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Introduction

Computer vision is a rapidly evolving field that aims to enable machines to understand and interpret
visual data, emulating human vision capabilities. The core of computer vision research is the task of
object detection, which involves identifying and localizing objects within images or videos. Object detec-
tion plays a crucial role in a wide range of applications, including autonomous driving, medical imaging,
augmented reality, etc [1]. Advancements in deep learning and the availability of large-scale datasets
have propelled significant progress in computer vision. State-of-the-art object detection models, such
as Faster R-CNN [2], RetinaNet [3], and YOLO (You Only Look Once) [4], have gained remarkable
performance improvements on benchmark datasets.

However, most computer vision research focuses on real images. lllustration images are rarely
explored in computer vision. Exploring computer vision for illustrations has many potential applications,
such as archive management for illustration books, and image understanding for graphic images.

To explore this field, we introduce a new dataset. The original dataset is Ot & Sien Dataset [5].
The purpose of this dataset is to help the development of automatic visual object detection in children’s
book illustrations. Mistakes, such as mislabelling, overlapped categories and images, and non-existing
categories, have been corrected in the original dataset.

The dataset we proposed poses several challenges that need to be addressed. One of the chal-
lenges is the issue of imbalanced categories, where certain object categories may have a significantly
larger number of instances compared to others. This imbalance can affect the performance of object
detection models, as they may become biased toward the dominant categories while neglecting the
minority ones. Additionally, the dataset exhibits a natural long-tail distribution, with some categories
being rare or occurring infrequently. This further exacerbates the challenge of accurately detecting and
classifying objects across the entire spectrum of the dataset.

Another challenge stems from the natural art diversity of the illustrations in the dataset. State-of-the-
art object detection models, such as the YOLO model, have primarily been trained on high-quality photo
datasets like MS COCO [6]. Unlike standardized photos found in conventional datasets, illustrations
can vary greatly in style, artistic representation, and visual characteristics, and thus may not exhibit
the same generalizability of texture information as seen in high-quality digital photos. This diversity
introduces additional complexity to the object detection task.

Moreover, real photo-like datasets contain numerous categories that are irrelevant to the context of
illustrations, requiring the fine-tuning of classification layers to adapt to custom datasets. In scenarios
where prior information about the categories in the illustration is unavailable, few-shot learning has to
be used. Besides, fine-tuning object detection models on real-photo datasets may prove to be chal-
lenging for this dataset. Given the differences in pixel representation and textual information between
illustrations and photos, directly fine-tuning on real-photo datasets like COCO may not lead to optimal
performance.

The rest of the report is structured as follows. Chapter 2 is a scientific paper that describes the
thesis. Chapter 3 gives a technical background on the scientific paper, including deep learning, object
detection, few-shot object detection, and more information about our dataset.
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Abstract

In contrast to the prevalent focus on real photos in com-
puter vision research, we present a contribution by making
the Ot & Sien dataset [ ] ] machine learning-ready for object
detection tasks in illustrations. We refer to the new dataset
as Ot & Sien++ that is composed of scanned images of chil-
dren’s book illustrations, thereby venturing into an unex-
plored domain. The primary objective of this research is
to investigate the generalization capabilities of existing ob-
Jject detection models to this unique dataset and establish
benchmarks for this dataset.

To evaluate the performance of existing object detection
models on our proposed dataset, we employed the widely
used YOLOVS as a benchmark. To mitigate the inherent
imbalance of the dataset, various data augmentation tech-
niques were applied. The results demonstrated the effective-
ness of the object detection model and data augmentation in
the context of children’s book illustrations. In addition, this
research also explored applying few-shot learning models
to the dataset. Baseline models were investigated to exam-
ine the potential of few-shot learning in the context of object
detection in illustrations.

The proposed dataset elicits new challenges in object
detection and will serve as a valuable resource for re-
searchers in this domain. Our dataset can be found at
https://data.4tu.nl/datasets/dlf3ca5c—
fle4-48£5-9a04-0564572d2b9c/ 1.

1. Introduction

Computer vision is a rapidly evolving field aimed at
enabling machines to understand and interpret visual data
and mimic human visual abilities. With recent advance-
ments in deep learning and the availability of large-scale
datasets, significant progress has been made in various com-
puter vision tasks. One of the most developed tasks in com-
puter vision research is object detection, which involves
recognizing and localizing objects in an image or video.
This task is of great importance in applications such as au-
tonomous driving, medical imaging, and augmented real-
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Figure 1. Dataset Visualizations

ity. To tackle this challenge, state-of-the-art object detection
models have emerged, including Faster R-CNN [2], Reti-
naNet [3], and YOLO (You Only Look Once) [4]. These
models have achieved remarkable performance gains on
benchmark datasets, pushing the boundaries of object de-
tection capabilities.

However, most computer vision research focuses on
photo imagery. Illustration images are rarely explored in
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computer vision. The reasons can be attributed to the lack
of comprehensive and well-annotated datasets specific to il-
lustrations and the relatively lesser attention given to appli-
cations of object detection in illustrations compared to other
mainstream computer vision tasks. Exploring computer vi-
sion for illustrations has many potential applications, such
as archive management for illustration books, image under-
standing for graphic images as well as book summarization
and quantitative research on archives.

To explore this field, we introduce a new dataset. The
original dataset is Ot & Sien Dataset [1]. The purpose of
this dataset is to help the development of automatic visual
object detection in children’s book illustrations. Mistakes,
such as mislabelling, overlapped categories and images, and
non-existing categories, have been corrected in the original
dataset. To provide a glimpse of the dataset, example im-
ages are shown in Figure la. The properties of our new
dataset are summarized as:

» The dataset consists of illustrations rather than photos.

* 1451 images with 8241 objects (5.7 per image) are an-

notated including the categories and bounding boxes.

* All images are resized to 416 x 416 with black fitting

edges to adapt to the training procedure.

* The dataset has 164 classes and follows a natural long-

tail property, with some object categories being rare.

* The dataset has imbalanced categories.

Due to the space limit, we present a partial visualization
of the dataset using t-SNE [5] and then gridded in Figure 1b.
The visualization provides a glimpse into the distribution
and relationships among the data points. Specific clusters,
such as people, animals, and various characters can be seen
in the visualization, indicating inherent patterns within the
dataset.

The dataset we proposed poses several challenges that
need to be addressed. One of the challenges is the issue
of imbalanced categories, where certain object categories
may have a significantly larger number of instances com-
pared to others. This imbalance can affect the performance
of object detection models, as they may become biased to-
ward the dominant categories while neglecting the minority
ones. Additionally, the dataset exhibits a natural long-tail
distribution, with most categories being rare or occurring
infrequently. This further exacerbates the challenge of ac-
curately detecting and classifying objects across the entire
spectrum of the dataset.

Another challenge stems from the natural art diversity of
the illustrations in the dataset. State-of-the-art object detec-
tion models, such as the YOLO model, have primarily been
trained on high-quality photo datasets like MS COCO [6].
Unlike standardized photos found in conventional datasets,
illustrations can vary greatly in style, artistic representa-
tion, and visual characteristics, and thus may not exhibit the
same generalizability of texture information as seen in high-

quality digital photos. This diversity introduces additional
complexity to the object detection task.

Moreover, real photo-like datasets contain numerous cat-
egories that are irrelevant to the context of illustrations,
requiring the fine-tuning of classification layers to adapt
to custom datasets. In scenarios where prior information
about the categories in the illustration is unavailable, few-
shot learning has to be used. Besides, fine-tuning object
detection models on real-photo datasets may prove to be
challenging for this dataset. Given the differences in pixel
representation and textual information between illustrations
and photos, directly fine-tuning on real-photo datasets like
COCO may not lead to optimal performance.

