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Summary

Cities are vulnerable to local floods due to heavy rainfall. Urban flooding
causes damage to buildings and contents, and also disturbs daily city ac-
tivities as it entails drainage, transportation, and electricity interruptions.
Urban flooding is expected to increase as climate change drives heavier
rainfall events. Population and assets densification, as well as infrastructure
aging, increasingly hamper cities from tackling pluvial flooding. Climate
adaptation measures can help cities to face the challenge of heavier weather
and urban flooding. Examples of those measures are: smart drainage main-
tenance and emergency responses, urban climate-proofing and retrofitting,
and provision of real-time flooding information to citizens and government
officials, among others. To plan and perform such measures it is required
to know, and even predict before a heavy storm is onset, where, when, and
why urban flooding occurs. This knowledge is not always available though.
Required knowledge to design and implement adaptation measures against
urban flooding is insufficient in cases such as Amsterdam and Rotterdam.
In these cities, urban drainage models are limited to certain districts or
uncalibrated; they cannot validly predict where or when the drainage system
will surcharge or flood, and thus, they cannot be used for flood damage
modeling. Moreover, urban flooding may not only depend on hydraulic
parameters of underground drainage systems; other physical and socioeco-
nomic characteristics of the urban fabric may also influence the flooding
likelihood at a particular urban location. Urban flooding can be better
understood by using non-hydraulic and unconventional sources of informa-
tion. Available public data, curated by statistics, cadastral, or municipal
call-center services, can provide insights about urban flooding damage.
Using mainstream technology, such as web, traffic, and smart-phone cam-
eras, can also afford for valuable data about urban flooding impacts, which
contributes to the development of climate adaptation measures in lowland
cities. This dissertation aimed to determine the potential of such alterna-

tive data sources in better explaining urban flooding incidents. Employed

ix



X Summary

methods combined techniques from geographic information systems, graph
theory, community ecology, and computer vision. The exploration done in
this research follows three main steps: testing previously proposed models,
exploring currently available data sources, and evaluating the usefulness of
attainable and affordable technology to gather key, nonexistent data about
the timing, location, and extent of urban flooding incidents.
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Introduction



2 1 Introduction

1.1 Research context and objective

Cities are vulnerable to urban flooding due to heavy, localized rainfall.
Urban flooding causes damage to buildings and contents, and disturbs
daily city activities as it entails drainage, transportation, and electricity
interruptions (Ashley et al., 2005; ten Veldhuis and Clemens, 2010). Urban
flooding is expected to increase in many areas worldwide as climate change
drives heavier rainfall events (Berggren et al., 2012). Forecasted climate
change scenarios show that in The Netherlands, the intensity of extreme,
short-termed, convective rainfall events leading to urban flooding is expected
to increase (Attema et al., 2014; Romero et al., 2011).

Apart from the influence of heavier rainfall events, other factors may
affect the occurrence and severity of urban flooding incidents. Population
and assets densification, impervious covers advance, as well as infrastructure
aging, increasingly hamper cities from tackling urban flooding. Lowland
cities, with their characteristic geography, infrastructure layout, and growing
population, are particularly vulnerable to urban flooding incidents. Delta
cities, for instance, have 10-times the population density of the world average,
hosting more than half a billion people and key infrastructure and services
of global economic importance (Ericson et al., 2006). In The Netherlands,
18% of total surface corresponds to urban areas laying at or below 1 m
below the sea level; these areas are inhabited by a third of the total country
population (Center for International Earth Science Information Network
- CIESIN - Columbia University, 2013). Urban drainage systems in The
Netherlands have been designed designed to cope with rainfall events with
return periods of 2 to 5 years (RIONED Foundation, 2004; ten Veldhuis
and Clemens, 2010), which implies frequent urban flooding incidents.

Localized rainfall flooding can cause considerable damage. For instance,
estimations of damages due to heavy rain in autumn 1998 in the Nether-
lands, accounted for €408 million (European Central Bank, 1998; Jak and
Kok, 2000). Likewise, in the UK the annual average damage from intra-
urban flooding is about a quarter of the total flood-related annual average
damage (Blanc et al., 2012). Other studies claim that 40% of flood damage
and associated economic losses are attributable to urban pluvial flooding
(Douglas et al., 2010).

Climate adaptation measures can help cities to cope with the challenge

of increasing urban flooding risks. Adaptation measures include climate-
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proofing of urban infrastructure, such as the development of water plazas,
underground water storages, green roofs and fagades, and floating buildings
(Jacobs, 2012). Implementing smarter drainage maintenance measures, by
dynamically focusing on areas and sewer system components with higher
incident occurrence (see ten Veldhuis et al., 2011), can also improve the
prevention of urban flooding damage. Providing real-time information
to support emergency respouses, as illustrated in Melo et al. (2015); ten
Veldhuis et al. (2011), is another strategy to cope with urban flooding
impacts. Also, an insurance with vulnerability-graduated premiums, can
secure repairing funds and catalyze mitigation investments (Botzen et al.,
2009).

At present, planning and performing these measures is limited by an
incomplete knowledge of the damage-generating process of urban floods.
Proper measures require precise models about the location, timing, and
causes of urban flooding incidents. Yet, damage models suffer from uncer-
tainties in implemented drainage models and sparse damage data (Freni
et al., 2010). Drainage models are often not calibrated (Dotto et al., 2012)
and the associated uncertainty is either unknown (Dotto et al., 2011) or
poorly known at best (Deletic et al., 2012). Uncertainties in currently
implemented drainage models hinder realistic predictions of local flooding
occurrence during heavy rain events (Fontanazza et al., 2011; Maksimovi¢
et al., 2009; Ochoa-Rodriguez et al., 2015).

Modeling urban flooding damage is particularly arduous in lowland
environments where drainage networks are highly looped and rely heavily
on pumps, as a result of negligible differences in terrain elevations. Besides,
due to the subtle flooding depths and frequently short duration of flooding
incidents, well-known stage damage functions used in river and coastal
flooding are not applicable for urban flood risk assessment(ten Veldhuis
and Clemens, 2011).

Under these circumstances, urban flood risk analysis cannot rely on the
use of hydraulic models only. Alternative, non-hydraulic information sources
must be considered. The use of crowd-sourced data is a promising source
as it brings information about flooding timing and location, enriching the
data produced by conventional rainfall or water level sensors. Natural and
socioeconomic features of the built environment, which influence flooding

incidence at particular urban locations, can be described by open and
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public databases. Additionally, affordable, ad hoc technology, such as street
video footage using mainstream cameras, can deliver valuable measurements
about puddles due to urban flooding (Elmore et al., 2014; Horita et al.,
2012; Lo et al., 2015; Michelsen et al., 2016; Muller, 2013; Muller et al.,
2015; Shibata et al., 2014; Spekkers et al., 2012; ten Veldhuis et al., 2011).

Crowd sourced data can be used to analyze urban flooding incidents.
ten Veldhuis et al. (2011) showed that reports about flood incidents made
by citizens provide a valuable source of information for flood risk analysis.
Reports can be used to analyze the impacts related to the typically subtle
water-depths of pluvial floods and even account for intangible damages
(Arthur et al., 2009; Caradot et al., 2010; ten Veldhuis, 2011; ten Veldhuis
and Clemens, 2010). While these studies focused on report counts and
textual content, they did not consider their geographic location. Using
the position of citizen reports about urban flooding incidents, which is
retrievable by geocoding reported addresses, offers a valuable information
source for flooding analysis.

Public and open data include information about environmental, land-
use, and social characteristics of urban environments. Statistical, cadastral,
environmental, and municipal databases bear information about multiple,
spatially distributed variables: income, housing market prices, building
age and extents, roads, rainfall intensity and distribution, among others
(e.g., Centraal Bureau voor de Statistiek, 2013; Kadaster Nederland, 2013;
Netherlands Royal Meteorological Institute, 2013). Part of such information
is provided in The Netherlands as part of open-data public policies (e.g.,
Dutch Ministry of Interior and Kingdom Relations, 2014).

Additionally, mainstream technology can deliver additional information
about urban flooding incidents. Web, traffic, and smart-phone cameras, can
provide valuable observations of street conditions (e.g., Horita et al., 2012;
Shibata et al., 2014). Thus, street video footage, captured by conventional
cameras, can be automatically processed to detect puddles, providing
a valuable tools for the risk analysis and management of urban pluvial
flooding.

This dissertation aims to determine the potential of crowdsourcing and
open data sources to provide key information about the timing, location,
and extent of urban flooding incidents. The employed methods combine

techniques from geographic information systems, graph theory, community
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ecology, and computer vision. Three research questions are tackled in
chapters 2, 3, and 4. Chapter 2 statistically analyzes whether overland
flow-paths constrain the spatial distribution of flood incidents in the case
of a delta city, characterized by small ground level variations. Chapter
3 evaluates to which degree openly available spatial datasets, including
environmental and socioeconomic information, explain the occurrence of
flood incident reports by using exploratory data analysis. Chapter 4 assesses
the potential of mainstream image and video recording, and well-known and
accessible computer vision tools, to deliver key information about localized

urban flooding incidents.

1.2 Thesis outline
The structure of this thesis is as follows. In Chapter 2, a highly detailed

digital elevation model and and a set of citizen reports on flood incidents
are used to evaluate the influence of urban topography on flood occurrence.
The implemented analysis used the notion of urban watersheds and overland
flow paths. The outcome of this test shows that in spite of the relevance
of topography in other types of flooding, it is not a main factor for urban
flood incidents in lowland cities. Evaluating other variables is required.

Chapter 3 develops a model for explaining variability of urban flood-
ing incidents occurrence, based on multiple, publicly available, socio-
environmental datasets. To achieve this, information patterns of the con-
ditions underlying flood-prone areas were studied. Available information
explained up to half of the flood incidents variability in the case study of
Amsterdam. Even though this represented an improvement in the under-
standing of urban flooding incidents, it confirmed that currently available
information is not enough to fully explain the occurrence of urban flooding
incidents.

Chapter 4 presents an evaluation of mainstream and affordable tech-
nology to automatically gather information about the occurrence of urban
flooding puddles. This included a proof of concept on the usefulness of
well known computer vision techniques to automatically recognize flooding
puddles in web images and videos recorded with conventional mainstream
cameras. Findings showed that while certain easily implementable com-
puter vision techniques achieved remarkable performances on automatically

identifying web images containing puddles, the automatic detection of the
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extent of the latter in video footage is not trivial, requiring a careful im-
plementation with an elaborated machine learning framework that exceeds
the scope of this thesis.

Finally, chapter 5 presents conclusions and recommendations. This
chapter is of particular interest to government stakeholders, on decision

making position on adaptation measures.
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An increase of urban flood risks is expected for the following decades not only
because climate is becoming more extreme, but also because population and
asset densities in cities are increasing. There is a need for models that can
explain the damage process of urban flooding and support damage prevention.
Recent improvements in flood modeling have highlighted the importance of
urban topography to properly describe the built environment. While such
modeling has mainly focused on the hazard components of urban pluvial
floods, the understanding of damage processes remains poor, mainly due to
a lack of flood impact information. Citizen’s reports about flood incidents
can be used to describe urban flooding impacts. In this study a database
of such type of reports and a digital elevation model are used as main
mputs to analyze the relationships between urban topography and occurrence
of pluvial flood impacts. After a delineation of urban subwatersheds at
a district level, the amount of reports along the overland flow-paths is
studied. Then, the spatial distribution of reports is statistically assessed
at district and neighborhood levels, in Euclidean and network-constrained
spaces. This novel implementation computes the connections of a network of
subwatersheds to calculate overland flow-path gradient distances, which are
used to test whether the location of reports is constrained by those gradients.
Results indicate that while reports have a clear clustered spatial distribution
over the study area, they are randomly distributed along overland flow-path
gradients, suggesting that factors different from topography influence the
occurrence of incidents.

This chapter is based on:

- Gaitan, S., ten Veldhuis, J., Spekkers, M., and van de Giesen, N. C.,
2012. Urban vulnerability to pluvial flooding: complaints location on
overland flow routes. In Proceedings of the 2nd European Conference
on Flood Risk Management FLOODrisk2012, Rotterdam, The Nether-
lands, 19-23 November 2012, pages 338-339, The Netherlands, 2012.
CRC Press.

- Gaitan, S., ten Veldhuis, J., and van de Giesen, N., 2015. Spatial
Distribution of Flood Incidents Along Urban Owverland Flow-Paths.
Water Resour Manage, pages 1-18, May 2015. ISSN 0920-4741, 1573-
1650. doi: 10.1007/s11269-015-1006-y.
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2.1 Introduction

The changes in precipitation patterns expected for the following decades
(Bates et al., 2008; Hurk et al., 2006; Murphy et al., 2009; Romero et al.,
2011), as well as urban growth, and higher population and assets densities,
increase the risks of urban pluvial flooding (Ashley et al., 2005; ten Veldhuis
and Clemens, 2009). This kind of floods can give rise to considerable
damage in cities. Estimated damage due to heavy rain in autumn 1998 in
the Netherlands accounted for 408 million Euros (European Central Bank,
1998; Jak and Kok, 2000). Likewise, in the UK the annual average damage
from intra-urban flooding is about a quarter of the total flood-related annual
average damage (Blanc et al., 2012). Other studies claim that 40% of flood
damage and associated economic losses are attributable to pluvial flooding
(Douglas et al., 2010). Such damage levels highlight the need for devising
reliable models that can predict how heavy rains lead to pluvial flooding

and damage.

There is relatively wide scientific knowledge covering hazard and damage
modeling of coastal and river flooding (e.g., Apel et al., 2004, 2009; Aronica
et al., 2002; Booij, 2005; Freni et al., 2010; Hoes and Schuurmans, 2006;
Horritt and Bates, 2001; Jonkman et al., 2008a,b; Knebl et al., 2005; Kok
et al., 2009; Maaskant et al., 2009; Merz et al., 2004; Pistrika and Jonkman,
2010).

Flooding in the urban environment, where overland flows depend on the
complexity of the built infrastructure, is comparatively less studied. Recent
availability of high resolution digital elevation models (DEMs) has allowed
flood modeling research to explore urban topography to an increased level
of detail (Bellos and Tsakiris, 2014; Diaz-Nieto et al., 2011; Dongquan et al.,
2009; Jeong et al., 2010; Kunapo et al., 2009; Maksimovi¢ et al., 2009; Neal
et al., 2011; Pistrika et al., 2014; Ravazzani et al., 2014; Tsakiris, 2014;
Tsakiris and Bellos, 2014).

An important bottleneck in flood risk analysis is the scarcity of data
about damages (Pistrika et al., 2014). Spekkers et al. (2014) analyzed
damage reported in insurance claims and different environmental and socio-
economic characteristics, which explained close to a quarter of the variance
of claim occurrence. One of the reasons for this low explanatory power
is the low spatial resolution of rainfall grids (1 km?) and damage data

(postal-district aggregations) used for the study.
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Reports about flood incidents made by citizens, hereafter referred to as
‘reports’, provide a valuable source of information about flood occurrence
and damage aspects. Reports can be used to analyze the impacts related
to the typically subtle water-depths of pluvial floods and even account for
the intangible caused damage (Arthur et al., 2009; Caradot et al., 2010; ten
Veldhuis, 2011; ten Veldhuis and Clemens, 2010; ten Veldhuis et al., 2011).

In spite of the proven importance of topography in coastal and river
flooding, and the availability of high resolution DEMs and flood reports, an
analysis of the location of pluvial flooding incidents and the topographic
conditions of the underlaying terrain has not been done yet. This work
builds on results from previous exploratory analyses made at a municipal
level, which displayed higher densities of reports counts in areas towards
the outflow points of urban overland flow-paths (Gaitan et al., 2012). The
present study statistically analyzes whether overland flow-paths constrain
the spatial distribution of flood incidents in the case of a delta city, which
is characterized by small ground level variations. This is a novel imple-
mentation that tests spatial autocorrelation on drainage distances between
connected subwatersheds, including non-adjacent, along urban overland
flow networks. This chapter is structured as follows: section 2 presents the
area of study, data inputs and models used; section 3 presents and discusses

the results, and conclusions are finally provided in section 4.

2.2 Data and Methods

The general approach used in this study is to aggregate reports into urban
subwatersheds and then compute report counts and respective catchment
areas. Those two variables are compared to determine if there are trends
in the location and occurrence of reports over the underlying topographic
conditions. The count of reports is used as a proxy of pluvial flooding
damage. Locations towards the downstream end of intra-urban watersheds,
which have bigger catchment areas, are likely to be exposed to higher
overland flows during heavy rains, and therefore they are expected to

account for higher reports occurrence.

2.2.1 Area of study
In this study, data for a set of urban catchments in Rotterdam are analyzed.

Rotterdam is located along the final 40 km of the course of the New



2.2 Data and Methods 11

Meuse river in the Rhine-Meuse Delta (Figure 2.1.a). It is one of the
biggest cities in The Netherlands and has the largest European port. It
is inhabited by close to 600 thousand people. Being a polder, its terrain
elevations range from -6 to up to 10 meters above sea level. The city is a
low lying environment, heavily urbanized, densely populated, vulnerable to
pluvial flooding. Citizen’s reports about rain-related incidents, as well as
a very detailed digital elevation model (DEM) are available for research.
Rotterdam’s polder structure creates land areas with isolated surface waters,
that enable straightforward overland-flows analysis. Ground level differences
are small, with an average slope of 1.8% and standard deviation of 2.8%.
In such flat terrains, flow-paths and watersheds can only be modeled
from highly detailed DEMs. These characteristics make Rotterdam an
interesting case for testing possible links between the location of flood
reports and underlying terrain features. This study focuses on two different
spatial scales: the District of Kralingen-Crooswijk, and the Neighborhood
of Kralingen-West, covering aprox. 13 and 1 km? respectively. The first one
will be referred to in this chapter as the ’district level’, whereas the second
as the 'neighborhood level’. Kralingen-Crooswijk is a district in Rotterdam
comprising densely urbanized, industrial and park areas. Overland flows
in this district are isolated from the adjacent areas. Only Rubroek, one of
the district neighborhoods, shares overland flow with the Centrum District.
This neighborhood was excluded from analysis. The neighborhood of
Kralingen-West mostly consists of residential and commercial areas.

