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Abstract

Inefficient road usage in a traffic network context – i.e. over-saturation on one route, where
other roads are still available – is an important problem. It appears often and in different types
of situations. We concentrate on congestion caused by predicted temporary road blockades,
such as open bridges. This research aims to reduce such congestion by focussing on solving a
routing problem that accounts for these road blockades.

More specifically, we consider traffic that is to be guided through a network with a number
of different routes, where bridges function as temporary blockades when they are opened. A
river that is used by freight transport runs through this network, in which road traffic uses
bridges to cross the river. These bridges would open to let the freight ships pass. In such a
situation, open bridges are a predictable temporary blockade for the vehicles on the road, a
disturbance on the traffic flow.

We propose a model predictive controller that routes the vehicles efficiently to their desti-
nations, making a trade-off between waiting in front of bridges and taking a detour. Model
predictive control has been selected because it can handle these predicted disturbances that
the bridges pose. Furthermore, it can be tuned to make a trade-off between a computationally
fast and an accurate solution. A traffic split determines which part of the incoming traffic flow
on a road interchange is sent towards which emanating road. These traffic splits represent
the actuator variables of the controller. The total time spent by all vehicles in the network is
the cost function to be minimised.

We describe a motorway network with METANET, a macroscopic traffic model. We do not
use the full model, but a piecewise-affine approximation, in order to simplify the optimisation
calculations significantly. We discuss two ways of modelling this approximation: an existing
Mixed Logical Dynamical (MLD) formulation and a novel Linear Programming (LP) formu-
lation. An analysis of the novel LP model in an N -step-ahead simulation is performed. We
show that this problem cannot be written in a single LP problem, but that it is actually a
linear multilevel programming problem (where N LP problems have to be solved consecu-
tively).
As a means to model predicted disturbances, a novel store-and-forward bridge element is

added to the nonlinear and the MLD model. A case study is performed to evaluate the
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ii Abstract

effectiveness of this new bridge element. The results of this case study were satisfactory.
Moreover, the results obtained with the MLD model provided an acceptable approximation
of the results obtained with the nonlinear model.
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“Comes a time when you’re driftin’
Comes a time when you settle down.”
— Neil Young





Chapter 1

Introduction

This chapter provides an introduction to the subject of this thesis: traffic routing under
dynamic network topologies. It starts with a general introduction in Section 1-1, that empha-
sises the relevance of the subject. Thereafter, a specific problem statement is given in Section
1-2. Lastly, an overview of the chapter is given in Section 1-3.

1-1 General Introduction

Human driving can be unpredictable, and especially in high-intensity traffic it is likely to cause
congestion. Over the past decades, the number of road users has only increased and congestion
has therefore been a widely recognised and studied problem for a long time [9, 52, 69, 71].
Under high-intensity traffic, efficient road usage is a very relevant topic for a number of
reasons. Reducing traffic congestion will not only lower the travel time of individual users,
it can also result in drivers travelling at a more stable speed and therefore in more efficient
fuel consumption which is an environmental benefit. Furthermore, congested traffic situations
have a negative influence on safety.
Congestion might theoretically be permanently solved by increasing the infrastructure’s

capacity such that it can handle the worst-case traffic peaks, provided that the roads are
filled with predictable and optimally platooning (smart) cars. However, this solution addresses
the efficiency of the usage of a single road. We suggest that inefficient road usage across a
network is a different problem that has to be tackled as well. Research is conducted to find
effective solutions for minimising traffic congestion caused by inefficient road usage across a
network [21,42,43,59,70]. In the context of a routing problem, we deem a network inefficiently
used when one road is over-saturated, where other roads in the network (that could be used
as an alternative route) still have a relatively low traffic density.

Congestion occurs in both urban and motorway traffic. In the literature, traffic control ap-
plied to both urban [22,50,56] and motorway models [11,20,60] can be found. In present-day
motorway traffic, possible solutions for congestion include variable speed limits and on-ramp
control [10, 40], whereas control applications that involve (future) smart cars also try to
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2 Introduction

achieve a reduction of congestion with adaptive cruise control, platooning or by other ways
of intercommunicating vehicles [17, 59]. Traffic congestion is also researched in other areas
of science; think of road pricing [69], analysing the effects of road widening, and Braess’s
paradox [9].1
In the light of this thesis, inefficient road usage can mean two things. Either it means that

on one single road the traffic does not adjust to other traffic properly, causing the flow to
be suboptimal, or it means that too many cars take one (temporary blocked) road instead of
other roads, causing inefficient usage of the available roads. The first case is a more fundamen-
tal problem because it will always exist on roads with too little capacity and unpredictable
human drivers. The latter is the subject of this thesis.
The massive congestion on motorways that can occur during holidays or in the weekends

is an example of such a problem. Note that especially weekend and holiday traffic is less
bounded to the time at which it wants to arrive or the route it takes and in addition, the
distances they travel are usually larger than for commuting traffic. Therefore, it is expected
that the number of acceptable route alternatives is higher and that the traffic can be spread
out over these routes in such a way that the congestion can be significantly reduced. Another
example of this subject is the routing of traffic through a network with reduced or zero ca-
pacity on certain locations caused by a blocked road due to an accident, road maintenance or
an open bridge.

A measure for efficient road usage in a traffic network context is provided by the Wardrop
principles [71].2 In this thesis, we will strive for a system optimal control implementation by
minimising the total time spent by all vehicles in the network.
We consider the traffic network as a graph through which vehicles are to be routed. In

this graph, each edge has an associated travel time. At specified moments in time we have
either unavailable edges, or edges with an increased weight to reflect a temporary blocked
road. Furthermore, we assume that we specify one origin and one destination vertex for each
vehicle in the graph.

1-2 Problem Statement

A road blockage may have several causes. We focus our research on predicted blockages,
i.e. the moment at which they take place is exactly known in advance. In this context, we
consider the following two research questions:

How can we route traffic through a motorway network, where certain
roads are blocked at known time periods, with as objective to minimise
the total time spent by all vehicles in the network?
How can this be done in the most computationally efficient way?

1Braess’s paradox reads: “Adding extra capacity to a network in which the moving entities chose their
routes individually, can in some cases lead to a decrease of the performance of the network as a whole.”

2Wardrop’s first principle is known as the selfish Wardrop equilibrium. This is a user optimal equilibrium
that is obtained when all road users try to minimise their own travel time. The second principle is an
improvement by Wardrop, in which he proposes a new, system optimal equilibrium where road users cooperate.
In the social Wardrop equilibrium, the average journey time is minimised.

M. Leeuwenberg Master of Science Thesis



1-2 Problem Statement 3

The first research question involves a dynamic traffic routing problem. In order to solve
this problem, a macroscopic traffic flow model of a motorway network has to be selected.
This model should be able to accurately reflect the event of a road blockage, for example by
the deletion or insertion of links. Moreover, when a link is unavailable, the traffic that still
arrives at that link has to be queued in some way. In order to achieve a social equilibrium,
a queue element should be implemented, in such a way that there is a penalty on letting too
many vehicles wait in front of a road blockage. We will focus on solving this problem with
predicted disturbances in the motorway network simulation model METANET in a Model
Predictive Control (MPC) context. We use the Total Time Spent (TTS) by all vehicles in the
network as a measure for efficient road usage. If environmental effects are also to be taken
into account, METANET can be extended with the VT-macro model [75] so that the model
includes fuel consumption. The controller will route the traffic by actuating the traffic splits
at interchanges. The recurring question is: will it be preferable to avoid a blocked road, or
to direct the traffic straight to it and wait until the road is unblocked. It is expected that in
an optimal solution – when the roads are most efficiently used – a part of a traffic flow has
to take a detour around the blocked road and the rest of the traffic has to wait for the road
to be unblocked.
We assume that a static origin-destination matrix is provided.3 Moreover, we assume that

the predicted disturbances are caused by bridges that open and close at times that are known
beforehand. Store-and-forward links should then allow traffic to queue in front of the bridges,
in the case that they are open.

Considering the second research question, we suggest that an MPC approach is promising, as it
can take into account the known future disturbances and moreover, it is easy to tune with only
two parameters, Np and Nc, offering a trade-off between computation speed and precision.
The computational complexity of an MPC optimisation problem is heavily dependent on
the underlying models used. In our case, this model is METANET, a nonlinear nonconvex
model that results in high-complexity optimisation problems when used in combination with
MPC. Note that METANET and MPC have been used before by others in dynamic routing
problems. However, our problem differs from them mainly because we assume predictable
unavailability of links. When a controller for motorway traffic routing is to be used in real
time, the control optimisations should be calculated faster than a single simulation time step.
METANET is a nonconvex and nonlinear model and is deemed too complex for such a cause.
Therefore, a proposed simplification of the model by Groot et al. [34, 35] is expected to be a
good starting point.
Since we use a mathematical model of a traffic network, we are able to use the traffic

splits at interchanges as a control input. When actually implementing a real-time controller,
the routes that vehicles take can only be advised, but not controlled. If we would want
to achieve a real-time implementation, a Dynamic Route Information Panel (DRIP) could
provide advisory information on a motorway traffic network [21,42,43].

3In an origin-destination matrix, we can find the traffic demand for every origin-destination pair, i.e. the
number of vehicles that are leaving from origin o to destination d. Such a matrix is said to be static if it is
independent of time.
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4 Introduction

1-3 Structure of the Thesis

This thesis is organised in the following manner. In Chapter 2, we discuss literature regarding
graph modelling, shortest path problems, cost flow problems, and state-of-the-art motorway
traffic models. Thereafter, in Chapter 3, we propose two contributions to the literature: an
approximation of METANET that can be evaluated with Linear Programming (LP) and the
addition of bridge elements to METANET. Chapter 4 provides an analysis of an N -step-
ahead simulation with the newly presented LP model as well as the results of a number of
case studies with the novel bridge element. Lastly, some conclusions and recommendations
are presented in Chapter 5.
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Chapter 2

Traffic Network Modelling

In this chapter we explain how to model traffic networks and more specifically we zoom in on
METANET, a motorway traffic model. We start with a short general introduction to networks
in Section 2-1 to provide some background knowledge. We elaborate on the traffic model
METANET in Section 2-2. This model is simplified by means of a Piecewise-Affine (PWA)
approximation and we show how a tractable conversion of the model can be embedded in
a Model Predictive Control (MPC) framework. In Section 2-3 we further elaborate on this
control method. The findings of this chapter are summarised in Section 2-4.

2-1 Graph Modelling

We discuss some graph theory in this section. This is by no means intended to be a complete
overview, but rather to serve as a bridge towards the much more specific modelling of a traffic
network. Next to the graph theory, we discuss some other operations research problems.
This field is interesting because it gives a different view to a similar problem; (re-)routing
traffic in case of a blocked link. The content of this section is largely based on [16, 23]
covering both basic graph modelling and basic algorithms that can be used on graphs. For
operations research literature related to routing problems under dynamic network topologies,
the interested reader is kindly referred to [13,26,32,37,61].

2-1-1 Vertices and Links

A graph G(M,V ) is a data structure that can be used to model networks. Here, V is a
finite set of vertices (in the literature also called nodes). In a graph, a vertex ν ∈ V can e.g.
represent an intersection between roads on which vehicles can travel, a railway station, or a
dead end. Moreover,M ⊂ V ×V is a finite set of edges; they can represent a road or a railway
between two intersections or stations. An edge m = (ν1, ν2) ∈M corresponds to a vertex pair.
In an undirected graph we refer to such pairs as edges, whereas in case of a directed graph,
we call them links (or arcs). A graph is said to be directed if its links (ν1, ν2) can only be
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6 Traffic Network Modelling

crossed from ν1 to ν2, and not the other way around. This is contrary to an undirected graph
where an edge (ν1, ν2) can also be crossed from ν2 to ν1. When an (undirected) edge exists
between vertices ν1 and ν2, they are said to be adjacent to each other; adj(ν) is the set of all
vertices adjacent to ν. In case of a directed graph, we define adji(ν) as the set of incoming
links at vertex ν and adjo(ν) as the set of emanating links at vertex ν.
In a weighted graph G(M,V,w), we assign weight w(ν1, ν2) to link (ν1, ν2). The weight

can e.g. represent the length of the link or the time it takes to cross it. We consider a static
network, when these weights are constant over time. If on the other hand, a dynamic model
is desired, the values of w can vary with time t and are then written as w(ν1, ν2, t). In the
case of a spatial network we also assign a geographical location to every vertex.
In Figure 2-1, a static directed weighted graph G(M,V,w, c) is considered. The links have

a capacity c, which is the amount of traffic that can traverse the link in a certain amount of
time, expressed for example in (veh/h).

In the context of this thesis, we consider a directed dynamic network topology. The link
weights w(x, y, t) can vary over time, or specific links can be unavailable at certain times.
Therefore, depending on how we model this, the set M does not necessarily contain a fixed
number of n links. This can be either:

n not fixed When a link is temporarily unavailable, it is also deleted in the model, giving
the set M size n− 1.

n fixed The approach that is for example used in [15]. In the case of an unavailable link, it
still exists in the model, but is given a relatively high value.

Weight updates and adding or removing links are closely related to each other [32]. It is
therefore not expected that preferring one above the other will cause implementation issues.

22

4

31

(1
5,
30
)

(5,25)

(1
5,
20
)(1

0,
20
)

(5
,5
)

(5,45)

Figure 2-1: Simple network with four vertices and six directed links. The numbers between
brackets are respectively the weight w and the capacity c.

2-1-2 Shortest Path Problems

A path is a sequence of adjacent vertices p(ν1, ν2, ..., νn) that form a route through a network.
The (time dependent) length of a path is calculated as
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2-1 Graph Modelling 7

L(p) = w(ν1, ν2, t1) + w(ν2, ν3, t2) + ...+ w(νn−1, νn, tn−1). (2-1)

The single-pair shortest path, given as SP(s, d), is the path between a source vertex s and a
destination vertex d on which the parameter L(p) is minimal. The shortest path from vertex
νx to νy can be formulated as

min
p∈P(νx,νy)

L(p), (2-2)

where P(νx, νy) is the set of paths with source vertex νx and destination vertex νy. Note that
the shortest path from νx to νy can, but does not have to differ from the shortest path from
νy to νx. Also note that it is possible that multiple shortest paths are found between two
vertices.
It is a well known and widely studied problem to find the shortest path between two

vertices, and moreover to find it as fast as possible [2,3,16,24,25,28,30,33,36]. The shortest
path distance from vertex νx to νy and is defined as δ(νx, νy). It is the optimal value of
L(p) that follows from the minimisation in (2-2). The shortest path itself is defined as
SP(νx, νy) = argminp∈P(νx,νy) L(p).

2-1-3 Network Flow Problems

We assume a graph that is defined by a node-node adjacency matrix Gij , with i and j the
matrix indices.1 Furthermore, on link (i, j), we have the cost (or weight) Wij , flow Fij , and
capacity Cij . When applied to a traffic network, the link cost is the travel time in (h), the flow
is the amount of traffic on a link in (veh/h), and the capacity is the maximum flow allowed
on a link in (veh/h).

In the appendix we have defined two traffic routing problems: the minimum-cost flow problem
in (B-1) and the multi-commodity flow problem in (B-2). When solved, they provide an
optimal traffic flow distribution in a network with link weights and capacities.
The multi-commodity flow problem can be written in the form of a Linear Programming

(LP) problem, which results in relatively low computation times (in Appendix B-3 we derive
how to do this). We could run this problem in a discrete-time environment, so that we are
able to route the traffic in a dynamic network. Then, in case of an unavailable link at a
certain time step, we could update the graph matrix Gij in between time steps and also
update matrices Wij and Cij accordingly.
In the case we have 1 origin-destination pair and a � Cij ∀ (i, j) ∈ M , the solution to

the multi-commodity flow problem would coincide with the shortest path that Dijkstra’s
algorithm [24] would find. We could say that this solution is the selfish Wardrop equilibrium
(cf. footnote 2 in Chapter 1 on page 2). In the case of multiple origin-destination pairs and
when the demand a exceeds the link capacity Cij for one or more links, the minimisation
results a social Wardrop equilibrium, without exceeding the network capacity.

