
maximal for reversible internal state processes, and as a consequence the rate function
is minimal for those processes.





Samenvatting

In dit proefschrift bestuderen we het Symmetrisch Exclusieproces (SEP) en het Dis-
crete Gaussische Vrije Veld (DGFF) op compacte Riemannse variëteiten. In het
bijzonder vinden we de hydrodynamische limiet en evenwichtsfluctuaties van SEP en
laten we zien dat de DGFF convergeert naar zijn continue tegenhanger. Om deze dis-
crete modellen te definiëren, construeren we grids met gewichten die de onderliggende
variëteit op een geschikte manier benaderen. Verder bestuderen we een model van
een actief deeltje en de rol van reversibiliteit voor de diffusiecoëfficiënt in de limiet en
voor de grote afwijkingen.

Context en motivatie

Een belangrijk concept in de statistische fysica is dat veel natuurlijke objecten en
fenomenen op verschillende niveaus kunnen worden beschreven. Een van haar doelen
is het afleiden van de macro-eigenschappen (dichtheid, temperatuur, magnetisatie)
van materialen en de vergelijkingen die hen beschrijven vanuit het microscopische
gedrag, de eigenschappen en/of de interacties van de deeltjes waaruit ze bestaan. In
mathematische statistische fysica gebruiken we vaak omwille van de eenvoud kans-
modellen voor de beschrijving op een microscopisch niveau. Om die reden zijn ook de
methoden om de microscopische modellen te relateren aan macroscopische modellen
afkomstig uit de kansrekening.

Het belangrijkste kansmodel waarin we vragen uit de statistische fysica analyseren
is interacterende deeltjessystemen. Het idee is dat we een ruimte willen modelleren
waarin deeltjes aan toeval onderhevig rondbewegen en elkaar bëınvloeden. Voor dit
doel wordt de continue ruimte gediscretiseerd tot een grid en kunnen deeltjes sprin-
gen tussen gridpunten. Het deeltjessysteem dat we in deze thesis bestuderen is het
Symmetrisch Exclusieproces (SEP). SEP bestaat uit deeltjes die onafhankelijke toe-
valswandelingen uitvoeren op een grid met de regel dat er maximaal één deeltje per
gridpunt aanwezig kan zijn, dus sprongen naar een bezet punt worden onderdrukt.
Dit geeft een afstoting tussen de deeltjes. Dit model is veel bestudeerd en heeft in
zekere zin de meest basale interactieregel. De moeilijkheid in dit proefschrift komt
uit het feit dat we het bestuderen in een nieuwe omgeving, namelijk op een variëteit.

225



226 Samenvatting

Dit levert allerlei nieuwe uitdagingen, zowel van conceptuele als van technische aard.

Om van een microscopische beschrijving in termen van deeltjesconfiguraties te gaan
naar een macroscopische beschrijving in termen van dichtheden en partiële differen-
tiaalvergelijkingen (PDVs), moet het deeltjessysteem worden herschaald. Het grid
waarop het systeem evolueert moet steeds fijner worden en de continue ruimte be-
naderen, terwijl de tijd op een gepaste manier mee wordt geschaald. Dan kunnen we
rijen van deeltjesconfiguraties op grids die de continue ruimte benaderen, relateren aan
een dichtheidsprofiel op die continue ruimte. Vervolgens willen we bewijzen dat als
op tijd 0 de deeltjesconfiguraties een aan hen geassocieerd dichtheidsprofiel hebben,
ze op elk later macroscopische tijdpunt ook een geassocieerd dichtheidsprofiel hebben
en, bovendien, dat de dichtheidsprofielen voldoen aan een PDV. Deze PDV noemen
we dan de hydrodynamische limiet van het betreffende deeltjessysteem. Zodra de
hydrodynamische limiet is afgeleid, kunnen we opnieuw herschalen en bestuderen hoe
het systeem fluctueert rond de hydrodynamische limiet. Het doel is dan om aan te
tonen dat deze zogenaamde evenwichtsfluctuaties voldoen aan een stochastische PDE
(SPDE).