We acknowledge the scarcity and imbalance of the
dataset as a realistic scenario. We list the key contributions
as follows:

* Dataset Preparation: We have made the Ot & Sien
dataset ready for object detection task, enabling fur-
ther research in computer vision specifically tailored
to illustrations.

* Baseline Model Evaluation: We have conducted a
comprehensive evaluation of different baseline object
detection models on our dataset.

* Generalization Capability Analysis: We have investi-
gated the generalization capability of object detection
models trained on real-photo datasets when applied to
our dataset.

* Data Augmentation Effectiveness: We have explored
the effectiveness of various data augmentation tech-
niques on our dataset.

2. Related Work
2.1. Datasets

Several benchmark datasets have played a significant
role in advancing research for various tasks, such as Pascal
VOC [7], MS COCO (Microsoft Common Objects in Con-
text) [6], and LVIS (Large Vocabulary Instance Segmenta-
tion) [8]. These datasets have provided standardized bench-
marks and large-scale labeled data, allowing researchers to
evaluate and compare the performance of different com-
puter vision models.

The Pascal VOC dataset has been a benchmark in the
computer vision community for many years. It includes
diverse images annotated with object bounding boxes and
pixel-level semantic masks. The dataset covers 20 object
categories, including common categories such as cars, peo-
ple, and animals. Pascal VOC has been used extensively for
tasks such as object detection, semantic segmentation, and
image classification. However, one limitation of PASCAL
VOC is its relatively small size, consisting of around 10000
images in total.

MS COCO is a larger dataset that provides a more ex-



tensive and challenging collection of images compared to
Pascal VOC. It contains over 200000 images with pixel-
level annotations for objects. The dataset contains 80 object
categories and covers a wide range of complex scenes and
object instances. The dataset’s rich annotations and large-
scale nature have made it a crucial resource for training and
evaluating object detection algorithms.

LVIS is a relatively new dataset that focuses on instance
segmentation. It included a larger vocabulary of 1200 ob-
ject categories and provided around 2 million high-quality
instance segmentation masks for 164k images. LVIS has
a naturally long tail distribution, providing a more com-
prehensive representation of real-world object frequencies.
This dataset focuses on evaluating object detection models
on rare and low-frequency categories.

There are several existing illustration datasets. For ex-
ample, DanbooRegion [9] is an illustration region dataset
that contains a large number of artistic region composi-
tions paired with corresponding cartoon illustrations. Wa-
terColor2k [10] is a dataset used for cross-domain object
detection which contains 2k watercolor images with image
and instance-level annotations. They present a new frame-
work for cross-domain weakly supervised object detection,
which tries to adapt pre-trained source domain knowledge
to a new domain.

2.2. Object Detection

Object detection is a well-studied problem in computer
vision, and various approaches have been proposed to tackle
it effectively. Modern object detection methods can be cat-
egorized into two main types: one-stage methods and two-
stage methods.

One of the most influential two-stage object detection
frameworks is the Region-based Convolutional Neural Net-
work (R-CNN) family of methods [2, | |, 12]. These meth-
ods propose region proposal techniques to generate candi-
date object regions and employ convolutional neural net-
works (CNNGs) to classify and localize objects within these
regions. These approaches have demonstrated impressive
performance on various benchmark datasets.

Faster R-CNN [2], proposed in 2015, revolutionized ob-
ject detection by introducing a two-stage framework that
combines region proposal generation and object classifica-
tion. The primary motivation behind Faster R-CNN was
to alleviate the shortcomings of earlier approaches that re-
lied on time-consuming external region proposal methods,
such as Selective Search. It consists of a region proposal
network (RPN) and a subsequent object detection network.
The RPN shares convolutional layers with the detection net-
work, allowing for efficient computation and reuse. This
design ensures end-to-end training and enables the network
to learn powerful representations for both region proposal
and object classification.

However, the two-stage approaches mentioned above
suffer from increased computational complexity due to the
need for region proposal techniques. This limitation makes
them less suitable for real-time applications where effi-
ciency is a critical factor.

In contrast, one-stage approaches, such as the You Only
Look Once (YOLO) series [4, 13, 14], adopt a unified ap-
proach that directly predicts object bounding boxes and
class probabilities in a single pass through the network. It
divides the input image into a grid and assigns each grid
cell responsibility for detecting objects. YOLO is known
for its fast inference speed, thus is suitable for real-time ob-
ject detection applications. However, it may struggle with
detecting small objects and precise localization due to its
grid-based nature.

2.3. Imbalanced Dataset

In recent years, the issue of class imbalance in object
detection datasets has gained significant attention. Imbal-
anced datasets, where certain object categories are under-
represented compared to others, can lead to biased model
training and sub-optimal performance in minority classes.

To tackle this challenge, researchers have proposed vari-
ous methods to mitigate the negative impact of class imbal-
ance. One such method is the focal loss introduced by Lin
et al. [3]. The focal loss addresses the class imbalance prob-
lem by assigning higher weights to misclassified examples
from the minority classes during training. By giving more
importance to the underrepresented classes, the model can
focus on learning their distinctive features and improving
their detection performance.

Data-level approaches also play a crucial role in address-
ing class imbalance [15]. Data augmentation techniques,
such as rotation, scaling, flipping, or adding noise can help
increase the diversity and quantity of data for underrepre-
sented classes. This can help improve the model’s ability to
learn from and generalize to these classes.

Sampling techniques, such as random over-sampling
(ROS) [16], random under-sampling (RUS) [16], and syn-
thetic minority oversampling technique (SMOTE) [17], can
balance the class distribution [15]. ROS replicates or gen-
erates new samples from the minority class, while RUS
reduces the number of samples from the majority class.
SMOTE generates synthetic samples by interpolating be-
tween existing minority class samples. These techniques
aim to create a more balanced representation of all classes
and alleviate the bias towards the majority classes.

Another effective approach is transfer learning [18],
which leverages pre-trained models on large-scale datasets,
such as ImageNet [19] or COCO, to initialize the object
detection model. By transferring the learned features and
knowledge from the pre-trained model, the model can ben-
efit from the generalization and discriminative power of the
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Figure 2. Visualization of image labels

large dataset. This can help mitigate the effects of class im-
balance by providing a strong starting point for training on
the imbalanced dataset.

2.4. Few-shot Object Detection

Few-shot object detection extends the concept of few-
shot learning to the domain of object detection, where the
goal is to detect objects in images with only limited labeled
examples.

One approach to few-shot object detection is to lever-
age few-shot learning methods and adapt them to the ob-
ject detection setting. For instance, Yan et al. [20] extends
Faster/Mask R-CNN [2, 21] by proposing meta-learning
over Rol (Region of Interest) instead of a full image. The
core idea is to separate the complex information of mul-
tiple objects merged with the background. This enables
Faster/Mask R-CNN [2,21]to function as a meta-learner for
performing various tasks.

Besides, Kang et al. [22] propose a method where feature
re-weighting schemes are incorporated into a single-stage
object detector, specifically YOLOv2 [13]. This is achieved
by employing a meta-learner that takes both the support im-
ages (a limited number of labeled images belonging to the
novel/base classes) and the corresponding bounding box an-
notations as inputs.

Furthermore, recent advancements in pre-training mod-
els have also been explored in few-shot learning. These
models are pre-trained on large-scale datasets and then fine-
tuned on few-shot learning tasks, enabling them to capture
rich representations that can generalize well to new classes
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with limited labeled examples. Wang et al. [23] found that
fine-tuning only the last layer of existing detectors on rare
classes is crucial to the few-shot object detection task.

Despite the progress made in few-shot object detection,
it remains an active research area with ongoing efforts to
develop more effective algorithms.