1A node-node adjacency matrix that describes a network with n vertices can be created by starting with
an n × n matrix filled with zeros and setting a 1 on every entry where a link exists. So, if Gνxνy = 1, a link
exists from vertex νx to νy. Row i of Gij represents the links emanating from vertex i. Similarly, column j
represents the incoming links at vertex j.
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8 Traffic Network Modelling

The multi-commodity flow problem provides a partial answer to our research questions. How-
ever, it has some drawbacks too that we will address now.
The first problem is the accuracy of the model. Although many real-life traffic situations

could be represented by a graph Gij with weights and capacities, this traffic representation is
a relatively low-detailed description. It does not include the traffic speed or density at a link.
This has the implication that, regardless of the amount of traffic flow, the travel time on an
edge is the same (that is, as long as the flow is not larger than the capacity). Furthermore,
when the required flow would become higher than the capacity, the traffic is put in an origin
queue until the network has the capacity again to dissolve the queue. An alternative would
be to use a more realistic motorway model that is also capable of describing a jam under
blocked road conditions in case of an unavailable link.
Secondly, the multi-commodity flow problem does not account for topology changes in ad-

vance. Notice that it is a static problem. That is, each instance is run on a specific situation
at a set time and the optimisation does not take future disturbances into account. Suppose a
bridge opens and closes again before the traffic arrives at that bridge. The multi-commodity
flow problem (and other algorithms from the operations research literature [26, 32, 63–65])
would re-route the traffic twice, which is undesired. Solutions that account for dynamic net-
work topologies are also found in the operations research literature [13, 37, 62], but they are
computationally intensive because they consider the network at all time instants. Another
solution can be provided by a motorway traffic model combined with MPC, which is a con-
trol approach capable of handling a topology change in advance. MPC provides a trade-off
between speed and accuracy because the amount of time it predicts ahead can be tuned.

2-2 Traffic Modelling

We give a high-level overview of motorway traffic models in Section 2-2-1. The METANET
model is selected and presented in Section 2-2-2, its nonlinearities are discussed in Section
2-2-3 and a PWA approximation that is known from the literature is given in Section 2-2-4,
as well as the embedding of that PWA approximated model in an MPC optimisation that
can be solved with Mixed Integer Linear Programming (MILP).

2-2-1 Motorway Traffic Models

Traffic models are usually divided in three types: microscopic models that are highly detailed
and describe each vehicle separately, macroscopic models that have a more high-level approach
and describe the average traffic behaviour in low detail, while the third category, mesoscopic
models, uses characteristics from both microscopic and macroscopic models by describing the
traffic in medium detail, mostly in a probabilistic manner. In [44] an extensive overview of
these different types of models is provided. Our focus lies on fast state prediction, so that
we can quickly route traffic with a priori knowledge of road blockades. We chose to use
METANET, since this macroscopic model provides relatively good accuracy compared to its
computation time. The traffic is represented by a flow, rather than by individual vehicles,
giving a more high-level, general idea of the traffic distribution instead of a highly detailed
description. Therefore, METANET is expected to be a good starting point.

M. Leeuwenberg Master of Science Thesis



2-2 Traffic Modelling 9

2-2-2 METANET

METANET [53, 60] is used to model motorway networks.2 In a graph representation of a
such a network, vertices mark the changes in motorway situations, like on-ramps or a change
in the number of lanes. Links are pieces of road with a constant number of lanes and speed
limits (we use a speed limit of vfree on all links) connecting the vertices to each other. All
links consist of a predetermined number of segments on which traffic progresses at each time
step, so METANET is a deterministic, discrete-time, discrete-space model. It keeps track of
the traffic flow qm,i in (veh/h), density ρm,i in (veh/km/lane), and speed vm,i in (km/h) on
each segment i of link m.

The flow at time step k is calculated by

qm,i(k) = λmρm,i(k)vm,i(k), (2-3)

where λm is the number of lanes.
The update equations for ρ and v are

ρm,i(k + 1) = ρm,i(k) + Ts
Lmλm

[qm,i−1(k)− qm,i(k)] (2-4)

and
vm,i(k + 1) = vm,i(k) + Ts

τ
[V [ρm,i(k)]− vm,i(k)]

+ Tsvm,i(k)[vm,i−1(k)− vm,i(k)]
Lm

− Tsη[ρm,i+1(k)− ρm,i(k)]
τLm(ρm,i(k) + κ) ,

(2-5)

with

V [ρm,i(k)] = vfree,m exp
[
− 1
am

(
ρm,i(k)
ρcr,m

)am]
. (2-6)

In order of appearance, Ts (h) is the sample time, Lm (km) is the length of the segments of
link m and τ (h), η (km2/h), and κ (veh/km/lane) are model parameters.
In order to use METANET, the traffic network links are to be cut into road segments. The

traffic advances from one segment into its adjacent segment at each time step, that is as long
as the Courant-Friedrichs-Lewy (CFL) condition Lm < Tsvfree ∀ m ∈M is preserved [18].
In (2-6), V is the desired speed, vfree,m is the free-flow speed, ρcr,m the critical density on

link m, and am is a model parameter. Unless stated otherwise, we use the following values:

Ts = 10 s
Lm = 0.5 km
vfree = 102 km/h
τ = 18 s
κ = 40 veh/km/lane

ρjam = 180 veh/km/lane
ρcr = 33.5 veh/km/lane
am = 1.867
η = 60 km2/h
Co = 2000 veh/h,

2METANET stands for Modèle d’Ecoulement du Trafic Autoroutier: NETwork
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10 Traffic Network Modelling

where Co is the capacity of origins (discussed below). This is a standard parameter set that
is also used in [39,54].

The desired speed function V [·] in (2-6) is plotted in Figure 2-2.
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Figure 2-2: Fundamental diagram in which the desired speed V is plotted against the density
ρm,i.

Origins In METANET, origins are modelled as a queue. Here, wo represents the number of
vehicles in the queue at origin o. Its update equation is given by

wo(k + 1) = wo(k) + Ts(do(k)− qo(k)). (2-7)

In this equation, do (veh/h) is the traffic demand and qo (veh/h) is the outflow at the origin
vertex o, given by

qo(k) = min
[
do(k) + wo(k)

Ts
, ro(k)Co, Co

(
ρjam,m − ρm,1(k)
ρjam,m − ρcr,m

)]
, (2-8)

where Co (veh/h) is the capacity of the origin, ρjam,m (veh/km/lane) is the maximum density.
Lastly, ro(k) ∈ [1, 0] is a ramp metering rate, which can be used on metered on-ramps.

Interchanges Considering a link m, we need a few extra equations describing the variables
with subscript i − 1 on a segment at the beginning of the link (i = 1) and similarly the
variables with subscript i+ 1 on the last segment of the link (i = il,m). If two or more roads
merge, the outflow is the sum of the inflows. It follows that the flows on the last segments of
links entering a vertex ν can be summed to form the outflow

Qν(k) =
∑
µ∈Iν

qµ,il,µ(k), (2-9)

which is distributed over the outgoing links. Here, Iν is the set of incoming links and il,µ is
the last segment of such an incoming link µ. When multiple links leave vertex ν, the flow
on emanating link m is a fraction, βν,m ∈ [0, 1], of the incoming flow. The flow on link m
emanating from ν, given by qm,0(k) is
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2-2 Traffic Modelling 11

qm,0(k) = βν,m(k)Qν(k). (2-10)

In (2-5), the upstream velocity vm,i−1 and downstream density ρm,i+1 on the first and last
segment of a link respectively are calculated as follows. In the update equation for the speed,
ρm,il+1 is written as

ρm,il+1(k) =
∑
µ∈Oν ρ

2
µ,1(k)∑

µ∈Oν ρµ,1(k) , (2-11)

where Oν denotes the set of all outgoing links at vertex ν.
For links in the set Iν incoming at vertex ν, vm,0(k) is given by

vm,0(k) =
∑
µ∈Iν vµ,il,m(k)qµ,il,m(k)∑

µ∈Iν qµ,il,m(k) . (2-12)

The full nonlinear behaviour in METANET is not deemed necessary, because for traffic routing
we assume that only a global idea of the network behaviour is needed, i.e. we accept an
approximation error. Therefore, we propose a simplification of METANET, largely based
on [34,35]. These papers implement a PWA approximation and an MILP algorithm to use in
an MPC environment. When making this approximation of the model, the calculation times
become a lot smaller. The main ideas behind the work in these papers are discussed next.

2-2-3 Piecewise-Affine and Linear Approximations of Nonlinear Functions in ME-
TANET

In this section, we point out the nonlinearities that are present in METANET, as well as
methods to linearise them or to make a PWA approximation of them. The results of the
PWA approximations are graphically depicted in Figure 2-3. We sum up the adaptations
made to the model below:

The Desired Speed Function We have the nonlinear function V [ρm,i], a single-variate equa-
tion that can be efficiently approximated by a PWA function with a least-squares optimisation.
The minimisation function is the squared error between the original function and its piecewise
approximation. This is mathematically written as

min
α1..αn−1,β1..βn

∫ xmax

xmin
(fPWA,n(x)− f(x))2dx, (2-13)

in which the PWA function fPWA,n(x) in n regions is defined on the interval [xmin, xmax] by
the pattern

fPWA,n(x) =


β0 + x−xmin

α1−xmin
(β1 − β0), for xmin ≤ x < α1

β1 + x−α1
α2−α1

(β2 − β1), for α1 ≤ x < α2

:
βn−1 + x−αn−1

xmax−αn−1
(βn − βn−1), for αn−1 ≤ x ≤ xmax.

(2-14)
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12 Traffic Network Modelling

The n regions of which this continuous function consists are defined by parameters α and β.
These parameters respectively define the x and y coordinates of the intersections of the affine
functions, i.e. fPWA(αj) = βj for j = {1, 2, ..., n− 1}.
In the specific case of the desired speed function V , we add two constraints to the least-

squares optimisation: VPWA(αn−1) = 0 and VPWA(xmax) = 0, so that the last affine function,
with domain [αn−1, xmax], has zero slope. When we do not impose these constraints, in an
extreme case when ρ > ρjam, we could have VPWA(ρ) < 0 and thus a negative speed and flow
(traffic driving in reverse). Note that βn−1 = 0 and βn = 0 are not added to the constraints,
but rather excluded from the optimisation. To solve the unconstrained least-squares problem,
we use a multi-start Levenberg-Marquardt algorithm. The result for a PWA function with
three regions is plotted in Figure 2-3a. More details on the PWA approximation (in three but
also in two regions) are given in Appendix A-1.
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(a) PWA approximation of the fundamen-
tal diagram in 3 regions. This approxima-
tion is very similar to the one used in [35].

(b) PWA approximation in 3 regions of the
flow function. This figure is taken from
[34].

Figure 2-3: The two nonlinear functions in METANET that are approximated by PWA functions.
On the left, we have the desired speed V from (2-6) and on the right the flow q from (2-3).

The Flow Function The second nonlinear function is q = ρv in (2-6). This bivariate equa-
tion is harder to capture in a PWA approximation. The accuracy of this approximation is
dependent on e.g. the number of regions in the PWA functions and the method used for
making the approximation. We describe two different methods in this thesis. The first is
a three-dimensional PWA identification. In the second approach, the PWA identification is
performed in two dimensions, after a separation of the bivariate equation.
The three-dimensional PWA identification used by Groot et al. [34, 35] consists of three

methods that are all available in the Hybrid Identification Toolbox (HIT) [27], which is a
platform embedded within the Multi-Parametric Toolbox (MPT) for Matlab [41]. An ap-
proximation is created with the aid of this toolbox using three PWA functions, the result of
which is illustrated in Figure 2-3b.
The second method is the PWA approximation after a separation of the flow function.

This method is proposed by [73]. A bivariate function x1x2 can be separated by writing the
function as

M. Leeuwenberg Master of Science Thesis



2-2 Traffic Modelling 13

x1x2 = 1
4
[
(x1 + x2)2 − (x1 − x2)2

]
,

so that at this point, the two quadratic functions can be approximated by a two-dimensional
PWA identification. This method will be more elaborately discussed in Section 3-2-2.

The Update Equation The update equation for vm,i in (2-5) contains two nonlinear parts.
Firstly, a multiplication by the speed vm,i(k) in vm,i(k)[vm,i−1(k) − vm,i(k)] and secondly a
division by the density ρm,i(k) in (ρm,i+1(k)− ρm,i(k))/(ρm,i(k) + κ). Both are linearised by
keeping terms constant, i.e. the first term in the first equation, vm,i(k), and the denominator
ρm,i(k) in the second equation. This can be done by either keeping them constant according to
historical data or, since the model is eventually controlled by MPC, by keeping them constant
over the prediction horizon.
This is justified by the fact that the multiplication factor (Ts/Lm) in the first equation is

relatively small and the multiplication factor (Tsη/τLm) as well as κ in the second equation
are relatively large. These three factors all positively contribute to keeping the error caused
by the substitution minimal.
The downstream density on the last segment of a link in (2-12) and the upstream velocity

at the first segment of a link in (2-11) are linearised in a similar way by keeping the density
ρµ,1 and velocity vµ,il constant.

A PWA system can be rewritten to a mixed logical dynamical model. This too has been done
by Groot et al. [34, 35]. This conversion is described in the next section.

2-2-4 Piecewise-Affine Approximation of METANET Combined with Mixed In-
teger Linear Programming

Using the aforementioned methods to remove the nonlinearities from METANET, we arrive
at a PWA system [68] of the form

x(k + 1) = Aix(k) +Biu(k) + fi

y(k) = Cix(k) +Diu(k) + gi
for
[
x(k)
u(k)

]
∈ Ωi and for i ∈ {1, ..., N} (2-15)

in which Ω1, ...,ΩN are convex polyhedra. Furthermore, x(k), y(k) and u(k) denote the state,
output and input respectively.
Using this PWA model with MPC is possible, but becomes computationally intractable

very fast. A last conversion is done, in order to make the MPC problem tractable for larger
networks. The PWA model is rewritten in the form of a Mixed Logical Dynamical (MLD)
model [4–7, 73]. In such a model, binary decision variables indicate in which region of the
PWA functions the state variables are. The model description is given by

x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k) + f

y(k) = Cx(k) +D1u(k) +D2δ(k) +D3z(k) + g

E1x(k) + E2u(k) + E3δ(k) + E4z(k) ≤ h,
(2-16)
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14 Traffic Network Modelling

in which δ(k) ∈ {0, 1}nb is the binary decision variable and z(k) an auxiliary variable that
arises from the procedure explained next.
For the conversion of the PWA functions into a tractable MPC model, the next three

statements (adapted from [6,73]) are used:

f(x) ≤ 0⇔ [δ = 1] is equivalent to:
{
f(x) ≤M(1− δ)
f(x) ≥ ε+ (m− ε)δ,

(2-17)

δ = δ1δ2 ⇔


−δ1 + δ ≤ 0
−δ2 + δ ≤ 0
δ1 + δ2 − δ ≤ 1,

(2-18)

z = δf(x)⇔


z ≤Mδ

z ≥ mδ
z ≤ f(x)−m(1− δ)
z ≥ f(x)−M(1− δ),

(2-19)

in which δ1, δ2 ∈ {0, 1} are binary variables. We use m and M as a lower and upper bound
respectively of the function f(·) and ε is a small tolerance variable. Now, if f(·) is an affine
function defined on a bounded set X, then m and M are finite and the right-hand sides of
the equivalences in (2-17)-(2-19) are (mixed integer) linear inequalities.
A single MLD-MPC iteration can now be written as an MILP problem in which the integer

variables all belong to the set {0, 1}. The approximations of the desired speed function VPWA
and the flow function qPWA can now be rewritten in the from of an MLD model. An example
of how to do this is provided in Appendix A-3-1. A few extra considerations to take into
account when implementing the MLD model are mentioned next.

Suppose we have a PWA function with n regions and thus n functions aiρ+bi i ∈ {1, 2, ..., n}.
We observe that we do not need an explicit binary decision variable for the first region, a1ρ+b1.
In other words, the system is always on the first region of the PWA function unless a decision
variable prevents that. Therefore, if all binary variables are equal to 0, the system is on the
first region a1ρ+b1. Therefore, a PWA function with n regions results in n−1 binary decision
variables.
With m the number of decision variables, we could theoretically use 2m combinations of

binary values to describe 2m + 1 different settings of a PWA model. Put differently, we could
say that in a PWA function with n regions, in principle a number of

m = dlog2(n− 1)e,

decision variables, where d·e is the ceiling function, would be sufficient to define all affine
regions. Suppose we have a PWA function with 5 regions, then we could, using a different
conversion to an MLD system, theoretically use only dlog2(n − 1)e = 2 binary variables (re-
sulting in four unique configurations [0, 0], [1, 0], [0, 1], and [1, 1], and the first affine function).
In our current model description, we use n − 1 = 4 decision variables. When the number of
binary variables increases, the resulting MILP problem is expected to be computationally
more intensive. That is, in the specific case of using more regions and thus binary variables
for the description of the desired speed function or the flow in Figure 2-3, we expect the
calculations to be slower and the results more accurate. Therefore, using less binary variables
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2-3 Model Predictive Control 15

is thought to speed up the calculation times. However, using a description with dlog2(n− 1)e
binary variables results in a more complex MLD system, and thus it is difficult to predict
which of the two descriptions can be most efficiently solved (cf. [4]).
We add δi ≥ δi+1 ∀ i ∈ {1, 2, ..., n − 1} as extra constraints to the ones we already men-

tioned. The decision variable δi+1 can only be equal to 1 if all decision variables before it, δ1
to δi, are equal to 1. We use these constraints, because a situation where δi+1 = 1 ∧ δi = 0,
does not describe an affine function that we want to use. We expect this to speed up the
optimisation.
Apart from the functions for the desired speed and the traffic flow, the function for the outflow
at origin qo, given in (2-8), needs to be rewritten as well. The derivation of the conversion of
this minimisation of three parameters to MLD form is provided in Appendix A-3-2.