2.2.2 Available data sources

A database of transcripts of telephonic reports about pluvial flooding made
by Rotterdam’s inhabitants was made available for this study. It comprises
38,657 reports made from 2004 to 2011, and includes fields describing the
neighborhood, street name, house number, short description of flooding
incident, and reporting and problem solving dates. Of these, 36 registers
did not have addresses, 12,663 did not have house number and could not be
used for analysis, resulting in a final dataset of 25,958. A Python script was
programmed to access and query the on-line Dutch public geo-information
services (Publieke Dienstverlening Op de Kaart Loket, 2013) to geocode
the reports having street name and house number. 21,577 reports were

successfully geocoded. The remaining unrecognized 4,417 reports could not
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[0 Kral. Oost
[ Kral. West
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Figure 2.1: a View of eastern Rotterdam; municipal borders and areas of study are
enclosed with different line colors b Visualization of flood reports and relative population
density in neighborhoods of the Kralingen-Crooswijk district (Rubroek is excluded)

be used in the analysis either; they included 2,922 registers with zeros as
house number and 1,495 registries with addresses that were not available
in the public register. Additionally, a DEM was used. This DEM was
produced by means of Light Detection and Ranging (LiDAR) of ground
levels from an aerial platform. The DEM includes heights of urban objects
such as streets, sideways, buildings, cars and trees. Some blank areas in
the DEM, represented by no-data cells, are associated with signal noise due
to response of wet surfaces, reflective materials and shadow effects at the
base of tall objects with the LIDAR imaging. The DEM is characterized
by a spatial resolution of 0.5 m x 0.5 m, a vertical precision of 5 cm, a
systematic error of 5 cm, a random error of 5 cm, and a minimum precision
under two standard deviations of 15 cm (Zon, 2011). A land-use maps was
also available for Rotterdam. The map included polygons for each of the
land-use classes.



2.2 Data and Methods 13

2.2.3 Extraction of hydrological characteristics from
the DEM

Some definitions are required for the rest of this chapter. The term “overland
flow-paths” refers to the routes followed by rainfall running off over the
watershed surface due to underlying slope aspects. A “subwatershed” refers
to the hydrological subunits composing a watershed, that are discretized by
drainage boundaries, and that drain into specific outflow points along the
overland flow-paths of that watershed. In this work, those outflow points
are set at a minimum drainage area threshold, which implies that sizes of
enclosing areas of subwatersheds are generally similar. The area enclosed
by the delineation of a subwatershed can be different from its drainage area.
The former is simply the area enclosed within the subwatershed boundaries,
while the latter is the total overland area draining into its outflow point
including the drainage areas of upstream subwatersheds. The delineation
of flow-paths and watersheds follows the approach proposed by Jenson and
Domingue (1988) and Tarboton et al. (1991). Such delineation results in a
tree-shaped network of subwatersheds that allows differentiating places in
a city in terms of underlying overland drainage areas, which is suitable for
analyzing the vulnerability of a given subwatershed to flooding as a result
of depression-filling (ten Veldhuis et al., 2011). Pistrika et al. (2014) and
Bellos and Tsakiris (2014) used DEMs, which include heights of building
and other urban objects, for flood risk assessments in built-up areas to
describe their topographic complexity. The following assumptions were
made for the delineation of overland flow routes:

- Inputs and outputs from/to the underground sewer network are
blocked or saturated. This assumption was also made by Diaz-Nieto
et al. (2011). This implies that reports are assumed to be made
during sewer surcharge or sewer blockage conditions (ten Veldhuis
et al., 2011).

- Rainwater fallen on the buildings, tree canopies, and cars drains to
the streets. The delineation of urban overland-flow routes is done on
the basis of an elevation model, which includes urban features such
as buildings, cars and trees. Changes of these features over time are
not considered in this study. The used DEM represents the situation
sensed by a series of LiDAR missions during 2008.
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- Rainwater in surface water channels does not overflow onto the streets.
Water in canals is supposed to be managed by a system independent
from the sewers, which is normally the case in polder systems. Canals

are considered as outputs of the overland-flow paths.

- The surface waters in the studied areas are isolated hydrological units,

without interaction with adjacent hydrological units.

The DEM was prepared by first clipping the study areas and removing
areas related to canals, lakes and rivers, using administrative and land used
maps. Since the original DEM is a representation of the terrain under dry
conditions (Zon, 2011), a direct processing of a run-off direction model
would lead to a model composed of isolated urban ponds. With continuing
rainfall, local ponds fill-up until the water exits by the lowest point of
water divides, flowing into a nearby urban pond or into a body of water
(Maksimovi¢ et al., 2009). For that reason, the DEM was treated with a
filling process. This process raises the water levels of urban subwatersheds
that initially do not have an outflow point, until they are connected to an
urban water body or to another subwatershed. The run-off direction model
was then processed from the prepared DEM to develop a flow accumulation
model using the D8 algorithm (e.g., Olivera and Maidment, 1999; Tarboton
et al., 1991). A threshold for the minimum flow accumulation value was
established at a catchment area of 2,000 m?. This is an area comparable to
a 100 m long and 20 m wide street. This threshold allowed us to delineate
subwatersheds. The ending point of each overland-flow route was considered

as the exit point of the corresponding subwatershed.

Definition of non-adjacent connectivity

An example of a tree graph representation of the connections between sub-
watersheds is shown in Fig. 2.2.a. In this graph, each of the subwatersheds
has one unit of enclosing area. Numbers in brackets indicate drainage areas
at the exit of each subwatershed. ¢, for instance, has a drainage area of 3
units of area, which equals the sum of the enclosing areas of itself, a, and b.
For the case of g, while its enclosed area is 1 unit, its drainage area equals 7
units, which is the sum of the areas enclosed by all the subwatersheds in this
watershed. On the other hand, for f, which has no upstream subwatersheds,
enclosed and drainage areas have the same size. An adjacency matrix was

built for the full network of subwatersheds on the basis of the adjacent
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connectivity along flow-paths. Figure 2.2.b shows the connectivity matrix
of the tree presented in Figure 2.2.a. This matrix represents whether the
subwatershed of a given row is connected downstream to another one of
a given column; a value of 1 means there is a downstream connection; a
value of 0 means the opposite. See, for example, that subwatersheds a
and b are adjacently connected to c¢; the latter, however, only shows a
connection to e. A watershed matrix can be computed from an adjacency
matrix using the expression: W = (I — A)~!, where A is the adjacency
matrix, and I is the identity matrix of A. (I — A)~?! is the inverse matrix
of (I — A). W accounts for the full downstream connectivity of subwater-
sheds; for this reason, it is different from the adjacency matrix, which only
indicates adjacent connections. The watershed matrix in Fig. 2.2.c has
been calculated using the adjacency matrix of Fig. 2.2.b. In this example,
while a is connected to ¢, e, and g; g has no downstream connections.
Upstream tributaries can be found by looking into the columns; column e,
for example, shows that this subwatershed receives overland flows from a,
b, ¢, and d. The watershed matrix permits identifying each of the studied
trees and their internal connections. A watershed matrix was computed
for the area of study to determine all possible non-adjacent, downstream
connections between subwatersheds. This matrix was then used to compute

the differences in catchment areas between connected subwatersheds.

2.2.4 Analysis of spatial distribution of reports in
relation to overland-flow paths

Vulnerability due to depression filling is expected to be higher at locations
catching higher overland inflows. Therefore, subwatersheds located further
downstream the overland-flow network are expected to receive higher report
counts than the ones located upstream. This hypothesis assumes that
reports are not randomly distributed throughout the urban space. This can
be checked by testing whether report data display spatial structure under
a spatial weighting based on the overland-flow network. Spatial distances
and units of analysis to be studied in such approach must take care of
underlying overland-flow networks rather than Euclidean distances.
Three different tests were performed to assess whether the spatial
distribution of reports displays patterns. Those tests were run at the

district and neighborhood spatial scales mentioned in Section 2.2.1. First, a
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Figure 2.2: a Example of a tree of subwatersheds. The arcs represent downstream
connections between adjacent subwatersheds. Literals indicate arbitrary names given to
the subwatersheds. The root of this tree is g. b Adjacency matrix (A) of the network
presented in (a). Subwatersheds have been labelled in rows and columns. ¢ Watershed
matrix (W) of the tree in (a)

simple Average-Nearest-Neighbor test was applied for checking clustering of
reports. In this test, the distance between the location of each report and
its nearest neighbor is measured. An average for all the nearest neighbor
distances of each report is then computed and compared with a random
distribution. Further details of this method can be found in Illian et al.
(2008, p. 126-127) and Sinclair (1985).

Then the magnitude of the spatial autocorrelation in reports aggregated
into subwatersheds was tested using a Global Moran’s I test. The report
counts per subwatershed, and the distance between watersheds centroids on
a Euclidean space, were used as input variables for this test. Further detail
on Spatial Autocorrelation and the Global Moran’s I test can be found in
O’Sullivan and Unwin (2010, p. 195-206) and in Okabe and Sugihara (2012,
p. 137-152). If the spatial distribution of reports is clustered given the
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arrangement of subwatersheds, the Global Moran’s I hypothesis of random
distribution should be rejected.

As the overland flows between subwatersheds are determined by their
connectivity, a second Globals Moran’s I test was performed using “drainage
distances” along overland flow-paths instead of Euclidean distances: the
test was run only over pairs of subwatersheds found to be connected in the
watershed matrix, and the distance used was the difference of their drainage
areas. This type of distance quantifies the separation that two subwatersheds
have in their relative position along the overland flow gradient. As an
example, while the length of the two flow-paths connecting subwatersheds
e and g, and subwatershed f and g, may be similar; the difference in
catchment areas is 2 and 6 units respectively (see Fig. 2.2.a). In other
words, two connected subwatersheds can be geographically close to each
other, and still be wide apart in terms of the situation of their catchment
sizes. Using the difference in catchment areas as a distance metric for
the spatial autocorrelation test allows us to check if the occurrence of
flood reports is influenced by the underlying overland drainage condition.
Comparing the results of the Global Moran’s I test on a Euclidean space with
the ones constrained to the overland flow networks enable us to analyze the
influence that depression filling may have in the occurrence and distribution

of reports.

2.3 Results and Discussion

2.3.1 Computation of non-adjacent connections at the
district level

After computing the watershed matrix, the number of independent trees
identified was 1,717. There was an average of 3 subwatersheds per tree.
The total number of actual connections between subwatersheds was 115,282.
This large number can be explained by the increasing connections due to
branching in a watershed. For example, in a single branched tree, made
of 5 nodes, one of them being the unique leaf, the number of downstream
connections equals 10: Zi{;ﬁ; n;, where n is the amount of downstream
nodes at each node. If it had two more leaves, the tree would have just
two extra nodes, but the total number of connections would be 18, almost

twice the original amount. In reality every branching does not occur at
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Table 2.1: Description of clustering tests and results.

Average nearest

neighbor Global Moran’s 1

Test

Aggregation level:

single reports (S); S S A A A A
subwatershed-aggregation (A)

Distance metric:

Euclidean distance (E); E E E E F F
Flow-path gradient distance (F)

Spatial scale of analysis:

district level (D);

neighborhood level (B) D B D B D B
z-score -50.09  -19.75 293 1.29 0.05 0.23
p-value 0.00 0.00 0.00 0.19 0.95 0.81

Null hypothesis rejected at 99%

confidence?: Yes (Y); No (N) Y Y Y N N N

the tips, but watershed networks are ideally more branched towards the
tips. For the area of study, the presence of outliers with large numbers of

subwatersheds can explain the large number of connections.

2.3.2 Testing of spatial patterns of reports distribution
Results obtained for the different performed clustering tests are presented
in Table 2.1.

The average nearest neighborhood test, applied to non-aggregated re-
ports, resulted in high z-scores of -50 and -20 at the district and neighbor-
hood scales respectively. Associated p-values for both cases are extremely
low. The magnitude of average distances between the nearest pairs of
reports is higher at the district than the neighborhood scale. This result
strongly suggests that single reports are not randomly distributed over the
Euclidean space.

Results from the Global Moran’s I test showed that the null hypothesis
of a random pattern in the spatial distribution of subwatersheds-aggregated
reports is rejected at the district level, but not at the neighborhood level
under a confidence of 99%. However, there is 80% probability of spatial
autocorrelation in the latter case.

Such patterns do not hold when the Global Moran’s I test is constrained
to the flow-paths gradient space. The hypothesis of reports being randomly

distributed along overland flow-path gradients cannot be rejected. p-values,
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at 0.95 and 0.81 for the district and neighborhood levels respectively, are
far from being significant. These results clearly show that flood reports are
clustered when observed in an open, Euclidean space, but this clustering is

not related to the modeled overland flow gradient.

2.3.3 Discussion

Other factors that can explain the observed clustering are the distribution of
urban mosaics composed by buildings, streets, and green areas; the spatial
variation of population density; and the layout of water infrastructure, such

as canals and sewers.

Differences in the urban mosaic composition can explain the clear re-
jection of the null hypothesis in the average nearest neighbor test at the
District level. The extent of green areas is considerably different between
neighborhoods; e.g., while the neighborhood of Kralingen Bos mainly con-
sists of a park, Kralingen West hosts dense residential and commercial
infrastructure (see Fig. 2.1). Highly impervious, dense residential are
possibly more prone to local pluvial flooding than green areas, character-
ized by a higher permeability. Land uses of low imperviousness are not
randomly distributed over the district; their location has been determined
by urban planning and development processes, resulting in a permeability
heterogeneity. This can explain the non-random pattern of reports locations
at the District level.

Population density is another factor that can explain the outcome of
the Nearest Average Neighbor test. Reports are made by citizens; therefore,
more highly populated areas are likely to present higher report counts. In
Fig. 2.1.b the comparatively low amount of reports in neighborhoods with
lower population density is evident. This Figure also shows that areas with
less green areas tend to account for higher populations.

Despite of being less strong than in the latter level, the z-score of the
Average Nearest Neighbor at the neighborhood level is still substantial.
Reports keep a strong clustering pattern within the neighborhood level.
This suggests that the factors driving higher incidence of flood reports
at the district level may also present a high spatial heterogeneity at the
neighborhood scale. If imperviousness and population density heterogeneity
are responsible for a structured spatial distribution of reports at the district
levels, then results suggests that this heterogeneity is likely to be found,
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and influencing the distribution of reports, in the neighborhood level.

Results of the second test are consistent with the latter. At the district
scale, where the urban heterogeneity is greater, a clustering pattern is recog-
nizable, despite the spatial aggregation into subwatersheds of approximately
2000 m2. When the spatial level is focused into the neighborhood level, the
effect of such aggregation is observed in a weaker, yet still considerable, p-
value of 0.2. This suggests that an aggregation into 2000 m? subwatersheds
regions tends to overlook the spatial structure clearly recognizable in the
average neighborhood distance test. On the other hand, the weaker p-value
can be also due to less marked variation of the factors influencing report
occurrence at the neighborhood level. While subwatersheds are used to
aggregate reports in this second test, the discussion about the influence of
the overland flow gradient can be better made on the basis of this third
test.

The third test demonstrates the strong lack of evidence to support
the idea that incidence of reports is linked to overland flow-paths; reports
occurrence has no preference for downstream locations along overland flow-
paths. Such random spatial distribution is further explored in Fig. 2.3,
which presents cumulative counts of subwatersheds’, enclosing areas, and
report counts for the district level. The increasing rate of reports closely
follows the cumulative area, suggesting that reports occur evenly along the
overland flow gradient. Reports density along such gradient (see bars in Fig.
2.3), does not show an increasing trend. Given the high number of reports
per year, many of them are likely to be associated with relatively small rain
events that do not trigger a depression-filling process. This is confirmed
by results of ten Veldhuis et al. (2011), who found that local blockage of
sewer inlets was the main reported cause of flood incidents, occurring even
during small rainfall events.

This result can also be explained by the low sloping values of the city,
which probably limits the onset of significant overland flows. Besides,
the existence of canals throughout the city, which are heavily regulated
by pumps, can mitigate the outbreak of puddles due to sewer blockage,
malfunction, or overloading during heavy rain events. Serving as outflow
receivers of overland flow-paths, canals can explain the low average of

subwatersheds per tree in the studied area (see Section 2.3.1).

Discerning the effects of imperviousness, population density, and the



2.4 Conclusions and outlook 21

1.8 T T T T T T T T T T T T T T T T T T T 11200
[ Reports density +66.3 /',\
— ’
+— Reports count .7 +706
16l « — Covered area L7
/
+69.5
— , 42000 {1000
—J—" +67.4
1.4} ,
+72.1 ,-{
l 7| +71.2
(4
1.2} / 1800 5
— /| +110.0 T
2708| A \ 1159 2
/ +73.8 2 B
1.0 — ; +920| ¢ 5 3
LA +700 5 g
< s 600 3
© 4
T +78.0 /N +98.0 A £ S
z +102.0 8
£ 08| / +80.1 / 3 g
8 o o
o 4 +125.0 410002 2
2 0.4 ko K
S 4 / +78.0 E z
§ +64.8,, | +84.0 3 3
06y J/ +715 {400
h
4 +86.0
+5s.3\ ’\/ +57.0
04t
/”uao.a /f1020 1500
,
+47.9/(| +84.0 +54é 1200
~
+33.8 +69.0
0.2 231 ] +52.4
+13.4 +17.4 |// +46 0/'5“ o
1Al ,|,/
| »14.0 4
l“"oxﬂg.ofﬂi i
0.0 0 Jo

0.2 10 0.26
0.26 t0 0.34
0.34 to 0.45

0.45t00.7| ,
0.71t00.85[o
0.85 t0 0.91
0.91t00.98
0.98 to 1.06
1.06 t0 1.16
1.16 to 1.29
1.29 t0 1.46
1.46 to 1.75
1.75 to 2.07
2.07 to 2.52
2.52103.15
3.15t04.14
4.15105.86
5.87 t0 8.65

8.66 to 17.21
17.26 to 278.15

Binned catchment areas along flow-paths (Ha)

Figure 2.3: Cumulative sum of reports and area, and report density in binned drainage
areas. Bins have the same number of subwatersheds.

proximity of a canal on the location of flood incidents cannot be done on the
basis of the evidence obtained by this study, but it certainly is an analysis

that might be revisited by future research.