3. Dataset
3.1. Dataset Statistics

There are 164 categories present in the 1451 children’s
book images, which have the same size 416 x 416. On
average, each image is annotated with 5.7 objects.



train valid test
No. Image 961 259 231
No. Box 5566 1459 1216
Avg No.Box/Img 5.79 5.63 5.26
Box Size (pixels) [85, 167232] [125, 161540] [144, 150423]
Box Area Ratio [0.00049, 0.966]  [0.00083, 0.869] [0.00072, 0.933]
Box W/H Ratio [0.0840, 7.769]  [0.0873,6.310]  [0.0603, 7.643]

Table 1. Data splits

To understand the distribution of object instances across
the different categories, the first figure in Figure 2 displays
the instances-per-class distribution. This distribution high-
lights the inherent imbalance and low-shot nature of the
dataset, with certain categories having a significantly larger
number of instances compared to others.

The second figure in Figure 2 shows the shape and lo-
cation of all bounding boxes in our dataset and the third
figure shows the distribution of the center of all bounding
boxes. The visualization demonstrates the spatial distribu-
tion of objects and illustrates that many bounding boxes are
centered around the middle of the image.

Lastly, the size distribution of the bounding boxes is de-
picted in the last figure of Figure 2. This visualization illus-
trates that the dataset contains a significant number of small
objects, as indicated by the higher density of data points in
the lower region of the size distribution plot.

3.2. Datasets Comparison

We compare our dataset with four commonly used
datasets in object detection and few-shot object detection,
Pascal VOC, MS COCO, LVIS, and few-shot object detec-
tion (FSOD) [24].

The distribution of categories-per-image is depicted in
Figure 3a, revealing that the majority of images contain 1
to 5 categories. Similarly, Figure 3b illustrates the distri-
bution of instances-per-image, indicating that most images
contain 1 to 8 instances. Our dataset exhibits a distribution
that closely resembles that of the COCO dataset. The rela-
tionship between the number of categories and the number
of instances is demonstrated in Figure 3c. Compared to the
PASCAL VOC dataset, our dataset contains a comparable
number of instances. However, it contains a larger number
of categories. On the other hand, when compared to the
COCO dataset, our dataset exhibits a similar number of cat-
egories, but significantly fewer instances. This discrepancy
can be attributed to the relatively smaller size and long-tail
distribution of our dataset.

4. Benchmarks and Experiments

In this section, we provide baseline results for our pro-
posed dataset. We perform object detection using the most
widely used YOLOvV5 model and train the TFA model [23]
as a few-shot learning baseline.

Crop Horizontal Flip Gauss Noise

Figure 4. Data augmentation techniques

4.1. Object Detection

Dataset Preparation We split the dataset into train, val-
idation, and test sets. Statistics can be found in Table 1.

Given the presence of imbalanced categories within the
dataset, it is essential to address the inherent challenges
associated with evaluating results on classes with limited
instances. To ensure a fair and meaningful assessment,
we adopted a categorization strategy to divide the dataset
into two distinct groups: frequent categories and rare cate-
gories. The categorization was based on the abundance of
instances within each class specifically within the training
dataset. Categories with more than 40 instances in the train-
ing dataset were classified as frequent categories, whereas
those with fewer instances were categorized as rare cate-
gories. This division allows us to focus our evaluation pri-
marily on the frequent categories, which exhibit a higher
representation within the dataset.

Experiments It has been proven that pre-training the
model on a large-scale dataset, such as ImageNet and MS
COCO, improves generalization and helps to prevent over-
fitting [25]. Therefore, we used the model weights learned
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Figure 5. Detection and classification accuracy on the dataset w/o augmentation

from COCO and then fine-tune it on our dataset in the ex-
periments.

In order to validate the efficacy of data augmentation on
our dataset, we conducted experiments employing various
augmentation strategies. It was demonstrated that a straight-
forward copy-paste technique can lead to improved perfor-
mance [26]. Building upon this insight, we further explored
the potential of common data augmentation techniques, in-
cluding cropping, rotation, flipping, and other transforma-
tions. Augmentation techniques have been used are shown
in Figure 4, which include crop, horizontal flip, rotate, gauss
noise, color jitter, PCA, sharpen, and blur.

Given the inherent class imbalance present in our dataset,
it is important to address this challenge during data augmen-
tation. Conventional image-level augmentation techniques,
while effective in introducing diversity, do not adequately
address the imbalance issue and may even exacerbate it fur-
ther. In light of this, we put forth a novel approach that fo-
cuses on bounding-box level augmentation, aiming to mit-
igate the imbalance problem while enhancing the dataset’s
richness and variability.

Our proposed bounding box level augmentation strategy
operates by considering individual bounding boxes rather
than the entire image. By doing so, we can selectively aug-
ment specific object instances, thereby offering a more tar-
geted and controlled augmentation process. This approach
enables us to maintain a better balance between different
object categories, ensuring that each class receives appro-
priate augmentation, irrespective of its initial representation
in the dataset. Examples are shown in Figure 6, where bears
and pigs are being augmented.

Results The experimental results are presented in Table
2. The results demonstrate the positive impact of data aug-
mentation on improving the model’s performance on fre-
quent classes and it also shows the generalization ability
of the YOLOvVS model on our dataset. Furthermore, our

\ o
(b) Example 2: Pigs

(a) Example 1: Bears

Figure 6. Examples of bounding-box level augmentation

novel bounding-box level augmentation approach exhibited
promising results, as observed in the table.

mAP50f mAP75f mAPf
w/o augmentation 17.39 7.87 8.87
copy & paste 18.43 8.35 9.42
bbox augmentation 25.57 15.31 15.23
normal augmentations 32.03 17.84 18.13

Table 2. Object detection performance of YOLOVS on frequent
classes. w/o augmentation: original dataset without augmentation;
copy & paste: simply copy and paste images; normal augmenta-
tions: uses image-level augmentation techniques; bbox augmenta-
tion: uses bounding-box level augmentation

Object detection models consist of two stages: detec-
tion, which localizes objects in an image, and classification,
which assigns a specific class label to each detected object.
To pinpoint the potential bottleneck in performance, we sep-
arate the evaluation of detection accuracy and classification
accuracy. This allows us to analyze and assess the model’s
performance in each stage independently.
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In Figure 5, we present the detection and classification
accuracies on the original dataset without any augmenta-
tion. It is evident that the detection accuracies are gener-
ally higher than the classification accuracies. One notable
observation is the extremely low classification accuracy for
the “female” class. This discrepancy can be attributed to
the significant class imbalance between the “male” and “fe-
male” classes. Given that the “male” class has a substan-
tially larger number of instances compared to the “female”
class, the model tends to predict all instances as “male” to
optimize overall accuracy. This imbalance in training data
distribution poses a challenge for the model to accurately
classify “female” samples, resulting in near-zero classifica-
tion accuracy for this class.

The complete results for detection and classification ac-
curacies are provided in Table 3. It is evident from the table
that in all cases, the localization accuracies are consistently
higher than the classification accuracies. This observation
suggests that the bottleneck in the model lies in the classi-
fication stage, as the model struggles to accurately classify
objects despite successfully localizing them.

Localization Classification
w/o augmentation 73.58 27.14
copy & paste 73.27 31.05
bbox augmentation 75.76 38.77
normal augmentations 73.28 49.22

Table 3. Detection and classification accuracy on frequent classes

To investigate the model’s performance on different sizes
of bounding boxes, we conducted an evaluation based on
the bounding box sizes. We divided the bounding boxes
into three categories: small (s) with a pixel area of 322 or
smaller, middle (m) with a pixel area between 322 and 962,

2-07 000 offlo Xo‘i 0X 000 X ><op 0 XX
o ;;Hdlng cat basket diningTable flower boat book curtain cup
mAP50, mAP50,, mAP50,
w/o augmentation 14.92 23.70 25.63
copy & paste 15.88 30.32 33.50
bbox augmentation 17.88 31.95 52.30
normal augmentations 23.07 34.41 66.75

Table 4. Object detection performance by bounding box size on
frequent classes

and large (1) with a pixel area larger than 962.