2-3 Model Predictive Control

We use both the MLD and the yet to describe LP model as prediction models in an MPC
context. This control method is expected to provide accurate predictions, which is desired
because we want to efficiently route traffic through a network that is subject to predicted
disturbances, meaning that we know beforehand when and where the disturbance is going to
take place.
Model Predictive Control started to be used since Cutler and Ramaker [19] and Richalet et
al. [66] pioneered it simultaneously. Nowadays it is a widely studied model-based control
approach and it has been used many times in traffic control (e.g. [12,46,70]). In MPC a cost
function J is minimized over a prediction horizon Np. The prediction horizon is an integer
number of time steps (Ts) over which the controller predicts the states by means of a given
model. The minimisation of the cost function J is done at each time step, resulting in a set
of control actions for the entire prediction horizon. Of this set, only the control input for the
next time step is used. At the next time step, the optimisation problem is run again. Because
the prediction horizon is shifted forward in each time step we also speak of receding horizon
control. Sometimes, a control horizon Nc is added to the MPC problem. In that case, the
control actions are determined over the first Nc time steps and kept constant over the next
Np − Nc time steps. This procedure makes the calculations computationally less intensive
and, in case of LP, it is sometimes used for robustness.
We expect that using MPC will yield favourable results because it is an optimisation problem
that takes the dynamics of the system into account. The performance of MPC is for a large
part determined by the cost function. We could implement a cost function that has a selfish
goal, but MPC has the potential of performing better than this. If, contrary to the individual
journey times, the average journey time of all users is minimised we might achieve system-
optimality. We want to investigate if there will be less congestion when implementing such
a social goal. This would come close to the social Wardrop equilibrium contrasting to the
selfish Wardrop equilibrium (cf. footnote 2 in Chapter 1 on page 2).
The cost function used for the MPC problem is the Total Time Spent (TTS) over the predic-
tion horizon, which is given by

JMPC
TTS (k) = Ts

Np∑
j=1

 ∑
(m,i)∈Iall

Lmλmρm,i(k + j) +
∑
o∈Oall

wo(k + j)

 . (2-20)
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16 Traffic Network Modelling

2-4 Summary

We have started with a few basics on graph modelling, after which we have discussed how
to model a (time-dependent) graph and how to find a shortest path in one. This graph
theory served as a starting point for explaining a traffic network model. We have showed
how to model a traffic network by means of METANET. This is a macroscopic nonlinear
and nonconvex model in which the traffic is represented with a flow q, a speed v, and a
density ρ on each road segment. We have discussed a method from the literature that reduces
the nonlinearities in METANET by creating a PWA approximation that can be captured in
an MLD model description. This model is used in combination with MPC, a widely used
predictive control strategy, and the resulting optimisation problem can be solved with MILP.
The cost function that is used for the MPC problem is the TTS.
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Chapter 3

Improved METANET and Traffic
Control

In this chapter we describe two contributions to the literature. In Section 3-1, we briefly
discuss where and how the current state of the art could be improved. Firstly we propose a
possible alternative for the Mixed Logical Dynamical (MLD) model that was explained in the
previous chapter. More specifically, in Section 3-2, we provide a method that makes the control
optimisation problem suitable to be solved with Linear Programming (LP) instead of Mixed
Integer Linear Programming (MILP), removing the computationally heavy binary decision
variables that occur in the latter. This step to LP is possible under the condition that we use
convex Piecewise-Affine (PWA) functions to approximate the nonlinear METANET variables
and that we use the LP model as simulation model – when it is used as prediction model, we
need to solve a linear multilevel programming problem. The second contribution, accounting
for predicted disturbances in a traffic control context, is elaborated on in Section 3-3. We give
a more in-depth model description and describe how the time-dependent network topology
changes can be incorporated in the model; in Section 3-4, we define the time-dependent state
space equations for both the LP and the MLD model. In Section 3-5, we discuss the different
control methods in which the model will be embedded. The chapter will be summarised in
Section 3-6.

3-1 Considerations about Improvements to the Mixed Logical Dy-
namical Model

From MILP to Multilevel LP In the previous chapter, we have discussed the main findings
from [34, 35]. The approximation discussed in that chapter has the disadvantage that the
MILP problem is expected to become harder to solve when increasing the accuracy by using
more PWA regions. In a case study in [35], the error percentages are given for METANET
with some levels of approximation w.r.t. to the original nonlinear model, when the Total
Time Spent (TTS) was compared. The relative errors presented next result from using (a
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18 Improved METANET and Traffic Control

combination of) the methods for removing the nonlinearities in METANET, proposed in
Section 2-2-3. It resulted in a 3.3% relative error in the TTS w.r.t. the original model when
only using the approximation of keeping both v(k) and ρ(k) constant in the update equation
(2-5). When only using the approximation of a PWA function in 3 regions of the desired speed
function, this resulted in a 3.4% error w.r.t. the original model and when using 2 regions it
resulted in an 8.8% error. Finally, when only approximating the flow function with a PWA
function with 4 regions, this resulted in a relative error of 15%.
Concluding, we expect that, especially when using the PWA approximation in three regions

for the desired speed function, this method can be mainly improved by adding more regions to
the PWA approximation for the flow function q. However, the calculation times are expected
to increase exponentially when doing so using MILP. We propose a new method, that provides
the embedding in the eventual Model Predictive Control (MPC) optimisation to be a linear
multilevel programming problem.

Predicted Disturbances Since we aim to use the models in a routing context under blocked
road conditions, the insertion and deletion of segments is added to METANET in the form
of a novel bridge element. The new model can still be used in combination with MPC, since
the moments of opening and closing of the bridges are assumed to be known in advance.
Furthermore, the traffic split Fν,m, defined later in this chapter, is used as the control input,
such that the controller determines the routes of the traffic flows while minimising the TTS.

3-2 Piecewise-Affine Approximation of METANET Combined with
Linear Programming

In this section, we propose a new method that might improve the calculation speed of the MLD
model in an MPC context. We describe a linear minimization problem that can determine
the value of a convex PWA function. This is described in Section 3-2-1. The LP method
is incorporated into METANET, congruent to the original MILP approximation described
in the previous chapter, so that a meaningful comparison can be made between the two. A
detailed description of how this theory is implemented is given in Section 3-2-2.

3-2-1 Function Evaluation Using Linear Programming Problems

Two types of approximations of nonlinear equations in METANET are addressed here. The
PWA approximations and the minimum of several parameters. The first covers the desired
speed function V and the flow function q, the second covers the traffic outflow at an origin
qo.

A linear minimisation with convex piecewise-affine constraints

Given a convex PWA function fPWA,K(x) : Rn → Rm with K regions

fi(x) = aTi x+ bi,
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3-2 Piecewise-Affine Approximation of METANET Combined with Linear Programming 19

where x ∈ Ni with Ni the active region and i ∈ {1, ...,K}. The function value can be evalu-
ated at x in the following manner:

fPWA(x) = max
i

(aTi x+ bi). (3-1)

This method applies to convex PWA approximations only. The affine function that holds in
its own region is always the one with the largest values for fi. It is most easily seen that this
is true if the affine functions are extended beyond the regions in which they hold. This is
illustrated in Figure 3-1.

Figure 3-1: Example of a convex PWA function where the affine functions are extended beyond
their bounds. The feasible region of the minimisation problem in (3-2) is indicated in grey.

Equation (3-1) is equivalent with

min f̂

s.t. f̂ ≥ aTi x+ bi ∀ i ∈ {1, ...,K},
(3-2)

which is an LP problem.

This concept is applied to two functions in METANET: the flow q in (2-3) and the desired
speed V (2-5). The equations are worked out in Section 3-2-2.

The minimum of several parameters

The traffic outflow qo at an origin in (2-8), is calculated by taking the minimum of several
parameters. Consider a function f :

f = min{f1, f2, ..., fn}.

This function can be incorporated in an LP problem as well. We search the minimum of f ,
so f is smaller than or equal to each of the individual variables f1, ..., fn. These inequalities
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20 Improved METANET and Traffic Control

are the constraints to the following linear programming problem, where we find the maximum
of f :

f = min{f1, f2, ..., fn} ⇔

max f̂
s.t. f̂ ≤ f1

f̂ ≤ f2

:
f̂ ≤ fn.

(3-3)

In Section 2-2-4, we provided an MLD method from the literature to find the minimum of
several parameters, the notation given here provides an alternative to that minimisation. We
will compare the performance of both methods in the next chapter.

3-2-2 Application to METANET

We now apply the methods from the previous section to the following functions in METANET:
the outflow at origins qo in (2-8), the desired speed V in (2-5) and the flow q in (2-3).

Outflow at Origins

In METANET, origins are modelled by (2-8), which is repeated here and generalised to the
minimisation of three time dependent functions as:

qo(k) = min
[
do(k) + wo(k)

Ts
, ro(k)Co, Co

(
ρjam,m − ρm,1(k)
ρjam,m − ρcr,m

)]
qo(k) = min[f1(k), f2(k), f3(k)].

(3-4)

To find the minimum of the three parameters f1(k), f2(k), and f3(k), we use the modification
described in the previous section, so that we are able to incorporate it in an LP minimisation
problem as

min − q̂o(k)
q̂o(k) ≤ f1(k)
q̂o(k) ≤ f2(k)
q̂o(k) ≤ f3(k),

(3-5)

where q̂o(k) is the approximation of qo(k).

Desired Speed Function

This nonlinear and nonconvex function needs to be altered so that it is solvable with a linear
programming problem. We approximate
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V
(
ρm,i(k)

)
= vfree,m exp

[
− 1
am

(
ρm,i(k)
ρcr,m

)am]

by a PWA function with three regions as

min V̂ (ρ)
s.t. − V̂ (ρ) ≤ −aTi ρ− bi ∀ i ∈ {1, 2, 3},

(3-6)

where V̂ (ρ) is the LP evaluation in ρ using the PWA function VPWA(ρ). Here, VPWA(ρ) is the
PWA approximation of the function V (ρ).
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Figure 3-2: PWA approximation of the fundamental diagram in 3 regions

Figure 3-2 shows the PWA approximation of the desired speed function V (ρ) in 3 regions. As
we have seen in the previous chapter, this approximation with 3 regions results in an error
of 3.4%. This is five times smaller than the error resulting from the approximation of the
flow equation q = ρv, as performed in Figure 2-3b. For this reason, we will concentrate on
improving the approximation for q and keep the approximation for V , as described in this
paragraph, restricted to these three segments.
Moreover, this approximation is convex without explicitly constraining it when using three

(or less) regions. When using more regions, the least-squares optimization results in flattening
out the affine functions close to ρ = 0. In that case, the constraint a1 < a2 < ... < ai would
have to be added at the cost of accuracy.

For a given ρ, the linear minimisation in (3-6) gives the solution that lies on the piecewise
approximation. The PWA functions have been determined with a least-squares optimisation
as described in Section 2-2-3 and in more detail in Appendix A-1.

Flow Function

We also want to approximate the nonlinear and nonconvex function for the traffic flow with
the use of PWA functions. We have the equation

q = ρv,
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which is plotted in Figure 3-3. This is the most important of the three approximations dis-
cussed in this section because it has the largest contribution to the error. In the following, we
work out a separation of the flow function q, after which we perform the PWA approximation
in two dimensions.

Figure 3-3: Function q = ρv. The fundamental line, with equation qe = ρV (ρ) is also shown.

Separation of the Flow Function We will now work out a method that previously has
been mentioned, and is proposed by for example [73]. The nonconvex flow function will be
separated into two convex functions, q+ and q−. We separate the function

q = ρv

by writing
ρv = 1

4(ρ+ v)2 − 1
4(ρ− v)2. (3-7)

With this separation we can write the equation as

q = 1
4x

2
1 −

1
4x

2
2,

with x1 = ρ+ v and x2 = ρ− v. At this point we define

q+(x1) = 1
4x

2
1 and q−(x2) = 1

4x
2
2,

and so we have

q = q+(x1)− q−(x2).

This separation has the important implication that we can approximate both the functions
q+ and q− with a PWA function using two-dimensional identification. This results in an
approximation of the form
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3-2 Piecewise-Affine Approximation of METANET Combined with Linear Programming 23

qPWA = q+
PWA(x1)− q−PWA(x2). (3-8)

Note that we could have used the same PWA function as an approximation for both q+

and q−. However, when we define the two functions separately, as we have done here, we
reduce the number of regions in the PWA approximations and hence the number of decision
variables in the MLD system as well as the number of inequality constraints in the LP system,
cf. Figure 3-4.

Constraints on PWA Identification Problem Suppose we have a situation in which ρ = ρjam
and v = 0. The traffic is jammed and we expect q = ρjam · 0 = 0. We fill in (3-8) with
x1 = ρjam + 0 and x2 = ρjam − 0 and obtain qPWA = q+

PWA(ρjam) − q−PWA(ρjam). Since the
functions q+

PWA and q−PWA have a different domain on which they hold, when a least-squares
optimisation would be run on them separately, the PWA approximations would (slightly)
differ from each other. This is expected to become problematic when x1 = ±x2, because in
these situations the approximated flow qPWA is expected to be equal to 0. However, when
q−PWA is larger than q+

PWA, which could occur when these approximations differ from each
other, this would result in qPWA being negative, i.e. the traffic flows backwards. To prevent
this from happening we impose that q+

PWA(ρjam) = q−PWA(ρjam).
The other extreme scenario is when ρ = 0 and v = vfree. Similarly to the above, the flow

could potentially become negative when the PWA approximations do not meet the constraint
q+

PWA(vfree) = q−PWA(−vfree).

To implement these constraints, we adapt the PWA identification to perform only one least-
squares optimisation on the negative half of the horizontal axis (x1, x2 < 0) after which we
mirror the solution over the vertical axis, satisfying the constraint q+

PWA(vfree) = q−PWA(−vfree),
and we use the solution for both q+

PWA and q−PWA simultaneously, which will satisfy the con-
straint q+

PWA(ρjam) = q−PWA(ρjam). These measures might result in the approximation becom-
ing less accurate than it potentially could be. It is preferred however over an approximation
that potentially results in negative flows. We define

q±PWA(z) = 1
4z

2

as the mirrored approximation of both q+
PWA and q−PWA.

Bounds on PWA Identification Problem We note that an approximation on the entire
domain −(ρjam + vfree) ≤ z ≤ ρjam + vfree is not necessary because not all theoretically
possible values for q are equally likely to be encountered (for example q = ρjamvfree will not
actually occur in METANET). To get an idea of what values for q are typical, we evaluate
the expected flow with v = V (ρ) as

qe = ρV (ρ). (3-9)

This line is plotted in Figure 3-3. These are not the only feasible values that q can have,
i.e. the update equation for vm,i(k) in (2-5) is not equal to V (ρ) but it will mostly be in the
vicinity of this line, since the corrections on vm,i−1(k) and ρm,i+1(k) are relatively small and
the other terms steer the function towards V (ρ) and thus towards this line.
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For an indication of the bounds on the PWA identification problem, we calculate the ex-
pected values for q+ and q− in the same manner. We obtain the functions

q+
e (ρ) = 1

4
(
ρ+ V (ρ)

)2 and q−e (ρ) = 1
4
(
ρ− V (ρ)

)2
. (3-10)

Here, the domains of q+
e and q−e are respectively given by

min
ρ

(ρ+ V (ρ)) ≤ ρ ≤ max
ρ

(ρ+ V (ρ)) and min
ρ

(ρ− V (ρ)) ≤ ρ ≤ max
ρ

(ρ− V (ρ)).
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(a) PWA approximation in 2 regions. Here, q+
PWA

is always in the second region and q−
PWA is in both

regions, so we have 1 decision variable in this con-
figuration.
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Configuration 2

(b) PWA approximation in 3 regions. Here, q+
PWA

is always in the third region and q−
PWA is in all three,

so we have 2 decision variables in this configuration.
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(c) PWA approximation in 4 regions. Here, q−
PWA

is in all four regions. The minimum of q+
PWA is only

just in the fourth region, so we have chosen a safety
region and divided q+

PWA in 2 regions. We have 4
decision variables in this configuration.
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Configuration 4

(d) PWA approximation in 5 regions. Here, q+
PWA

is in the last two regions and the minimum of q−
PWA

is only just in the second region, so we have chosen
a safety region and divided q−

PWA in 5 regions. We
have 5 decision variables in this configuration.