2.4 Conclusions and outlook

In this chapter, the spatial distribution of reported local flooding inci-
dents was investigated in relation to overland flow-paths and associated
subwatersheds. Spatial clustering tests were performed on areas reportedly
susceptible to urban flooding to determine if their location was linked to
the underlying topographical conditions, in a city characterized by very low

slopes. Those tests were based on datasets of flood reports and a highly de-
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tailed DEM. The methodological implementation presented in this study can
be used to test whether the spatial distribution of a variable is determined
by the underlaying urban overland drainage conditions. In spite of the
documented importance of topography in the analysis of flood occurrence
and risks in environments from mild to accentuate slopes, this study showed
that this factor does not determine the location of reported flood incidents
in a polder environment such as Rotterdam. This conclusion follows from
the results obtained from the Global Moran’s I constrained to the flow-paths
connection space. On the other hand, the average nearest neighbor test,
and the Global Moran’s I applied to the subwatershed-aggregation on a
Euclidean space, probed that reports are definitely clustered. This suggests
that factors different than the overland flow-path gradients, varying even at
the sub-neighborhood scale, may contribute to the incidence of flood reports.
Future research must focus in reports associated with heavy rain events,
assessing the potential of population density, imperviousness, and water

infrastructure to explain the occurrence of urban pluvial flood incidents.
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Clities are increasingly prone to urban flooding due to heavier rainfall, denser
populations, augmenting imperviousness, and infrastructure aging. Urban
pluvial flooding causes damage to buildings and contents, and disturbs
stormwater drainage, transportation, and electricity provision. Designing
and implementing efficient adaptation measures requires proper understand-
ing of the urban response to heavy rainfall. However, implemented stormwa-
ter drainage models lack flood impact data for calibration, which results
in poor flood predictions. Besides, such models only consider rainfall and
hydraulic parameters, neglecting the role of other natural, built, and social
conditions in flooding mechanisms. This chapter explores the potential
of open spatial datasets to explain the occurrence of citizen-reported flood
incidents during a heavy rain event. After a dimensionality reduction,
imperviousness and prorimity to watershed outflow point were found to
significantly explain up to half of the flooding incidents variability, prov-
ing the usefulness of the proposed approach for urban flood modelling and

management.

This chapter is based on:

- Gaitan, S. and ten Veldhuis, J.A.E., 2015. Opportunities for multi-
variate analysis of open spatial datasets to characterize urban flooding
risks. Proceedings of the International Association of Hydrological
Sciences, 370:9-14, June 2015. ISSN 2199-899X. doi: 10.5194/piahs-
370-9-2015.

- Gaitan, S., van de Giesen, N.C., ten Veldhuis, J.A.E., 2016 Can urban
pluvial flooding be predicted by open spatial data and weather data? En-
vironmental Modelling € Software 85, 156-171. doi:10.1016/j.envsoft
.2016.08.007.
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3.1 Introduction

Cities are increasingly prone to urban flooding due to heavier rainfall, denser
populations, augmenting imperviousness, and infrastructure aging (Ashley
et al., 2005; ten Veldhuis et al., 2011). To overcome this challenge, cities
need to design and implement proper and smart adaptation measures (e.g.
Gaitan et al., 2014; Jacobs, 2012; Melo et al., 2015; ten Veldhuis et al., 2011;
Wong and Brown, 2009). This requires a comprehensive understanding of
the urban response to heavy rainfall events (Gaitan et al., 2015; Ochoa-
Rodriguez et al., 2015; Spekkers et al., 2013; ten Veldhuis et al., 2011).
Such understanding is limited by uncertainties in implemented drainage
models and a lack of damage data (Freni et al., 2010).

Due to the lack of impact data, drainage models are often not calibrated
and their uncertainty is poorly known (Deletic et al., 2012; Dotto et al.,
2012), particularly for complex urban drainage systems. Uncertainties
in currently implemented drainage models result in poor predictions of
local floods occurrence during heavy rain events (Fontanazza et al., 2011;
Gaitan et al., 2012; Maksimovi¢ et al., 2009; Ochoa-Rodriguez et al., 2015).
Additionally, explaining urban flooding risks requires better understanding
of additional factors such as the influence of natural, built, and social
characteristics of the urban environment on flooding impacts (Cherqui
et al., 2015).

3.1.1 Modelling of urban flooding risks and the use of

open data
Recent works have used spatially distributed data to study the occurrence
of pluvial flooding incidents and damage. Spekkers et al. (2014) have used
decision tree analyses to determine to what extent multiple environmental
and socio-economic variables can explain variability in insurance claim
data, associated with rainfall-related damage. The developed model in that
study explained close to 25% of variance in claim occurrence, improving
from an 18% explained variance by multiple regression models. Gaitan
et al. (2015) have analyzed citizens’ complaints of local flooding incidents
in relation to urban topography, finding no spatial autocorrelation in the
location of complaints along overland flowpaths. Both studies suggest that
pluvial flooding incidents, in the investigated Dutch areas, can only partly

be explained in terms of rainfall intensity or urban topography. Merz et al.
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(2013) identified important variables influencing building direct damage
due to river flooding using decision tree models and a thousand records
dataset at a national level in Germany. Explanatory power of these tree-
based models outperformed that of two linear models; differences among

performance of all models, however, were not statistically significant.

Fontanazza et al. (2012) used Bayesian inference to reduce the uncer-
tainty of depth-damage models on relatively small datasets applied to the
city of Palermo. Uncertainty of damage estimation was reduced remarkably
during the first and second (up to 40%) Bayesian updates, stabilizing by

the third update, ensuring model robustness and reliability.

Spatial datasets of urban characteristics are becoming more attainable.
Formerly scarce or inaccessible data-sources are nowadays available even
as part of Open Data policies (Vitolo et al., 2015). In the case of The
Netherlands, for example, open socioeconomic data has been aggregated
into grids with 1 Ha or 0.25 km? cells. (e.g. Dutch Ministry of Interior and
Kingdom Relations, 2014). The public availability, coverage, and spatial
resolution of open data, enables flexibly using them in scientific research
(Gaitan and ten Veldhuis, 2015). The integration of these heterogeneous
data can be done at the Urban Water System level, ensuring an inter- and
multidisciplinary approach for addressing urban floods (Bach et al., 2014).

3.1.2 Exploratory analysis techniques in heterogeneous
spatial data

The use of exploratory tools, such as multivariate exploratory analysis and
data mining techniques, is a key component for articulating existing, dis-
parate models and data, under an integrated modelling approach (Hamilton
et al., 2015). There are different techniques that can be used to explore asso-
ciation patterns in multiple variables. Multivariate analyses can classify or
ordinate multivariate information, or describe the response of a variable as
a function of other functions. Classification techniques can provide insights
about the structure of studied data by partitioning variable values into
groups given their concurrence at sampling sites. Ordination analyses can
be used to quantify the comparative variance of a set of multiple variables.
Multiple regression analysis tests whether the distribution of a response
variable is linked to a set descriptor variables (ter Braak, 1995; Legendre
and Legendre, 2012a,b; Ramette, 2007; Tongeren, 1995).
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The aim of this chapter was to assess the degree in which openly
available datasets explain the occurrence of flood incident reports by using
exploratory data analysis. To that end, classification, ordination, and
regression techniques were applied to study the occurrence of flood incidents,
using datasets representing a range of environmental and socioeconomic
characteristics. Data and methods used for this study are presented in
Section 3.2. Obtained results are presented and discussed in Section 3.3.

Finally, conclusions are drawn in Section 3.4.

3.2 Data and Methods

3.2.1 Data gathering and preprocessing
A highly localized, heavy rain event, with total rainfall varying from 125 to

140 mm in several rain gauges, and an estimated return period of 2000 to
5000 years (Netherlands Royal Meteorological Institute, 2014), hit the city
of Amsterdam on July 28 to 29 2014. This event is used as case study in this
work. Intensities peaked up to 100 mm/h during 15 min intervals in some
areas of the city, causing considerable impacts such as interrupted highway
traffic and tram lines, delays at Amsterdam airport, as well as flooded
train stations and streets (see Het Parool, 2014; Waternet, 2015). During
and shortly after the event, hundreds of citizen reports about location of
flooding incidents were registered. These reports can be used as indicators

of urban flooding incidence.

Meteorological, socioeconomic and cadastral spatial-data are available
from open data sources. Rainfall intensities for 15 min and 60 min time
windows, number of inhabitants per km? and average building age per km?
were derived from these sources. Detailed descriptions of these data sources
can be found in Gaitan and ten Veldhuis (2015). Additionally, this study
also used polygon representations of water bodies and green areas coverage
available from land registries, and a digital elevation model (DEM) from
which average measures of imperviousness, distance to watershed outflow
point and catchment area per km? were computed. Additional details about
these variables can be found in following sections. The area of study was
delimited by following the canals, highways, and train lines as close as
possible to administrative borders. The goal of such delimitation was to

allow the modelling of overland flowpaths to work on continuous paths. An
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overview of data characteristics is shown in Table 3.1.

Initial data clipping, the filtering of the digital elevation model, and the
delineation of watersheds and overland flowpaths were done using ArcGIS
10, its spatial analyst tools (ESRI, 2012), and QGIS (QGIS Development
Team, 2014). Data structuring and matrix algebra for the computation
of overland flow path distances was done in Python (Python Software
Foundation, 2014); reading of HDF5 weather radar imagery employed h5py
(Collete, 2015), all remaining geographic data was read using Fiona (Gillies,
2014), and spatiotemporal queries were done with a combination of pyproj,
Shapely, RTree, and Pandas (Gillies, 2013; Gillies et al., 2014; McKinney,
2015; Whitaker, 2014). Multivariate analysis were performed using the
Vegan and stats packages in R (Thaka and Gentleman, 2015; Oksanen et al.,
2015).

Structuring the data for analysis and modelling required spatially ag-
gregating studied data sources (Vitolo et al., 2015). All spatial data were
aggregated to the grid used in the weather radar imagery (see Section 3.2.1
for more details). Grid-cells were considered the units of analysis in this
study, and are referred to as “sites” in this chapter (Gaitan and ten Veldhuis,
2015). Figure 3.3 shows the layout of the grid over the city of Amsterdam.
An overview of value distributions and correlations of studied variables is

presented in Figure 3.4.



Table 3.1: Data sources and variables (indicated with s and v respectively) used in this study. Variables were processed from data sources.

Total number, mean, and standard deviation of data points refer only to case study area.

Data source (s) or variable (v)

Spatial, temporal resolutions

Metric or unit

Data points, mean =+ std.

dev.

Incident reports (s)

Max. rainfall intensity (s)
Inhabitants (s)

Age of construction (s)
Buildings area (s)

Roads area (s)

Interpolated digital elevation model (s)

Aggregated incident report (v)

Maximum rainfall intensity at 15 min.

(v)

Maximum rainfall intensity at 60 min.

(v)
Average population density (v)
Average building age (v)

Impervious ratio (v)

Average distance to outflow point (v)

Average catchment size (v)

Address points, time-stamped

1 km?, every 5 min

1 Ha, year 2013

Building polygons, year 2012
Building polygons, year 2012
Single roads, year 2012
0.5%0.5 m grid

1 km? cells

1 km? cells

1 km? cells

1 km? cells
1 km? cells
1 km? cells
1 km? cells

1 km? cells

Phone call register with ad-
dress

mm / hxkm?
Individuals/Ha

Years since built

Individuals/Ha
mm / hxkm?

mm / hxkm?

Individuals/Ha
Years since built
Ratio (dimensionless)
m

m2

336, mean and std. dev. N.A.

292, 40.1 + 20.5

6127, 131.2 + 82.7
234736, 105.6 & 217.6
34952, 837.36 & 2103.20
71732, 488.84 & 1038.21
50999 35056, -1.25 & 2.26
80, 5.30 & 5.30

80, 15.13+ 15.13

80, 8.67 £ 8.67

80, 103.32 £ 59.42
80, 124.38 £ 198.20
80, 0.43 £ 0.19

80, 459.54 + 338.83
80, 808.62 + 664.27
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Incident reports (Section 3.2.1) were used as response variable in this
chapter; all other variables (Sections 3.2.1 to 3.2.1) were considered as
descriptor variables. We used the terms response and dependent, and

descriptor and independent, interchangeably throughout this chapter.

Flood incident reports

The Amsterdam water authority maintains a call-line for registering citizen’s
reports about urban drainage issues. This register was used in this chapter.
Reports are initially classified by personnel in the call-center. Reports
include fields for a unique identifier, time, address, a succinct textual
description of the incident, and the response operation taken. By querying
the Dutch public OpenLS geo-information services (Publieke Dienstverlening
Op de Kaart Loket, 2013) with a Python script, addresses of reports were
translated to projected coordinates according to Gaitan et al. (2015).

To use incident reports as response variable we needed to make two
assumptions. First, we considered the number of incident reports as a proxy
for the impact of urban flooding; an incident location reported several
times during a heavy rainfall event is probably referring to a more severe
impact than that of an incident reported just once. Second, we assume
that available reports are a representative sample of the total set of flood
incidents. It is possible that, during urban flooding emergencies, phone
lines become saturated, and incident reports are missed. Other reports can
be made to phone-lines different than that of the water authority: e.g., to

the firebrigade, to the police, to the municipality.

Rainfall intensity

Rainfall intensity measurements are derived from two C-band Doppler
weather radars operated by the Netherlands Royal Meteorological Institute
(2013). Rainfall depths are provided with a temporal resolution of 5 min,
on a grid of 1 km? spatial resolution using a custom geographic projection
(Overeem et al., 2009b). Information is available since 08:00:00 1 January
2008 UTC, through a FTP server in HDF5 format (Roozekrans and Holle-
man, 2003). This data set was aggregated into 15 min and 60 min steps, as
suggested by Overeem et al. (2009a). Maximum rainfall intensity during
the event is computed for both aggregations.

When reprojected to the standard Dutch coordinate system (Amersfoort/RD
New, EPSG:28992), the area of the radar cells became variable, and ap-
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proximately 8.5% smaller than the 1 km? in the custom KNMI projection.
This was taken into account for calculations including the other variables,
which are provided with the Dutch projection by default.

Socioeconomic and cadastral data

As population density and building age were found to be the socioeconomic
variables that better defined the multivariate data structure in the area of
analysis Gaitan and ten Veldhuis (2015), these variables are selected from
the sets available at the Central Bureau for Statistics (Centraal Bureau
voor de Statistiek, 2013) and the Netherlands Land Registry (Kadaster
Nederland, 2013). Spatial aggregation and sampling of these two variables
was done following Gaitan and ten Veldhuis (2015). Points with secret or
not available data have been excluded from the analysis. Only buildings in
use have been considered. Additionally, cadastral geoinformation was used
to model the imperviousness ratio and to filter the DEM as described in

following sections.

Imperviousness

The ratio of highly impervious areas per site is used as a proxy for its
imperviousness. In this study, paved areas were considered as highly
impervious. Dutch cadastral data includes a land use model, composed of
layers representing buildings, roads, green areas, and water bodies, among
others. Roads include most streets, squares, and wide bike- and foot-paths.
Green areas include parks, and other open, unpaved spaces (Publieke
Dienstverlening Op de Kaart Loket, 2015). An estimation of the highly
impervious area per cell was obtained by computing the sum of road and
building areas intersecting each cell. Green areas and water bodies are not
included in this sum. Obtained values were then divided by the total cell
area. This is, thus, a broad representation of the overall imperviousness
trend in each cell.

Distance to watershed outflow point

Water bodies, such as canals and urban ponds, receive rainfall that runs
off from adjacent areas, following the urban topography. Therefore, it is
expectable that flooding occurrence in the proximity of such outflow points
is different than at farther locations. Defining a quantitative measure of the

proximity to watershed outflow points required computing urban overland
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flowpath networks (see Gaitan et al., 2015). Additionally, a buffer of 10
km around the limits of the city of Amsterdam was set to the extent of
the input DEM to ensure no flowpaths were cut by the city boderline. The
DEM used is the AHN2 (Publieke Dienstverlening Op de Kaart Loket,
2014), with spatial resolution of 0.5 m x 0.5 m and a minimum precision
of 15 cm within two standard deviations (Zon, 2011).

Null pixels in the AHN2 model, associated with signal shadows and
noise, were filtered combining the raw and interpolated AHN2’s versions,
and the Land Registry’s vector representations of buildings and water areas
such as ponds and canals. This filtering was devised and implemented
especially for this chapter. Filtering was applied as follows. Null values in
the interpolated version were replaced by raw values in building areas. Null
values in water areas were preserved. Remaining null values were replaced
by an iterative filtering. They were assigned with the average of non-null
values within a window of 11 x 11 pixels, centered on the treated null value
pixel. The latter was repeatedly applied until no null values were found,
except for those corresponding to water bodies.

The digital elevation model used was the most accurate and up to date
for Amsterdam at the moment of study. The 1 km? averaging we use
for computing distance to outflow point (see details below) and average
catchment area, was set to capture the general trend within each cell. We
assumed that typical changes in urban topography, since the LIDAR data
gathering to compose the DEM, until the date of the rainfall event, were
not big enough to affect the topographic trend of a whole km?.

The filtered DEM was used to delineate subwatersheds and overland
flowpaths, computing a flowpaths adjacency matrix. Full downstream
overland flowpaths connectivity was modelled in a watershed matrix (W).

It was computed using the following expression:

W= (I-A4)" (3.1)

where A is the adjacency matrix, and I is the identity matrix of A (see
Section 2.2.3, Jenson and Domingue (1988), and Tarboton et al. (1991) for
more details).