Figure 7 provides a visualization of the model’s perfor-
mance based on the bounding box size, using the original
dataset without any augmentation. In the figure, red crosses
indicate the absence of objects of a certain size. For exam-
ple, there are no large-sized “cup” instances in the dataset.
From the figure, we can observe that the model demon-
strates overall better performance on middle and large-sized
bounding boxes.

The complete results are presented in Table 4. From the
table, we can observe that the model achieves better perfor-
mance on middle-size and large-size bounding boxes com-
pared to small-size bounding boxes. This observation can
be attributed to the inherent characteristics of the YOLO
model, which tends to struggle to accurately predict small
objects.

4.2. Few-shot object detection

Dataset Preparation Following the few-shot learning
evaluation metrics, we divided the dataset into two cate-
gories: base classes and novel classes. Base classes re-
fer to classes with instance numbers larger than 40, while
novel classes correspond to classes with instance numbers
less than 40 and more than 20 to insure validity.

To assess the performance of the few-shot object detec-



Backbone shots mAPsg mAP;s mAP mAP, mAP, mAP,
R50 1 3.95 1.33 1.61 0.31 1.71 2.82
R50 2 4.32 2.12 2.46 1.21 2.59 3.58
R50 3 6.76 2.37 3.44 1.22 3.02 6.08
R50 5 7.28 2.93 4.06 2.11 3.39 6.67
R50 10 8.23 4.32 5.09 2.75 4.60 7.92
R101 1 4.07 2.36 2.52 0.52 2.74 4.31
R101 2 5.84 3.20 3.49 1.84 3.52 5.12
R101 3 6.85 3.43 4.12 2.09 4.10 6.17
R101 5 8.13 3.68 4.74 2.64 4.63 6.94
R101 10 9.41 4.69 5.52 3.10 5.15 8.31

Table 5. Results of few shot object detection

tion model across different shot scenarios, we created sepa-
rate datasets containing 1, 2, 3, 5, and 10 shots of both base
classes and novel classes. This allowed us to evaluate how
the model’s performance varied with the number of avail-
able training examples.

Experiments We adopt the two-stage fine-tuning ap-
proach (TFA) proposed in [23]. This approach involves two
steps: 1initial training on the base classes and subsequent
fine-tuning on a smaller balanced training set. Specifically,
we train the entire object detector on the data-abundant base
classes initially. Then, we fine-tune only the last layers of
the detector on a small balanced training set.

For our implementation, we utilize the Detectron2
framework [27], which provides a robust and efficient plat-
form for object detection tasks. The experiments in this
study involved evaluating two models with different back-
bone architectures: ResNet-101 and ResNet-50. These
models are variants of the ResNet [28] architecture, which
is a popular choice for deep convolutional neural networks
in computer vision tasks. The ResNet-101 model utilizes
a ResNet backbone with 101 layers, offering a deeper and
more complex network architecture.

The first model, Faster R-CNN R50-C4, employs a
ResNet-50 backbone. The second model, Faster R-CNN
R101-FPN, utilizes a ResNet-101 and FPN backbone.
These models serve as our baseline models for performance
evaluation.

Results Results of the few-shot object detection exper-
iments are presented in Table 5. For validity, three sets
of experiments and then calculate the average value of the
results. Additionally, we assess the model’s performance
based on the size of the bounding boxes.

Upon examining the table, it is evident that the model
with the ResNet-101 backbone achieves better overall per-
formance, which aligns with our expectations. Furthermore,
the model exhibits improved performance on middle and
large-size objects compared to small-size objects.

It is important to note that due to the few-shot nature
of the task, the performance on novel classes remains rel-
atively low. However, with further refinements and adjust-
ments, there is potential for enhancing the model’s ability
to generalize and detect objects from novel classes.

5. Conclusion

In conclusion, this study introduced a valuable dataset
comprising children’s book illustrations and conducted
baseline experiments to explore object detection in this do-
main. This dataset presents new research challenges in
the field of object detection. The unique characteristics of
children’s book illustrations, such as diverse artistic styles,
varying object sizes, and imbalanced class distributions, re-
quire tailored approaches for accurate and robust detection.

The conducted baseline experiments provide valuable in-
sights into the transferability of pre-trained models and the
effectiveness of data augmentation techniques in this do-
main. However, further research is needed to address the
specific challenges posed by this dataset.

Considering future research directions, it is essential to
investigate advanced architectures tailored specifically for
children’s book illustrations. Developing specialized back-
bone architectures or incorporating attention mechanisms
could further improve the models’ performance by captur-
ing the unique visual patterns and characteristics present in
our dataset. The findings and considerations presented here
pave the way for advancements in automated analysis and
understanding of visual content in the domain of children’s
book illustrations.
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Supplement

Technical explanations of core concepts used in the scientific article of part 2.

3.1. Deep Learning

Deep learning, a sub-field of machine learning, has become a powerful and transformative artificial
intelligence approach. It utilizes multiple-layer neural networks to learn intricate patterns and represen-
tations from vast amounts of data. With its great ability in discovering hierarchical features and extract
meaningful insights, deep learning has demonstrated remarkable success across various domains,
including natural language processing, computer vision, speech recognition, etc.

Deep learning includes a wide range of machine learning techniques that use multiple-layer neural
networks to learn intricate patterns and representations from data. Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs) are two common deep learning designs that have
demonstrated exceptional performance in computer vision and sequential data analysis applications,
respectively. However, at the heart of deep learning is the fundamental building element known as
multi-layer perception (MLP).

3.1.1. Multi-layer Perceptron

Deep learning is based on artificial neural networks inspired by the structure and function of the human
brain. These neural networks consist of interconnected layers of artificial neurons, each performing
simple computations on input data and passing the results to the next layers. The basic structure of a
neural network is shown in Figure 3.1.

Input Layer Hidden Layer

Output Layer

Input 2

Input 3

Input 4

Figure 3.1: Basic Structure of Neural Network [7, Fig. 1]
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To have a better understanding of how a neural network works, take the example of a feed-forward
network, which is the basic building block of deep learning models. A simple feed-forward network, also
known as a Multi-Layer Perceptron (MLP), accepts an input = and allows information to pass through
its intermediate layers to produce some output y. In other words, it approximates some function f so
that the output y = f(«) is close to the predicted output y.

Through an iterative training process, deep learning models learn to recognize and generalize pat-
terns by adjusting the weights and biases associated with each neuron. The depth and complexity of
these neural networks allow them to capture complex relationships and representations that are difficult
to achieve with traditional machine learning methods.

One of the key strengths of deep learning is to learn directly from raw data without manual feature
engineering. This data-driven approach opens up new possibilities for solving complex problems in
areas such as image classification, object detection, language translation, and medical diagnosis.

3.1.2. Activation Functions

Activation functions are often used in neural networks to add complexity. It introduces non-linearity
to the network, allowing it to learn and approximate complex relationships within the data. Common
activation functions include the Sigmoid function, rectified linear unit (ReLU), etc. The Sigmoid func-
tion restricts the output to the interval [0, 1]. The ReLU function is the most commonly used function,
which simply computes the max(x, 0), squishing all negative inputs to zero and keeping positive values
unchanged. Sigmoid and ReLU activations are visualized in Figure 3.2 and 3.3.

