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Abstract

Flapping-wing kinematics for insect flight has been studied for decades, especially since engi-
neers became interested in flapping-wing micro air vehicles (FWMAVs). Previous work mainly
focused on understanding kinematic patterns employed by different insects from the perspective
of their trajectories and aerodynamics, and on optimization of kinematic parameters to enhance
the understanding. However, systematic research on the impact of different wing shapes and cor-
responding kinematics is incomplete. In this paper, we search for energy-efficient kinematics for
hovering flight for a series of wing shapes which are described by a Beta probability density func-
tion and the shape parameter r̂1 (the non-dimensional radius of the first moment of wing area) to
guide the wing design for FWMAVs. Three kinematic patterns are considered in the optimization:
(1) fully active and harmonic kinematics for rigid wings, (2) active kinematics with linear torsion
from the wing root to wing tip, (3) kinematics with passive pitching motion. We found that for
the first kinematic pattern more efficient hovering flight can be achieved by the wing shape with
a larger r̂1, a smaller frequency and no heaving motion, and linearly torsional pitching leads to
more energy-efficient flight compared with kinematics with constant pitching amplitude along the
leading edge. Additionally, optimal hovering kinematics with passive pitching is accompanied by
heaving motion irrespective of its wing shape, which is reflected in insect flight. Although it is
important to generate sufficient lift force for hovering with passive kinematics, the presence of the
heaving motion dramatically increases the energy consumption.

1 Introduction

As one of the most eminent fliers, insects deeply impress us with their ultralight body, agile and
highly efficient flight as well as capabilities of hovering and low-speed forward flights. Insect wings
play a crucial role in their excellent flight capabilities and have fascinated biologists and engineers for
centuries. Development of high-speed video cameras makes it possible to observe the trajectory of a
flapping-wing in detail. Lots of experimental data of flapping-wing kinematics was collected in this
way. To better understand why insects adopt certain kinematics and to find more energy-efficient kine-
matics for FWMAVs, sinusoidal motion was assumed most frequently to simulate the flapping-wing
kinematics in experimental numerical [1, 2] and analytical [3] studies of flapping-wing aerodynamics,
especially for FWMAVs [4–6]. Optimization of the flapping-wing kinematics for given flight conditions
was also widely conducted. For instance, Sane and Dickinson [7] conducted experiments to determine
the optimal wing kinematics of the fruit fly, Berman and Wang [8] investigated energy-minimizing
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kinematics for the given morphology of fruit fly, bumblebee and hawkmoth, and Khan and Agrawal
[9] determined the optimal hovering kinematics for FWMAV by means of perturbing kinematic param-
eters in a sequence of experiments using a robotic flapping-wing device. Comparing those observed or
optimized results for different insects with different morphologies, there exists a diversity of kinematic
parameters, stroke plane pattern, flapping frequency and amplitude.

As the easily accessible aspect of insects wings, the wing morphology was studied systematically
and thoroughly by several biologists [10–12]. A quarter-ellipse was widely used by researchers to
represent the wing shape of insects like the fruit fly [13], bumblebee [14] and hawkmoth [8, 15]. In the
paper of Ellington [10], the Beta probability density function (BPDF) was proposed to describe wing
shapes based on experimental data of different insects’ morphological parameters. However, no further
study was done to explore the effect of wing shape on the optimal kinematics for hovering flight. In
this work, a quasi-steady aerodynamic model [8] is used to estimate the aerodynamic loads and power
requirement for hovering flight. To minimize the power consumption while producing sufficient lift
force for hovering flight with harmonic kinematics and BPDF defined shapes, we employ a hybrid
optimization method, i.e., a stochastic global optimization method based on the subset simulation
algorithm [16, 17] for the rough solution and a gradient-based optimization method for the precise
global solution.

This paper is organized as follows. In the second section, the morphological description of the wing
model is given. In the third section, a aerodynamic model for calculating aerodynamic loads and power
consumption and three related coordinate systems are introduced. In the fourth section, the detailed
kinematics and optimization model are described. Three hovering kinematic patterns, including fully
active flapping kinematics, kinematics with linear torsion along wing span and kinematics with passive
pitching, are studied in the optimization. Finally, comparisons between optimal kinematics with
different kinematic patterns are given to illustrate the effect of wing shape variation on the optimal
hovering kinematics .