The watershed matrix was used to compute average distances to wa-
tershed outflow point per site. The proximity measurement for a single

subwatershed was set to be the mean network distance from itself to the
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outflow point. This was calculated as the distance from the midpoint of a
subwatershed flowpath arc to the outflow point. The average distance to
watershed outflow point was calculated for every site. These mean values
were weighted by the proportional contribution of each flowpath arc to the
total flowpath length within the site. Flow path arcs were considered to
belong to a site when their centroid was in that site. Flowpath arc centroids
are located in the middle point of the mainstream in each subwatershed.
For this reason they were chosen as indicators of stream locations, instead
of the watershed centroids. The following form expresses the computation

of d, the average distance to watershed outflow point in each cell:
- x4 b
d= Z wwi (3.2)

where Z? is a sum over the n subwatersheds in a given cell, a; and b; are
the distances from the beginning and end of the flowpath arc of the i-th
subwatershed within the cell to its watershed outflow point, and w; is the
weighting factor for the mean length of a; and b;.

a;, b;, and w; can be calculated as shown in equations 3.3, 3.4, and 3.5,

respectively:

a; =1l; +b; (3'3)

where [; is the length of the flowpath arc of the i—th subwatershed. The
distance from the end of a subwatershed to its outflow point, b;, equals the

sum of lengths of the flowpath arcs of all downstream subwatersheds:

b= 1 (3.4)

where Y77 1 is the sum of lengths of the m flowpath arcs downstream the
i—th subwatershed until its watershed outflow point. The weighting factor,

w;, is the contribution of I; to the total length of flowpath arcs in a cell:

w; = E (35)

with L being the sum of lengths of all flowpath arcs whose centroid is within
the site.

Here we can use example of Figure 3.1 to better visualize these compu-
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\>ji/<”

Figure 3.1: Simplified example of watershed flowpaths under an imposed sampling grid.
These flowpaths can be extracted from a DEM as described in Jenson and Domingue
(1988) and Tarboton et al. (1991), and follow the definitions of Section 2.2.3. Three
watersheds are visualized. Their outflow points are represented by circles marked with
Roman numbers. A flowpath arc in watershed I is labeled with Greek letter ¢. Following
the notation used in the main text, the length of ¢ is denoted by [,. In this example, «,
B, 7, 96, (, n, and ¢ are 1 length unit long; €, 6, and x are 2 units long.
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tations. The mean distance to outlet for ¢, the flowpath arc in Figure 3.1,
can be obtained by averaging the distances from the beginning of ¢, a, (see
Equation 3.3), and from its end, a, (see Equation 3.4); this is 3—;2

Let us now compute the weighted average distance to outflow, d, for the
central grid-cell in the example of Figure 3.1. Flowpath arcs with centroid

falling within this central cell are «, £, 7, and ¢. Their mean distances

544 544 443 443
5 5 o and 5,

L, in this cell is 4. As all flowpath arcs in this cell are 1 unit long, the

weighting factor, in this case, is the same for all of them: i (see Equation

3.5). dequals 224+ 24 4+ 11 4+ T1 (see Equation 3.2), which is 4. This
means that in average, objects in this cell are 4 length units apart from

are respectively. The sum of flowpath lengths,

outflow point. Also note that even though ¢ belongs to watershed III, it is
computed together with «, 8, and -, which outflow to II.

Computing the distance to outflow point for every flowpath arc in more
complex cases, such as in urban overland flowpath networks, can be done
using basic matrix algebra and a watershed matrix (see Equation 3.1). The
distance downstream to the watershed outflow point (Z;n l;) was computed

in this chapter as follows:

Z li=(Fiko(Wio(lkk —Iw)i)) @ 1k (3.6)

where F7 j, is the vector of lengths of the k flowpath arcs of all subwatersheds,
W; is the watershed matrix row of the element i (see Equation 3.1), 1y is
an all-ones square matrix of k, k dimensions, Iy, is the identity matrix of
W, and 1j1 is an all-ones column vector of length k. (155 — L), is a row
vector of length k£ with a zero value in the position of the element ¢ and ones
elsewhere. It is used to exclude ¢’s arc length from the sum, as we were only
interested on downstream arc lengths. o and e are element-wise product
(or Hadamard product) and scalar product, respectively. It is useful to note
here that the order of elements in F' and rows and columns in W must be
consistent.

Thus, d from Equation 3.2 can be expressed as follows:

d=L"1 Zli(% + ((Fipo(Wio (Igr —Iw)i)) ® 1x1)) (3.7)

This computation avoids d being reduced due to extremely frequent
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short-length arcs. Weighting in terms of the total length of flowpath
arc within each site normalizes the contribution of each segment to the
average distance to outlet in each particular cell. Given that different
cells have different total flowpath lengths, this approach does not account
for the differences in total drained areas, which is better captured by the

measurement of the percentage of impervious areas within each site.

Catchment area

In case of an urban drainage failure, rainwater flows along overland flowpaths
until it reaches a water body or a permeable area (Maksimovi¢ et al., 2009).
In such cases, larger catchment areas have a higher potential overland flow
and are expected to be more susceptible to flooding.

The catchment area at given point can be also seen as a measure of
how low that point is along the watershed in terms of the area it drains
from upstream locations. A weighted average of catchment areas, A was

computed for each site as follows:

A=Y Cu (33

where C; is the catchment area at the centroid of the i—th subwatershed
flowpath in a given site. This selection aimed to capture the average
catchment area of each subwatershed, given that it is different in every
subcatchment pixel. Flow paths were considered to belong to a site if
their arc centroid was within that site. ¢; is the weighting factor of a
subwatershed 7 in a given site, which is the ratio of its individual enclosing
area (a;) to the sum of subcatchment areas in that site (A). Thus, A in

equation 3.8 can be expressed as:
A=A "Cia (3.9)
i

The applied weighting enforces subwatersheds with smaller enclosing
areas to contribute less to the average catchment values in a site. Ter-
minology and procedure used to compute catchment areas follow Section
2.2.
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Standardization of variables

The variables handled in this study have different measuring scales; they re-

fer to different physical and socioeconomic dimensions. They were standard-

ized to make them comparable in the multivariate analyses. Standardized

values of those variables were obtained by using the following expression:
Ystd = %;Vg/ ey (3.10)

where y,tq is the standardized value of y, which is one value from the set of

observations (Y). Y and Sy are the mean and standard deviation of Y.

Data transformation

In order to check the normality of variables, and the suitability of fitting
a linear model on them, a Shapiro-Wilk test was performed. Non-normal
variables were transformed and used in a multiple linear regression, which is

detailed in Section 3.2.2. Box-Cox transformations were applied as follows:

A .
RS S )

In(y;) ifA=0
where y; are each of the individual values of the response variable, and A
is an arbitrary parameter whose value is adjusted to provide maximum
correlation between the distribution of transformed response values and
standard normal distribution (Box and Cox, 1964). Obtained lambda was

rounded to one decimal and used for the transformation.

3.2.2 Multivariate analysis techniques

Multivariate analysis techniques are described in following subsections. As
rainfall intensity and spatial distribution might change from event to event,
we run tests including and excluding rainfall variables. This allowed us to
evaluate if incidents significantly responded only to urban fabric conditions
without considering rainfall.

The multivariate techniques described below were used to assess vari-
able relationships from different angles. The overview obtained with the
correlogram of Figure 3.4 provided a description of links between variables
that was limited to pair-wise relationships, and that ignored possible local

arrangements of descriptor values and reports. Such arrangements were
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visualized using cluster analysis. Obtained clusters were used to describe
the spatial distribution of descriptors over the urban landscape, and the
local occurrence of incident reports. Principal component analysis (PCA),
and multiple linear regression (MLR) gave insights into relationships be-
tween variables from another perspective. PCA was used to evaluate the
contribution of each variable to the overall variability across all variables,
to identify collinearity between variables, and to select the variables to
be fed to the MLR. Finally, the latter provided a quantification of the
significance and performance of a combination of descriptors in explaining

the occurrence of incident reports.

Cluster analysis: grouping sites according to available indepen-
dent variables data
Following Gaitan and ten Veldhuis (2015), a square similarity matrix
was obtained for the sites. Given the quantitative nature of the variables,
FEuclidean distances between variable realizations in studied sites was used as
a measure of similarity. The aim was to identify areas in the city with similar
characteristics in terms of variables under study, and to explore whether
occurrence of flooding differs among areas with particular environmental
configurations (Braak and Looman, 1995; Legendre and Legendre, 2012a).

All descriptor variables were considered in cluster analysis to classify
urban regions by recognizing patterns in all available information about
independent variables. This was done regardless the strength of descriptor-
response relationships.

Euclidean distances between sites, in which cluster analysis were based,

were calculated by means of the equation:

(3.12)

where j indicates the j-th descriptor, and y;; and y2; are the two sites for
which the pairwise distance is calculated.

Given the lack of previous research about the importance of different
variables in explaining the occurrence of flooding incidents, an unweighted
pair group method with arithmetic average (UPGMA) was carried out
using all the variables except for the response (incident reports). In this

technique, pairs of objects, or groups, are successively classified together
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when their distance, or the distance between group averages, is the smallest.
Two cluster analyses were performed: one including rainfall variables, and

another excluding them.

Profiles of obtained clusters were further analyzed and compared with the
occurrence of incidents per cluster. For building these profiles, independent
variables were standardized to mean 0 and unit variance. In this way,
their distributions could be compared using a standardized scale. The
distributions of standardized values of different variables, in every cluster,
were then visualized using box-plots. Incident reports were not included in
the computation of clusters to depict classes of the urban landscape only in
terms of independent variables. As incidents were assumed to be dependent
on descriptor variables, excluding them from clustering avoided obtaining
groups on the basis of their similarity between sites. Once the classification

of sites was completed, the incidence of reports was studied in each of them.

Principal components analysis: inspecting dimensionality reduc-

tions

Two PCAs were performed. The first one was applied to a correlation matrix
of all variables, including the response variable, to discover relationship
patterns among them. In the second one, rainfall variables were excluded.
This aimed at evaluating the reconfiguration of PCs when rainfall is not

taken into account, which implies a focus on the urban fabric.

PCA extracts a theoretical axis, or Principal Component (PC), from the
data, which explains, in a linear fashion, most of the variability in observed
variables. Additional, uncorrelated PCs can be computed, which account
for remaining variance, not explained by the previous PC. The goal of PCA
is to display most of the multidimensional data variance in a few PCs. Note
that explanatory variables in PCA are theoretical and mutually orthogonal.
This makes PCA different from linear regression (ter Braak, 1995; Legendre
and Legendre, 2012b).

PCA was used to visualize correlations among descriptors, and contri-
butions of each of them to the PCs. This allowed us to recognize data
redundancy and select variables highly correlated with the response variable.
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Multiple regression: modelling linear relationships on multiple
descriptors
MLR estimates the parameters of a linear function, which model follows
the form Ey = by + bix1 + baxa + ... + byxp, where the expected value
of y depends on an intercept and a number of p terms, consisting on an
estimated parameter b, and descriptor variable x,. A least squares estimate
of the vector of parameters (8) is (X'y)/(X’'X), where X is a matrix of
values of sites vs descriptors (i.e. the data matrix) and y is a column vector
of response values in the n sites (Montgomery and Runger, 2003).

MLR was applied to a selection of variables based on the PCA results.
Variables were standardized to properly compare regression coefficients and
determine the importance of analyzed terms. Additionally, a MLR was

applied to the transformed data.

3.3 Results and discussion
Figure 3.2 presents parsed rainfall radar intensity series. Values were aggre-
gated at 15 min and averaged over the cells on Amsterdam administrative
borders. The gray bars indicate a 15 min aggregated count of incident
reports. Five rainfall intensity peaks can be differentiated in this figure. The
first two peaks had an average between 3 and 6 mm /h, with deviations in
the scale of 10 mm/h. Third peak, at 11:00 h of Monday July 28 2014, was
the highest, with maximum average intensity of 20 mm/h and a deviation
around 20 mm/h. At this peak, 5% of the Amsterdam area was impacted
by rainfall intensities over 75 mm/h (see quantile 95% in Figure 3.2). While
the initial two peaks did not triggered a single incident report, the period
associated with the third peak entailed a wave of them; within two hours
around this peak, incident reports crested to more than 30 every 15 min.
This rainfall intensity and reports peaks decreased around 15:00 h. A small
fourth rainfall intensity peak, with an intensity of less than 1 mm/h, took
place around 02:00 h of Tuesday July 29; no incidents were reported then.
Between 07:00 h and 08:00 h of the same morning, the fifth peak registered
an average intensity of 1 mm/h, followed by six hours in which 1 to 2
incidents were reported every 15 min.

Figure 3.2 provides an ambiguous picture of the possible relationship
between rainfall intensity and reports incidence. The coincidence of the

highest peaks of average rainfall intensity and reports may suggest that they
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Figure 3.2: Average rainfall intensity during the studied event. Values of the rainfall
radar grid cells where aggregated at 15 min time-steps and averaged to obtain the
visualized plot. Bars indicate incidents count, also aggregated at 15 min time-steps.

are associated. One could even speculate that the absence of reports during
the two first peaks could be explained by a lower rainfall intensity than
in the third peak; nevertheless, this is opposed by the numerous reports
following the fifth rainfall peak, which was five times less intense than the
first two peaks. This suggests that variables different than rainfall intensity
might influence the incidence of reports.

Cells of the radar-grid where incidents were registered were considered
as sampling sites. The latter accounted for a total of 80 cells, comprising
a total of 336 incident reports. Such sites are numbered in Figure 3.3,
which also presents a view of the distribution of 15-min stepped maximum
rainfall intensities and the location of geocoded incident reports. A direct
relationship between rainfall intensity and reports incidence cannot be
perceived in this visualization: the number of reports in sites located north
of the river Ij, where maximum rainfall intensities were higher, seems to be
less than in central Amsterdam.
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Figure 3.3: View of maximum rainfall intensities during the event (15 min time steps)
and reports of incidents. The 80 sampling sites are numbered with an arbitrary index.
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An initial overview of distributions and associations of studied data
sources can be found in in Figure 3.4. It includes histograms and pairwise
correlograms of all preprocessed data; Pearson correlation values and the
p-value of a test for association between paired samples using Pearson’s
coefficient are shown under the diagonal.
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The associations between reports and rainfall intensity found in the
correlogram of Figure 3.4 were weak but significant. Correlations were 0.21
in the case of 15 min rainfall intensity and 0.26 in for 60 min correlations.
Pair-wise correlation significance were 1% and 2%, respectively. These
results suggested that rainfall intensity could have played a small but
meaningful role in the distribution of rainfall incidents. This possible
relationship was further assessed in the cluster, principal component, and

multiple regression analyses.

3.3.1 Normality tests and data transformations
Results of normality tests showed that from all variables only inhabitants
and imperviousness can be considered approximately normal. The Shapiro-
Wilk’s null hypothesis, which assumes the distribution of sampled data
to be normal, was rejected at 99% confidence for all variables except
for imperviousness and inhabitants. Obtained p—values were as follows:
incident reports, 1.78 x 1012 distance to outflow, 1.94 x 10~8; catchment
area, 1.12 x 10719 impervious ratio, 5.10 x 1072 ; 15 min stepped max.
rainfall intensity, 6.86 x 10™%; 60 min stepped max. rainfall intensity,
1.66 x 10~ ; inhabitants, 3.69 x 10~2; and building age, 5.15 x 10715 .
As linear regression assumes that studied variables are approximately
normal, non-normal variables selected for MLR in Section 3.3.3 were trans-
formed: incident reports, maximum rainfall intensity within 15 min windows,
building age, and distance to outflow. Respective obtained transformation
lambdas were: -0.5, -0.2, -0.5, and 0.1. For transformation of 15 min rainfall
intensity and distance to outflow, the lambda value was approximated to 0;
this value fell within a 95% confidence interval centered in the lambda with
maximum likelihood of yielding a distribution closer to a normal one. This
approximation eased their interpretation as this lambda value represents a
simple logarithmic transformation in the Box-Cox procedure (see Equation
3.11).

3.3.2 Cluster analysis

Cluster analysis including rainfall variables

Results of cluster analysis for all descriptors are shown in Figure 3.5.
Trimming of the dendrogram was set to obtain 6 clusters, avoiding groups

to be made of a single or too few sites. Other trimming levels were tested,
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resulting in several very small groups. Obtaining one group with a single
site was unavoidable because of the large dissimilarity of site 56 (see Figure
3.5). A similar cluster analysis was performed excluding rainfall variables.
Box-plots in the top half of Figure 3.7 present profiles of standardized
variables within the six groups obtained from the cluster analysis. Note
that, even though variables were standardized to be used in the profile
visualization, the y-axis in the box-plots is not centered in 0. This occurs
because each cluster comprises a different subset of variable realizations,
whose distributions differ from the standardized, overall dataset distribution.
Profiles of groups that accounted for higher numbers of reports are analyzed
below. As a reference, the mean density of reports per site is 4.2 (which is

the total number of studied reports over the number of sites: 336/80).

Group 3 contained the greatest number of reports (42%). Its sites are
located mostly surrounding the city center towards southeast and southwest
(see Figure 3.6). This group had a report density close to 5, which does
not differ much from the expected density of 4 reports/km?. This means
that the high amount of reports can be explained by the size of this group.
When compared to groups 4 and 2, the second and third groups with the
greatest report count, group 3 can be differentiated for having relatively
recent building ages. Distance to outflow and catchment areas tended to
be lower than in group 2, and clearly higher than in group 4. Average
imperviousness were comparable in groups 2, 3, and 4, though this variables

was less dispersed in group 4.

Group 4 accounted for the second greatest amount of reports (23%).
Comprising 8 km? (10% of studied sites), reports density of this group
was very high: close to 10 reports per km?. As it can be seen in Figure
3.6, group 4 is located in the city center. This group was characterized by
small catchment areas and short distances to watershed outflow point. This
group also comprised the oldest buildings in the study area. This is clearly
the outcome of urban layout of Amsterdam’s old city center, where the
dense network of canals limits the length and size of distances to outflow
and catchment areas.