Figure 3-4: The four configurations of q±
PWA, with increasing numbers of decision variables,

that we have chosen to run simulations on. We show the original function 1
4 (ρ ± v)2 and the

approximations q±
PWA of this function. The minimum and maximum of (ρ± V ) are also shown.
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An estimate of the domain on which q±(z) holds, is then acquired by calculating

zmin = min
ρ

(
ρ+ V (ρ), ρ− V (ρ)

)
and

zmax = max
ρ

(
ρ+ V (ρ), ρ− V (ρ)

)
.

We note that q± is symmetrical over the vertical axis. Then,

ζ = max
(
|zmin|, zmax

)
= 180

provides an estimate for both the upper and lower bound, so {q±(z)| − ζ ≤ z ≤ ζ}.
We use these bounds in the optimisation problem to determine q±PWA. We perform this
unconstrained least-squares optimisation with a multi-start Levenberg-Marquardt approach.
The required symmetry is embedded in the cost function. Therefore, we were still able to use
the Levenberg-Marquardt algorithm on the minimisation problem. The exact functions that
resulted from these optimisations are given in (A-3), (A-4), (A-5), and (A-6) in Appendix A.

Improving the Results Let us now analyse the effect of reducing the number of regions
of the PWA functions q+

PWA and q−PWA using the estimate of the bounds that we previously
calculated in (3-10). Fewer PWA regions result in fewer decision variables, which can speed
up the calculation times. The result of this simplification is captured in Figure 3-4, where
four configurations of PWA approximations are shown, with 1, 2, 4, and 5 decision variables
respectively. In configuration 3, we have used an extra PWA function for q+

PWA as a safety
region. The same has been done for q−PWA in configuration 4. A more elaborate discussion
about the PWA identification of this flow function can be found in Appendix A-2. The
configurations in the final form of Figure 3-4 have been used in the case studies that are
discussed in Chapter 4.

3-3 Accounting for Predicted Disturbances

In this section, we propose a method that incorporates bridges in METANET. We interpret
the opening or closing of these bridges as a predicted disturbance and we model these events
as an alteration in the network topology. Therefore at least one of the system matrices in the
MLD and LP (prediction) models has to be time dependent. We encounter time-dependent
behaviour, both in the state space equations and in the linear (in)equalities that apply on the
states and control actions. Furthermore, we describe the implementation of a controller that
accounts for these predicted disturbances, caused by the opening and closing of bridges.
We start with a description of the modifications to METANET. More specifically, in Section

3-3-1 we zoom in on road interchanges and turning fractions. Here we define control input of
the models. In Section 3-3-2 we describe several ways of modelling a bridge that opens and
closes at predetermined moments in time.

3-3-1 Modified METANET

We analyse METANET again, to investigate which variables are suitable to be used as control
input u.
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We propose a modification of the equations that govern the traffic progression in and around a
METANET vertex, defined earlier in (2-9) and (2-10). In METANET, β specifies the fractions
by which the summed incoming flow at a vertex ν is split and divided over the emanating
links. The flow towards link m was previously given as

qm,0(k) = βν,m(k)Qν(k).

We propose to omit this variable qm,0(k), and instead use the traffic split Fν,m(k). Here,
Fν,m(k) is the traffic flow (veh/h) at vertex ν towards link m at time step k. This traffic split
is used as the only control input, so

u(k) = Fν,m(k). (3-11)

Now, at the first segment of a link, we use the update equation

ρm,1(k + 1) = ρm,1(k) + Ts
Lmλm

[Fν,m(k)− qm,1(k)], (3-12)

instead of the update equation in (2-4) used otherwise.

This implies that we do not use on-ramp metering or variable speed limits as control inputs.
We have chosen to use the traffic split over the turning fractions, because the system would
have to be quadratic in order to multiply βν,m(k) with Qν(k). This means that we work with
actual flows Fν,m(k), and not with the percentages βν,m(k). When the turning fractions are
needed, which is the case when we use the nonlinear model as simulation model, they can be
easily calculated back from (3-11) as

βν,m(k) = Fν,m(k)/Qν(k). (3-13)

The equality conditions and bounds that hold for Fν,m are given next. The sum of the turning
fractions at each vertex should be equal to Qν and each Fν,m in ν has a value between 0 and
Qν , thus we have

∑
µ∈Iν

Fν,µ(k) = Qν(k) ∀ ν ∈ N (3-14)

and

0 ≤ Fν,m(k) ∀ ν ∈ N, ∀ m ∈ Iν . (3-15)

3-3-2 Describing Temporarily Unavailable Segments in METANET

We speak of a topology change when a network structure alters. In this section we propose a
means of handling topology changes in METANET. More specifically, we describe a couple
of possible methods for implementing a bridge element in the model.
A bridge consists of two parts. Firstly, we have the queue area (on two sides of the bridge)
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which is typically but not necessarily a short area where vehicles wait in front of a boom
barrier when the bridge is open. Secondly, we have the part of the bridge that actually opens
to let water traffic pass. This is also typically a short segment compared to a METANET
segment (which measures 500 metres). If this bridge is open, the traffic should be stopped
and unable to flow to the downstream segment.
Bridges that can actually open are fairly uncommon on motorways, but they do exist.

However, we will not run a case study on an real traffic situation, so the model does not yet
have to exactly simulate an existing bridge.

METANET Segment

Both the queue area and the bridge itself are typically short elements compared to the 500
metres of a regular METANET segment. A straightforward method would be to let both the
queue areas and the bridge itself be normal METANET segments. This implies that at least
two segments are needed (with a combined length of at least 1000 metres), where an entire
bridge might not even be as long as 500 metres. Creating a METANET segment that is shorter
than the original 500 metres is possible, but this could result in the Courant-Friedrichs-Lewy
(CFL) condition [18] being violated. The CFL condition is given as

Ts ≤ min
m∈Ilink

Lm
vfree,m

, (3-16)

where Ilink is the set of all the links in a network. This condition ensures that traffic does not
traverse more than one segment in a single time step. When we would implement a segment
as short as the movable part of a bridge, the CFL condition is very likely to be violated.

Zero-Length Bridges

Another way to model a topology change is to place a bridge on the node in between two
segments. This generalisation consists of two adjacent METANET segments somewhere in
a link that can be disconnected from each other when the bridge opens. This bridge has
zero length and only one segment upstream from the bridge node is used as queue area. The
length of the bridge is included in the downstream segment, because the bridge itself is not a
part of the queue area.

This is implemented in METANET as follows. We call the segment upstream from the bridge
node iu and the downstream segment id. When the bridge opens, the upstream traffic should
be stopped and thus we set qiu = 0. So we evaluate the flow qiu,b at a segment upstream from
a bridge b as

qiu,b(k) =
{
qiu if δb = 0
0 if δb = 1,

(3-17)

where δb(k) is a binary value indicating whether a bridge b is open (1) or closed (0) at time
step k. Furthermore, we have qiu(k) = ρiu(k)viu(k). When δb = 1, the traffic is prevented
from flowing out of iu and so it fills up that segment, whilst maintaining the total amount of
traffic.
The upstream velocity correction at segment id needs to be addressed, because when a
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bridge opens we have vid−1 6= viu . We set vid−1 = vid , as if the bridge node was an origin
node.
The downstream velocity correction at the upstream side of the bridge ρiu+1 also needs to

be addressed, because when a bridge opens we have ρiu+1 6= ρid . We set ρiu+1 = ρiu , as if the
bridge node was a destination node.

Using this method can easily result in unsatisfactory METANET behaviour. To illustrate
what happens we work out a potential case. Suppose a bridge has been open for a while and
segment iu is filled to its maximum capacity, so ρiu = ρjam and viu = 0. Then we must have
qiu−1 = 0, otherwise segment iu would still be filled with traffic and when that happens ρiu
crosses the maximum capacity and the model bounds are violated. However, segment iu−1
might not yet be full so ρiu−1 6= ρjam. Therefore, Viu−1(ρ) 6= 0 and this would cause viu−1 to
be larger than 0. This is a contradiction because we specifically required qiu−1 = 0 in order
to stop the traffic flow to segment iu. We conclude that we use a single segment as queue
area and that we have to make sure that the densities do not increase to values close to ρjam.
The main problem with this method is that METANET cannot handle an abrupt blockage

very well. Even in a less extreme scenario (ρiu < ρjam), the model is expected to cross the
maximum capacity relatively easily. The update equations are based on traffic flows and thus
setting one of these flows to 0 will very likely result in abnormal behaviour. Upstream traffic
keeps filling the segment in front of the bridge, even when the maximum capacity ρjam of
that segment is reached. To prevent this from happening we take two measures. Firstly, we
put speed restrictions in the area upstream from the bridge, by using a minimum speed of
vmin = 4 km/h on all segments, to regulate the inflow of traffic. Secondly, we simply limit
the time the bridge is open.

Store-and-Forward Bridges

In explaining the previous method, we observed that the maximum capacity ρjam in the queue
area can be exceeded relatively easily. To address this and other issues, we now propose a
vehicle store-and-forward method that is more elaborate and therefore expected to be more
robust the zero-length bridges method. Vehicles that are waiting in front of a bridge can be
stacked in a queue similar to one used for an origin. Whenever the queue is empty and the
bridge is closed, the queue segment is unused, but when the bridge opens, the queue segment
starts storing traffic in a queue wb with a maximum queue length of Mw,b (and a minimum
of mw,b = 0).

Nonlinear Store-and-Forward Model The update equation for the bridge queue length wb
is given by

wb(k + 1) = wb(k) + Ts (qu,b(k)− qw,b(k)) , (3-18)

where qu,b(k) is the inflow of traffic from segment iu to the bridge queue and qw,b(k) is the
traffic outflow from the bridge queue towards segment id. The outflow qw,b of the queue of
bridge b is equal to 0 when the bridge is open, but also when the bridge is closed and the

M. Leeuwenberg Master of Science Thesis



3-3 Accounting for Predicted Disturbances 29

queue is empty. This variable is described in more detail further on. The traffic inflow to the
bridge queue is given by

qu,b(k) =
{

0 if δb(k) = 0 ∧ wb(k) = 0
qin,b(k) otherwise.

(3-19)

Furthermore, we define the actual value of the flow qin,b from segment iu to the bridge queue
by

qin,b(k) = min
[
qiu(k), Mw,b − wb(k)

Ts

]
, (3-20)

with
qiu(k) = ρiu(k)viu(k). (3-21)

Only when the queue segment is empty again after a bridge has closed, we have qu,b = 0.
This makes sense, because if the queue in front of the bridge has not dissolved yet, newly
arriving traffic has to queue first before crossing the bridge. As with the zero-length bridges
method, the bridge can be located in the middle of a link, in which case (3-20) holds. When
however the bridge is located in between a vertex ν and the first segment i of link µ, we set
qin,b(k) = min[Fν,µ(k), (Mw,b − wb(k))/Ts]. For simplicity, in the following we will assume
that the bridge is located in the middle of an edge.

The maximum queue length Mw,b can be reached if bridge b is open for a long enough time
period. WhenMw,b is reached, the queue cannot hold more traffic, and from that moment on,
the traffic is stored in the upstream segment iu in the same way as in the zero-length bridges
method.
Suppose we are at time step km, the bridge is open, and the queue length will reach Mw,b

at the next time step. We have, from (3-20), the inflow at that time step

qin,b(km) = Mw,b − wb(km)
Ts

.

Because the bridge is still open we have δb(km) = 1 and thus qu,b(km) = qin,b(km) and
qw,b(km) = 0 so

wb(km + 1) = wb(km) + Tsqin,b(km) = Mw,b.

It is important to make sure that the queue length at time step km + 1 is exactly Mw,b,
otherwise we lose traffic, i.e. the density of segment iu is not updated correctly.

When the bridge closes, the traffic flow starts up again, beginning with emptying the queue wb
into segment id, followed by the regular progression of the traffic in the network. Remember
that, as long as wb 6= 0, the queue is being filled at the same time. So the queue is emptied
like a regular origin while (3-18) is still valid. The outflow qw,b is based on the outflow at an
origin given in (2-8):

qw,b(k) =
{
qout,b(k) if δb(k) = 0
0 if δb(k) = 1,

(3-22)
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with

qout,b(k) = min
[
qu,b(k) + wb(k)

Ts
, Cb

(
ρjam,m − ρm,id(k)
ρjam,m − ρcr,m

)
, Cb

]
. (3-23)

Here, Cb (veh/h) is the capacity of the bridge. Unless otherwise specified, we will use

Cb = 2000 veh/h.

The regular METANET equations are only used when both the bridge queue is empty and
the bridge is closed. Similarly, the store-and-forward element is only used if either the bridge
is open or the bridge queue is not empty. Therefore, the outflow qiu,b at segment iu and the
inflow qid−1,b at segment id are defined by

qiu,b(k) =
{
qiu(k) if δb(k) = 0 ∧ wb(k) = 0
qin,b(k) otherwise,

(3-24)

and

qid−1,b(k) =
{
qiu(k) if δb(k) = 0 ∧ wb(k) = 0
qw,b(k) otherwise.

(3-25)

At the time step at which we can completely empty a traffic queue, we make sure that this is
done correctly. Suppose that at time step kw we have

qout,b(kw) = qu,b(kw) + wb(kw)
Ts

,

which implies that at this time step, the queue can be emptied in the adjacent segment. Then
the last bit of traffic in the queue wb(kw) is summed with the incoming traffic qu,b(kw) =
qiu(kw) at that time step and directly forwarded to the outgoing traffic via

qw,b(kw) = qout,b(kw) = qu,b(kw) + wb(kw)
Ts

.

This results in

wb(k + 1) = wb(k) + Ts (qu,b(k)− qw,b(k)) = 0,

so the bridge queue is empty and qw,b = qu,b = 0 from that point on and the queue segment
stays empty until the bridge opens again. Moreover, there is no traffic lost or excess traffic
left in the queue.
Furthermore, we note that the queue element is always emptied at the maximum rate. At

time step kw+1, the segments iu and id are reconnected and the traffic the regular METANET
model equations are used again for the state evolution.
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Remark 3.1. A zero-length bridge is essentially a special case of a store-and-forward bridge
with Mw,b = 0.
When a store-and-forward bridge queue is full, i.e. when at some time step wb(k) = Mw,b,

the METANET segment upstream from this bridge has to hold the excess traffic. This is
realised by forcing qiu,b = 0, so that the outflow at that upstream segment is blocked. Similarly,
when using a zero-length bridge, the outflow is forced to 0 to block the outflow, c.f. (3-17) and
(3-24). Therefore, when we set Mw,b = 0 in the store-and-forward model, we observe the same
behaviour as with the zero-length bridges.

MLD Store-and-Forward Model The new equations introduced above can be added to the
nonlinear model, but have to be rewritten for usage in the MLD model. This can be achieved
using the methods described in [6, 73].

For the flow qin,b to the bridge we have

q̂in,b(k) = δqin,b(k)q̂iu(k)− [1− δqin,b(k)]Mw,b − wb(k)
Ts

, (3-26)

where q̂iu(k) = q̂+
iu(k)− q̂−iu(k) and

q̂iu(k) ≤ Mw,b − wb(k)
Ts

⇔ [δqin,b(k) = 1]. (3-27)

For the conversion of qu,b to MLD form, we first define

δbwb(k) = δb(k)δwb(k). (3-28)

Now we have

q̂u,b(k) = [δb(k) + δwb(k)− δbwb(k)] q̂in,b(k), (3-29)

which is in MLD form if we add the three constraints given in (2-18) on δbwb(k). Furthermore
we have

δwb(k) =
{

1 if wb(k) > 0
0 if wb(k) = 0,

which translates to
wb(k) ≤Mw,bδwb
wb(k) ≥εδwb ,

(3-30)

where ε is the machine precision.