2 Wing Morphological Description

The morphology of flapping-wings plays an important role on generating aerodynamic forces and on
flight control, especially the wing shapes and moments of inertia. Biologists have been trying to
find the inherent law that governs the morphology of different insect wings for centuries, and a lot
of work has been done on the data collection and analysis on the wing morphology. Among them,
non-dimensional radii of the kth moment of wing area were used to characterize the different wing
shapes [10, 11], which is defined as,

r̂k =

(∫ 1

0

ĉr̂kdr̂

)1/k

, (1)

where ĉ = c/c̄ and r̂ = r/R are non-dimensional forms of chord length c and distance r from referenced
wing chord to wing base, respectively, with c̄ representing the average chord length and R the wing
span. Ellington [10] studied wings from several species of insects, including Coleoptera, Diptera,
Hymenoptera, Lepidoptera, Neuroptera and Odonata, and found that there exist strong relations
between the non-dimensional radii of moments of wing area for a diverse collection of insects, even for
some birds and bats. More specifically, for wings of different species studied by Ellington, r̂1 and r̂2
range from 0.4 ∼ 0.6 and 0.45 ∼ 0.62, respectively. Furthermore, r̂2 can be approximately expressed
as a function of r̂1 for the same wing:

r̂2 = 0.929r̂0.7321 . (2)
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In addition, Ellington [10] proposed to use the BPDF to describe the non-dimensionalized wing
shape, as in,

ĉ(r̂;α, β) =
r̂α−1(1− r̂)β−1∫ 1

0
r̂α−1(1− r̂)β−1dr̂

, where, α = r̂1
r̂1 − r̂22
r̂22 − r̂21

, β = (r̂1 − 1)
r̂1 − r̂22
r̂22 − r̂21

. (3)

Considering the relationship between r̂1 and r̂2 in Eq.(2), the chord length of an insect wing with
the wing span R and average chord length c̄ can be simply parameterized by a single parameter, i.e.,

c(r; r̂1) = c̄ · ĉ
( r
R

; r̂1

)
. (4)

The hawkmoth (Manduca sexta) is one of the most studied insects by biologists and referenced by
man-made FWMAVs because of its moderate size and eminent hovering capability. In this work, these
morphological parameters of hawkmoth wing [18], including the span length R = 0.0519m, aspect ratio
AR = 2.825, wing mass mw = 5.79× 10−5kg and moment of inertia of wing Iφ = 2.228× 10−8kg ·m2,
are used as basic parameters to construct wing shapes. Figure 1 shows the real wing shape of the
hawkmoth and 5 different wing shapes described by the BPDF with r̂1 = 0.40, 0.447, 0.50, 0.55, 0.60.
The wing shape for r̂1 = 0.447 coincides very well with real wing shape of hawkmoth, and the slight
difference between them is due to the straight leading edge for the BPDF described wing shape.

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

Span length (m)

Ch
or

d 
le

ng
th

 (m
)

0.40

0.500.447

0.55

0.60

Real Hawkmoth
wing shape

Figure 1: A series of wing shapes (gray) described by the BPDF with same R and c̄ but different r̂1.
A comparison is made between real hawkmoth wing shape (black) and wing shape described by the
BPDF with r̂1 = 0.447 which was the measured value of hawkmoth wing by Willmott and Ellington
[18].

Admittedly, there are limitations of the BPDF described wing shapes to completely duplicate some
wing shapes because of straight leading edge and zero value at either end of the interval. Nonetheless,
the wing with straight leading edge is easy to fabricate and hence a favorite of engineers, and two
limitations mentioned above have negligible effects when using the quasi-steady model to calculate
aerodynamic loads. Consequently, it is reasonable and convenient to use Eq.(4) to describe wing
shapes with single shape parameter during the optimization.
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3 Coordinate Systems and Aerodynamic Model

To optimize kinematics with different wing shapes described above, a quasi-steady aerodynamic model
[8, 19, 20] is used to calculate aerodynamic loads. As the aerodynamic model uses the local pitching
angles, velocities and accelerations of a wing strip to calculate the resultant loads, transformations
are needed between this local coordinate system (CS) and the global CS. Therefore, these CSs related
to transformations will be first described and those local information required for the calculation of
aerodynamic loads will be derived as well before introducing the quasi-steady model.