Group 2 comprised 33 sites (40% of total sites), making it the largest
in covered area. It accounted for 15% of incident reports, and a report
density close to 2; which is half of the mean reports density. This group

extents over the periphery of the studied area, mainly towards Amsterdam
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Figure 3.5: Dendrogram of hierarchical cluster analysis with UPGMA. Colors of site
numbers correspond to the different clusters. The dashed line indicates a similarity
threshold of about 62%, at which different clusters are differentiated.
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Figure 3.6: Sites classified according to cluster analysis (see Figure 3.5).
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Figure 3.7: Profiles of classified groups. Top half of the figure includes box-plots of
standardized variables (Z = 0 and s2 = 1) among classified groups. Bottom half shows
the count of incident reports in each group (lighter bars), as well as the average report
count per site (darker bars), which can also be considered as 'reports density’. Individual
percentage and cumulative percentage sums (cum) of reports per group, are indicated
on top of reports count bars. Standard deviation of report density in each group is
indicated by error bars (thinest, lighter bars over density bars). The area (number of
cells) covered by each group is shown in the bottom.
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South-West, South, and South-East, as well as over two square kilometers in
Amsterdam North (see Figure 3.6). It is characterized by old buildings, with
a narrow age distribution. This may suggest that this group corresponds to
an urban expansion development occurred relatively simultaneously in its
sites. Despite the low report density in this group, its distance to outflow,
catchment area, and population tended to be higher than in groups 3 and
4. In fact, these two variables in group 2 tended to be the largest among
all groups. Imperviousness presented a wide dispersion, with an slightly
longer lower tail (see box-plot in Figure 3.7).

Group 1 displayed a similar reports density, within half the area covered
by group 2. Rainfall intensity in group 1 also showed similar trends as in
group 2. The rest of the variables, including distance to outlet, catchment
area, and distance to outlet, presented relatively low values. Imperviousness,
presented some of the smallest values Sites of group 1 were situated North
of the Ij river, and Northwest of the city center. Groups 1 and 2 covered
60% of studied area, accounting only for 25% of reports.

Reports in groups 5 and 6 had the lowest count, with 7 and 3% respec-
tively. Comprising 4 km?, group 5 had a reports density around 5, which is
close to the mean value of reports density. This group was characterized
by relatively large distances to outflow and catchment areas, and slightly
high impervious ratio, low rainfall intensities, close to average population
densities, and average building ages. Group 6 represented a single site with
relatively large catchment areas and distances to outflow, extremely low
rainfall intensities, and very recent buildings. Reports density in this site

was as high as that observed in group 4.

Cluster analysis excluding rainfall variables
Cluster analysis excluding rainfall variables delivered the following changes
to previous clusters: 8 of the 13 sites of original group 1 were allocated in
group 2, the remaining 5 sites of group 1 were allocated in group 3, and a
new group (referred to as 1, rain), consisting of 2 sites originally in group
4, emerged. Groups 5 and 6 stayed the same as in the above described
classification; the distribution of variables within them did not change.
This classification produced groups that resembled location of Amsterdamer
boroughs.

Changes in variable distributions of group 2 and 3 were similar: averages

of all variables moved closer to 0 as a result of the contribution of small
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values of variables of sites originally in group 1. Overall differences between
both groups remained the same, with group 2 having higher distances to
outflow, catchment areas, and imperviousness, and older buildings. In the
case of group 3, there was an increment of 6.0% in the area covered and a
4.4% in reports incidents. As for group 2, the increment was 10.0% and
just 4.4%, respectively. This made new group 2 an interesting class, as it
covered more than half of the study area while accounting for only a fifth of
incident reports. The rearrangement of groups 2 and 3, due to the exclusion
of rainfall from cluster analysis, approximately set group 2 around the city

center, and group 3 around group 2.

Group 1,4 rain consisted of sites 19 and 26. It was located over the
neighbor of Jordaan, in the city center. Covering only 2.5% of studied area,
this group comprised 8% of reports. Particularly, the values of variables
defining this group had a very narrow dispersion: it was a cluster clearly
defined by low distance to outflow and catchment areas, high imperviousness
and population density, and relatively old buildings. This seems to be highly

vulnerable area to pluvial flooding.

In comparison with group Group 1, rain, average values of variables in
Group 4 where clearly lower for distances to outlet and catchment areas,
much lower for imperviousness and population density, and higher building
age. These results, from group 1,4 rain and 4, agreed with those found by
PCA and MLR, discussed below. The exclusion of possible information
noise related to rainfall, the narrow distribution of variables, and the
relatively high report count in these two small cases provided a picture of

how independent variables can be linked to the incidence of reports.

In general, profiles of existing groups in previous classification did not
exhibit remarkable difference with the just discussed profiles. By excluding
rainfall from the elaboration of clusters, obtained classes apparently reflected
the underlying city landscape better. The distribution of rainfall intensity
is highly dynamic and random, and interfered with the classification of the
urban landscape. The rearrangement of groups 2 and 3, and the emergence
group 1., rain, changed the geographic layout of the initial classification.
This new layout seemed to follow the historical concentric development
of Amsterdam. There is a roughly coincidence of groups 4 and 1,4 rain
with Amsterdam-Centrum, 5 and 6 with Amsterdam-Zuid, group 3 with

Amsterdam-West and Amsterdam-Oost, and group 2 with more peripheric
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areas.

Average distance to outflow, catchment area, and building age are
clearly differentiable among biggest groups. In this sense, the use of cluster
analysis depicted different classes composing the urban landscape in terms
of the studied descriptor variables. Overall, in spite of these differences,
the variability in the count of incident reports, particularly in the largest
groups (see gray bars in the bottom of Figure 3.7), limits its use to draw

conclusions about a possible increased reports incidence given clusters.

3.3.3 Principal component analysis
Results of PCA are shown in Figure 3.8. The six groups obtained via cluster
analysis (Figure 3.5) are also plotted enclosed in polygons.

Results of PCA showed that variance in data can be mostly explained by
the first two or three eigen vectors. Average catchment size, and average dis-
tance to outlet are highly correlated, as well as maximum rainfall intensities
within 15 and 60 minutes. This is also the case for population density and
imperviousness ratio, reflecting that areas more densely built tend to host
more people. The sum of incidents tends to be orthogonal to the rainfall
intensity as well as distance to outflow and catchment area. Building age
vector is slightly closer to the response variable. Imperviousness ratio and
population density vectors are most closely related to the occurrence of
incidents.

Figure 3.9.a shows PC1 and PC2 being relatively higher than average
explained variance. PC3 does not differentiate from this average. PC1
and PC2 explain 40% and 27% of variance each. PC3 accounts for 15% of
variability, which is slightly above the expected average variability accounted
for by one in eight variables. These three principal components explain 82%
of variability. None remaining PCs is close to the average eigenvalue; those
components do not represent important gradients in the data dispersion.

In Figure 3.9.b, imperviousness and inhabitants are the descriptors
with contributions greater than the average score. Reports also score
more than average in PC1, suggesting that their distribution tends to
follow a theoretical environmental gradient aligned with imperviousness
and population density.

Figure 3.9.c indicates that the two catchment-related variables, the two

rainfall variables, and building age scored higher than average for PC2.
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Figure 3.8: Biplot of scaled principal component analysis of sites including rainfall
variables. Polygons enclosing sites represent groups obtained from the cluster analysis
(see Figure 3.5).
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principal components is shown in b., c., and d., respectively. Green dashed lines indicate
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Distance to outflow scored slightly higher than catchment area (-1.16 and
-1,11, respectively), as it did 15 min windowed rainfall over the 60 min
windowed one (1.29 and 1.25, respectively). The sign of the scores indicate
the direction of the variable vectors in the respective PC (e.g., see vector of
catchment area in Figure 3.8).

Figure 3.9.d shows that rainfall variables and building age scored high
in PC3. In contrast to PC2, in PC3 incident reports have a contribution at
least as big as the expected average and, as well as building age, tend to be
opposite to the rainfall intensity.

Results from PCA applied to the dataset excluding rainfall variables
resemble the outcome of the PCA applied to all variables.

The layout of clusters in Figure 3.8 resembled the patterns found in
Figure 3.7. Group 2, whose profile showed to have a low report density, also
presented this pattern here. The high variability of reports values for group
3 is visualized here again; group 3 was dispersed along PC1, the component
on which the response variable contributes the most. It was also evident
that group 3 displayed some of the highest impervious ratios and population
densities. Response variable does not varies in groups 4 and 5 as in group
3: the range of the two earlier over PC1 is shorter. As well as in Figure 3.7,
group 5 was represented in Figure 3.8 by the highest average distances to
outflow and catchment areas, and recent building ages. Group 6 presented
the highest average catchment area value, and a very high count of reports,
which explained its location in the lower-right corner in Figure 3.8. The
latter clearly shows that the six different groups are easily differentiable in
terms of two theoretical variables, which relatively coincide with some of
the studied descriptors. Groups 1 and 4, were however overlapping, which

can probably be resolved by checking both groups distribution over PC3.

Dimensionality reduction

Results discussed above aided the selection of descriptors used for MLR
by avoiding variable collinearity. Correlation between imperviousness and
population was significant and strong (see Figure 3.4); these variables also
showed close collinearity (see Figure 3.9). Imperviousness scored higher
than inhabitants in all PCs (see Figure 3.9). Nevertheless, both variables
were selected for MLR to clearly check whether areas with higher population
density report flooding incidents more frequently.

From Figures 3.4 and 3.8 it was clear that catchment area and distance



56 3 Multiple spatial datasets to explain flooding incidents

Table 3.2: Explaining power, estimated parameters and respective significance obtained
for the regression applied to all descriptors selected in Section 3.3.3. The second half of the
table shows results for transformed variables, as described in Section 3.3.1. Significances
with P < 0.5 are indicated in bold typeface.

Results of MLR applied on non-transformed variables:
Adjusted R? =0.50

Parameter Coefficient Significance (p—value)
Intercept 7.515 x 10~17 1.00

Impervious ratio 0.86 1.6 x 10~6

Distance to outflow  -0.24 0.03

15 min rainfall int 0.09 0.29

Inhabitants -0.04 0.71

Building age -0.04 0.71

Results of MLR applied on transformed variables:
Adjusted R? =0.48

Parameter Coefficient Significance (p—value)
Intercept -0.29 1.00

Impervious ratio -0.73 1.07 x 107°
Distance to outflow  0.24 0.03

15 min rainfall int -0.05 0.62

Inhabitants -0.08 0.53

Building age -0.54 0.67

to outflow are closely correlated. The contribution of distance to outflow
to PC2 was greater than that of catchment area. For this reason, distance
to outflow was selected for MLR.

15 min time-windowed rainfall intensity was selected because it scored
slightly higher than rainfall intensity windowed at 60 min both PC2 (1.29
and 1.25, respectively) and PC3 (0.88 and 0.83, respectively), where these
variables scored higher than average. Given the contribution of building
age to PC2 and PC3, it is also selected for MLR.

3.3.4 Multiple regression analysis

The adjusted coefficient of determination of the model, R?, was 4.99 x 10! .
The significance of a F-test, whose null hypothesis is a fewer-parameters-
model with better fitting, was 5.14 x 10711 . This proved that the model
was able to explain close to half of the variability of incidents occurrence,

and that a model based on fewer variables does not perform better. This
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suggested that excluding rainfall intensity was not enhancing the MLR

explanatory power.

Values of coefficients and associated p-values (see Table 3.2) show that
imperviousness was the strongest and most significant descriptor, followed
by distance to watershed outflow point. This outcome is in agreement with
results of PCA. While in the latter both variables were clearly collinear
(Figure 3.8), inhabitants seconded imperviousness in the contribution to
PC1, indicating that imperviousness carried most of information in that

component.

This was confirmed by results of an additional MLR run, in which imper-
viousness was excluded. It resulted not only in inhabitants being significant
with a p—value of 2.23 x 103, but also population density with a p-value
of 4.36 x 10~%, with coefficients 3.43 x 10~ ! and 3.77 x 10!, respectively.
This result actually accords with findings of Chapter 2, which observed
indications of an association between incident reports with building age
and population density in a dataset that did not include descriptors about
imperviousness nor topography. Nevertheless, adjusted R? accomplished
by this MLR was 3.23 x 10! ; this is close to 17% less explaining power
than the achieved by the MLR including imperviousness.

Links between incidents and remaining descriptors were insignificant,
indicating that additional parameters should be explored to better explain
flooding incidents. Distance to outflow’s negative coefficient is in agreement
with PCA results, but contradicted the initial working hypothesis where
areas closer to water bodies were expected to be less susceptible to flooding
incidents (see Section 3.2.1). Rainfall intensity shows limited significance
in explaining flooding incidents occurrence. The strong link found for
imperviousness agrees with previous research, where this variable has been
identified as a factor heavily influencing the sensitivity of storm water
models (e.g. Dotto et al., 2011).

MLR was also applied to the dataset where non-normal variables were
transformed using Box-Cox transformation (see Section 3.3.1). Results were
similar to previous MLR applied to non-transformed variables (see Table
3.2). Obtained adjusted R? was 4.80 x 107!, slightly less than for MLR
based on non-transformed data.

Imperviousness and distance to outflow point were stronger descriptors

of flooding reports occurrence than rainfall intensity and population density.
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Figure 3.10: 3D representation of response data and the two most significant descriptors.
Modeled response surface is also shown. Crosses represent projections of 3D floating
points on 2D scatter-plots. The tone of floating points indicate their alignment to the
distance to outflow axis: the darker the point, the higher the log of distance to outflow

value. Lighter tones of the response surface indicate a higher the response value.

This results opposes the a priori expectation that areas exposed to higher

rainfall intensity, and with higher population, would deliver higher report

counts. Regarding rainfall intensity, Spekkers et al. (2013) found rainfall
intensity to explain no more than 34% of building and content damage,
including roof leakage cases. It is then reasonable that rainfall intensity
does not play a major role in the case of street flooding incidents.

Figure 3.10 shows the response surface for imperviousness and distance
to outflow variables, and scattered 3D points for those two and the response
variable. The surface was made using the coefficients obtained in the MLR
applied to transformed variables. This figure shows that the slope between
imperviousness and incident reports is positive and relatively steep, while

the one between distance to outflow and reports is negative and moderate.
This figure also includes 2D scatter-plot projections for all variables in the
graph. Lighter color of response surface indicates higher incident reports
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values. Darker color of 3D points indicates higher transformed values of
distance to outflow.

In both 2D scatter-plots of descriptors against response, there is a series
of low response values that is not sensitive to changes in descriptor values.
Figure 3.10 shows that the response surface is drawn downward due to
those low response values. If those low response values were excluded from
analysis by setting a minimum threshold (e.g. Yseiectea > 2), correlation
of distance to outflow and imperviousness against reports would both be
positive.

Low incident report values, representing about half of the response
variable dataset, could be influenced by variables different from those linked
to the higher response values. Analyzing these two types of response values
separately could reveal different underlying flooding processes. Decision
tree analysis is an adequate tool to assess response variables in cases like
this one.

3.4 Conclusion and outlook

In this chapter multiple open environmental and socioeconomic spatial
datasets were explored using multivariate analysis techniques. The aim of
this chapter was to assess the degree in which openly available datasets
explain the occurrence of flood incident reports by using exploratory data
analysis.

The analyses identified that impervious ratio, and distance to watershed
outflow point, significantly explained up to half of the variability in the
spatial distribution of flooding incidents. This doubles the explaining power
achieved by Spekkers et al. (2014), who used decision trees on confidential
insurance claims and household-level statistics to explain urban flooding
damage to buildings and contents. Decision trees have been also used by
Merz et al. (2013) for explaining damage due to river flooding, on the basis
of telephone interviews, hydrological, socioeconomic, and building variables,
among other data sources. These datasets comprised approximately a
thousand samples. The latter study achieved remarkable explaining powers;
from 50% to 75% in average. This might suggest that incident reports
bear a stronger signal about street flooding incidents than insurance claims
do about pluvial flooding damage to buildings and contents. Under this

scenario, decision trees should be used to further explore street flooding
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incidents.

Rainfall intensity was found to be a weak predictor of the spatial
distribution of flooding incidents. Even though incident reports are made
by people, population density was not a significant descriptor of reported

flooding incidents.

This study devised a novel tool to approximate watershed measurements
in grid-cell aggregations; this tool is useful for future research involving
data mining, spatial aggregations, and overland flowpath networks. The
required mathematical implementation was developed specifically for this
chapter. Mining of open spatial data to model complex environments
frequently requires data aggregation and indexation. Integrating the concept
of watersheds into the data mining process poses the challenge of subsetting
them without breaking their network connectivity. Aggregated average
distance to outlet and reports incidence presented a significant relationship;
this indicates that the earlier bears actual information about processes
taking place in the urban environment, and signals its utility for urban

environmental modelling.

Results of cluster analysis were hampered by wide descriptor variability
and meager response data. Groups identified by cluster analysis agreed
with locations of distinct areas of the city. Particularly, it differentiated
areas in the historic city center from recently developed suburban areas. A
wide dispersion in descriptor values and in the average count of incident
reports within groups hampered the use of cluster analysis to characterize
susceptibility of identified groups to flooding incidents. Clusters 1 and 2
delivered a relatively clear result; they covered the majority of the area
(60%), accounting merely for a quarter of complaints. Response data was
a bottleneck for the present study. If abundant response data becomes
available for future research, partitioning analysis methods, such as cluster
analysis or decision tree analysis, can be used more consistently. MLR could
be run within urban subclasses, differentiated by cluster analysis. Future use
of cluster analysis can also focus in imperviousness and distance to outflow,
plus additional variables not explored in this study. Information about
underground drainage networks, for instance, is a key aspect that must be
considered in the future. Also, smaller grid-cells for data aggregation and
sampling could also be used if enough information about both independent

and response variables becomes available.