Sigmoid Function

1.01

0.8 4

0.6

sigmoid(x)

0.2

0.0

T T T T T T T T T
-100 -75 =50 =25 0.0 25 5.0 7.5 10.0

Figure 3.2: Sigmoid Function

RelLU Function

101

-100 -7.5 =50 -25 0.0 2.5 5.0 7.5 10.0

Figure 3.3: ReLU Function



3.1. Deep Learning 14

3.1.3. Training a Neural Network

In simple words, training a neural network is to find a function that generates a g that is closest to the
actual expected output y. The neural network must find the best set of learnable parameters for the
weights and biases in order to get the best approximation. These parameters are usually initialized
randomly in the beginning.

However, training deep neural networks requires massive computing resources, often relying on
specialized hardware such as graphic processing units (GPUs) or tensor processing units (TPUs). Fur-
thermore, the large amount of labeled data required for efficient training can create a bottleneck in some
domains. Overcoming these challenges requires expertise in model architecture design, optimization
techniques, regularization methods, and data augmentation strategies.

As deep learning research advances, new architectures such as convolutional neural networks
(CNNs), recurrent neural networks (RNNs), and transformers continue to improve the performance of
various applications.

3.1.4. Convolutional Neural Network
Convolutional Neural Networks (CNNs) are a type of artificial neural network designed specifically for
processing and interpreting structured grid-like data such as photos, and video. ltis particularly effective
in analyzing visual data due to its ability to capture spatial information and learn local patterns through
the use of convolutional layers. CNNs have transformed the field of computer vision, excelling in tasks
such as image classification, object detection, and semantic segmentation.

CNNs are comprised of three types of layers. These are convolutional layers, pooling layers, and
fully-connected layers. A simple CNN architecture for MNIST classification is illustrated in Figure 3.4.

convolution
w/ReLu pooling fully-connected

| | /J_\
E\@Wg

[ AN
output

input

fully-connected
w/ ReLLu

Figure 3.4: An simple CNN architecture, comprised of just five layers [7, Fig. 2]

Convolutional layers are at the heart of CNNs. These layers are made up of filters or kernels that
perform convolutions on the input data to extract local patterns and features. Convolution involves
sliding a set of small filters (also known as kernels or feature detectors) over the input, computing the
dot product between the filter and local patches of the input.

Pooling layers are often inserted after convolutional layers to reduce the spatial dimensions of the
data and retain the most salient features. They aggregate information from a local neighborhood of
the input, typically through operations such as max pooling or average pooling. The main purpose of
pooling layers is to down-sample the feature maps, reducing their size and computational complexity
while capturing the most relevant and salient features.

A max pooling operation is visualized in 3.5. Max pooling is a commonly used pooling operation,
where the maximum value within each pooling window is selected and retained, discarding the rest
of the values. This helps capture the most prominent feature within each local neighborhood. On the
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30 | 10 | 30 | O

4 9 1 39 2 x 2 Max pooling 30 39
—
40 1 12 | 52 95 67

95 | 2 | 45 | 67

Figure 3.5: A max pooling operation. The maximum value of each region, denoted by a distinct color, is the output.

30 | 10 | 30 | O

4 9 1 39 2 x 2 Average pooling 13.25 17.5
—
40 1 12 | 52 345 44

95 | 2 | 45 | 67

Figure 3.6: An average pooling operation. The average value of each region denoted by a distinct color, is the output.

other hand, an average pooling operation is visualized in 3.6. Average pooling computes the average
value within each pooling window, which can be useful for capturing general information about the local
neighborhood.

However, it's worth noting that pooling operations can result in information loss since they discard
some of the detailed information within the local neighborhoods. This can be mitigated to some extent
by using smaller pooling window sizes or by using techniques like strided pooling, which applies the
pooling operation with a larger stride to reduce downsampling.

The output of the convolutional and pooling layers is typically flattened and fed into fully connected
layers. These layers are similar to those in traditional artificial neural networks and are responsible for
performing classification or regression tasks.

3.2. Object Detection
3.2.1. Definition

Computer vision involves various visual recognition tasks, including image classification, object detec-
tion, instance segmentation, and semantic segmentation, whose differences are described in Figure
3.7.

Specifically, image classification involves identifying the objects’ semantic categories in an image,
while object detection also predicts the location of each object with a bounding box. Semantic seg-
mentation assigns a specific category label to each pixel. However, semantic segmentation does not
differentiate between multiple objects of the same category. Instance segmentation, which combines
object detection and semantic segmentation, identifies different objects and assigns them separate
categorical pixel-level masks.

Object detection is the basic step towards many different computer vision tasks, such as face recog-
nition, pedestrian recognition, and video analysis. Modern object detection methods can be categorized
into two main types: one-stage methods and two-stage methods.

Two-stage methods follow the traditional object detection pipeline by generating region proposals
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(a) Image Classification (b) Object Detection

”

Wy

(c) Semantic Segmentation (d) Instance Segmentation

Figure 3.7: Comparison of different visual recognition tasks in computer vision [8, Fig. 1]

and classifying each proposal into different object categories. Two-stage methods include R-CNN [9],
Fast R-CNN [10], Faster R-CNN [2], Mask R-CNN [11], etc.

3.2.2. R-CNN

R-CNN (Region-based Convolutional Neural Network) is an object detection framework introduced by
Girshick et al. [9] in 2014. It changed the field of object detection by combining the power of deep
learning with region proposal techniques. The framework is visualized in 3.8.

R-CNN: Regions with CNN features
Warpe¢d region )

-------------------- s
/

/ :
=B person? yes.
|

_______________ CNNM
1. Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

Figure 3.8: R-CNN model [9, Fig. 1]

1. Region Proposal: Initially, around 2000 bottom-up region proposals are extracted using selective
search or a similar algorithm. These regions are likely to contain objects of interest.

2. CNN Feature Extraction: Region proposals are resized to a fixed size and fed into a convolutional
neural network to extract rich feature representations. The network is typically pre-trained on a
large-scale image classification task, such as ImageNet, to learn generic visual features.

3. Object Classification: The extracted features from each region proposal are forwarded to addi-
tional layers, including fully connected layers, to perform object classification. This step involves
predicting the presence of an object and assigning it to one of the predefined classes.

4. Bounding Box Regression: In addition to object classification, R-CNN also performs bounding box
regression to refine the localization of objects. It predicts the coordinates of a tighter bounding
box around the detected object, aiming for more accurate object localization.
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5. Non-Maximum Suppression: To address the issue of duplicate detection, a post-processing step
called non-maximum suppression (NMS) is applied. NMS eliminated redundant bounding boxes
by keeping only the most confident ones.

R-CNN made significant advancements in object detection, but it also has several limitations. R-
CNN uses selective search or similar algorithms to generate region proposals for potential objects.
These methods are relatively slow and may not always provide accurate or optimal proposals. R-CNN
is also computationally expensive during both training and inference. It involves multiple stages, which
makes it slow and resource-intensive.

3.2.3. Fast R-CNN

Fast R-CNN is an improved version of R-CNN that addresses some of its limitations. Spatial pyramid
pooling networks (SPPnets) were proposed to speed up R-CNN by sharing computation. It computes
a convolutional feature map for the entire input image and then classifies each object proposal.

The fast R-CNN model is visualized in 3.10. The Fast R-CNN architecture takes an inputimage and
multiple regions of interest (Rols) as input. It utilizes a fully convolutional network to process the entire
image, which involves several convolutional and max pooling layers, resulting in a convolutional feature
map. For each object proposal, a Rol pooling layer is employed to extract a fixed-length feature vector
from the convolutional feature map. This feature vector is then passed through a sequence of fully
connected (FC) layers. The FC layers branch into two output layers: The first output layer produces
softmax probability estimates for K object classes, including a "background” class that represents non-
object regions. The second output layer generates four real-valued numbers for each of the K object
classes, representing refined bounding-box positions.