3.1 Coordinate Systems

Assuming the wing is divided into many infinitesimal rigid strips, the kinematics of each strip can be
described with three Euler angles, i.e. sweeping angle φ, heaving angle θ and pitching angle η. These
angles and three involved CSs are illustrated in Figure 2. The global CS x− y− z is fixed at the wing
root, and its x axis coincides with the projection of the leading edge on the horizontal plane while the
wing is at rest, the z axis is perpendicular to the stroke plane and upward, and the y axis is defined
by the right-hand-rule. The co-rotating CS xc − yc − zc rotates with the wing, which is the result of
three successive rotations around different axes. Three successive rotations can be denoted as three
rotation matrices, i.e. Rφ → Rθ → Rη:

Rφ =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 ,Rθ =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 ,Rη =

1 0 0
0 cos η − sin η
0 sin η cos η

 . (5)

The angular velocity of the wing can be expressed as the sum of these successive angular velocity
vectors, then its coordinates expressed in the co-rotating CS are obtained by transforming three
angular velocity vectors to the co-rotating CS, i.e.,

[ωxc
, ωyc , ωzc ]

T
= RT

ηRT
θ RT

φ

[
0, 0, φ̇

]T
+ RT

ηRT
θ

[
0, θ̇, 0

]T
+ RT

η [η̇, 0, 0]
T
. (6)

One strip is chosen to illustrate the velocity and acceleration expressed in the local CS x′− y′− z′
at its geometric center P , as shown in Figure 2. First, the absolute velocity at P expressed in the
co-rotating CS can be obtained like this,

[vxc
, vyc , vzc ]

T
= [ωxc

, ωyc , ωzc ]
T ×

[
r, 0,− 1

2c(r; r̂1)
]T

(7)

where vzc and −vyc are exactly velocity components vx′ and vy′ in the local CS. By differentiating is
Eq.(7) with time, acceleration components at P expressed in the local CS are obtained as follows:

ax′ = −r(θ̈ cos(η)− θ̇η̇ sin(η) + φ̈ cos θ sin η − φ̇θ̇ sin θ sin η + φ̇η̇ cos θ cos η), (8a)

ay′ = r(θ̈ sin(η) + θ̇η̇ cos(η)− φ̈ cos θ cos η + φ̇θ̇ sin θ cos η + φ̇η̇ cos θ sin η) (8b)

− 1
2c(r)(η̈ + φ̈ sin θ + φ̇θ̇ cos θ).

3.2 Aerodynamic Model

When a flapping-wing is accelerated or decelerated, the added mass effect has to be considered for
aerodynamics analysis. Referring to the added mass for thin rectangular plate [21], the added mass
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Figure 2: (a).Graph of three Euler angles and two related CSs. The gray shape represents the flapping-
wing. P is the geometry center of the selected strip. The global CS, co-rotating CS are denoted as
x− y− z and xc− yc− zc, respectively. It should be noted that both magnitudes of θ and η shown in
the figure are negative according to the right-hand-rule. (b).Definitions of circulation (Γ), co-rotating
CS x− y − z and axes for added mass (modified from [19]).

tensor M per unit span length for the flapping wing is given as follows:

M =

m11 m12 m16

m21 m22 m26

m61 m62 m66

 =

0 0 0
0 π

4 ρairc
2(r; r̂1) 0

0 0 9π
128ρairc

4(r; r̂1)

 , (9)

where ρair is the density of air (1.29kg/m3), and mij represents the added mass induced load in the
ith direction on the wing due to a unit acceleration in the jth direction of the wing. Subscripts ”1”
and ”2” denote translation along x′ and y′ axes, and ”6” denotes the rotation around the leading edge,
as shown in Figure 2(b). Based on above definition, the two-dimensional quasi-steady aerodynamic
model is used to calculate aerodynamic loads for the flapping-wing by integrating loads of each strip,
as in,