Naast interacterende deeltjessystemen bestuderen we het Gaussische Vrije Veld (GFF).
Het Discrete Gaussische Vrije Veld (DGFF) is een toevalsveld op een graaf dat het
kwadratische verschil van zijn waarden in naburige knopen, geschaald met het gewicht
op de tak tussen de knopen, klein wil houden. Dit induceert een normale verdeling
met de Greense functie op de graaf als covariantiematrix. Het kan beschouwd worden
als een Gaussische fluctuatie van een harmonische functie op de graaf. De DGFF is de
discrete tegenhanger van de continue GFF. Dit continue veld is zo ruw dat het waar-
den aanneemt in de distributies, m.a.w. de realisaties kunnen niet beschreven worden
met functies en het veld is niet puntsgewijs een toevalsvariabele. Het is bekend dat
in vlakke ruimten de DGFF zodanig herschaald kan worden dat het convergeert naar
de GFF. Ons doel is om hetzelfde aan te tonen op een variëteit.

De modellen die we behandelen zijn voorheen voornamelijk bestudeerd in vlakke
ruimten, d.w.z. deelverzamelingen van Rd of de vlakke torus. In dit proefschrift
beschouwen we hen op een variëteit. De eerste motivatie hiervoor komt vanuit het
oogpunt van toepassingen: aangezien variëteiten alomtegenwoordig zijn in de natuur
willen we begrijpen hoe deeltjessystemen en toevalsvelden zich op variëteiten gedra-
gen. De tweede motivatie is dat aangetoond is dat er een interessante wisselwerking is
tussen stochastiek en geometrie. Daarom kan het begrijpen van deeltjessystemen op
variëteiten ons meer leren over geometrie. Tenslotte helpt het bestuderen van model-
len in een meer algemene omgeving zoals gekromde ruimte ons om beter te begrijpen
wat de essentiële ingrediënten zijn van de al bekende resultaten en hun bewijzen.

Uniform benaderende grids

De voornaamste horde die genomen moet worden om deze modellen op een variëteit
te definiëren is de afwezigheid van een natuurlijke discretisatie of grid op een variëteit.
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In Hoofdstuk 3 bestuderen we grids die we uniform benaderende grids noemen. Eerst
leggen we uit dat voor onze modellen de onderliggende grids de eigenschap moeten
hebben dat de corresponderende empirische maten zwak convergeren naar de uniforme
maat op de variëteit. Bovendien moeten de gewichten op de takken of geleidingen
symmetrisch zijn en moeten de corresponderende graaflaplacianen convergeren naar
de Laplace-Beltramioperator.

Vervolgens tonen we aan dat zulke grids alsvolgt geconstrueerd kunnen worden. We
beginnen met een rij in de variëteit waarvan de corresponderende empirische maten
in de zin van Kantorovich convergeren naar de uniforme maat. Dan definiëren we
het N -de grid als de verzameling van de eerste N punten van de rij. Vervolgens
plaatsen we gewichten op de takken tussen de gridpunten door een vast gekozen
functie toe te passen op de afstand tussen de punten, herschaald met een parameter
ε. ε representeert de typische sprongafstand van de toevalswandeling op het grid en
gaat naar 0 wanneer het aantal gridpunten N naar oneindig gaat.

Het enige wat in dit geval nog moet worden bewezen is de convergentie van de
graaflaplacianen. Eerst nemen we aan dat ε langzaam genoeg daalt zodat het aantal
gridpunten binnen een bol van straal ε naar oneindig gaat. Daardoor kunnen we
de empirische maat gecorrespondeerd aan de gridpunten vervangen door de uniforme
maat op de variëteit, zodat we een integraal overM over hebben. Vervolgens kiezen we
een vast punt p en duwen we de integraal over de omgeving van p naar de raakruimte
bij p. We tonen aan dat de resulterende maat bepaalde eigenschappen heeft die
ons in staat stellen om een resultaat uit de Appendix te gebruiken. Dit resultaat is
gerelateerd aan het invariantieprincipe van de geodetische toevalswandeling en zorgt
dat we kunnen concluderen dat de graaflaplacianen naar de Laplace-Belramioperator
convergeren.