Outputs: bb ox
softmax regressor

- {Deep
ConvNet

Rol
pooling

FC

| Rol
projection

Conv Rol feature
feature map vector

For each Rol

Figure 3.9: Fast R-CNN architecture [10, Fig. 1]

3.2.4. Faster R-CNN
Faster R-CNN, proposed in 2015, revolutionized object detection by introducing a two-stage frame-
work that combines region proposal generation and object classification. It is the most widely adopted
two-stage architecture. The primary motivation behind Faster R-CNN was to alleviate the shortcom-
ings of earlier approaches that relied on time-consuming external region proposal methods, such as
Selective Search. It consists of a region proposal network (RPN) and a subsequent object detection
network. The RPN shares convolutional layers with the detection network, allowing for efficient compu-
tation and reuse. This design ensures end-to-end training and enables the network to learn powerful
representations for both region proposal and object classification. The network is presented in Figure
3.10

However, the two-stage approaches mentioned above suffer from increased computational com-
plexity due to the need for region proposal techniques. This limitation makes them less suitable for
real-time applications where efficiency is a critical factor.

One-stage methods treat object detection as a regression or classification problem and use a unified
framework to achieve final results directly. One-stage methods include the family of You Only Look
Once (YOLO) [4], SSD [12], etc.
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. classifier

feature maps

Figure 3.10: Faster R-CNN model structure [2, Fig. 2]

3.2.5. SSD
Unlike two-stage methods, SSD is a one-stage detector that performs both object localization and
classification in a single pass through the network.

The key idea behind SSD is the use of multiple convolutional feature maps at different scales to
detect objects of various sizes. These feature maps are obtained from different layers of a base net-
work, such as VGG or ResNet. Each feature map is associated with a set of default bounding boxes of
different aspect ratios and scales, which act as anchors for object detection. SSD framework is shown
in 3.11. Itis relatively simple compared to methods that require object proposals because it completely
eliminates proposal generation. Instead, all the necessary computations for object detection are en-
capsulated within a single network.
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(a) Image with GT boxes (b) 8 x 8 feature map (c) 4 x 4 feature map

Figure 3.11: SSD framework [12, Fig. 1]

3.2.6. RetinaNet
RetinaNet is an object detection model that addresses the problem of accurately detecting objects at
different scales and handling the issue of class imbalance in training data.

One of the key features of RetinaNet is its focal loss, which effectively addresses the problem
of class imbalance. Class imbalance occurs when the number of background (non-object) samples
significantly outweighs the number of object samples in the training data. The focal loss assigns higher
weights to hard examples (e.g., rare objects or misclassified samples) during training, thus focusing
the model’s attention on these challenging instances and improving overall performance.

Focal Loss adds a factor (1-p;)” to the standard cross entropy criterion. Setting v > 0 reduces the
relative loss for well-classified examples (p; > .5), putting more focus on hard, misclassified examples.

RetinaNet employs a feature pyramid network (FPN) as its backbone architecture, which allows
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CE(p) = —log(p.)
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Figure 3.12: Focal Loss [3, Fig. 1]

the model to efficiently capture object information at multiple scales. The FPN combines features from
different layers of a convolutional network to create a feature pyramid, enabling the detection of objects
of various sizes. This multi-scale approach is particularly important for detecting small objects that might
be missed by traditional single-scale methods. The network is shown in 3.13.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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(a) ResNet (b) feature pyramid net (c) class subnet (top) (d) box subnet (bottom)
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Figure 3.13: RetinaNet network uses a FPN backbone [3, Fig. 3]

3.2.7. YOLO

Redmon et al. [4] proposed a framework called YOLO. The YOLO model processes the entire image
in a single feed-forward pass through a neural network and directly predicts the class probabilities
and bounding box coordinates for a set of predefined anchor boxes. This approach is in contrast to
traditional object detection systems that first generate region proposals and then classify them.

The basic idea of YOLO is displayed in Figure 3.14. The model divides the input image into a grid
of cells, and each cell is responsible for predicting the bounding boxes and class probabilities for a set
of predefined anchor boxes. Each bounding box consists of four parameters: x, y, width, and height.
The class probabilities represent the likelihood of each anchor box containing a particular class.

The architecture of the YOLO model is displayed in Figure 3.15. The network has 24 convolutional
layers and 2 fully connected layers. 1 x 1 convolutional layer is used to reduce the feature dimension
from previous layers.

To make predictions, the YOLO model first processed the input image through a series of convolu-
tional layers to extract features. The resulting feature map is then divided into a grid of cells. Each call
predicts a fixed number of bounding boxes.

During training, the model learns to adjust the anchor boxes’ parameters to better fit the ground-
truth bounding boxes in the training data. The loss function used to train the model consists of a
combination of localization loss (how well the predicted bounding boxes match the ground-truth boxes)
and classification loss (how accurately the model predicts the object classes).

YOLO is designed to operate at high frame rates, making it suitable for real-time applications such
as video analysis, robotics, and surveillance. It achieves this speed by using a single neural network
for both object proposal and classification, eliminating the need for separate region proposal and object
classification stages.
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S x S grid on input

Class probability map

Figure 3.14: Main idea of YOLO [4, Fig. 2]

3.2.8. YOLOvV5

YOLOVS5 [13] is an object detection algorithm that builds upon the YOLO (You Only Look Once) ar-
chitecture. It is one of the most commonly used models in the YOLO family of computer vision. It
was developed as an evolution of the YOLOv4 model with the goal of improving speed, accuracy, and
overall performance. YOLOVS5 follows a one-stage object detection approach, which means that it di-
rectly predicts bounding boxes and class probabilities in a single pass. The architecture consists of a
backbone network (CSPDarknet) followed by detection heads.

Here are some key aspects of YOLOV5:

» Anchor-based: YOLOvV5 uses anchor boxes to help the detection of objects at various scales and
aspect ratios. These anchor boxes serve as reference priors for predicting bounding boxes.
Scaled-YOLO: YOLOVS5 introduces "Scaled-YOLO” which involves training the detector at mul-
tiple input sizes. By varying the input resolution during training, YOLOV5 is able to generalize
better across different object scales.

Different Model Sizes: YOLOv5 provides different model sizes, such as YOLOv5s, YOLOv5m,

YOLOVSI, and YOLOv5X, with increasing depth and capacity. The larger models tend to offer

better accuracy but require more computational resources.

Improved Performance: YOLOV5 incorporates several enhancements to improve performance.

These include the use of advanced data augmentation techniques, the introduction of PANet

(Path Aggregation Network) for feature fusion across different scales, and the utilization of anchor-

based box predictors.

Training and Inference: YOLOV5 can be trained on large-scale labeled datasets, such as COCO

(Common Objects in Context), and the training process involves optimizing various loss func-

tions to improve object localization and classification. Inference with YOLOV5 involves passing

an image through the trained network, generating bounding box predictions, and applying post-
processing steps to filter and refine the detections.

* Open-Source Implementation: YOLOVS5 is open-source and provides a user-friendly code that
allows researchers and developers to train and deploy the models for object detection tasks.
The code includes pre-trained models, data augmentation techniques, evaluation metrics, and
visualization tools.

Since its ease of use, high performance, and versatility, we decide to use it as a benchmark.

3.3. Imbalanced Dataset

3.3.1. Problem definition
Animbalanced dataset refers to a dataset in which the distribution of classes or samples across different
categories is significantly unequal. In other words, some categories have more samples than others.
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Figure 3.15: The architecture of YOLO model [4, Fig. 3]

This imbalance is commonly observed in various real-world domains, such as fraud detection, medical
diagnosis, etc.

Due to the imbalanced representation of classes, models tend to be biased towards the majority
class and may struggle to classify instances from the minority class accurately. This can result in poor
overall performance for the minority class.