Fx′ =

∫ R

0

[
−ρairvy′Γ−m11ax′ +

(
c(r; r̂1)

c̄R
mw +m22

)
vy′ η̇ − F vx′

]
dr, (10a)

Fy′ =

∫ R

0

[
ρairvx′Γ−m22ay′ −

(
c(r; r̂1)

c̄R
mw +m11

)
vx′ η̇ − F vy′

]
dr, (10b)

τη =

∫ R

0

[
1
4c(r; r̂1)ρair

√
v2x′ + v2y′Γ−m66η̈ + (m11 −m22)vx′vy′ − τv

]
dr, (10c)

where the quasi-steady model divides aerodynamic loads into four terms: (1) loads for an inviscid flow,
(2) inertial loads, (3) loads due to Coriolis effect, (4) viscous loads. It can be found that aerodynamic
forces are decomposed into components in x′ and y′ directions for convenience since added mass in
Eq.9 is defined in the local CS. Then, the lift force L and drag force D can be easily obtained by
transforming Fy′ and Fx′ by the angle η?, as in Figure 2(b).

5



International Micro Air Vehicle Conference and Flight Competition (IMAV2013)

17-20 September 2013, Toulouse, France

To calculate the power consumption of hovering flight, the moments of inertia of the wings are
required. Currently, we know the measured moment of inertia with sweeping motion Iφ for the wing
shape with r̂1 = 0.447. If the mass is assumed to be uniformly distributed, the nominal moment of

inertia INφ can be calculated by
∫ R
0
R−2ARmwc(r; r̂1)r2dr. However, INφ is larger than the measured

Iφ due to inhomogeneous mass distribution for insect wings. To revise INφ , INθ and INη for different
wing shapes, a correction factor is introduced:

λ =
(
Iφ/I

N
φ

)∣∣
r̂1=0.447

. (11)

In addition, aerodynamic torques τφ and τθ can be calculated approximately by τφ = sgn(φ̇)
∫ R
0
rdD

and τθ = −sgn(θ̇)
∫ R
0
rdL. Referring to the definition in [8], the power consumption which is estimated

by two terms: (1) power needed to perform rotation in a vacuum, (2) and the power used to overcome
aerodynamic forces, is given in a mass-normalized form,

P̄ (t) = Ξ

 1

mt

∑
i=φ,θ,η

Ωi

(
λINi Ω̇i − τi

) , (12)

where Ξ[·] is a predefined function whose value is 1 for positive value and 0 for non-positive, Ωi denotes
the angular velocity of corresponding rotation, and mt is the total weight that wings have to bear (here
we use the body weight of hawkmoth mt = 1.648 × 10−3kg). For fully active kinematics, the whole
flapping-wing system can not store energy according to the definition Ξ[·]. Specially, for the passive
pitching kinematics the power consumption is estimated by neglecting the term λINη ηη̇ representing
the kinetic energy of pitching rotation.

4 Kinematics Description and Optimization Models

4.1 Kinematics Description

Based on the definition of Euler angles in section 3.1, sinusoidal motions are assumed for sweeping
and heaving motions, as in,

φ(t) = φm sin(2πft), (13a)

θ(t) = θm sin(4πft− 1
2Nπ), (13b)

which define the flapping motion with the figure of ”∞” and ”banana” shape of motion while N takes
the value 0 and 1. Both shapes are commonly adopted by natural insects. For the pitching motion,
three cases are considered: (1) active pitching with same amplitude along the leading edge, (2) wing
torsion linearly increasing from the wing root to wing tip, (3) passive pitching mainly resulting from
the combined effect of the flexible hinge at the wing root, inertia forces and aerodynamic forces.