The MLD form of qw,b(k) is derived next. We start with rewriting (3-23) as

qout,b(k) = min
[
qu,b(k) + wb(k)

Ts
, Cb

(
ρjam,m − ρm,id(k)
ρjam,m − ρcr,m

)
, Cb

]

qout,b(k) = min
[
qout
b,1 (k), qout

b,2 (k), Cb
]
, (3-31)
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which is similar to the equation for the outflow at an origin; cf. Appendix A-3-2. In a similar
manner, we can rewrite (3-31) in MLD form as

q̂out,b(k) = qout
b,1 (k)δout

b,1 (k) + qout
b,2 (k)δout

b,2 (k) + Cbδ
out
b,3 (k), (3-32)

where

[δout
b,1 (k) = 1]⇔ [qout

b,1 (k) ≤ qout
b,2 (k) and qout

b,1 (k) ≤ Cb]
[δout
b,2 (k) = 1]⇔ [qout

b,2 (k) ≤ qout
b,1 (k) and qout

b,2 (k) ≤ Cb]
[δout
b,3 (k) = 1]⇔ [Cb ≤ qout

b,1 (k) and Cb ≤ qout
b,2 (k)].

(3-33)

Now we can write the MLD equivalent of qw,b as

q̂w,b(k) = [1− δb(k)]q̂out,b(k). (3-34)

The last two variables we rewrite to MLD form are qiu,b(k) and qid−1,b(k). We have

q̂b,iu(k) = q̂iu(k) +
(
δb(k) + δwb(k)− δbwb(k)

)(
q̂in,b(k)− q̂iu(k)

)
, (3-35)

and

q̂b,id−1(k) = q̂iu(k) +
(
δb(k) + δwb(k)− δbwb(k)

)(
q̂w,b(k)− q̂iu(k)

)
. (3-36)

Again, we removed the multiplications of the binary decision variables δb(k)δwb(k) in (3-35)
and (3-36) by replacing them with the already introduced binary variable δbwb and the three
constraints in (2-18).

Topology Changes

Because we approached the opening of a bridge in METANET as a topology change in the
underlying network, we can generalise these methods to be applicable to a variety of traffic
situations, i.e. the road can be obstructed for more reasons than an open bridge, for example
an accident that blocks the motorway, red traffic lights, or road maintenance. The methods
for describing temporarily unavailable connections in METANET could be used in these cases
as well.

3-4 Time-Dependent State Space Representation of the Mixed
Logical Dynamical Model and the Linear Programming Model

At this point, as all the different parts of the models have been discussed separately, we put
them together to arrive at a generalised form of a state space system that fits both the MLD
and LP model as
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x(k + 1) = A(k)x(k) +B(k)u(k) + B̃(k)υ̃(k) + f(k)
y(k) = C(k)x(k) +D(k)u(k) + D̃(k)υ̃(k) + g(k)

E1(k)x(k) + E2(k)u(k) + Ẽ(k)υ̃(k) ≤ h(k),
(3-37)

where x(k) are the states, u(k) the control inputs, the optimisation variables υ̃(k), and y(k)
the system’s outputs.
The MLD and LP model have a time-dependent nature because they can account for

predicted disturbances. A change in the topology of the network (i.e. when a bridge opens or
closes) results in an update of the system matrices.

The state x is given as x(k) = [wo(k), wb(k), ρ(k), v(k)]T in the MLD model, where we use
the store-and-forward method for the bridges. For the LP model it is defined by x(k) =
[wo(k), ρ(k), v(k)]T , because we use the zero-length bridges method here.

The control input is given by the controlled traffic split u(k) = Fν,m(k). This is the only real
control input, i.e. only by controlling Fν,m(k) we can steer the system.

The optimisation variables for the MLD model are given as a stacked vector with all the
auxiliary variables, υ̃(k) = [δT (k), zT (k)]T . In the LP model, we use a vector containing all
the dummy variables υ̃(k) = [q̂o(k), V̂ (k), q̂+(k), q̂−(k)].

The output y(k) is a linear combination of the input and the state. It is a (not always directly
measurable) system parameter that can say something about the performance of a controller
or the system in general.
In this thesis, we use the TTS to evaluate the overall performance of the different models

and controllers. This variable was already given in (2-20) and is a little more elaborately
discussed in the next section. In the scope of this thesis, the system does not necessarily
require any more outputs. However, since the outputs are a linear function of the states and
inputs, we can use them to get insight in the inputs. This is especially useful for summing
the (sometimes elaborate) functions that q̂(k) consists of, for q̂o(k), and V̂ (k). Thus we use
y(k) = [JyTTS(k), V̂ (k), q̂o(k), q̂(k)]T , where JyTTS(k) is the TTS at an instant of time. In the
MLD model, where we use store-and-forward bridges, we add the most important variables
of this element to the output; we have y(k) = [JyTTS(k), V̂ (k), q̂o(k), q̂(k), q̂u,b(k), q̂w,b(k)]T .

3-5 Control Implementation

In this section, we discuss the control implementation that we use in combination with the
traffic models. The only available actuators are the traffic splits. Many control methods
are suitable for obtaining an input vector u(k) = Fν,m(k) at each time step. We propose to
apply MPC, which is used in combination with both the MLD and the LP model described
throughout this thesis.

Control Framework

When implementing a controller, we close the control loop and link the outputs back to the
inputs. In the context of this thesis, the aim of the controllers is to minimise the TTS.
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In the case we use the store-and-forward method for bridges, we add the bridge queue wb to
the function for the TTS, which is then given by

JTTS = Ts

Nsim∑
k=1

 ∑
(m,i)∈Iall

Lmλmρm,i(k) +
∑
o∈Oall

wo(k) +
∑
b∈Ball

wb(k)

 , (3-38)

where Nsim is the number of time steps in the simulation, Iall are all possible (m, i) pairs, Oall
is the set of all origins, and Ball the set of all bridges in the network.

A major motivation for computationally light controllers is real-time implementation. When
using a controller in real time, we require the control inputs before moving to the next time
step. That means that the computation time Tc always has to be less than the time step, i.e.
Tc < Ts.

Model Predictive Control Applied to the Modified Models

We use MPC in combination with the generalised time-dependent system described in (3-37)
for both the MLD and LP model. This is possible under the condition that the disturbances
on the system are known beforehand. We can for example anticipate on the opening of a
bridge easily because ships travel at a relatively constant speed. We can use the models in
combination with MPC because, although the system matrices are time dependent, we update
them at each time step in which a bridge opens. Sudden topology changes are not accounted
for by this controller, so we leave disturbance rejection outside the scope of this thesis.

The cost function used for the MPC problem is TTS over the prediction horizon, is given by

JMPC
TTS (k) = Ts

Np∑
j=1

 ∑
(m,i)∈Iall

Lmλmρm,i(k + j) +
∑
o∈Oall

wo(k + j) +
∑
b∈Ball

wb(k + j)

 . (3-39)

Remark 3.2. An implementation issue arises when using a control horizon Nc. In the time
steps from Nc to Np, the input u(k) = Fν,m(k) is kept constant, and the auxiliary variables
in υ̃(k) are still updated at each time step. Therefore, we encounter an inaccuracy. Since
the values in u(k) are traffic flows and not the turning fractions, they need to be constantly
updated in order to obtain an accurate prediction.
If we would choose Nc < Np, we would have the constant traffic splits Fν,m(k), next to the

variable flows q̂(k) in the constraints on the inputs given in (3-14) and (3-15). This would
cause the prediction values to be inaccurate. The model is infeasible in that case, unless we
disable the constraints on the inputs. Therefore, the usage of a control horizon Nc is up to
this point undesired and we will use Nc = Np in the following.

An N -step-ahead simulation with the LP model cannot be accurately solved using a single LP
optimisation, but only with a sequence of LP problems. We provide a theoretical motivation
for this statement in Section 4-2. We propose to use time-dependent weighing factors as
a potential way of solving the N -step-ahead simulation with a single LP problem. In the
LP-MPC model, we use
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JMPC
LP (k) = wTTS

Jnom,TTS
JMPC

TTS (k) +
Np−1∑
j=0

(
wV̂ (k)
Jnom,V̂

V̂ (k + j) +
wq̂+(k)
Jnom,q̂+

q̂+(k + j)

+
wq̂−(k)
Jnom,q̂−

q̂−(k + j)− wq̂o(k)
Jnom,q̂o

q̂o(k + j)
)
,

(3-40)

as the objective function, where wTTS, wV̂ (k), wq̂±(k) and wq̂o(k) are weighting factors. In
Section 5-3, we briefly discuss a potential way of solving the N -step-ahead simulation in a
single LP problem with the use of these time-dependent weighing factors.

3-6 Summary

In this chapter, we have made two contributions to the literature. We have expanded the
already existing method that approximates METANET with an MLD model that can be
evaluated with MILP. This resulted in a model that can be evaluated using LP, which is
expected to improve the trade-off between speed and accuracy significantly. Furthermore,
using MPC, we are able to account for predicted topology changes. MPC can be used in
combination with both the MLD and LP model. The computation times of MPC problems,
where either the MLD or LP model is used as prediction model, need to be compared to each
other.
The second contribution to the literature is an extension to METANET that allows for

topology changes in the network. More specifically we have proposed a method that incorpo-
rates store-and-forward bridges in the nonlinear and in the MLD model.
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Chapter 4

Simulation Results

In this chapter, we run a number of simulations using the newly proposed Linear Programming
(LP) model, and using the newly added bridge elements in the Mixed Logical Dynamical
(MLD) model. In Section 4-1, we describe the general setup of the simulations: the software
we have used and the tuning of the Model Predictive Control (MPC) problems. Thereafter,
in Section 4-2, we describe an N -step-ahead simulation with the LP model in detail and
we show that, to solve this simulation correctly, it should be written as a linear multilevel
programming problem. Since we expected the resulting problem to be a single LP problem,
we do not run further simulations with the LP model. Instead, to provide a proof of concept
of the newly proposed bridge elements, we run a number of simulations on both the nonlinear
and MLD model in Section 4-3.

4-1 Setup

In this section, we describe the setup used for the simulations performed in this chapter.

Software For the simulations that have been run in this chapter we have used Gurobi 8.1.0 to
evaluate the LP and Mixed Integer Linear Programming (MILP) problems. We have used the
MATLAB Application Programming Interface (API) for MATLAB R2019b on both Ubuntu
and Windows.

Tuning the Model Predictive Controller In MPC, we can tune the performance using the
parameters Np and Nc. In Remark 3.2 we have already discussed that we need to have
Np = Nc in order to satisfy the equality constraints on Fν,m. Furthermore, we choose their
value according to a rule of thumb that is closely related to the one proposed by Hegyi [38,49],
according to whom Np should be larger, but not much larger than the typical travel time in
the network. That rule of thumb is based on a network with a single stretch of road with
variable speed limits. However, we consider a motorway network with multiple routes of
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different lengths and therefore we will use a different rule of thumb.
We choose

Np ≥ |Il|Ts,

where Il is the set of segments that comprise the longest route in the network and |Il| is the
number of elements in that set. If there is some traffic in a segment, some of it progresses
to the downstream segment at each time step, unless a bridge is open. Therefore, we can
say that in |Il| time steps, the prediction horizon spans the entire network size (if we do not
consider bridges), which is the minimum requirement for the MPC to work properly. This
is most easily understood when filling an empty network with two routes of unequal length.
When the prediction horizon is shorter than the time it takes to fill the shortest route with
traffic, the Total Time Spent (TTS) has the same value no matter the values of Fν,m, whether
we route all traffic over the longest or the shortest route, because for either choice the amount
of traffic in the network is exactly the same. From the moment the traffic disappears at a
destination, a difference can be found.

If we compare the LP model with the MLD model, when used as prediction model in an MPC
context, we expect them to give the same predictions when the same Piecewise-Affine (PWA)
configurations are used and the prediction and control horizon have the same length. When
used for routing on a large scale network, we allow for some deviation from the MLD model,
as long as the prediction with the LP model is reasonably accurate. However, when used in
a simple single-lane network where no routing is required, we expect the predictions to be
exactly the same. We will show that this is not the case when solving anN -step-ahead problem
in a single LP problem, and that it should be written as a linear multilevel programming
problem instead.

4-2 Analysis of a Single N-Step-Ahead Simulation with the Linear
Programming Model

The LP model does not prove to work as expected when we use it as prediction model. We have
noticed that the MPC implementation gives incorrect results, even for very small networks
where no routing is required and with wTTS = 0, in which case we expected the outcomes to
be exactly the same as the results obtained with the MLD model used as prediction model.
To get a better understanding of what the underlying reason for these incorrect results is, we
provide an analysis of the equations that arise when we use the LP model in an N -step-ahead
simulation.

Setup This analysis is performed on a very small network with one single-lane link, one
segment, one origin, and one destination. We solve the N -step-ahead simulation with N = 2.
We define the cost function for this problem as

JLP =
N−1∑
k=0

(
wV̂ V̂ (k) + wq̂+ q̂+(k) + wq̂− q̂−(k)− wq̂o q̂o(k)

)
, (4-1)

with wV̂ = 1, wq̂+ = 1, wq̂− = 0.1, and wq̂o = 1. For clarity, we repeat the update equations
for the LP model. Since we only have one link, we leave out the link index m and write
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wo(k + 1) = wo(k) + Ts(do(k)− qo(k)),

ρi(k + 1) = ρi(k) + Ts
Lλ

[qi−1(k)− qi(k)],

and
vi(k + 1) = vi(k) + Ts

τ
[V [ρi(k)]− vi(k)]

+ Tsvi(k)[vi−1(k)− vi(k)]
L

− Tsη[ρi+1(k)− ρi(k)]
τL(ρi(k) + κ) ,

Since we only use one lane and one segment, we have λ = 1 and i = 1. Furthermore, we have
the following boundary conditions for this problem:

q̂0(k) = q̂o(k), ρ2(k) = ρ1(k), and v0(k) = v1(k).

We substitute these equations in the update equations and obtain

wo(k + 1) = wo(k) + Ts(do(k)− q̂o(k))

ρ1(k + 1) = ρ1(k) + Ts
L

[q̂o(k)− q̂1(k)]

v1(k + 1) = v1(k) + Ts
τ

[V̂1(k)− v1(k)].

The number of regions in the PWA approximations of V and q are chosen as small as possible.
We use a PWA approximation VPWA in two regions, q+

PWA in one region, and q−PWA in two
regions; so we have:

VPWA(k) =
{
aV ρ1(k) + bV if ρ1(k) ≤ sV
0 if ρ1(k) > sV

q+
PWA(k) = aq(ρ1(k) + v1(k))

q−PWA(k) =
{
−aq(ρ1(k)− v1(k)) if ρ1(k)− v1(k) ≤ 0
aq(ρ1(k)− v1(k)) if ρ1(k)− v1(k) > 0.

Here, aV and aq indicate the slope and bV indicates the y-intercept of the corresponding affine
function. Furthermore, sV is the x-coordinate of the intersection of the two affine functions
in VPWA.
Note that the approximations for q+ and q− are based on the same parameter aq and

are mirrored over the vertical axis, as has been explained in Section 3-2-2 and visualised in
Figure 3-4a.

The constraints to which the dummy variables in the LP model are subject at a given time
step k are:
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V̂1(k) ≥ aV ρ1(k) + bv

V̂1(k) ≥ 0
q̂o(k) ≤ do(k) + wo(k)/Ts
q̂o(k) ≤ Co

q̂o(k) ≤ Co

(
ρjam − ρ1(k)
ρjam − ρcr

)
q̂+

1 (k) ≥ aq(ρ1(k) + v1(k))
q̂−1 (k) ≥ − aq(ρ1(k)− v1(k))
q̂−1 (k) ≥ aq(ρ1(k)− v1(k))

(4-2)

Next, we state the values of the variables in the update equations (ρ, v, and wo) at time step
k = 1 as a function of the initial condition. For given ρ(0), v(0), and wo(0), their values at
the next time step are:

wo(1) = wo(0) + Ts(do(0)− q̂o(0)),

ρ1(1) = ρ1(0) + Ts
L

[q̂o(0)− (q̂+
1 (0)− q̂−1 (0))]

v1(1) = v1(0) + Ts
τ

[V̂1(0)− v1(0)].

We aim to write the constraints in the MPC problem as a function of the initial condition, i.e.
the values of the state variables at k = 0. This way, we get a good insight in the optimisation
problem and we will be able to see where it contradicts.
We write the constraints on the dummy variables for the two time steps in the prediction

horizon by evaluating (4-2) for k = 0 and k = 1 and obtain the following inequality constraints:

V̂1(0) ≥ aV ρ1(0) + bv V̂1(1) ≥ aV ρ1(1) + bv

V̂1(0) ≥ 0 V̂1(1) ≥ 0
q̂o(0) ≤ do(0) + wo(0)/Ts q̂o(1) ≤ do(1) + wo(1)/Ts
q̂o(0) ≤ Co q̂o(1) ≤ Co

q̂o(0) ≤ Co

(
ρjam − ρ1(0)
ρjam − ρcr

)
q̂o(1) ≤ Co

(
ρjam − ρ1(1)
ρjam − ρcr

)
q̂+

1 (0) ≥ aq(ρ1(0) + v1(0)) q̂+
1 (1) ≥ aq(ρ1(1) + v1(1))

q̂−1 (0) ≥ − aq(ρ1(0)− v1(0)) q̂−1 (1) ≥ − aq(ρ1(1)− v1(1))
q̂−1 (0) ≥ aq(ρ1(0)− v1(0)) q̂−1 (1) ≥ aq(ρ1(1)− v1(1)).