3.3.2. Approaches

Sampling Techniques

Sampling techniques involve modifying the class distribution in the dataset by either oversampling the
minority class or undersampling the majority class.

Oversampling increases the number of instances in the minority class. Techniques like Random
Oversampling, and SMOTE (Synthetic Minority Over-sampling Technique) [14] generate synthetic sam-
ples to balance the classes. Undersampling involves reducing the number of instances in the majority
class.

Data Augmentation

Data augmentation techniques, such as rotation, scaling, flipping, or adding noise can help increase
the diversity and quantity of data for underrepresented classes. This can help improve the model’s
ability to learn from and generalize to these classes.

Focal Loss
The focal loss [3] addresses the class imbalance problem by assigning higher weights to misclassi-
fied examples from the minority classes during training. The focal loss achieves this by introducing a
modulating factor called the "focusing parameter” that decreases the loss assigned to well-classified
examples. This docusing parameter reduces the loss for easily classified examples, which are typically
from the majority class, and increase the loss for hard examples, which are typically from the minority
class. By giving more importance to the underrepresented classes, the model can focus on learning
their distinctive features and improving their detection performance.

However, it is worth noting that focal loss is just one of several techniques avaiable to tackle the
class imbalance problem. Its effectiveness can vary depending on the specific dataset and task.

3.4. Few Shot Object Detection

3.4.1. Problem Definition

Few-shot object detection refers to the task of detecting objects in an image with limited labeled training
examples per object class. Traditional object detection methods typically require a large number of
labeled examples for each object class to achieve good performance. However, in few-shot object
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detection, the goal is to develop models that can effectively detect objects with only a small number of
labeled examples per class, often as few as one or a few shots.

3.4.2. Approaches

Data Augmentation

Data augmentation is a technique used in machine learning and computer vision to artificially increase
the diversity and size of a training dataset by applying various transformations and modifications to the
existing data. The goal of data augmentation is to improve the generalization and robustness of the
trained models. It is a commonly used solution to few-shot problems. Data augmentation techniques
used in this thesis are visualized in 3.16.

Crop Horizontal Flip Rotate Gauss Noise

Figure 3.16: Eight augmentation techniques

Data augmentation techniques can be broadly categorized into several categories based on the
types of transformations applied to the original data. Here are some common categories of data aug-
mentation:

» Geometric Transformations: These techniques involve geometric modifications to the data, such
as rotation, translation, scaling, flipping, and cropping. These transformations help the model to
learn invariance to different orientations, positions, and sizes of objects.

» Color Transformations: These techniques alter the color properties of the data, such as adjusting
brightness, contrast, saturation, hue, or applying color filters. Color augmentation can help the
model become more robust to variations in lighting conditions, color shifts, and contrast levels.

* Noise Injection: Adding different types of noise to the data can improve the model’s ability to
handle noisy or distorted inputs. Examples include Gaussian noise, random pixel value noise, or
dropout, where random pixels or regions are set to zero.

* Occlusion and Cutout: Introducing occlusions or cutout regions in the data can force the model
to focus on relevant features and improve its robustness to occluded objects or missing regions.

 Style Transfer: Style transfer techniques can be used to change the visual style or appearance
of the data, such as applying artistic filters or transferring the style of one image to another. This
can help the model learn to recognize objects in different visual styles.

Transfer Learning
Transfer learning is a machine learning technique where knowledge gained from training a model on
one task or dataset is transferred and applied to a different task or dataset. Normally, the dataset that
has been pre-trained is abundant, while the new dataset suffers from scarcity. It utilizes the learned
features from a pre-trained model to improve the performance and efficiency of a new task.

In the context of object detection, transfer learning can be applied by utilizing pre-trained models
that have been trained on large-scale datasets such as ImageNet [15]. These pre-trained models have
learned generic visual features that are useful for various computer vision tasks. Transfer learning in
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object detection allows us to benefit from the knowledge and representations learned from large-scale
datasets, even when the target dataset is relatively small. It helps in overcoming the limitations of
insufficient labeled data and reduces the training time and computational resources required to achieve
good performance.

For instance, Wang et al. [16] adopted a two-stage fine-tuning approach for few-shot object detec-
tion. It is simple but also effective. The process is presented in 3.17.

Stage |: Base training Stage |I: Few-shot fine-tuning

Fixed Feature

Extractor
RPN

l Box Classifier

Rol ROI Feat.

Backbone Pooling I‘ Extractor I_[

Box Regressor

Figure 3.17: lllustration of two-stage fine-tuning approach [16, Fig. 2]

Pooling T Extractor

RPN
Base Shots
1 Box Classifier (Few)
Rol ROI Feat. P
Backbone - | e,

Box Regressor
Base Images Novel Shots

(Abundant) (Few)

While transfer learning has been extensively used in few-shot classification (FSC) tasks, its applica-
tion in few-shot object detection (FSOD) is more challenging. First, applying the conventional transfer
learning strategy of initializing deep detectors from pre-trained deep classifiers is not suitable when deal-
ing with limited target detection sets. The reason is that fine-tuning on such small target sets is often
hard to eliminate the task difference between detection and classification. Second, deep object detec-
tors are more prone to overfitting compared to deep classifiers as they need to learn object-specific
representations for both localization and classification [17].

Distance Metric Learning

Distance metric learning aims to learn a suitable distance metric that can effectively measure the sim-
ilarity or dissimilarity between feature representations of objects. By leveraging this learned distance
metric, it becomes possible to compare and classify novel objects based on their feature similarity to
the few-shot training examples.

One popular approach in distance metric learning is to use Siamese networks [18] or triplet networks
[19]. These networks learn embeddings for object instances such that instances from the same class
are closer together in the embedding space, while instances from different classes are pushed further
apart. This way, during inference, the distance between a novel object instance and the few-shot
examples can be used to determine its class.

3.5. Datasets
3.5.1. Children Books

Figure 3.18: Pie Chart of the Original Dataset [5]
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Figure 3.19: Label information of the Original Dataset

The original dataset is the Ot & Sien dataset from https://lab.kb.nl/dataset/ot-sien-dataset.
It has 1512 illustration images with 7210 objects. (4.8 per image), annotated with object class and
bounding boxes. It has 264 classes and is superimbalanced. The distribution of categories is visualized
in 3.18. Our dataset is very imbalanced, 3.18 captures the situation. Human categories, including
"male” and "female”, make up around 50% of all objects.
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Figure 3.20: The distribution of the size of bounding boxes

After looking into the dataset, many mislabeling and wrong classes are identified. After correction,
the properties of the dataset can be summarized as:

» The dataset consists of illustrations rather than standard photos.

+ 1452 images with 8241 objects (5.7 per image) are annotated including the category and bounding
boxes.


https://lab.kb.nl/dataset/ot-sien-dataset
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+ All images are resized to 416 x 416 with black fitting edges to adapt to the training procedure.
» The dataset follows a natural long-tail property, with some object categories being rare.
* The dataset has imbalanced categories.

The information on bounding boxes is presented in 3.19. The first figure in 3.19 displays the
instances-per-class distribution. This distribution high- lights the inherent imbalance and low-shot na-
ture of the dataset, with certain categories having a significantly larger number of instances compared
to others.

The second figure shows the shape and location of all bounding boxes in our dataset and the third
figure shows the distribution of the center of all bounding boxes. The visualization demonstrates the
spatial distribution of objects and illustrates that many bounding boxes are centered around the middle
of the image.

Lastly, the size distribution of the bounding boxes is depicted in the last figure of Figure 2. This
visualization illustrates that the dataset contains a significant number of small objects, as indicated by
the higher density of data points in the lower region of the size distribution plot.