4.1.1 Active Pitching

Active pitching here is simply defined as a sinusoidal motion, as in,

η(t) = ηm sin(2πft− π
2 ). (14)

6



International Micro Air Vehicle Conference and Flight Competition (IMAV2013)

17-20 September 2013, Toulouse, France

4.1.2 Linearly Increased Pitching

According to numerical simulations [22] and experimental studies [15], we know flapping insect wings
exhibit increasing torsion from the wing root to wing tip. We attempt to partly figure out the reason
via studying the influence of torsion on the flight efficiency with different wing shapes by assuming a
linear wing torsion along the leading edge, i.e.,

ηm(r) = kηr + ηrootm , 0 ≤ kη ≤
π

2R
, (15)

where ηrootm maintains the active kinematics as described in 4.1.1 at the root, the lower bound of the
slope kη denotes the case of a constant pitching amplitude along the leading edge, and the upper
bound denotes another extreme case of π/2 shift of pitching amplitudes between the wing root and
wing tip. This linear approximation is close to many observed torsional shapes and allows the torsion
to be described by a single parameter.

4.1.3 Passive Pitching

Another characteristic of the insect flapping-wing is the passive pitching during the stroke reversal or
even the whole stoke cycle. To mimic that, a rigid wing model with a spring at wing root and with
the shape described by the BPDF is assumed. Lagrange equation is used to determine the passive
pitching kinematics which is governed by the spring stiffness k and non-conservative forces imposed
on the wing, as in,

d

dt

(
∂L

∂η̇

)
− ∂L

∂η
= Q, (16)

where L
(
φ, φ̇, η, η̇; t

)
denotes the Lagrangian which consists of kinetic and potential energies of

flapping-wing, and Q is the sum of generalized non-conservative forces which are related to compo-
nents of the non-conservative forces in global CS and transformations between global and generalized
coordinate (η), as in,

L = K − P =
1

2
λINη η̇

2 − 1

2
kη2, (17)

Q =

∫ R

0

∂x

∂η
d(fxI + fxA) +

∂y

∂η
d(fyI + fyA) +

∂z

∂η
d(fzI + fzA). (18)

The global coordinates for the geometric center of each strip along the span-wise are

[x, y, z]
T

= RφRθRη

[
r, 0,− 1

2c(r; r̂1)
]T

(19)

and two non-conservative forces, i.e, inertial forces fI and aerodynamic forces fA, can be obtained as
follows:

dfA = Rφ[0, dD, dL]T = − sinφdDex + cosφdDey + dLez, (20)

dfI = Rφ[0,−rφ̈dm, rθ̈dm]T = rφ̈ sinφdmex − rφ̈ cosφdmey + rθ̈dmez, (21)

where the dD and dL are the drag and lift forces of a strip along the leading edge, and ex, ey and ez
denote three basic vectors of the global CS. Inserting Eqs. 17 and 18 into the Lagrange equation, we
get:

λINη η̈ + kη − 1

2

∫ R

0

c(r; r̂1)dD cos η − 1

2

∫ R

0

c(r; r̂1)dL cos θ sin η+

mw

2c̄R

∫ R

0

rc2(r; r̂1)drφ̈ cos η − mw

2c̄R

∫ R

0

rc2(r; r̂1)drθ̈ cos θ sin η = 0. (22)
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4.2 Optimization Model

Based on wing shapes described by the BPDF and analytic quasi-steady aerodynamic model, it is
currently possible to conduct optimization by considering the effect of wing shapes on the optimal
kinematics with different kinematic patterns. The general optimization model can be summarized as:

find f∗, φ∗m, η
∗
m(k), θ∗m

minimize P̂ =
1

T

∫
T

P̄ (t)dt

subject to Harmonic kinematics and Wing shapes with various r̂1

L̂ =
2

Tmtg

∫
T

L(t)dt ≥ 1

0 < f ≤ 100, 0 < φm ≤ π
2 , 0 < ηm ≤ π

2 , −
π
2 ≤ θm ≤

π
2

. (23)

where averaged power consumption and lift force are used as objective and one of the constraints.
21 discrete values for the wing shape parameter r̂1 are chose from the meaningful range 0.4 ∼ 0.6
with a same interval, and independent optimization is conducted for each instance. Since kinematic
optimization problems are normally nonlinear and non-convex [22], a stochastic global optimization
method based on the subset simulation algorithm (SubSim optimization) [16, 17] is first used to
identify the small domain where the global optimum is located. Then, the gradient-based active-set
optimization algorithm by calling the fmincon function of Matlab R© is used to find the global optimal
results.