We begonnen de constructie met een rij waarvan de corresponderende empirische
maten naar de uniforme maat convergeren. We sluiten het hoofdstuk af met een
bewijs dat zulke rijen bijna zeker verkregen worden door onafhankelijk punten te
trekken uit de uniforme verdeling op de variëteit.

Hydrodynamische limiet van SEP

In Hoofdstuk 4 gebruiken we de uniform benaderende grids uit Hoofdstuk 3 om het
Symmetrisch Exlusieprocess (SEP) te definiëren op een variëteit. Vervolgens genera-
liseren we de strategie van Kipnis and Landim [96, Chapter 4] om te bewijzen dat de
hydrodynamische limiet van SEP de warmtevergelijking op de variëteit is.

Eerst merken we op dat integratie ten opzichte van de aan de deeltjesconfiguraties
corresponderende empirische maten een functie is van de deeltjesconfiguraties. Daar-
door kunnen we het schrijven in termen van een Dynkinmartingaal. Dan tonen we aan
dat deze martingaal verdwijnt in de schalingslimiet door zijn kwadratische variatie te
bestuderen en dat de resterende vergelijking de warmtevergelijking is, geschreven in
een zwakke vorm. Hier hebben we nodig dat de graaflaplacianen convergeren naar de
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Laplace-Beltramioperator. Samen met de tightness van de verdelingen van de paden
van de deeltjesconfiguraties en de uniciteit van oplossingen van de warmtevergelijking
levert dit het gewenste resultaat.

Evenwichtsfluctuaties van SEP

Nadat we de hydrodynamische limiet van SEP vastgesteld hebben, gaan we in Hoofd-
stuk 5 verder met de fluctuaties. We starten SEP uit zijn evenwichtsverdeling: we
plaatsen op ieder gridpunt een deeltje met kans ρ, onafhankelijk van elkaar. Vervol-
gens trekken we de constante ρ van de deeltjesconfiguraties af en herschalen we deze
om de fluctuaties rond het constante dichtheidsprofiel ρ te bestuderen. We genera-
liseren de strategie van Kipnis and Landim [96, Chapter 11] om te bewijzen dat de
velden in de limiet een gegeneraliseerd Ornstein-Uhlenbeckproces zijn.

Echter, door de afwezigheid van translatie-invariantie is het moeilijker om tightness
aan te tonen als we de fluctuaties opvatten als elementen van een Sobolevruimte met
negatieve index. Daarom beschouwen we ze als distributies die werken op gladde
functies op de variëteit. Het voordeel hiervan is dat we alleen de tightness hoeven aan
te tonen van de paden die verkregen worden door de fluctuatieveldpaden toe te passen
op een testfunctie. Het nadeel is dat de Skorokhodruimte van fluctuatieveldpaden
een niet-metriseerbare topologische ruimte is, deze ruimten zijn moeilijker om mee te
werken.

Naast tightness moeten we de uniciteit van limietpunten aantonen. We schrijven
de fluctuatievelden die op een gladde functie werken als Dynkinmartingaal zoals in
Hoofdstuk 4. Door de veranderde schaling verdwijnen de martingalen niet in de
limiet, maar verkrijgen we een martingaalprobleem. Dit martingaalprobleem karak-
teriseert het gegeneraliseerde Ornstein-Uhlenbeckproces, wat vervolgens impliceert
dat een mogelijk limietpunt uniek is.