3.4 Conclusion and outlook 61

Most, of data variability was captured by two theoretical gradients
in performed PCAs, proving the relevance of its results for reducing the
number of descriptor variables from 7 to 5. PCAs also showed two variables
scoring high in the two first PCs: imperviousness and distance to watershed
outflow point. This agreed with results obtained later in MLRs. These
results showed that PCA is useful in urban flooding research to explore
multiple variables with unknown relationships with the response variable,

and identify descriptors with strong explanatory power.

MLRs provided significant insights into the relationships between studied
descriptors and the occurrence of incident reports. Impervious ratio and
average distance to outflow were the only significant descriptors, with
coefficients close to 0.7 and -0.2, respectively, and 50% explaining power.
The sign of the latter coefficient indicates that areas close to watershed
outflows are more prone to flooding; it suggests that flooding from surface
waters, or overloading or backwater effects in the drainage system in these
areas, are main flooding mechanisms. The two significant variables were
found not to be collinear in the PCAs, which indicates that they describe
two different phenomena, probably affecting the occurrence of flooding
incidents in two different ways. Results of MLRs indicated that additional
variables must be explored to better explain occurrence of flooding incidents.
Variables describing hydraulics, age, and maintenance conditions of drainage
systems are key descriptors that should be further investigated.

An important source of uncertainty in this study lies in the nature of
response data; reports are made by citizens. Their motivation is subject
to personal conditions that cannot be fully explained only by adding ex-
planatory environmental and socioeconomic information to a MLR. Still,
significance and explaining power found in this study revealed the value
of flooding incident reports for addressing the problem of urban flood
modelling, which is commonly hindered by meager response data. The
limitations posed by the uncertainty of incident reports could be overcome
by combining incident reports with other response datasets; further explo-
ration of multiple response data, such as insurance claims and data collected
through social sensing (smart-phone applications, information retrieved

from social media), can improve significance and explaining power.

Grid cells size influence modeled outputs. In this sense, quantity of

openly information, specially response data, limits the assessment of the
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cell size on results. As response data are scarce, aggregating them at higher
spatial resolutions increases the number of cells accounting for single reports
or no reports at all. On the other hand, increasing the cell size reduces the
number of sampling sites, which impacts statistical robustness of analysis.
For future research, this limitation can be overcome by focusing in multiple
heavy rainfall events along, e.g., a decade. Other alternative is to enrich
response data with possible addition information sources such as social and
news media, fire brigade and 112 phone call records, or with images and

video from traffic, security, and other cameras installed in the city.

Further improvement can possibly be achieved by relying on better urban
imperviousness estimations. Even though it was based on an accurate land
use model, the imperviousness ratio computed in this study is a rough
approximation to urban imperviousness, and it was not validated. Given
the significance of imperviousness in explaining the variability of incident

reports, future research must be based on a better imperviousness model.

The observed significance of variables derived from open spatial data
sources, in explaining half of the variability of flooding incidents occur-
rence, is a remarkable outcome. Datasets had different types, formats, and
resolutions, and were produced independently by different organizations
for disparate purposes. In spite of the spatial aggregations made, and the
heuristic processing to compute weighted averages of impervious ratio per
km? and distance to watershed outflow point per km?, these metrics yielded
significant insights for explaining incidents occurrence. Given the lack of
precise urban hydrodynamic models and urban-focused flooding impact
models, this data-driven outcome is highly valuable. This also highlights
the importance of open and social-sensed data for future urban flooding

modelling.

An important contribution of the present exploratory study is the
indication of valuable information and methods in the modelling of urban
pluvial flooding. This chapter tackled a problem with scarce experimental
data available, uncontrolled conditions, and unknown relevant variables.
It represents a first step research approach in which a set of previously
available information is methodically evaluated. On the basis of achieved
results, future research could engage in predictive modelling, in which
obtaining higher accuracy could be a success indicator. Contrastingly, in

a case with restricted prior knowledge about the urban pluvial flooding



3.4 Conclusion and outlook 63

phenomenon, achieving 50% of explanatory power is a clear, significant
sign of the value of a selection of open available information to explain the
occurrence of flooding incidents.

Insights provided by this study can support future design and imple-
mentation of efficient measures against urban flooding incidents. As the
work presented in this chapter is of an exploratory nature, a direct applica-
tion of the obtained insights obviously requires additional research steps.
However, urban planners can consider found links between imperviousness
and proximity to outflow, and the reports occurrence, to focus in effective
measures against urban flooding. Results clearly point at the reduction of
imperviousness in the urban environment as a possible effective flooding
management alternative in Amsterdam. The proximity to outflow overland
flow points can be used as a metric to prioritize preventive drainage main-
tenance. Emergency response management can use imperviousness maps to
pinpoint critical areas during pluvial flooding events. A more sustainable
and transparent design of premiums for insurance against pluvial flooding
could use incident reports and imperviousness spatial distribution. These
are some examples of how evidence provided by this chapter can be useful
in practical applications.

Open data and social sensing data can provide valuable response data
to validate urban flood models, foster realism in descriptor variables, and
enhance the validity of flooding predictions. Further investigating these
sources is thus key for planning of climate adaptation measures and efficient

operation of existing drainage infrastructure.
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Increasing urban flooding impacts challenges cities worldwide to devise
smarter adaptation measures. Urban floods disrupt drainage, transportation,
electricity, and medical services, and may trigger waterborne infectious
disease outbreaks. Design of effective adaptation measures require precise
and reliable urban flooding models. These are currently unavailable due to a
lack of sufficient flood incident data. Crowd sourced images and surveillance
videos are a potential source of such data. They can provide details about the
timing, location, and extent of urban flooding. Computer vision techniques
have been used to automatically classify images and video content to detect
road conditions and water levels in embankments. Their usefulness for urban
flooding has not been tested yet. In this chapter, the potential of mainstream
image and video recording, and well-known and accessible computer vision
tools for delivering key information about localized urban flooding incidents,
1s explored. Scene classification was applied to a dataset of images queried
in a common web search engine, and foreground detection was performed
on the video of a controlled street flooding experiment. Obtained results
suggest that image and video information, such as crowd-sensed pictures
and surveillance footage, can be used to retrieve important information on
flooding incidents. Data sources and required computer vision tools are cur-
rently readily available for application in cities worldwide, and represent an
opportunity to leverage existing sensing infrastructure to better understand

and prevent urban flooding impacts.



4.1 Introduction 67

4.1 Introduction

Cities need to adapt to changes in climate that lead to increasing likelihood
of intense rainfall, associated with higher urban flooding risks. Urban floods
affect critical daily activities as they interrupt drainage, transportation,
electricity, and medical services (Ashley et al., 2005; ten Veldhuis et al.,
2011). Pluvial flooding may also trigger waterborne infectious disease
outbreaks in cities (de Man et al., 2014; Sales-Ortells et al., 2015; ten
Veldhuis et al., 2010; Wade et al., 2014). Urban flooding risks are increasing
due to heavier weather, lower permeability, higher population and assets
densities, and aging infrastructure (Bates et al., 2008; Murphy et al., 2009).
Smart infrastructure, preventive maintenance, and real time emergency
responses can help citizens and governments to reduce urban flooding
impacts (Gaitan et al., 2014; Jacobs, 2012; Melo et al., 2015; ten Veldhuis
et al., 2011; Wong and Brown, 2009).

However, such adaptation measures require precise urban flooding infor-
mation to develop reliable models for flood prediction that are currently
not available. Design and implementation of such models is hindered by a
lack of sufficient data on flood incidents. Apart from precise and timely me-
teorological information, and an adequate knowledge of the urban drainage
infrastructure, the calibration and validation of urban drainage and flooding
models requires data about the timing, location, and extent of local flooding
taking place when the drainage system fails (Deletic et al., 2012; Dotto
et al., 2012; Fontanazza et al., 2011; Gaitan et al., 2015; Maksimovi¢ et al.,
2009; Ochoa-Rodriguez et al., 2015).

Monitoring local urban flooding implies technical challenges. Localized
flooding is typically rapid in onset and of short duration. Local floods can
also occur simultaneously at different city locations, demanding multiple
installed detection units. Typical monitoring in current urban drainage
systems include pumping logs, discharge measurements at a limited number
of locations towards the end of urban catchments, and water levels in certain
components. Actual extents or depths of flooding on the streets are seldom
measured. Besides, acquisition and maintenance of monitoring devices is
costly.

Cameras have been used to monitor water bodies. Different approaches
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have been used in unmanned ground navigation systems, usually with
demanding hardware requirements. Matthies et al. (2003), for example,
employed four techniques to automatically identify the location of water

bodies from image data:

- image classification to detect sky reflections in water bodies during
the days;

- light detection and ranging (LiDaR) to measure reduced return signal
due to specular reflection and absorption through the water column,

and diffuse reflection on the bottom of the water bodys;

- short-wave infrared imagery to detect water bodies due to specific
absorption coefficients of relatively deep and clear water bodies at
these wave-lengths;

- and mid-wave infrared to differentiate thermal emissivities of water

bodies from surrounding terrain during the night.

Sarwal et al. (2004) sensed the partial polarization effect of light reflected
on the surface of water bodies by using three polarization filters at three
different angles.

Such approaches have proved to be capable of labeling water body pixels
in recorded images with satisfactory performance under different lighting
conditions. However, they require either the acquisition and deployment of
cameras of very high specifications, or a dedicated setup of conventional
cameras using polarization filters, and registering and warping image pre-
processing. This makes these approaches costly and technically demanding
for a city-wide scale implementation for water management purposes.

More recently, photo- and video-cameras have been used to measure
rainfall intensity and river levels in urban environments during flash floods.
Allamano et al. (2015) detected raindrops in image frames recorded by
a dedicated conventional camera pointing at a static background, and
computed their size to derive rain rates with an associated uncertainty. Lo
et al. (2015) used video frames recorded by closed-circuit television cameras,
on which they set virtual markers at known locations of a river embankment,
and checked when they were covered by water-classified image segments, to

obtain dynamic flooding levels.
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Street video imaging offers a potential source of unexploited information
to detect street flooding. Video recordings from traffic, web, and smart-
phone cameras contain information about timing and extent of local flooding.
The cases of The Netherlands and Nairobi, in Kenya, are only two examples
of the spread of urban imaging infrastructure. In The Netherlands, several
thousands of public traffic monitoring cameras stood on built areas across
the country in 2013 (Dutch Ministry of Security and Justice, 2014). Another
325 street cameras in this country, installed on amateur weather stations
(Weather Underground), represent a valuable source of street video footage.
In Nairobi, Kenya, an infrastructure including 1,500 urban surveillance
cameras is being installed (Kenya National Government, 2015). Other
privately owned cameras are also installed and streaming live time lapses.
Additionally, smartphones and other mobile devices gather images into data
stores that can be made available for research (e.g., Michelsen et al., 2016).
Videos posted on social or collaborative media (e.g., Instagram, YouTube,
Twitter, Mapillary) are another potentially useful source, if information

about geographical position is included.

Surveillance camera images have been used recently to distinguish
road conditions under different lighting situations for intelligent transport
systems. For example, (Horita et al., 2012) used the signal of headlight
reflections to distinguish road conditions, and (Shibata et al., 2014) used
passive lighting reflections. Both works are based on a machine learning
approach using training sets to classify texture features associated with dry,
wet, and snow covered road conditions. These works proved that weather

effects on roads can be detected using computer vision techniques.

Using advanced computer vision techniques implies knowledge and soft-
ware prerequisites that may be hard to fulfill, in the case of environmental
research. Nowadays, well known computer vision routines are becoming
available as easy-to-use programming tools. This facilitates agile imple-
mentations in tests in interdisciplinary problems, such as in the monitoring
of urban flooding impacts. OpenCV (Intel Corporation et al., 2014), for
example, is a C+-+, open source software library providing a wide range of
common computer vision routines. It offers wrappers for Python, C, Java,
and MATLAB. Since its initial release in 1999, OpenCV’s users community
has been joined by major research centers and IT companies (Bradski and
Kaehler, 2008).


http://www.wunderground.com/webcams
http://www.instagram.com
http://youtube.com
http://twitter.com
http://mapillary.com
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The availability of street image and video material, and accessible
computer vision tools, offer the opportunity for testing their feasibility for
retrieving information on flooding location and timing in cities. Given the
enormous amount of video frames that need to be stored and processed
when searching for local floods in street videos in the case of a city-wide
application, flood detection should be assisted by computer vision techniques.
The aim of this study was to explore the potential of mainstream image and
video recording, and well-established and accessible computer vision tools,
to deliver key information about localized urban flooding incidents. This
chapter focuses on two computer vision techniques: scene recognition and
foreground detection. Two questions are addressed. First, can computer
vision techniques recognize local flooding scenes in the type of imagery
gathered in social media? Second, can these techniques detect the extent
of a puddle in a series of videoframes, of similar characteristics of those

captured by traffic and surveillance cameras.

This chapter is organized as follows: Section 4.2 presents details about
image gathering and preprocessing and local flooding scene and puddles
recognition. Section 4.3 presents and analyzes results. And finally, Section
4.4 discusses these results and provides an outlook of the application of

these technologies in the field of smart urban water management.

4.2 Methods

After acquiring images and video material (see Section 4.2.1), detection of
local flooding from street video footage was approached from two angles.
First, we determined the presence of a puddle in a given set of scenes. Then
we attempted to approximate the visible puddle region in a series of video
frames. The earlier approach employed the scene recognition technique
discussed in Section 4.2.2. The latter extracted the background from each
frame of a video, leaving pixels corresponding to objects with changing
reflectivity, labeled as flooded (Szeliski, 2010). Section 4.2.3, documents

such implementation.

4.2.1 Data acquisition
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Annotated Internet images

Annotated images were obtained from the Internet with a common web
search engine (Google Images, June 2015. Available at images.google.com).
The search terms “street puddle" and “street" were used to query respective
image sets. Each set was labeled accordingly, ensuring proper annotation. A
search filter was set to retrieve only photos, excluding clip-arts, line drawings,
and animations. No image-size filters were set. After downloading, images
were checked. The ones including people and editing such as typographies

or evident graphic effects, were excluded.

Recording puddle videos

Local flooding was simulated by blocking the inlet to a gully pot, on
the street of an experimental lot close to the building of the Faculty of
Civil Engineering and Geosciences, at Delft University of Technology. A
flooding simulation was produced by spraying and pouring water with a
hose connected to a nearby water tap.

Recording was done with a mainstream videocamera, mounted on a
tripod on a fixed position, pointing to the blocked gully pot and the created
puddle. Employed camera was a GoPro HERO3+ Silver Edition, featuring
8 bits color depth, up to 1920x 1080 pixels video resolution and 3680x2760
pixels photo resolution (applicable to time lapse recording), up to 170° field
of view, 2.8 to 6 focal ratio, and built-in Wi-Fi.

Image preprocessing

Image preprocessing was done using Python (Python Software Foundation,
2014) and the Python Image Library (Lundh, 1995). Annotated images
were translated to white and black using the ITU-R 601-2 luma transform
(Lundh, 1995; Solem, 2012), in which the final pixel value (L) equals
0.299 x R+ 0.587 x G + 0.114 x B, where R, G, and B are the values of
red, green, and blue channels of a given pixel. Images were then cropped
by one pixel in the left or top sides, when width and/or height, in terms
of the number of pixels, were odd. This was required before cropping
images to a square aspect, avoiding differences of original dimension ratios.
Finally, following Solem (2012), resulting images were resized to 100x100
pixels; this was done with a nearest neighbor interpolation (Lundh, 1995).
This resizing ensured that all images fit the same sampling grid during the

computation of local features, as described in Section 4.2.2.


http//:images.google.com

72 4 Automatic detection of urban flooding from street images and video

4.2.2 Scene recognition in web images

Computer vision can be used to automatically recognize images. Scene
recognition is based on binary classification where images are labeled as
belonging to a previously defined class or not. This procedure is done in
two steps. First, local image descriptors, or features, are computed. Then,
these are used to locate each image in a multidimensional space, with as
many axes as computed features, allowing for a straightforward K-nearest

neighbor classification (Solem, 2012).

Description of local features

Local image descriptors define local features, which are used to compare
similarities between images. Scale Invariant Feature Transform (SIFT)
describes features consistently across different scales, rotations, intensities,
and view points. The core of SIFT consists of finding key points with
local minima and maxima differences, between Gaussians of the images
across adjacent scales and rotations (Lowe, 2004; Solem, 2012). Local image
features are stored as histograms indicating the magnitude and orientation of
features gradients. These histograms are used in the classification described
below. A dense SIFT (DSIFT) was applied to images after preprocessing.
DSIFT consists of the computation of local features within the cells of a grid
imposed on the images. The number of described features in all images is the
same given that they had the same size and resolution after preprocessing.
Descriptor arrays bear a representation of the Gaussian difference gradients
in an approximation of eight directions. This representation is stored in
a vector that concatenates the values of each region, of each descriptor.
Features in each image were thus represented by a list of feature vectors
(Lowe, 2004; Solem, 2012).

K-nearest neighbor classification

For the K-nearest neighbor classification, the data set was divided in two
groups, training-set and test-set, with approximately the same number of
samples. This classification works by comparing the positions of a given test
image with those of all training images in a Euclidean space, whose axes
correspond to the computed visual features. The test image was tagged
with the label of the closest training image. This process was repeated on

all images in the test set (Solem, 2012).
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4.2.3 Background subtraction and puddle detection in

video footage

Background regions were subtracted from videos obtained as described
in Section 4.2.1, leaving detected foreground regions behind. Foreground
extraction aimed at delimiting wet and flooded areas. As treated videos
were recorded under controlled conditions, most of these foregrounds were
expected to represent puddles. In real street conditions, different moving
objects, such as cars, bicycles, and animals, are expected to pass by through
scenes. In the experiment, the signals produced by a pedestrian were
compared to those of pixels becoming humid or flooded.

Two techniques were tested to differentiate background and foreground
areas in analyzed videoframes: Gaussian mixture models (GMM), and
interactive foreground extraction using iterated graph cuts (GrabCut).
The aim was to classify foreground pixels as wet or flooded areas, and

background pixels as remaining areas.