(4-3)

Furthermore, we can write the constraints in the second time step as a function of the variables
in the previous time step. We substitute the equations that we have for ρ(1), v(1), and wo(1)
in the second column of inequalities in (4-2). The set of constraints that results from this
substitution can be further simplified and is stated next (we leave working out these equations
to the reader). We have:
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V̂1(1) ≥aV
(
ρ1(0) + Ts

L
[q̂o(0)− q̂+

1 (0) + q̂−1 (0)]
)

+ bV

V̂1(1) ≥0

q̂o(1) ≤wo(0)
Ts

+ do(0) + do(1)− q̂o(0)

q̂o(1) ≤Co

q̂o(1) ≤Co

ρjam −
(
ρ1(0) + Ts

L [q̂o(0)− q̂+
1 (0) + q̂−1 (0)]

)
ρjam − ρcr


q̂+

1 (1) ≥aq
(
ρ1(0) + Ts

L
[q̂o(0)− q̂+

1 (0) + q̂−1 (0)] + v1(0) + Ts
τ

[V̂1(0)− v1(0)]
)

q̂−1 (1) ≥− aq
(
ρ1(0) + Ts

L
[q̂o(0)− q̂+

1 (0) + q̂−1 (0)]− v1(0) + Ts
τ

[V̂1(0)− v1(0)]
)

q̂−1 (1) ≥aq
(
ρ1(0) + Ts

L
[q̂o(0)− q̂+

1 (0) + q̂−1 (0)]− v1(0) + Ts
τ

[V̂1(0)− v1(0)]
)
.

(4-4)

Evaluation We have deliberately chosen not to use the nominal values Jnom, defined in
(3-40), in this evaluation. Since we have wTTS = 0, we expect that the results we obtain
with a single control optimisation are independent of the weights on the dummy variables.
Regardless of what values we pick for these weights, we expect that the dummy variables
are pushed on the PWA function lines and evaluate the model progression correctly (which
means that they have exactly the same values as the MLD equivalent of this problem).

Next, we evaluate the N -step-ahead simulation with initial condition

wo(0) = 0
ρ1(0) = 0
v1(0) = 106.78.

Here, v1(0) = VPWA(0). When we specify the initial condition, we can compare the result
that we expect from the MLD solution with the optimal solution that we obtain with the LP
model as prediction model in a single LP problem.

We ran the simulation with the LP model in a single LP problem and compared the result
with the values based on the MLD solution. In Table 4-1 we state all the values of the
state and dummy variables for both the expected and the unexpected solution. For the cost
functions we found the following values:

JLP,e = 6303
JLP,u = 6142,

where JLP,e denotes the MLD-based solution and JLP,u is the cost of the solution to the single
LP problem.
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MLD-based solution single LP solution
k 0 1 0 1

wo(k) 0 0 0 2.77
ρ1(k) 0 5.56 0 0
v1(k) 106.78 106.78 106.78 106.78
V̂1(k) 106.78 106.78 106.78 106.78
q̂o(k) 1000 1000 0 2000
q̂+(k) 3603.9 3791.4 3603.9 3603.9
q̂−(k) 3603.9 3416.4 3603.9 3603.9

Table 4-1: This table shows the values of the state and dummy variables of an N -step-ahead
simulation with N = 2. The values for which the LP model deviates from the MLD-based solution
are indicated in orange. The cost for the MLD-based solution is JLP,e = 6303 and the cost for
the LP solution is JLP,u = 6142.

Analysis In order to understand why the results from this N -step-ahead optimisation with
the single LP problem differ from the MLD-based solution, we need to analyse (4-4).
By the substitution we made in (4-4), we exposed the dependency of the dummy variables at

one time step on the values of these variables on the previous time step(s). This dependency
is the underlying reason why the solution to the 1-step-ahead LP problem is correct, and the
solutions to N -step-ahead simulations with N > 1 are mostly incorrect. In order to find the
correct solution to an N -step-ahead simulation, we should solve N LP problems consecutively,
instead of a single LP problem, as we do now.

Multilevel Programming The N -step-ahead simulation should be written in the form of a
(linear) multilevel programming problem. This type of problem is the generalisation of the
more commonly researched bilevel programming problem. A survey on this type of problem
is given by Colson et al. [14]. In such a hierarchical framework, the optimisation problem
of the upper level U with upper part optimisation variables y, contains another optimisation
problem. This nested optimisation problem of the lower level L with optimisation variables
z is to be solved first, after which its solution can be used to solve the upper level problem.
We write a bilevel optimisation problem as

min
y,z

VU(y, z)

s.t. GU,I(y, z) ≤ 0
GU,E(y, z) = 0
z = argmin

z
VL(y, z)

s.t. GL,I(y, z) ≤ 0
GL,E(y, z) = 0,

(4-5)

where I and E respectively indicate the inequality and equality constraints.
The problem as formulated in (4-5) is known to be NP-hard, even in linear form [47]. Fur-

thermore, to the best of our knowledge, we cannot specify the best solution approach for the
linear bilevel optimisation problem. This is due to the fact that, even though many algorithms

M. Leeuwenberg Master of Science Thesis



4-3 Case Studies on Bridge Elements in METANET 43

exist, there is not a single algorithm that consistently performs the best for all linear bilevel
programming problems [72].
The bilevel problem formulation of (4-5) will now be extended to a linear multilevel pro-

gramming problem for our specific case where we combine the LP model in (3-37) with MPC.
Each time step on the receding horizon of the MPC problem corresponds to a level in the
hierarchical problem. We write the linear multilevel programming problem as

min
x̃N

cTN [x̃T1 , x̃T2 , ..., x̃TN ]T

s.t. x̃N−1 = argmin
x̃N−1

cTN−1[x̃T1 , x̃T2 , ..., x̃TN ]T

...
s.t. x̃1 = argmin

x̃1
cT1 [x̃T1 , x̃T2 , ..., x̃TN ]T

GI[x̃T1 , x̃T2 , ..., x̃TN ]T ≤ bI

GE[x̃T1 , x̃T2 , ..., x̃TN ]T = bE,

(4-6)

where x̃k is a stacked optimisation variable of the state x, control inputs u, and dummy
variables υ̃ at time step k. Moreover, cTk is the cost vector at time step k, corresponding to
the objective function as specified in (3-40). The (in)equality constraints can be decoupled
from the separate optimisation problems at each level, that is, the constraints are specified at
all levels of the multilevel problem at the same time. We can do this, because the constraints
are linear and can be determined beforehand; we know how the next time step is dependent
on the previous time step and furthermore, the PWA constraints on the dummy variables all
have the same form, independent of the time step.
We will come back to this multilevel programming problem formulation in Section 5-3,

where we provide some recommendations on how to solve it.

4-3 Case Studies on Bridge Elements in METANET

In this section, we evaluate how well the newly proposed bridge elements simulate the queueing
of cars in front of an open bridge in METANET in a case study using both the nonlinear
and the MLD model. We do not use the LP model in this case study because we have not
specified how to model the store-and-forward bridges in this framework. Furthermore, we
have not specified a way to solve the linear multilevel programming problem that arises when
we use the LP model as prediction model.

Minimum Speed Function Recall from Remark 3.1 that a zero-length bridge is a special case
of a store-and-forward bridge withMw,b = 0. In other words, from the moment the maximum
queue length is reached in the store-and-forward model, the bridge element will behave as a
zero-length bridge. From preliminary tests, we learned that the speeds in METANET can
become negative relatively easy in such a scenario, which is undesirable. Fortunately, this is
a commonly encountered phenomenon, and as a countermeasure we add a maximum function
with a lower speed limit. We have substituted an extra variable ṽm,i(k) in the update equation
for the speed of a METANET segment
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ṽm,i(k) = vm,i(k) + Ts
τ

[V [ρm,i(k)]− vm,i(k)]

+ Tsvm,i(k)[vm,i−1(k)− vm,i(k)]
Lm

− Tsη[ρm,i+1(k)− ρm,i(k)]
τLm(ρm,i(k) + κ) ,

(4-7)

so that now we have the new update equation

vm,i(k + 1) = max(ṽm,i(k), vmin). (4-8)

Here vmin is the lower speed limit, for which we use

vmin = 4 km/h.

Moreover, we discuss how to ensure a minimum speed in the MLD model. We use the variable
ṽm,i(k) as before in (4-7). However, the maximum function in the update equation needs to
be rewritten. We have

vm,i(k + 1) = δṽm,i(k)ṽm,i(k) + (1− δṽm,i(k))vmin, (4-9)

where δṽm,i is a binary decision variable defined as follows:

[δṽm,i = 1]⇔ vmin − ṽm,i(k) ≤ 0. (4-10)

Working out these equations in the form of an MLD model is similar to the conversions given
in Appendix A-3 and is left to the reader.

Setup

We will perform a number of case studies on a single-lane network stretch of 10 km (equalling
20 segments) with a single origin on segment 1 and a single destination on segment 20. A
bridge is located between upstream segment iu = 8 and downstream segment id = 9. In the
case study, we will open a bridge for 5 minutes. The initial condition is a steady-state traffic
flow resulting from a constant demand of do = 1000 veh/h. We will analyse simulations with
the nonlinear model and with the MLD model.

4-3-1 Zero-Length Bridges

Nonlinear Model

We commence with a proof of concept where we open a zero-length bridge for 5 minutes
(equalling 30 time steps). With a constant traffic demand of 1000 veh/h, after a certain
amount of time, a steady state is reached. We start the simulation from this steady state
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Traffic Evolution with Nonlinear Simulation Model
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Figure 4-1: Case with a zero-length bridge being open for 5 minutes, starting from a steady state
solution (where ρ = 10.42 veh/km and v = 96.01 km/h) that resulted from a constant inflow
of 1000 veh/h. The maximum value of the density is ρ = 85.84 veh/km (reached one time step
before the bridge closes again). Linear speed trajectories are shown in the density plot with black
dashed lines. The TTS in this simulation is 22.18 veh·h.
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Figure 4-2: Case with a zero-length bridge being open for 5 minutes, starting from a steady
state solution (where ρ = 14.73 veh/km and v = 87.23) that resulted from a constant inflow of
1000 veh/h. The maximum value of the density is ρ = 96.97 veh/km (reached one time step
before the bridge closes again). Linear speed trajectories are shown in the density plot with black
dashed lines. The TTS in this simulation is 27.27 veh·h.

solution, where ρ = 10.42 veh/km and v = 96.01 km/h for all segments in the network.
The traffic evolution is shown in Figure 4-1. We observe a build up of traffic in the segments

upstream from the bridge from the moment it opens until it closes.

Furthermore, what stands out is that the maximum value of the density is 85.84 veh/km
at segment iu, when the bridge has been open for 5 minutes. The desired speed at that
value equals V (85.84) = 4.5 km/h. However, when the bridge closes at the subsequent time
step, the speed at that upstream segment increases to 50.38 km/h, while the density hardly
changes. This results in an extremely high flow, with a maximum of 4318 veh/h (normally,
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the maximum flow is 2000 veh/h) which only lasts for 2 time steps. We note that this
is unavoidable METANET behaviour that is due to the relatively large density difference
between the upstream and the downstream segment. Concluding, we can state that the
results in Figure 4-1, obtained with the nonlinear model, are satisfactory.

Mixed Logical Dynamical Model

In this section, we perform the same case study as before, but now using the MLD model as
simulation model. We use the settings with the PWA configuration with the highest accuracy
in Figure 3-4, i.e. we approximate V̂ in 3 regions and q̂ in 5 regions. We use the same network
and the same parameters as before, however, when we start with the same constant traffic
demand of do = 1000 veh/h, we arrive at a steady state with ρ = 14.73 veh/km and v = 87.23
km/h (these values differ from the nonlinear model due to the PWA approximations in the
MLD model).

The result of this simulation is plotted in Figure 4-2. Overall, this traffic evolution is an
acceptable approximation of the traffic evolution in the previous case study, visualised in
Figure 4-1. A difference can be observed in the traffic speeds. The linear trajectories plotted
in Figures 4-1 and 4-2 provide information about the pace of the traffic evolution. The steeper
this trajectory, the slower the traffic moves. When we compare the lower trajectory in both
images, we observe that the speed in the MLD model is lower than in the nonlinear model,
given a steady-state flow of 1000 veh/h on all segments. On the other hand, the speed at
which the traffic starts up after the bridge closes is a little higher in the MLD model than in
the nonlinear model (which can be observed from the upper trajectory in both figures).
Furthermore, the maximum density, observed to be 96.97 veh/km, is bit higher than the

maximum density observed in the simulation with the nonlinear model, which is 85.84 veh/km.
This happens partly because the steady state solution obtained with the MLD model (the
initial condition of the simulation) has a higher density than the steady state solution that
we obtained with the nonlinear model, and partly because of the approximation error that
we have with the MLD model.
Lastly, we compare the maximum flow. In the simulation with the MLD model, we find

a maximum flow of 5027 veh/h. This was 4318 veh/h in the simulation with the nonlinear
model.
In Section 3-1, we have stated that our anticipation was a 15% error in the TTS w.r.t.

the nonlinear model when the only approximation used is the flow function with a PWA
function with 4 regions. Comparing the two simulations in Figures 4-1 and 4-2, we have a
19% relative error in the TTS w.r.t. the nonlinear model. To put this into perspective, we
note that the calculation of the error is more fair when we start the MLD simulation with
the same initial condition as the nonlinear model. In doing so, we obtain a TTS for the
simulation with the MLD model of 23.22 veh·h, which is only a 5.2% relative error w.r.t. the
nonlinear model. Furthermore, this result could be improved by simply adding more regions
to the PWA approximation of the flow function. Note however, that the aim is to use the
MLD model as prediction model in combination with MPC. We observe that the MLD model
captures the dynamics of an open bridge to a certain extent, so that the model is suitable
to be used as prediction model for routing in an MPC context. We conclude that the MLD
approximation of the nonlinear model is acceptable, and if necessary can be further improved
by adding more regions to the PWA approximation of the flow function.
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Amount of Time It Takes To Reach the Maximum Density

Next, we determine how long a zero-length bridge can maximally be open, when no segment
would be allowed to exceed the maximum density ρjam. In Section 3-3-2 we have described
that we expected ρ ≤ ρjam would be the first (soft) bound to be crossed when a bridge is
opened for a very long time. This simulation is performed to ensure that the model behaves
as expected. Furthermore, we want to make sure that the maximum amount of time a bridge
can be open after the bridge queue wb has reached its maximum queue length Mw,b, is much
larger than the 5 minutes we demand the bridge to be open.

Traffic Evolution with Nonlinear Simulation Model
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(a) The density on segment iu crosses the maxi-
mum density of ρjam = 180 veh/km after 86 time
steps, i.e. 14.3 minutes. The TTS in this simulation
is 39.98 veh·h.
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(b) The density on segment iu crosses the maxi-
mum density of ρjam = 180 veh/km after 86 time
steps, i.e. 14.3 minutes. The TTS in this simulation
is 46.08 veh·h.

Figure 4-3: Case study to determine the amount of time it takes to reach the maximum density
ρjam, starting from a steady-state solution that resulted from a constant inflow of 1000 veh/h,
on both the nonlinear and the MLD model.

In Figure 4-3 we have plotted an extreme scenario with both the nonlinear and the MLD
model. In both cases we commenced with a steady-state solution with a demand do = 1000
veh/h and opened the bridge at the start of the simulation. We observe that in both solutions,
the segment iu exceeds the maximum density after 14.3 minutes. We note that for a higher
traffic demand, this number is lower. We conclude that the MLD estimation of METANET
is quite accurate.
We have observed that a bridge can be open for 14.3 minutes before the maximum density
is reached. However, if this time window is to be further extended, we recommend reducing
the minimum speed vmin during the time a bridge is open. In a preliminary case study with
the nonlinear model used as simulation model where we use vmin = 0, 4 km/h, we were able
to open the bridge for 55 minutes without exceeding the maximum density on any segment.

4-3-2 Store-and-Forward Bridges

Maximum Queue Length

The value of the maximum queue length Mw,b can be chosen relatively arbitrarily, based on
the length of the queue area, the number of vehicles that fit in it, or the time the bridge needs
to be open. We have chosen to set
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Mw,b = 50.