De DGFF en convergentie naar de GFF

In Hoofdstuk 6 gebruiken we de uniform benaderende grids uit Hoofdstuk 3 opnieuw,
ditmaal om het Discrete Gaussische Vrije Veld (DGFF) te definiëren op een variëteit.
Aangezien er geen natuurlijke rand is op een variëteit zonder rand, definiëren we een
nul-gemiddeld DGFF op de grids. We bewijzen een eigenschap die vergelijkbaar is
met de Markoveigenschap voor deze DGFF.

We willen de limiet nemen en bewijzen dat de DGFF convergeert naar de continue
GFF. In eerste instantie interpreteren we de DGFF en de GFF als toevalsdistributies
die werken op gladde functies op de variëteit. Het voordeel hiervan is dat de gladde
functies op een compacte variëteit een nucleaire ruimte vormen. Dit stelt ons in
staat om ons bewijs te reduceren tot het aantonen van puntsgewijze convergentie
van de karakteristieke functionaal. Hiervoor moeten we bewijzen dat de discrete
Greense functies convergeren naar hun continue tegenhanger. We bewijzen dat als de
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spectrale gaps van de graaflaplacianen van onder begrensd zijn en de corresponderende
halfgroepen convergeren, de DGFF convergeert naar de GFF.

Vervolgens tonen we aan dat we, als we de gewichten op de uniform benaderende grids
uit Hoofdstuk 3 veranderen naar gewichten die afhangen van de warmtekern op de
variëteit, grids verkrijgen die aan de aannames hierboven voldoen. In andere woorden,
naast de convergentie van de graaflaplacianen naar de Laplace-Beltramioperator zijn
de spectrale gaps van onder begrensd.

Tenslotte breiden we de definitie van de DGGF uit tot een toevalsveld dat waarden
aanneemt in een Sobolevruimte met negatieve index. We tonen aan dat ook in dit
geval de DGGF naar de GFF convergeert. De eerste stap hier is het aantonen van
tightness. Vervolgens bewijzen we de convergentie van eindig-dimensionale verde-
lingen. Om dit te doen, moeten we aantonen dat de Greense functie toegepast op
testfuncties in een inproduct naar de continue Greense functie convergeert. We doen
dit door te bewijzen dat dit inproduct het geval met gladde functies dat hierboven
werd beschreven benadert.

Actieve deeltjes en de rol van reversibiliteit

In Hoofdstuk 7 sluiten we het proefschrift af met een onderwerp van een wat andere
aard. We bestuderen de beweging van een deeltje dat een toevalswandeling uitvoert
en daarbij een voorkeursrichting heeft die wordt bepaald door een interne toestand.
We nemen aan dat de interne toestand een stationair Markovproces is. Dit type model
is bekend in de literatuur als ren-en-tuimelbeweging of als een directioneel versterkte
toevalswandeling.

We beschrijven het positieproces van het actieve deeltje als de som van drie delen: een
toevalswandelingdeel, een martingaaldeel en een actief deel. Vervolgens berekenen we
de diffusiecoëfficiënt in de limiet en tonen we aan dat elk van de zojuist genoemde
delen een term bijdraagt aan deze coëfficiënt. Het actieve deel van de diffusiecoëfficiënt
is het enige deel dat via meer dan alleen de stationaire maat afhangt van het interne
toestandsproces.

Vervolgens beschouwen we interne toestandsprocessen met een eindige toestands-
ruimte en analyseren we het effect van de reversibiliteit van het interne toestands-
proces op de diffusiecoëfficiënt in de limiet. We tonen aan dat van alle interne toe-
standsprocessen met dezelfde stationaire maat en waarvan de generator hetzelfde sym-
metrische deel heeft, het reversibele proces de grootste diffusiecoëfficiënt geeft.

Tenslotte leiden we een grote afwijkingenprincipe af voor het actieve deeltje, nog altijd
met een eindige interne toestandsruimte. We tonen aan dat de grote afwijkingen
vrije energie opnieuw maximaal is voor reversibele interne toestandsprocessen en dat
bijgevolg de rate-functie minimaal is voor die processen.
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