K Gaussian mixture for background subtraction in video frame
series

This technique compares individual pixel values at a video frame with the
historic values of that pixel along the video stream. Historic values are
represented with a mixed Gaussian distribution, built from the time series
of the same pixel values along the video footage: the longer the combination
RGB pixel values remains unchanged in the video, the higher the likelihood it
is a background pixel. In contrast, pixel values of moving objects appearing
in the scene deviate from normality as a result of their extremely changing
value. Changes in the extent of casted shadows along the video stream
are addressed by using a color model in which chromatic and brightness
components are distinguished. If brightness and color distortions lay within
a given statistical threshold, the sampled video-frame pixel is considered
a moving shadow. The technique is described in KaewTraKulPong and
Bowden (2002).

Background subtraction in single video frames

Interactive GrabCut was used to extract background areas from single
videoframes. GrabCut iteratively uses a segmentation algorithm that
models background and foreground areas using GMM. GrabCut requires an

user-provided bounding-box (or rectangular area) enclosing the foreground
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object. Initially, GMM for background are defined from values of out-of-
box pixels, while GMM for foreground are provisionally based on values
from within-bounding-box pixels. With each iteration, unlabeled and
provisionally-labeled pixels are classified as being part of the background
or not; once new pixels enter or exit each class, their GMM are updated.
In a second step, a refinement of GrabCut results can be done by passing
annotated values of sample background and foreground pixels (seeds). This
is used to update GMM for background and definitive foreground pixels,
and initialize a new series of classification iterations. Details of this method
can be found in Rother et al. (2004)

Performance indicators

Ground truth and classification values obtained in Sections 4.2.2 and 4.2.3
were used to compute contingency tables. True positive (T'P), false positive
(FP), true negative (T'N), and false negative (F'N) values in analyzed
case studies were derived from the contingency tables. These values were

then used to obtain Sensitivity (TPZ%), Specificity (%), Positive

TP+TN
TP+FP+TN+FN

Sensitivity indicates how well the methods correctly detect puddles relative

Predictive Value (:,H,TJripj}?P)7 and Accuracy ( ) measurements.
to all puddle samples. Specificity is a measure of the methods’ capacity
to detect non-puddle conditions, relative to all non-puddle samples passed.
Positive predictive value indicates the fraction of properly detected puddle
samples relative to all samples classified as puddle. Accuracy is a general
measurement that indicates the proportion of proper puddle and non-puddle
classifications out of all samples.

For the case of scene recognition, indicators were computed using the
labels of downloaded images. Thus, for each image in the test scene, there
was one true value and one classified value. For the foreground classifications,
humid and flooded masks were manually drawn for a single frame. These
masks were used to identify truth pixels, that were then compared with

classified pixels in the same frame.

4.3 Results and analysis

4.3.1 Puddle scene recognition
A total of 58 non-puddle and 45 puddle images were obtained from the web

query, as described in Section 4.2.1. Obtained images included disparate
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Figure 4.1: Example of acquired and pre-processed non-pudle (a, b, ¢) and puddle street
images (d, e, f).

image sizes and resolutions, fields of views, pavement types, geographic
locations, and environmental conditions. Querying the web search engine
for street puddles successfully delivered images containing puddles in most
of the cases. The images were processed as discussed on Section 4.2.1. A
sample of resulting images is presented in Figure 4.1).

Annotations made by people when uploading images by naming their
file names accordingly, or by referring to puddles in texts of web pages
where they are placed in, are used by common web search engines to index
such images. These annotations imply an existing classification that can
conveniently be used for research purposes. They were observed to be
precise enough to be used in machine learning and training algorithms to

recognize local flooding scenes.

4.3.2 Puddle scene recognition performance

The size of training and testing sets are shown in Table 4.1. The confusion
matrix of scene recognition classifications can be found in Table 4.2. Table
4.3 lists performance measurements for the performed scene recognition.
Performance measurements refer to the 51 images classified for the test set.

These results are following discussed.
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Sensitivity: Puddle scene recognition was highly sensitive; 91% of
puddle scenes were properly classified as puddles, only 9% of actual puddle
scenes was not properly classified as such. An alarm system based on this
classifier would be able to properly recognize 91% of all pictures referring
to flooding scenes.

Positive predictive value: From the 31 images classified as puddle
scenes, just 20 were actual puddle scenes; resulting in a positive predictive
value of 65%. If an alarm was set on the basis of this puddle detection, 35%
of alarms would be false. This contrasts with sensitivity results; while 9
out of 10 puddle scenes would be detected, only 7 out of ten puddle-tagged
scenes would correspond to actual puddle scenes. If, for instance, this
recognition were used to identify flooding locations for real-time reaction, 3
out of 10 deployed operations would find no flooding.

Specificity: The classification properly detected non-puddle scenes
62% of times, this is a specificity of 0.62. By comparing this measurement
with the sensitivity, it becomes clear that the system has a tendency to
classify non-puddle scenes as puddle-scenes.

Accuracy: The overall accuracy of the technique was 75%; which
implies that the scene recognition failed, jointly in positive and negative
classifications, 25% of the times. The higher sensitivity value with respect
to the specificity value indicated that the recognition performs better on

detecting puddle scenes than non-puddle scenes.

Table 4.1: Training and testing set sizes used in preliminary classification.

Puddle Non-puddle Total

Training set 23 29 52
Testing set 22 29 51
Total 45 58 103

4.3.3 Detected foreground

A series of 443 video-frames was collected, with captures at 1 frame/s.
Start and ending time were 14:18:01 and 14:25:24 CEDT, September 10,
2015. Objective bearing was aprox. 30° S—E. Figure 4.2 shows an example
video frame of the controlled flooding. The footage recorded an area
becoming flooded, during a dry summer afternoon. Non saturated areas

are observable around the puddle area. Different object shadows, including
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Table 4.2: Confusion matrix of classification results.

Truth
Puddle Non-puddle Total
True positives  False positives
g Puddle (TP) (FP) 31
= 20 11
% False negatives True negatives
% Non-puddle (FN) (TN) 20
@) 2 18
Total 22 29 51

Table 4.3: Performance measurements in classification of puddle scene.

Measurement Computation Value
Sensitivity TELFN 0.91
Positive predictive value % 0.65
Specificity TNTi-ij-\;‘P 0.62
Accuracy M% 0.75

those of moving tree leaves and branches, are also present. Seven areas
with different scene characteristics areas are indicated with red squares
in Figure 4.2. Characteristics of these areas are described in Table 4.4.
As a result of the close-range, wide view-angle imaging employed in this
experiment, objective-to-target distance and incidence angle are noticeably
different for each of the sampling windows. This results in objects with
apparent distorted sizes: e.g., tiles of the same size appear to be bigger or
smaller depending on how close they are to the camera. Changes in digital
numbers (DN) of pixels within such areas during the footage are shown in

Figure 4.3 and following described.

Description of sampling windows
Frame 2 Environment at initial state. Dry conditions. No specular
reflections due to wet surfaces. No pedestrians passing by. No visible
droplets.

Frame 30 No water was sprinkled up until this point; "dry", "humid",

"flooded", and "reflecting" sampling windows only present non-shadowed,
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Figure 4.2: Location of sampling windows.
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free of standing objects, paved areas. Signals from these four sampling
windows are similar. DN deviations in the three color channels are small,

with blue mean being the lower, and red mean being the higher, with DN
values ranging from 120 to 160.

The "flooded" sampling window shows narrower deviations than the
other three afore mentioned windows. Apart from the effects of imaging
range and view angle, bricks in this area were covered by a higher amount of
sand. This causes pixels to differ less. Tile edges appear to be comparatively
blurred. The presence of sand in this area is a result of its location along
the local overland flow-path. Sand located elsewhere is dragged towards
this area before rain water enters the sewer.

"Pedestrian" sampling window has wider deviations and lower DN
means. There a is small peak visible in this window, which can be related
to droplets visible in the respective still-frame. These droplets were actually
part of the water being spread over the area during the experiment.

DN mean values of the three color channels in the "in-between" sampling
window are very close to each other, and have a wide distribution. In this
sampling window, DN responses show stronger oscillations as a result of
trees leaves and branches being shifted by the windblown.

The "shadowed" sampling window has the lowest DN means and narrow
deviations. In contrast to other sample windows, mean of red channel
tends to be lower than green and blue channels, with blue channel mean
tending to be higher than the other two channels. This trend is maintained
throughout the footage.

From this frame on, some tiles became wet; means of three channels in
"Humid" and "Flooded" sampling windows start to drop.

Frame 85 "Dry window" signals show a slight increase, possibly related
to natural increments of solar radiation. "Humid" sampling window shows
a signal drop from DN means between 120 and 150 at frame 30, to 100 and
130 at frame 50, plateauing from there on. This is around 12% drop over
20 seconds, or around 6% drop every 10 seconds before plateau. The mean
values drop is about 20 DN.

In the "flooded" sampling window, signals also dropped but did not
reached a plateau. They drop from DN means between 140 and 160 at
frame 35, to 140 and 160 at frame 85, to 110 and 130 at frame 130. This

is around a 20% signal drop over 95 seconds, or around 2% drop every 10
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seconds before plateau. The means drop is about 30 DN. Compared to
"humid" sampling window, the signal drop is less steep but larger.

Contrary to the other two windows with areas sprinkled with water,
mean DN in the "reflecting" sampling window increased. Apparently, this
area became wet until around frame 85. Before that, signal increment was
similar to that of "dry" sampling window.

The increment rate also observed in "pedestrian" and "shadowed" win-
dows is similar to the one in the "dry" sampling window. Peaks in "shad-
owed" sampling window around frame 60 are the result of droplets with

relatively bright responses.

Frame 100 The most important change at this frame is the mean of
DN signals reaching a plateau in the "reflecting" sampling window. Right
after the area within that window is sprinkled, DN means showed a steep
increase of about 25% in just 7 frames, which means an average signal
change of about 4% every second. The series of still frames for this window
clearly shows the strong brightness changes in its pixels.

Frame 160 DN means and deviations in all windows are sustained since
frame 100. The effect of droplets results in higher DN deviations in the
"flooded" sampling window; such droplets are also visible in the still frame
"e" of this window. Droplets disturbing the water mirror in the "reflecting"
sampling window may be also the reason for the oscillations observed in
the DN means and deviations in that area.

Frame 349 and beyond Signal responses are sustained in general.
The effect of a pedestrian walking around, visible in still frame "f" of
"pedestrian" sampling window, caused the signal spikes in its DN means
and deviation. This characteristic signal, easily differentiable from the

patterns discussed above, can easily be isolated.
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Table 4.4: Description and location of sampled areas in video.

Location
Sample (min X, min Y,
in pixels)
1 — Flooded area; a puddle of a certain depth 2176, 950
takes place.
2 — Humid area; wet pavement below over- 1786, 495
saturation.
3 — Sunlight reflecting area; wet pavement reflect- 3032, 735
ing sunshine
4 — Dry area; dry pavement with relatively con- 1923, 2100
stant conditions.
5 — Shadowed area; pavement mostly covered by 2847, 2201
shadows.
6 — In-between area; pavement partly covered by 2500, 2255
shadows.
7 — Pedestrian area; pavement on which a pedes- 511, 1846
trian passes by.




Changes in RGB mean and std. dewv.

in each sampling window
a b cd e f Still-frame "a" Still-frame "b" Still-frame "c" Still-frame "d" Still-frame "e" Still-frame "f"
T T T 1] T T T 1] T T T 1] T T T 1] T T T 1] T 1 T 1]

250
P . ———_—_——_— 1t 1t 1r 1T 1T 1

Dry

Humid

Flooded

Reflecting  Pedestrian

In-between

Shadowed
Digit. num. Digit. num. Digit. num. Digit. num. Digit. num. Digit. num. Digit. num.

ol r— - — 1 1 L 1 L 1 L 1 L 1 L 1 L i

" "
0 50 100 150 200 250 300 350 400
Video-frame number

Figure 4.3: Profiles of different sample sites during the simulated flooding. Each row presents data for the sampling windows defined in Figure
4.2. The first column of plots from left to right shows the profile of DN means of red, green, and blue channels (with lines in respective colors)
and standard deviation ranges (with shadowed areas in respective colors). 5% and 95% percentiles are shown with respectively colored, dashed
lines. Vertical blue lines indicate timing of still-frames presented in the rest of plot columns. Literals 'a’ to ’f’ are used to indicate frames 2, 30,
85, 100, 160, and 349 (see top of plots in first row). A video of this sequence can be found at this URL: youtu.be/hRf-SpdYy9U (Gaitan, 2016).
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GMM and GrabCut classified foreground

GMM detection Foreground detection was done for all frames of the
simulation video. The model parameters were set as follows. History,
which is the number of frames used to build initial background models
was set to 30 so that only dry conditions are considered (see Figure 4.3).
The number of GMM models was set to 5. The considered background
ratio was approximated to 0.7 (see truth masks in Figure 4.6 in Section
4.3.4). The learning rate was set to 0.001 to enforce the model to maintain
a dry background model. Using different parameter sets did not deliver
significantly different puddle detection results.

Some of the changing areas in the scene were detected by the GMM
classification. Detected foreground corresponded to specular reflection
areas, moving tree branches and leaves, and passing pedestrian. The
position change of the hose employed for the flooding experiment was
also detected. Most of the humid and flooded areas were not detected.
Figure 4.4 shows detected foreground for frame 349. GMM classification
differentiated reflecting and pedestrian pixels from the background. It
did not satisfactorily detect humid and flooded areas. Changes in the
DN responses of specular reflections associated with wet ares are clearly
greater than those becoming humid or flooded. Such differences were
less accentuated when responses from pedestrian pixels were compared to
flooded and humid pixels. DN mean changes due to wetness and flooding are
bigger than those due to the pedestrian passing by, but the latter delivers
more extreme values (see Figure 4.3). The detection of the pedestrian and
the missed detection of humid and flooded pixels may be related to the

extreme values produced by the pedestrian passing by.

An analysis of the performance of this detection is presented in Section
4.34.

GrabCut detection This interactive classification method builds back-
ground and foreground models for a single image frame on each iteration.
The method was used for frame 349, which presents dry, humid, flooded,
and reflecting areas, and pedestrian passing by. One detection was done
setting foreground seeds including humid and flooding areas. A second
detection only included flooded areas in the foreground seeds, and humid
areas in the background seeds. This was done to test whether GrabCut

was able to differentiate humid from flooded areas in that particular frame.
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Figure 4.4: Detected foreground for frame 349 using GMM. Visible pixels are the ones
classified as part of the foreground. Black pixels were classified as background.
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Results of this classification are shown in Figure 4.5.

In simultaneous humid and flooded detection, GrabCut classification
roughly excluded the block on the sewer from the background. A part of it
was still visible in the detection, in spite of having been manually labeled
with seeds as background. A small paved area to the left of the frame was
also classified as foreground. It is possible that this area was unintentionally
sprinkled with water before starting the simulation.

Regarding the second GrabCut classification, performed specifically
to distinguish flooded and humid flooded areas, results showed that this
technique was not able to perform such differentiation. Only the areas
in and around the background seeds, passed within the initial polygon
mask, where enforced as background in the final classification. Most of the

remaining area within that polygon was classified as foreground.

4.3.4 Puddle detection performance

A comparison of GMM and Grabcut performance was made for frame 349
(see Figure 4.3). Three truth masks were used for computing performance
results of foreground detection in frame 349. Figure 4.6 shows truth masks
drawn for that frame. Four different sets of performance metrics were
computed for the GMM classification: detection of humid plus flooded
areas, only-humid areas, only—flooded areas, and reflecting areas. Two sets
of performance measurements were obtained for the GrabCut classification:

The selection of those sets was made given that GMM classification
tended to detect reflecting areas, omitting humid and flooding ones, and
GrabCut returned well-detected humid and flooded areas, without being able
to differentiate one from another. Table 4.5 shows computed performance
measurements. Those measurements are analyzed further.

Sensitivity GMM detection showed very low sensitivity overall. The
highest sensitivity was delivered for the classification of reflecting areas,
where 10% of them were properly detected. As this is a pixel-level classifica-
tion, this low value can be related with the existence of non-reflecting pixels
within the area used as truth-reflecting mask. If this approach was used
at its current status in, e.g., a urban flooding alarm application, it would
miss puddles 90 to 100% of the times. If all puddles were reflecting, only
10% of their area would be properly detected. It is worth noticing that the
GMM performance values in the two first columns of Table 4.5 are highly
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Figure 4.5: Puddle detection using GrabCut for humid—plus—flooded detection, and
only—flooded detection. The area of initial mask is enclosed by a white polygon in top
frames. Background and foreground seeds are shown in black and gray, respectively.
Top-left frame shows how the foreground seeds include humid and flooded areas in
the first GrabCut detection. Top-right frame shows the only—flooded areas used as
foreground seeds in the second GrabCut detection. Bottom-frames show respective
detected foregrounds.
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similar. This is the result of the few pixels within the flooded truth mask
classified as foreground. GrabCut classification was highly sensitive in both
cases: for detecting humid plus flooded areas, and for only flooded areas. It
would return 99% of the scene areas covered by humid plus flooded areas if

it were used for a flooding alarm system.

Positive predictive value Part of the foreground classified using
GMM referred to reflecting areas. As reflecting areas are part of humid
areas, their GMM detection has a much better positive predictive value than
sensitivity. From all reflecting-classified pixels, half corresponded to non-
reflecting true pixels. GMM’s positive predictive value on detecting flooded
areas is as low as its sensitivity (0); flooded areas showed few reflections.
Additionally, GMM-detected foreground included tree— and pedestrian—
related areas. Positive predictive value of GrabCut classification was high
for the humid plus flooded detection, but extremely low for the only-flooded
detection. From all pixels classified as flooded, only 6% were actually in
flooded areas. At its current state, the efficiency of this approach to detect
humid pixels is not pertinent for urban flooding. As rainfall moistens the

ground, all video frames would return humid detected areas.