The detailed distribution of the size of bounding boxes is visualized in 3.20. We can see that the
dataset contains a higher number of small objects compared to larger ones. This observation under-
scores the importance of effectively detecting and classifying smaller objects within the dataset.
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Figure 3.21: The distribution of width/height ratio of bounding boxes

3.5.2. Commonly Used Datasets for Object Detection

PASCAL VOC 2012 [20] is a mid-scale object detection dataset that shares the same 20 categories
as Pascal VOC 2007. PASCAL VOC has three splits: training, validation, and test, containing 5717,
5823, and 10991 images, respectively. The main purpose of this dataset is to recognize objects from
a variety of visual object classes in realistic settings. It is a supervised learning problem with a training
set of labeled images provided. It contains twenty categories:

* Person: person

» Animal: bird, cat, cow, dog, horse, sheep

» Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train

* Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor

MicroSoft COCO [6] is a large-scale object detection, segmentation, and captioning dataset with 91
categories. It collects images of complex everyday scenes containing common objects in their natural
context. The number of instances per category for all 91 categories is shown in 3.22.

LVIS (Large Vocabulary Instance Segmentation) [21], is an extensive dataset aimed at advancing
the field of instance segmentation. The dataset is designed to be comprehensive, comprising approx-
imately 164,000 images, over 1000 categories, and over 2 million high-quality instance segmentation
masks. It specifically focuses on categories with limited training samples, encompassing a long-tail
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Figure 3.22: categories distribution of MS COCO [6, Fig. 5 (a)]

distribution. The dataset provides a benchmark challenge, serving as a platform for the development
of novel object detection, segmentation, and few-shot learning algorithms.

Few Shot Object Detection (FSOD) [22] is a highly diverse dataset created specifically for few-shot
object detection. It is designed to access a model’'s generality on new categories. The training set
and test set have no overlapping categories, having 800 and 200 categories each. The training set is
constructed from the MS COCO dataset and the ImageNet dataset. Overall, the dataset contains 1000
categories, of which 531 categories come from ImageNet and 469 from the Open Image dataset.

The information and statistics of these datasets are presented in 3.1 and 3.2.

Dataset Classes | Object Per Image | Image Size | Started Year
Pascal Voc 2012 20 24 470 x 380 2005
MS COCO 91 7.3 640 x 480 2009
LVIS 1000+ 11.2 - 2019
FSOD 1000 2.82 - 2020
Children Books 164 5.8 416 x416 2023
Table 3.1: Characteristics of Considered Datasets
Dataset . Numebr of Images Num'ber of Annotations
Train Val Test Train Val
Pascal Voc 2012 5717 5,823 10,991 13,609 13,841
MS COCO 82,783 40,504 81,434 604,907 291,875
LVIS 100,170 19,809 19,822 1,270,141 244,707
FSOD 52,350 14,152 - 147,489 35,102

Table 3.2: Statistics of the commonly used Datasets in FSOD




(1]
(2]
(3]
[4]
[3]

[6]

[7]
(8]

9]

[10]
[1]

[12]

[13]

[14]
[15]
[16]
[17]
[18]

[19]

References

Aakash K Shetty et al. “A review: Object detection models”. In: 2021 6th International Conference
for Convergence in Technology (I2CT). IEEE. 2021, pp. 1-8.

Ross Girshick. “Fast r-cnn”. In: Proceedings of the IEEE international conference on computer
vision. 2015, pp. 1440-1448.

Tsung-Yi Lin et al. “Focal loss for dense object detection”. In: Proceedings of the IEEE interna-
tional conference on computer vision. 2017, pp. 2980-2988.

Joseph Redmon et al. “You only look once: Unified, real-time object detection”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2016, pp. 779-788.

S. Khademi, S. Veldhoen, and L. Wilms. Ot & Sien dataset. https://lab.kb.nl/dataset/ot-
sien-dataset. KB Lab: The Hague. 2021.

Tsung-Yi Lin et al. “Microsoft coco: Common objects in context”. In: Computer Vision—-ECCV 2014:
13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13.
Springer. 2014, pp. 740-755.

Keiron O’'Shea and Ryan Nash. “An introduction to convolutional neural networks”. In: arXiv
preprint arXiv:1511.08458 (2015).

Xiongwei Wu, Doyen Sahoo, and Steven CH Hoi. “Recent advances in deep learning for object
detection”. In: Neurocomputing 396 (2020), pp. 39-64.

Ross Girshick et al. “Rich feature hierarchies for accurate object detection and semantic seg-
mentation”. In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2014, pp. 580-587.

Ross Girshick. “Fast r-cnn”. In: Proceedings of the IEEE international conference on computer
vision. 2015, pp. 1440-1448.

Kaiming He et al. “Mask r-cnn”. In: Proceedings of the IEEE international conference on computer
vision. 2017, pp. 2961-2969.

Wei Liu et al. “Ssd: Single shot multibox detector”. In: Computer Vision—-ECCV 2016: 14th Euro-
pean Conference, Amsterdam, The Netherlands, October 11—-14, 2016, Proceedings, Part | 14.
Springer. 2016, pp. 21-37.

Glenn Jocher et. al. ultralytics/yolov5: v6.0 - YOLOv5n ‘Nano’ models, Roboflow integration, Ten-
sorFlow export, OpenCV DNN support. Version v6.0. Oct. 2021. DOI: 10.5281/zenodo . 5563715.
URL: https://doi.org/10.5281/zenodo.5563715.

Nitesh V Chawla et al. “SMOTE: synthetic minority over-sampling technique”. In: Journal of arti-
ficial intelligence research 16 (2002), pp. 321-357.

Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: 2009 IEEE conference
on computer vision and pattern recognition. leee. 2009, pp. 248-255.

Xin Wang et al. “Frustratingly simple few-shot object detection”. In: arXiv preprint arXiv:2003.06957
(2020).

Hao Chen et al. “Lstd: A low-shot transfer detector for object detection”. In: Proceedings of the
AAAI conference on artificial intelligence. Vol. 32. 1. 2018.

Gregory Koch, Richard Zemel, Ruslan Salakhutdinov, et al. “Siamese neural networks for one-
shot image recognition”. In: ICML deep learning workshop. Vol. 2. 1. Lille. 2015.

Elad Hoffer and Nir Ailon. “Deep metric learning using triplet network”. In: Similarity-Based Pattern
Recognition: Third International Workshop, SIMBAD 2015, Copenhagen, Denmark, October 12-
14, 2015. Proceedings 3. Springer. 2015, pp. 84-92.

27


https://lab.kb.nl/dataset/ot-sien-dataset
https://lab.kb.nl/dataset/ot-sien-dataset
https://doi.org/10.5281/zenodo.5563715
https://doi.org/10.5281/zenodo.5563715

References 28

[20] Mark Everingham et al. “The pascal visual object classes (voc) challenge”. In: International journal
of computer vision 88 (2010), pp. 303-338.

[21] Agrim Gupta, Piotr Dollar, and Ross Girshick. “Lvis: A dataset for large vocabulary instance seg-
mentation”. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recog-
nition. 2019, pp. 5356-5364.

[22] Qi Fan et al. “Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector”. In:
CVPR. 2020.



	Preface
	Introduction
	Scientific Paper
	Supplement
	Deep Learning
	Multi-layer Perceptron
	Activation Functions
	Training a Neural Network
	Convolutional Neural Network

	Object Detection
	Definition
	R-CNN
	Fast R-CNN
	Faster R-CNN
	SSD
	RetinaNet
	YOLO
	YOLOv5

	Imbalanced Dataset
	Problem definition
	Approaches

	Few Shot Object Detection
	Problem Definition
	Approaches

	Datasets
	Children Books
	Commonly Used Datasets for Object Detection


	References