We will use this value in the case studies below. Under an average traffic demand of do = 1000
veh/h, this implies a queue length of 278 m, which fills in 3 minutes. Furthermore, this means
that when we open a bridge for more than 3 minutes, we can see the effect of both the store-
and-forward and the zero-length bridge dynamics.

Traffic Evolution with Nonlinear Simulation Model
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Figure 4-4: Case with a store-and-forward bridge, with Mw,b = 50, being open for 5 minutes,
starting from a steady state solution (where ρ = 10.42 veh/km and v = 96.01 km/h) that resulted
from a constant inflow of 1000 veh/h. The maximum value of the density is ρ = 61.90 veh/km
(reached the first time step after the bridge is closed again). The TTS in this simulation is 22.58
veh·h.
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Figure 4-5: Case with a store-and-forward bridge, with Mw,b = 50, being open for 5 minutes,
starting from a steady state solution (where ρ = 14.73 veh/km and v = 87.23 km/h) that resulted
from a constant inflow of 1000 veh/h. The maximum value of the density is ρ = 66.84 veh/km
(reached the first time step after the bridge is closed again). The TTS in this simulation is 28.97
veh·h.
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Nonlinear Model

Next, we perform a case study on the same single-road network using the nonlinear model
with one store-and-forward bridge, located between segment 8 and 9. As in the previous
simulations, we have a constant traffic demand of do = 1000 veh/h and we start with a
steady-state solution that resulted from this demand. The result of the simulation with the
nonlinear model is plotted in Figure 4-4. We observe an unaltered density with respect to
the initial condition in the upstream segments during the first 3 minutes in which the bridge
is open. After this time period, the bridge queue element is completely filled with traffic and
the traffic starts stacking up in the upstream segments. After 5 minutes, the bridge closes
again, and the queue element starts emptying. This process lasts until at 10 minutes (61
time steps), the queue is empty. We observe that, when compared to the zero-length bridges,
mainly the upstream segments are less affected by the opening of a store-and-forward bridge.

Mixed Logical Dynamical Model

In Figure 4-5, we have performed the same case study, but now using the MLD model. We
can again observe that the results are a good approximation of the results obtained with the
nonlinear model (plotted in Figure 4-4). The bridge queue is empty at time step 64, which
is reasonably close to the nonlinear model (61 time steps). Naturally, we observe the same
speed differences as with the zero-length bridges: faster at the steady-state solution (with a
flow of 1000 veh/h on all segments) and slower as the traffic flow starts up again after the
closing of the bridge.

4-4 Summary

In this chapter, we have given a brief overview of how the LP and MLD models can be used
as prediction models in an MPC context, where we mainly discussed the means to tune the
controller. Thereafter, we have analysed an N -step-ahead simulation (on a simple network
with no control applied) with the LP model and we have show that such a simulation is
actually a linear multilevel programming problem. This problem is much harder to solve
than the single LP problem that we expected it to be. Moreover, we have left solving this
problem and improving the method for future research. Subsequently, we have performed a
number of case studies on only the MLD and nonlinear model. These studies are a proof of
concept of the store-and-forward bridges and of the zero-length bridges, a special case of the
former. The store-and-forward bridges yielded satisfactory results: the outcome of the case
studies was as expected. Furthermore, at this point the nonlinear model has to be tuned on a
real traffic scenario in order to evaluate how accurately it approximates reality. Moreover, the
results obtained with the MLD model provided an acceptable approximation of the results
obtained with the nonlinear model.
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Chapter 5

Conclusions and Recommendations

In the final chapter of this thesis, we give a project summary in Section 5-1, after which we
highlight our contributions to the literature in Section 5-2. Lastly, in Section 5-3, we list a
number of ideas for future research.

5-1 Project Summary and Discussion

In this thesis we have considered the following research questions:

How can we route traffic through a motorway network, where certain
roads are blocked at known time periods, with as objective to minimise
the total time spent by all vehicles in the network?
How can this be done in the most computationally efficient way?

We have regarded these questions as a dynamic traffic routing problem and addressed them as
a search for an algorithm that efficiently controls the traffic flows through a network. We have
focussed on finding a computationally fast solution that potentially could be implemented in
real time, and in the best case could be extended to other fields of science. Our approach in
answering these research questions is described next.

We have selected the macroscopic (i.e. relatively low-detailed) motorway model METANET
to simulate a traffic network. Furthermore, since METANET had been successfully used be-
fore in combination with Model Predictive Control (MPC) [31,49], we have selected MPC as
a promising control method for our research. From the perspective of computation times,
METANET is a nonlinear and nonconvex model and therefore not necessarily the most
straightforward choice for fast state predictions with MPC. However, a major motivation
for this choice in our research was the work by Groot et al. [34, 35], who derived a sim-
plification of METANET that consists of the Piecewise-Affine (PWA) approximation of the
nonlinear functions in the model. This approximated model fits a Mixed Logical Dynami-
cal (MLD) description that can be used in combination with MPC and that can be solved
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with Mixed Integer Linear Programming (MILP).
We have proposed a Linear Programming (LP) model that approximates METANET, i.e.

a simulation model that can be evaluated with LP. The expectation beforehand was that
we could write the MPC implementation with our LP model in a single LP problem, which
we had expected to result in a major calculation speed improvement compared with Groot
et al. [34, 35]. However, when this novel model is used in an N -step-ahead prediction (or in
combination with MPC), N consecutive LP problems need to be solved instead of a single LP
problem. It remains to be seen whether the resulting linear multilevel programming problem
results in a speed improvement compared to the existing MLD model.
Furthermore, we have expanded the existing MLD model and the nonlinear model with

a novel store-and-forward bridge element. The implementation of this element includes the
opening and closing of a bridge and the queueing of arriving traffic in front of an open bridge.
The element is therefore capable of simulating a predicted disturbance, and more specifically
a blocked road condition. The effectiveness of this novel bridge element has been evaluated
in a case study, from which we have concluded that the nonlinear store-and-forward bridges
functioned as expected and that the MLD model provides an acceptable approximation of
the nonlinear model.

To the best of our knowledge the most computationally efficient way of solving an N -step-
ahead simulation, that has an underlying model that is an approximation of METANET,
is given by Lu et al. [57, 58]. Their approximation of METANET is used in combination
with MPC and is written in a single LP problem. This method has been used in real-time
traffic control and has shown that it can, in some cases, reduce traffic congestion [74]. The
approach uses a rough approximation of METANET and relies heavily on driver compliance,
which they justify by stating that if the density is high enough even 30% driver compliance
with the variable speed limits will force the rest of the drivers to also reduce their speed and,
secondly, that when the variable speed limits are strictly enforced, the actual speed will be
close to the designed variable speed limits. The desired variable speed limit at all segments
in the network is used as a predetermined control variable. This value is determined on the
basis of an elaborate design strategy that is partly based on either historic data or on the
operator’s experience. The desired variable speed limits are used to substitute the speed in
the density update function (2-4) and to substitute the nonlinear desired speed function V in
(2-5). Furthermore, the on-ramp and origin queue dynamics are predetermined by predicting
the traffic demand. These predetermined variables are subsequently used to solve the MPC
problem that is now an LP problem. The control inputs of this MPC problem are the coor-
dinated ramp metering rates. Furthermore, the objective function is a combination of both
minimising the Total Time Spent (TTS) and maximising the total travel distance.
In this thesis we have proposed a completely different approach for creating an approxi-

mation of METANET that can be evaluated with LP (that is, only when used as simulation
model). From the field test in [74], we know that the control method proposed by Lu et al.
did not improve the traffic flow in all cases. This suggests that there is room for improve-
ment. Furthermore, since our approximation of METANET is closer to the original nonlinear
model, we suggest that the prediction models in our approach could have a higher accuracy.
We conclude that there is still a significant need for a model approximation or simplification
of METANET (or nonlinear functions in general) that is relatively accurate and that can be
used in real time in combination with MPC.
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5-2 Contributions

With respect to the research questions, we summarise the contributions of this thesis:

1. The LP model can equally well be used in a single-step-ahead simulation as
the MLD model.
In this thesis, we have proposed a model description that is an approximation of
METANET and that we can evaluate using LP. This model, when used as a simu-
lation model, is equivalent with the already existing MLD model (which is evaluated
with MILP). Moreover, the methods that we have used to capture the complexities of
METANET in a simple LP format, could provide an alternative in many other engi-
neering applications.

2. When the LP model is used as prediction model in combination with MPC,
a linear multilevel programming problem needs to be solved.
We have not managed to write the MPC implementation of the LP model in a computa-
tionally very light, single LP problem. Instead, we have presented the linear multilevel
programming problem that solves a general N -step-ahead prediction with the LP model.

3. METANET has been extended with a store-and-forward element.
We have added a store-and-forward element to METANET. This element can be used
to model predicted disturbances. More specifically, we have used it to model bridges.
Furthermore, we have specified a special case of the store-and-forward element with
a zero-length queue (Mw,b = 0) which we have called a zero-length bridge. We have
described how to add the store-and-forward element to METANET and to the MLD
model, but not how to add it to the LP model.

5-3 Recommendations

In this section, we discuss some recommendations for future research. These are ideas that
have been formed during the course of this project. Firstly, we discuss recommendations con-
cerning the control implementation in Section 5-3-1. Secondly in Section 5-3-2, we have some
recommendations concerning model improvements, mainly concerning the LP model. Finally,
we have a number of recommendations with respect to the validation and implementation of
our models on real traffic situations in Section 5-3-3.

5-3-1 Recommendations Concerning the Control Implementation

Implementing exponentially decreasing weighing factors in the LP-MPC problem
We propose a weight selection method that might enable solving an N -step-ahead simulation
with the LP model in a single LP problem. When we consider Table 4-1 again, we observe
that even in the first time step, the prediction of the single LP solution deviates from the
correct MLD-based solution. Therefore, we suggest that a weight on the dummy variables,
that decreases at each consecutive time step might improve the results. The corresponding
cost function for the LP problem with time-dependent weights is given in (3-40).
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To obtain a starting point for the selection of values of the weighting factors, we analyse
the first constraint in (4-4), being

V̂1(1) ≥ aV
(
ρ1(0) + Ts

L
[q̂o(0)− q̂+

1 (0) + q̂−1 (0)]
)

+ bV . (5-1)

Here, we recognize the recursiveness in these constraints when we write

V̂1(1) ≥ r[q̂o(0)− q̂+
1 (0) + q̂−1 (0)] + . . .

V̂1(2) ≥ r[q̂o(1)− q̂+
1 (1) + q̂−1 (1)] + . . . ,

(5-2)

where
r = aV Ts

L
.

From here, we have a rough estimate of the weighing factors for V̂ as

wV̂ (k) = rk. (5-3)

With the same approach we can determine weighing factors on all the dummy variables.
A major disadvantage of these exponentially decreasing weighing factors is that, especially

for larger prediction horizons, the weighing factors can become so small that numerical issues
are very probable.

Solving the linear multilevel programming problem with the LP model used as
prediction model
We come back to the linear multilevel programming problem posed in (4-6) and discuss some
methods of solving it. Multilevel programming has been used in combination with MPC be-
fore [1,45,48], albeit not always in the same framework that we have in (4-6). Sometimes, the
MPC problem is incorporated in one single level of the multilevel problem. In our definition
however, each time step on the receding horizon of the MPC problem corresponds to a level
in the hierarchical optimisation problem. Therefore, we recommend to use a general solver
for a multilevel problem.
Many of the algorithms rely on the assumption that a lower-level problem that is con-

vex and satisfies some specific regularity conditions can be rewritten using its equivalent
Karush-Kuhn-Tucker conditions. The resulting problem can in the linear case be solved with
MILP [1, 14]. This is a promising direction. Even though the MLD model that we have
studied in this thesis was also solved using MILP, we can only conclude whether either of the
two outperforms the other when a quantitative comparison on evaluation time is performed
with both models on the same simulation problem.
In [8], a branch-and-bound algorithm is proposed to solve the linear multilevel program-

ming problem.
Another method for solving this complex problem is provided in [67], where a linear multi-

level problem is studied, similar to the problem we have in (4-6). They rewrite the problem
so that it can be solved with fuzzy programming.
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5-3-2 Recommendations Concerning Model Improvements

Adding store-and-forward bridges to the LP model
In this thesis we have derived the relations for zero-length bridges in the LP model. However,
the relations for store-and-forward bridges in this model have not been derived. Rewriting
these equations for usage with the LP model is a complex extra step. Since we have not (yet)
succeeded in making the comparison with the MLD model to establish whether one of the
two solution approaches outperforms the other, we do not know whether the linear multilevel
problem can be solved more efficiently than the MILP approach that already exists. Therefore,
we have left these store-and-forward bridge relations for future research.

Adding vehicular emissions and fuel consumption to the LP model
When we complement METANET by the VT-macro model [75], we can take vehicular emis-
sions and fuel consumption into account. Groot et al. [34] use PWA approximations of the
functions for the total emissions and fuel consumption that are compatible with the MLD
formulation they use. These PWA approximations must be rewritten in such a way that they
are convex before they are also compatible with the LP formulation of METANET. This
could always be possible when an approximation error of a certain extent is accepted. The
question whether a convex approximation can be found for the VT-macro model with a low
approximation error, is left for future research.

Making the models robust for disturbance rejection in case of unexpected topol-
ogy changes
In this thesis we have focussed on predictable disturbances. We have used bridges as a phys-
ical embodiment of this predicted disturbance. However, we could equally well have used the
level crossing (an intersection with a railroad). A mathematical description of a level crossing
in METANET would be practically identical to the bridge models that we have discussed in
this thesis.
However, a blocked road due to a traffic accident does not fall under this category. Traffic

lights, on the other hand, could be an interesting extension to this research. Controlling the
traffic by routing it around the busy traffic lights whilst keeping the queue lengths minimal
can be contradictory and it would probably be more efficiently solved with a distributed con-
trol method. Blocked roads due to road maintenance can be interesting, but it has a very
different time scale from opening and closing bridges. Therefore, a model that queues traffic
in front of the blocked road is most likely not needed, because the road is blocked for a very
long time and a detour is suggested. However, it could be more efficient (system optimal) to
dynamically reroute the traffic (over multiple routes) instead of providing a static detour.

Accurately determining the domain of q±PWA
We have run some tests in the 3rd and 4th configuration in Figure A-3, without the imposed
safety region. These tests yielded unsatisfactory results because some values fell outside the
PWA regions. This can be explained by the difference between V and V̂ and the fact that the
METANET values do not lie exactly on the fundamental line but somewhere close. Therefore,
we suggest that finding an accurate way of globally determining min(ρ± v) and max(ρ± v)
would be valuable. In some configurations this might result in using less PWA regions in
q±PWA, which can be a computational benefit for the MLD model, especially when used as a
prediction model in an MPC context.
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5-3-3 Recommendations Concerning Model Validation and Real-Time Imple-
mentation

Testing the accuracy of the model for bridges on historical data
We have proposed a simple store-and-forward model to simulate bridges in METANET. How-
ever, in order to evaluate how well this model represents reality, i.e. real-live traffic queueing
in front of an open bridge, a comparative study should be performed using historical data of
a real traffic network. Using this data, our simulation model should be validated and tuned.

Testing the accuracy of the approximated model on historical data.
We can perform a case study on an existing motorway network. In order to do so, we need to
collect data (traffic distribution, inflows, and splits) for a certain amount of time during which
we have significant traffic demands in this network, where there is no routing applied. Then,
if we extract the traffic splits at interchanges, we can subsequently compare the performance
of our MPC implementation with the performance of the uncontrolled network. In this way,
we can evaluate the difference in performance between an uncontrolled and a controlled traffic
situation without doing it in real time.
A difficulty that is encountered when implementing a real-time solution in a real traffic

network is that the routes that vehicles take can only be advised, but not controlled. A first
step in that direction would be to use an advisory implementation on a motorway traffic
network, which could be achieved with Dynamic Route Information Panels (DRIPs) [21, 42,
43].
In a situation with (future) smart cars, distributed control is preferably used to route

the traffic. A low-level controller in the cars should take care of the faster dynamics that are
associated with the driving of the car (think of lane changing and decelerating and accelerating
in jams). A high-level controller then controls the slower dynamics and thus ensures efficient
routing and that the pressure is spread equally over the network. However, designing this high-
level controller is a challenging task. The hardest challenge of which is in the second research
question; the computational efficiency. If we are ever to implement real-time MPC in a real
traffic network using DRIPs that can provide the passing vehicles with traffic information,
it is important that we have an accurate model that can be used in a predictive control
implementation and that has a low time complexity.