Specificity GMM classification delivered high specificity values, espe-
cially on flooded and reflecting areas. Areas classified as foreground by this
technique were small when compared to the actual truth masks. As flooded
and reflecting truth masks were less extensive than the humid mask, the
chances for the background classified areas to actually coincide with the
true background were bigger. Such specificity values would be useful for
an actual application if they would follow higher sensitivity and positive
predictive values. That is the case of the GrabCut detection of humid plus
flooded areas. On top of high sensitivity and positive predictive value, Grab-
Cut delivered 99% specificity. This means that almost all pixels classified
as background were actual background pixels. The high specificity obtained
by the GrabCut classification on detecting flooded pixels contrasts with its
extremely low positive predictive value. In spite of the high specificity and
sensitivity values, just detecting humid areas does not provide an advantage
for detecting puddles for urban flood management.

Accuracy The moderate accuracy achieved by the GMM classification
on detecting humid plus flooded and only flooded pixels responds to the

also moderate positive predictive value in those both cases. The very high
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Figure 4.6: Manually—set ground truth masks for frame 349. In green: humid area. In
blue: flooded area. In red: reflecting area.

accuracy of this type of classification on detecting flooded and reflecting
areas can be explained by the difference of scales of TN with FP and
FN, which is almost three orders of magnitude. Accuracy of GrabCut
detection of humid plus flooded pixels reflects the rest of high performance
measurements. Finally, GrabCut accuracy on detecting flooded pixels

mirrors its very high sensitivity and very low positive predictive value.

4.4 Conclusion and outlook

This chapter tested the potential of using crowed-sourced-type images and
mainstream videos to obtain information about localized urban flooding inci-
dents. Two main methods were employed: scene recognition and foreground
detection. Scene classification was applied to a dataset of images queried
in a common web search engine. Foreground detection was performed on
the video footage of a simulated street flooding.

Scene recognition results are promising. In spite of the limited training
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Table 4.5: Performance measurements of puddle classifications.

GMM classification GrabCut classification
};}11;1)130 (; Humid Flooded Reflecting 111:11121((11(\ d‘ Flooded

TP 5.90 x 107 5.88x 10* 1.34 x 102 5.00 x 10% 3.31 x 105 2.56 x 10°
TN 6.76 x 106 7.01 x 105  9.79 x 10°  9.66 x 10° 6.31 x 10°  5.88 x 106
FP 4.44 x 10 4.45 x 10*  1.03 x 10° 5.34 x 10* 5.00 x 10°  4.02 x 106
FN 3.29 x 106 3.04 x 105 2.59 x 10°  3.96 x 10° 3.82 x 10*  3.05 x 103
Sensitivity 0.02 0.02 0.00 0.11 0.99 0.99
Pos. pred. val. 0.57 0.57 0.00 0.48 0.87 0.06
Specificity 0.67 0.70 0.97 0.96 0.99 1.00
Accuracy 0.67 0.67 0.96 0.96 0.94 0.60

and test sets and the straightforward SIFT-KNN classification, scene recog-
nition achieved a sensitivity of 90%. Building training sets was facilitated
by annotating images as they were returned by each of both queries: "street
puddle" and "street". Scene recognition indicated whether an image depicts
a puddle scene or not. This technique does not provide information about
puddles extent within the image. Its application can provide automatic
detection of location and timing of flooding incidents. It can also be used
to select images to be subjected to a puddle extent recognition.

These results prompt further exploration on the use of this technique in
real applications for flooding impact prevention. This technique proved to
be highly versatile. It worked with a set of disparate images, produced by
different hardware, and shot at different locations, environmental conditions,
and imaging setups. Considering this is a first implementation of the method,
achieved high sensitivity highlights the usefulness of scene recognition for
automatic puddle detection.

The usefulness of this technique should be further investigated by in-
creasing sample-size and diversity of the image dataset, randomly changing
the composition and size of training and test sets, and studying the impact
this has on performance measurements. Nevertheless, achieved sensitiv-
ity results are surprisingly high for this set of images considering that it
was grabbed from a straightforward and unrestrained manual query in a
common search engine.

Future research should increase the data set and test other classification
techniques such as Bayesian networks, Support Vector Machine, and deep
learning. Image sources such as Weather Underground, Twitter, Twitpic,

Instagram, and YouTube may be used.

Foreground classification delivered mixed results. GMM required the
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definition of a small set of numeric parameters, delivering classified fore-
grounds for the series of frames in the video. GrabCut required manual
input of a foreground-enclosing polygon and foreground and background
seeds, delivering the classified foreground of a single video frame. In this
sense, GMM classification is a more appropriate technique for an eventual
city-wide flooding detection applications as it requires fewer manual inputs.

However, the best GMM performance, achieved on the detection of
reflecting areas, was just moderate: 48% of pixels classified as reflecting
were actual reflecting pixels, 10% of actual reflecting pixels were classified
as such, and the accuracy on doing so was 96%. The detection of flooded
areas had a sensitivity close to 0%.

GrabCut exhibited a remarkably high performance on detecting humid
areas, while only 6% of all flooded-classified pixels were actually in the
flooded area. At its current state, this approach has a very limited usefulness
in an actual city-wide application.

Further research must be conducted in order to achieve satisfactory
performances on automatic detection of flooded extents in videos. DN
responses in characteristic areas seem to bear enough differences to dis-
tinguish flooded from humid areas. Signal filtering can be employed to
that end. Additionally, the effect of GMM parameters on the classification
performances requires further investigation.

Results obtained by this chapter suggest that image and video informa-
tion, like crowd-sensed pictures and surveillance footage, can be used to
retrieve important information about urban flooding incidents. These data,
and required computer vision tools, are currently within reach of diverse
cities worldwide, and represent an opportunity to leverage existing sensing

infrastructure to better understand and prevent urban flooding impacts.
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A precise understanding of the processes leading to urban flooding is key to
formulate efficient measures to adapt cities to extremer weather, growing
population densities, and aging infrastructure. Existing drainage models are
often poorly calibrated due to the lack of data on water level and flow. This
hampers their ability to predict when and where flooding can be expected
on the streets. In this scenario, risk based approaches have begun to assist
urban water management in recent years; there is a growing awareness
of the usefulness of data driven approaches, given inherent uncertainties
associated with complexity of urban hydrological response. Such approaches
emerge as the sensitivity and effectiveness of urban flooding models and
climate proofing measures require proper evaluations. These approaches
entail data driven research, employing stochastic evaluations of available
information. In this dissertation the potential of crowdsourcing and open
data sources to provide key information about the timing, location, and
extent of urban flooding incidents is evaluated.

Unconventional data sources comprise a wealth of information that can
help to explain the occurrence of urban flooding incidents, particularly when
availability of direct flood extent measurements and validity of hydraulic
models are limited. Insights derived from alternative information sources
can be integrated into urban flooding models, enhancing their accuracy
and usefulness in the assessment and management of flood risk and climate
change impacts. Flood incident data could indicate critical urban areas or
drainage components to be retrofitted or preventively maintained, in order

to reduce urban flooding damage.

This thesis investigates to which degree overland flow models, open
spatial datasets, and publicly available pictures and video footage, can
explain timing, location, and extent of localized flooding in cities. Part
of the evaluation is based on data from Rotterdam and Amsterdam, two
delta cities in The Netherlands, characterized by a flat topography, and
increasing pluvial flooding occurrence. This thesis tackles three research
questions: 1. What is the relation between topographic gradients and urban
flood occurrence in a delta city? 2. To what extent can publicly available
datasets explain the occurrence of urban flooding incidents? 3. To what
extent are mainstream computer vision techniques capable of automatically
detecting flood occurrence in imagery collected from web queries and typical

street video footage?
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The three respective main findings delivered in this thesis, their impor-
tance, and their implications, are discussed in the following three sections.

5.1 Topography does not explain flooding

incidents distribution

The first research question this dissertation tackles is whether overland
flow-paths constrain the spatial distribution of flood incidents in the case
of a delta city, characterized by small ground level variations. The spatial
distribution of flooding incident reports was related to the size of catchment
areas along an urban overland flowpath network. A dataset of 21,577 flood
incident reports over a period of 8 years for the city of Rotterdam was used
for this analysis.

Flooding reports were used as a proxy to identify the occurrence of urban
pluvial flooding. Underlying conditions at locations with higher flooding
incidence should indicate key factors controlling flooding. As topography
has been highlighted as a key urban flooding factor by previous studies, the
first question tackled in this thesis is whether overland flowpath network
structure is linked to the incidence of flooding reports.

Results show that the spatial distribution of flooding reports was clus-
tered, but this pattern did not respond to urban overland flowpath gradients.
Under the assumption of a blocked underground drainage system, a higher
number of flooding incidents was not associated with low terrain elevations,
in the flat topography of a delta city. Although urban topography may be
assumed a priori to play a relevant role in the processes leading to urban
flooding, it does not explain the incidence of flooding reports for the case
study area in this analysis. This result contrasts with findings obtained by
studies done in areas with larger elevation differences in previous studies.

Obtained results can be explained by the typical small elevation differ-
ences between streets of delta cities. Local flooding is expected to occur
downstream locations of overland flow-paths, but its depth and duration is
probably smaller than in cities with bigger elevation differences. Besides,
this study was based on a register including flooding reports from eight
complete years, not only during heavy rain events. Failures in the sewer
infrastructure, such as inlet blockages, pump malfunctions, and pipe bursts,

could have influenced the overall landscape of flooding locations.
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This thesis shows that, in absence of validated drainage models, high
resolution digital elevation models can be used to provide detailed informa-
tion to model overland flow paths. More importantly, this thesis introduces
an implementation of a spatial autocorrelation test, constrained to the
overland flow-paths network space retrieved from such paths. This test can
identify the strength and uncertainty of relationships between urban areas

connected by inferred urban ephemeral streams.

Given the non-hydraulic nature of the model implemented in this thesis,
and the assumption made, it is crucial to confront these results with
validated hydraulic simulations in other delta cities. Additionally, as soon
as rich flood incidents data becomes available, similar research should
be also performed in environments with more accentuated slopes where

topography might play a stronger role than in delta cities.

This implementation can also be used in other problems related to the
ephemeral network of overland flow paths in cities. For instance in the
case of rainwater pollution effects and epidemiology of water-born diseases
in urban environments. The devised approach provides insights into the
connectivity of sporadic overland flow streams that may carry pollutants or
pathogens to vulnerable, unexpected locations. Models of the connectivity
of overland flow paths and puddles can thus support long-term retrofitting

measures, preventing maintenance, and enhanced real-time response.

The use of citizen reports in this implementation shows the value of
crowd sensed data. Municipalities, and other organizations in charge of
urban water management, can benefit from the use of crowd sensed data.
Telephonic reports made by citizens to the emergency call centers can be
used as a proxy to assess the vulnerability of individual streets to urban
flooding. This in turn can support the design of adaptation measures
for better protection against heavy weather. Other data sources, such as
Twitter, Instagram, and news media, should be better explored and used

in such models.

5.2 Open spatial data partially, significantly

explain flooding incidents

The second question addressed in this dissertation is to determine to

which degree openly available spatial datasets, including environmental and
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socioeconomic information, explain the occurrence of flood incident reports

by using exploratory data analysis.

Multivariate analysis was applied to mine diverse open spatial databases.
Conditions underlying the occurrence of flooding incidents are modeled in
terms of available open information, including radar rainfall imagery (1
km? spatial resolution grid, every 5 min), cadastral (individual building,
waterbodies, and green areas geometric shapes, updated once a year), and
socioeconomic data (from 1 Ha to 0.25 km? spatial resolution grids, updated
once a year). Results show that the incidence of flooding reports in urban
areas is most strongly and significantly associated with imperviousness
degree and proximity to outflow points into main surface waters. These
associations explain up to half of the spatial variability in flooding incidents,

2

aggregated during the event and in a sampling grid of 1 km~ spatial

resolution.

Open spatial data deliver useful, significant information for explaining
the spatial distribution of flooding reports. While rainfall intensity and
socioeconomic factors, such as population density and building age, were
expected to influence the occurrence of flooding incidents, they did not
deliver significant explaining performance in the analyses done in this thesis.
This mining of spatial data also indicates that depression filling is not
an important factor for urban flooding in the case of Amsterdam. This

confirms results delivered by the research of chapter 2.

Results were based on data for a single rainfall event. Response variable
samples provided enough robustness to support significant statements about
the relationship of flooding occurrence and imperviousness, but applying
partitioning machine learning techniques, such as classification trees, require
larger response variable samples. Likewise, the limited amount of available
response and rainfall data also restricted increasing granularity of the
analysis. A larger response dataset can also allow for the use of prefiltered
flooding reports, via a manual or machine-driven classification of the text
information they include. This can retrieve more detail on the type of
incidents being assessed, making their links to explanatory variables more
clear.

This limitation on the amount of response data can be overcome by
analyzing flooding incidents during longer periods, including data from

several storms. Enlarging the amount of response data can also be achieved
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by including additional data sources: Twitter, Facebook, and news media.
However, their use implies laborious preprocessing and geolocating efforts,
as these data are usually unstructured and have poor or null spatial data.
On the other hand, open spatial datasets for the environmental and social
explanatory variables would afford for such techniques as these data are
updated every year and are normally available at every single pixels of a 1
km? sampling grid.

An important contribution presented in this thesis is the routine for
spatially aggregating overland flowpaths and respective contributing areas
for multivariate analysis. Its usefulness is proven by the significance it
brings in explaining flooding reports. The routine can also be useful for
future pattern recognition studies using big data in the urban environment,

in which overland flow hydrology is of interest.

Modelling of urban flooding can integrate variables from open spatial
data sets to enrich the description of flooding phenomena. Open spatial data,
including high resolution DEMs, provide insights into patterns of urban
flooding incidents, complementing urban hydraulic models that represent
only some of all possible failure mechanisms leading to urban flooding.
The use of open spatial data can support the devise of more realistic
representations of the urban environment. They include information about
the layout of components such as building age, population density, and
imperviousness, which are not taken into account in flood risk analysis only

based on urban drainage models.

5.3 Street imagery provides valuable

information on flooding incidents

The third research question addressed in this thesis is whether mainstream
image and video recording, and well-known and accessible computer vision
tools, can deliver key information about localized urban flooding incidents.
Street imaging data sources and computer vision analyses have the po-
tential to be used for detecting water on the streets. Such analyses were
implemented using Python and OpenCV.

After properly set, a straightforward computer vision technique auto-
matically detected the occurrence of urban flooding in a set of street images

manually downloaded from an Internet image search engine. The use of
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local descriptors and an undemanding K-nearest-neighbor classification
algorithm provide promising results with a sensitivity of 91%. This shows
that puddle scenes can be spotted in pictures obtained in an unstructured
manner, with training set made of just 23 and 29 image samples with and

without a puddle, respectively.

Another mainstream computer vision technique was not able to sat-
isfactory detect puddle extents automatically in a video-recording of a
street flooding simulation, performed under controlled conditions. In this
technique, the Gaussian Mixture Models had a rather limited performance.
Either if attempting to detect flooded areas in a series of video frames
or in a single still frame, with little or high manual preliminary input,
foreground extraction based in Gaussian Mixture Models does not bring
useful results. The assumptions in the modelling of backgrounds in these
techniques probably suit better the classification of pixel sets corresponding
to objects with bigger digital number differences, such as grass and people,

than those between wet and dry street conditions.

Results obtained provide clear evidence that computer vision techniques
are able to detect flooding incidents in images typically available on the
Internet. The employed technique for recognizing flooding scenes in web
images does not require expensive recording devices, predetermined pho-
tography parameters, nor time-consuming preliminary human intervention.
This elicits the opportunity of applying this techniques for quick detection
of flood locations from web information sources, for flood management and
insurance purposes. The potential value of both this information resource
and the explored techniques will continue to increase due to growing social

and surveillance sensing.

The puddle detection success in this study is limited to a binary classifi-
cation. It discriminates whether a picture describes a flooding scene or not.
Further research must be performed in order to detect the actual extent of
a puddle in a video or in a picture. Additionally, the size of both training
and test sets in the scene classification must be enlarged preferably to the
magnitude of tens of thousands of images. This can be done by crawling the
web for additional material, or by exploiting installed sensing infrastructure,
such as cameras in traffic surveillance systems and in networks of amateur

weather stations.

Further research can compare the performance of scene recognition
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based on KNN classifications used in this study with the outcome of other
classifiers, such as Support Vector Machines, Bayesian, and deep neural
networks.

Retrieving the extent of puddles requires additional research. The
OpenCV Python libraries available for applying GMM to foreground detec-
tion are not flexible enough to allow a non-computer-scientist researcher
to straightforward use them in puddle recognition problems. Further ex-
ploration of open computer vision frameworks is required to successfully
extract the extent of a scene covered by a puddle.

An interesting research outlook is obtaining 3D representation of puddles
directly from images. By calibrating the camera with which recordings are
made, it is possible to retrieve a 3D representation of the recorded scene.
Combining the area covered by a puddle with a detailed digital elevation
model, an approximation of the puddle volume, and its changes across time,
can be extracted.

Water managers, urban planners, and other city stake holders can
embrace the use of installed infrastructure and available image stock for
mining the location and timing of pluvial flooding. Retrieved information
can be used for prioritizing areas with recurrent flooding in need of urgent
maintenance and retrofitting measures. To enrich the availability of key
flooding information for real-time response, or for posterior research, city
authorities could plan citizen sensing campaigns to be triggered during
heavy weather events. Particular websites, applications, or Facebook and
Twitter hashtags could be used to that end, which can help on aggregating
geotagged images depicting urban flooding incidents, uploaded by citizens
from their smartphones.

To conclude, this thesis has explored and presented alternative concepts
and technologies, which enhance the modelling of urban flooding incidents
in lowland urban environments. This thesis shows that crowd sensing,
open spatial data, and street imaging represent highly valuable information
sources to model, explain, and predict urban pluvial flooding. Developed
and implemented methods are repeatable, and can be implemented in an
information infrastructure of a smart city in need of adaptation measures

against extreme rainfall events.
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