Implementing an observer for real-time traffic control
Because we use a simulation model as a substitute for reality, we have full knowledge of
the states and outputs at each time step when we perform a case study. If we were to
implement the controller on a real motorway, we would have to suffice with real-time network
measurements. Some system parameters, like the flow at a certain point, would be more
easily obtained than others, like the TTS of the entire network at a moment in time.
When controlling a real network in real time, the only way to track how well we are doing

is to translate these measurements to the outputs and states in our models. A filter (e.g. an
Extended Kalman Filter) or an observer can help with that translation.
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Appendix A

Approximations of Functions in
METANET

In this chapter, we discuss the Piecewise-Affine (PWA) approximated functions in more detail.
The exact values of the optimal solutions are given as well as the settings with which they
were obtained. Section A-1 discusses the desired speed function VPWA and Section A-2 does
this for the traffic flow q±PWA(ρ± v).

A-1 Piecewise-Affine Approximation of the Desired Speed Func-
tion

Equation (A-1) below gives the PWA approximation in 2 regions of V (ρ). The parameters
of (A-1) are obtained by solving the least-squares problem, given in (2-13) with a multi-start
Levenberg-Marquardt algorithm (see Section 2-2-3 for the details about this optimisation).
The PWA approximation of V [ρ] in 2 regions that we have used is:

VPWA(ρ) =
{
−1.377ρ+ 106.8 for 77.55 > ρ ≥ 0

0 for 77.55 ≤ ρ.
(A-1)

Equation (A-2) gives the PWA approximation of V in 3 regions:

VPWA(ρ) =


−1.465ρ+ 108.8 for 64.27 > ρ ≥ 0
−0.4239ρ+ 41.90 for 64.27 ≤ ρ < 98.85

0 for 98.85 ≤ ρ.
(A-2)

We set the last region of each PWA approximation to ρ = 0. This makes sure that the
approximated desired speed function and therefore the flows never become negative. For
all density values ρ > 77.55 veh/m in the PWA approximation with two regions we have
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58 Approximations of Functions in METANET

VPWA(ρ) = 0 km/h and so the traffic is forced to a stop at a relatively low density. This is
much sooner than when using the nonlinear model, where V (77.55) = 7.8 km/h. In the PWA
function with 3 regions, we have a more accurate approximation with V (98.85) = 1.8 km/h.
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(a) PWA approximation of desired speed
function V in 2 regions.

0 20 40 60 80 100 120 140 160 180

0

20

40

60

80

100

120

(b) PWA approximation of desired speed
function V in 3 regions.

Figure A-1: Two PWA approximations of the desired speed function V .

A-2 Piecewise-Affine Approximation of the Flow Function

In this section, we present the results from the four optimisation problems for the four different
PWA approximations of flow function q, shown in Figure 3-4. They all were obtained by
solving the least-squares problem posed in (2-13) with a multi-start Levenberg-Marquardt
approach. Equations (A-3) to (A-6) give the results of the PWA approximations with 2 to 5
regions respectively:

q±PWA(ρ± v) =
{
−33.75(ρ± v) for ρ < 0

33.75(ρ± v) for ρ ≥ 0
(A-3)

q±PWA(ρ± v) =


−58.04(ρ± v)− 3029 for −52.18 > ρ

0 for −52.18 ≤ ρ < 52.18
58.04(ρ± v)− 3029 for 52.18 ≤ ρ

(A-4)

q±PWA(ρ± v) =


−65.23(ρ± v)− 4050 for −80.91 > ρ

−15.17(ρ± v) for −80.91 ≤ ρ < 0
15.17(ρ± v) for 0 ≤ ρ < 80.91
65.23(ρ± v)− 4050 for 80.91 ≤ ρ

(A-5)
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q±PWA(ρ± v) =



−71.32(ρ± v)− 4970 for −105.3 > ρ

−33.95(ρ± v)− 1036 for −105.3 ≤ ρ < −30.52
0 for −30.52 ≤ ρ < 30.52
33.95(ρ± v)− 1036 for 30.52 ≤ ρ < 105.3
71.32(ρ± v)− 4970 for 105.3 ≤ ρ.

(A-6)

As opposed to the two-dimensional PWA identification method that has been used in this the-
sis (cf. Section 2-2-3), we show the difficulties in creating an accurate convex approximation
of flow function q with a three-dimensional identification method [27] in Figure A-2. Run-
ning a least-squares optimisation in three dimensions, yields either an accurate solution that
is nonconvex (and unsuitable for the Linear Programming (LP) model), or convex solution
(suitable for the LP model) that is very inaccurate, cf. Figure A-2b and Figure A-2c.

(a) Function q = ρv. The
fundamental line, with equation
qe = ρV (ρ) is also shown.
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(b) PWA, but nonconvex ap-
proximation of Figure A-2a.
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Figure A-2: These three figures show q = ρv and two PWA approximations of q. They are plotted
for ρ ∈ [0, 180] and v ∈ [0, 120]. These figures illustrate that a least-squares approximation that
is both accurate and convex is not easily found.

The plots of the PWA functions against the original quadratic function q± = (ρ ± v)2, as
depicted in Figure 3-4, give a good representation of the accuracy of each configuration
with different levels of simplification. In Figure A-3 however, the four configurations of the
(relatively accurate and possibly nonconvex) PWA flow functions qPWA(ρ, v) = q+

PWA(ρ+v)−
q−PWA(ρ− v), are plotted in R3 along with the fundamental line and q = ρv.
The first configuration, depicted in Figure A-3a, seems to be not even close to the original,

but using only 1 decision variable, it is quite accurate around the fundamental line. The
configuration in A-3b is closer to the fundamental line. Note however that it becomes negative
for values in the vicinity of ρ = 0 ∧ v = 0, far from the fundamental line. The negative
region is even larger in the configuration in A-3c, but again there is a safety region between the
fundamental line and the negative values. The configuration in A-3d is the best configuration
we used. It also has the closest resemblance to the original (q = ρv). The negative region has
even become smaller.
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(a) Plot based on the PWA approximation
of q± in 2 regions.

(b) Plot based on the PWA approximation
of q± in 3 regions.

(c) Plot based on the PWA approximation
of q± in 4 regions.

(d) Plot based on the PWA approximation
of q± in 5 regions.

Figure A-3: Full function q and the four configurations of PWA approximations qPWA plotted
in three dimensions for ρ ∈ [0, 180] and v ∈ [0, 120]. In each plot, the fundamental line qe(ρ) =
ρV (ρ) is shown. Some of the regions are negative even though we made choices specifically to
prevent this.

A-3 Rewriting Equations in the Form of a Mixed Logical Dynamical
Model

In this section we work out the conversion of two nonlinear equations in METANET to an
Mixed Logical Dynamical (MLD) model. In Section A-3-1, we rewrite the desired speed
function V and in Section A-3-2 the outflow qo at an origin.

A-3-1 Desired Speed Function

As an example of how to rewrite a PWA approximation of a function to a set of equations
that fit the MLD framework, we work out the equations for the PWA approximation of the
desired speed function V , which is denoted as VPWA. The conversion of the desired speed
function VPWA in two regions to MLD form is derived in this section. It is straightforward to
expand this to more than two regions or dimensions.
The PWA approximation of V (ρ) is denoted as
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VPWA(ρ) =
{
a1ρ+ b1 if ρ ≤ s1

a2ρ+ b2 if ρ > s1.

The decision variable δV (k) is used to indicate which region of the PWA function is active at
time step k. It must change value at the intersection ρ(k) = s1 where a1ρ(k)+b1 = a2ρ(k)+b2,
so

ρ(k) ≥ s1 ⇔ [δV (k) = 1],

which can be written as
gV (x) ≤ 0⇔ [δV (k) = 1],

where gV (x) = s1 − ρ(k). This results in the last two constraints in (A-7).
The approximation V̂ (ρ) is incorporated in the state space equations, as

V̂ (ρ) = a1ρ(k) + b1 + [a2ρ(k) + b2 − [a1ρ(k) + b1]] δV (k)

= a1ρ(k) + [b2 − b1]δV (k) + [a2 − a1]zV (k) + b1,

where zV (k) = δV (k)ρ(k). This results in the first four constraints in (A-7). Note that the
first PWA region is active unless δV (k) = 1. This saves one decision variable compared to
using a one for each region, i.e. δV,i(k) = 1 if aiρ(k) + bi is active.
When we work out (2-17) and (2-19), we arrive at the following constraints for the MLD

system:
zV (k) ≤MzV δV (k)
zV (k) ≥ mzV δV (k)
zV (k) ≤ ρ(k)−mzV [1− δV (k)]
zV (k) ≥ ρ(k)−MzV [1− δV (k)]
gV (x) ≤MgV [1− δV (k)]
gV (x) ≥ ε+ [mgV − ε]δV (k),

(A-7)

where the minima and maxima are evaluated as

mzV = ρmin, MzV = ρjam

mgV = s1 − ρjam, MgV = s1 − ρmin.

A-3-2 Outflow at an Origin

This minimisation of three parameters, given in (2-8) can be written in MLD form too.
The method we use is derived from [6]. For simplicity, we write this minimisation of three
parameters as

qo(k) = min[f1(k), f2(k), f3(k)].

We rewrite this equation in MLD form, with three decision variables. This is realised by using

q̂o(k) = f1(k)δqo,1(k) + f2(k)δqo,2(k) + f3(k)δqo,3(k), (A-8)
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with
[δqo,1(k) = 1]⇔ [f1(k) ≤ f2(k) and f1(k) ≤ f3(k)]
[δqo,2(k) = 1]⇔ [f2(k) ≤ f1(k) and f2(k) ≤ f3(k)]
[δqo,3(k) = 1]⇔ [f3(k) ≤ f1(k) and f3(k) ≤ f2(k)].

(A-9)

Note that these inequalities imply an exclusive or condition on the decision variables, i.e.
exactly one of the three binary decision variables is equal to 1 at each time step. So we have
the equality condition

3∑
n=1

δqo,n(k) = 1 ∀k. (A-10)

The conditions in (A-9) translate to the following inequality constraints:

f1(k)− f2(k) ≤M12[1− δqo,1] f2(k)− f3(k) ≤M23[1− δqo,2]
f1(k)− f3(k) ≤M13[1− δqo,1] f3(k)− f1(k) ≤M31[1− δqo,3]
f2(k)− f1(k) ≤M21[1− δqo,2] f3(k)− f2(k) ≤M32[1− δqo,3]

(A-11)

with

M12 = max[f1(k)− f2(k)], M21 = max[f2(k)− f1(k)], M31 = max[f3(k)− f1(k)]
M13 = max[f1(k)− f3(k)], M23 = max[f2(k)− f3(k)], M32 = max[f3(k)− f2(k)].

Lastly, (A-8) has three multiplications that we rewrite with the use of an auxiliary variable
z, as we have explained before, by writing

zqo,1(k) = f1(k)δ1(k), zqo,2(k) = f2(k)δ2(k). zqo,3(k) = f3(k)δ3(k),

So we obtain

q̂o(k) = zqo,1(k) + zqo,2(k) + zqo,3(k), (A-12)

where zqo,1(k), zqo,2(k), and zqo,3(k) are (as before) subject to the constraints given in (2-19):

zqo,n(k) ≤Mqo,nδqo,n(k) for n ∈ {1, 2, 3}
zqo,n(k) ≥ mqo,nδqo,n(k) for n ∈ {1, 2, 3}
zqo,n(k) ≤ fn(k)−mqo,n[1− δqo,n(k)] for n ∈ {1, 2, 3}
zqo,n(k) ≥ fn(k)−Mqo,n[1− δqo,n(k)] for n ∈ {1, 2, 3},

(A-13)

where Mqo,n = max fn(k) and mqo,n = min fn(k).
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Appendix B

Network Flow Problems

This chapter is an extension to Section 2-1-3, where we discussed the effectiveness of the
use of a minimum-cost flow problem as a solution to the dynamic routing problem that
we considered in this thesis. Here, we state the definitions of both the minimum-cost flow
problem in Section B-1 and the multi-commodity flow problem in Section B-2. Furthermore,
we rewrite the definition of the minimum-cost flow problem to a Linear Programming (LP)
problem in Section B-3.

B-1 Minimum-Cost Flow Problem

The minimum-cost flow problem seeks for the optimal flow on each link that minimizes the
cost function WijFij when a required flow a is to be transported through the network from
origin node s to destination node d. We define the problem as

min
Fij

∑
(i,j)∈M

WijFij

s.t.
Inflow at node s

∑
j∈adjo(s)

Fsj = a

Outflow at node d
∑

i∈adji(d)
Fid = a

Inflow equals outflow
∑

i∈adji(u)
Fiu −

∑
j∈adjo(u)

Fuj = 0 ∀ u ∈ V \ {s, d}

Capacity at each link Fij − Cij ≤ 0 ∀ (i, j) ∈M.

(B-1)

The minimum-cost flow problem has been known and studied for a long time, e.g. by Ford
and Fulkerson [29] and Klein [51].
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B-2 Multi-Commodity Flow Problem

The multi-commodity flow problem is a generalisation of the minimum-cost flow problem
that allows for a set P of origin-destination pairs. It is a set of paired origin and destination
vertices, coupled with a their corresponding required flows. We indicate the nth pair as
OD(n) = (sn, dn, an), a subset of P with a required flow an from source sn to destination dn.
We have a flow adjacency matrix Fij,n for each origin-destination pair n. The complete flow
adjacency matrix, summed over all origin-destination pairs becomes

Fij =
∑
n∈P

Fij,n.

We write the multi-commodity flow problem as

min
Fij,n

∑
(i,j)∈M

Wij(
∑
n∈P

Fij,n)


s.t. ∑

j∈adjo(sn)
Fsnj,n = an ∀ n ∈ P

∑
i∈adji(dn)

Fidn,n = an ∀ n ∈ P

∑
i∈adji(u)

Fiu −
∑

j∈adjo(u)
Fuj = 0 ∀ u ∈ V \ {sn, dn}n∈P

(
∑
n∈P

Fij,n)− Cij ≤ 0 ∀ (i, j) ∈M.

(B-2)

B-3 Linear Programming Problem

The conversion to an LP problem is performed on the equations in (B-1). We rewrite the
problem to

min
Fij

∑
(i,j)∈M

WijFij

s.t.
∑
k∈V

Fsk = a and
∑
k∈V

Fdk = −a

∑
j∈V

Fij = 0 ∀ i ∈ V \ {s, d}

Fij = −Fji ∀ i, j ∈ V
Fij ≤ Cij ∀ i, j ∈ V.

(B-3)

We replaced the third constraint in (B-1) (inflow equals outflow) with two new constrains:
the flow matrix has to be skew symmetric, i.e. Fij = −Fji, and the constraint that the sum
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of each row r in the flow matrix Frj equals zero, except for the rows associated with s and d.
This conversion to an LP problem is not directly applicable to undirected graphs, however,

it is possible after a transformation proposed by Lau [55]. A minor disadvantage of this
transformation is that it increases the size of the LP problem significantly.
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List of Acronyms

DRIP Dynamic Route Information Panel

LP Linear Programming

METANET Modèle d’Ecoulement du Trafic Autoroutier: NETwork

MILP Mixed Integer Linear Programming

MLD Mixed Logical Dynamical

MPC Model Predictive Control

PWA Piecewise-Affine

TTS Total Time Spent
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List of Symbols

am METANET model parameter
Cb Outflow capacity (veh/h) of bridge b
Co Outflow capacity (veh/h) of origin o
do Traffic demand (veh/h) at origin o
Fν,m Split (veh/h) of traffic leaving vertex ν for link m
G Graph
JTTS Total time spent (veh·h)
Lm Length (km) of segments in link m
m Link
qm,i Traffic flow (veh/h) on segment i of link m
qin,b Potential traffic inflow (veh/h) from segment iu to the queue at bridge b
qu,b Traffic inflow (veh/h) from segment iu to the queue at bridge b
qout,b Potential traffic outflow (veh/h) from the queue at bridge b to segment id
qw,b Traffic outflow (veh/h) from the queue at bridge b to segment id
qo Traffic outflow (veh/h) at origin o
Qν Summed traffic outflow at vertex ν (veh/h)
ro Ramp metering rate at origin o
Ts Sample time (s)
vm,i Traffic speed (km/h) on segment i of link m
vfree Free-flow speed (km/h)
Vi,m Desired speed (km/h) on segment i of link m
wb Queue (veh) at bridge b
wo Queue (veh) at origin o
βν,m Percentage of traffic that leaves vertex ν for link m
η METANET model parameter (km2/h)
κ METANET model parameter (veh/km/lane)
λm Number of lanes on link m
ν Vertex
ρm,i Traffic density (veh/km) on segment i of link m
ρcr,m Critical traffic density (veh/km) on link m
ρjam Maximum traffic density (veh/km)
τ METANET model parameter (s)
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