5 Results and Discussion

5.1 Active Flapping Kinematics

In order to find the most efficient active kinematics with different wing shapes both for hovering in
”∞” and ”banana” kinematic patterns, the SubSim optimization is used first to determine the rough
global solution for all wing shapes, as shown by the four types of points in Figure 3. Then, based on
results from the SubSim optimization, initial points for the gradient-based optimization are selected
within 85◦∼ 90◦, 50◦∼ 60◦, −3◦∼ 3◦ and (10 ∼ 20)Hz for sweeping, pitching and heaving amplitudes,
and frequency, respectively.

It can be found from Figure 3, that a more efficient hovering flight can be achieved by a wing shape
with a larger r̂1 and a smaller frequency. For different wing shapes the optimal kinematics always
correspond to maximal sweeping motions (90◦), minimal heaving motions (0◦) and moderate pitching
motions (50◦ ∼ 60◦).

5.2 Torsional Wing Kinematics

To compare the optimal kinematics for torsional wing with results in Section 5.1, various wing shapes
are explored to search for the most efficient f , φm, ηrootm and kη. Results are given in Figure 4. Figure
(a) indicates that the flapping flight with linearly torsional wing is more efficient than with constant
pitching amplitude irrespective of its shape, which partly explains why insects with various wing
shapes use flexible wing to generate wing torsion during flapping flight. For the torsional wing, it can
be seen from Figure (b) that the optimal pitching amplitude shift between the wing root and wing
tip shrinks with the increasing of r̂1. We attribute this to the compromise between lift generation and
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Figure 3: Optimal results for active flapping-wing kinematics for 21 wing shapes. Sets of different
types of points represent the results of the SubSim optimization. Solid lines represent results of a
gradient-based optimization based on those points.

energy consumption when the wing surface is more inclined to distribute at the wing tip for higher
r̂1.
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Figure 4: Comparison of optimal power consumption and pitching amplitudes between flapping flight
with and without wing torsion while flapping in a horizontal stroke plane. Circles in (b) denote the
optimal pitching amplitudes without wing torsion.

5.3 Passive Pitching Kinematics

Some research has been done to study contributions of inertial force and aerodynamic force to the pas-
sive pitching motion, and showed that the inertial force of the wing structure plays a more important
impact on the passive pitching. Here, maintaining parameters φm = 60.3◦, θm = 3◦, f = 26.3Hz,
r̂1 = 0.447 and k = 8 × 10−4Nm/rad, the numerical analysis based on the Lagrange equation is
conducted for ”∞” pattern kinematics. Passive pitching angles within first two periods are plotted in
Figure 5, from which we can find the passive pitching amplitude due to inertial force is almost double
that due to aerodynamic force. Furthermore, we plot results taking the variation of the wing shape
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into consideration in the Figure 6. The left figure shows that amplitudes due to both sources are pro-
portional to the value of the non-dimensional radius of the first moment of wing area r̂1. The second
figure indicates that contributions of inertial force and aerodynamic force remain almost constant for
different wing shapes described by the BPDF.
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Figure 5: Contributions of inertia and aerodynamic forces to passive pitching angles in the first two
cycles for ”∞” pattern kinematics.
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Figure 6: Contributions of inertia and aerodynamic forces to passive pitching amplitude with different
wing shapes for ”∞” pattern kinematics.

Due to the non-convexity of the problem and to decrease optimization time, the gradient-based
optimization is not used in this case. Instead, the SubSim optimization method is used twice with
relatively small number of samples to determine the global domain and to get the approximate global
solution. First of all, the feasible domain for the design variables is reduced to 10 ∼ 20Hz, 4 ×
10−4 ∼ 9 × 10−4Nm/rad, 85◦∼ 90◦ and 0◦∼ 60◦ for f , k, φm and θm, respectively. Then, further
optimization is performed with the SubSim optimization method again. As shown in Figure 7, it
can be found that for wing shapes described with the BPDF the optimal spring stiffness is within
4 × 10−4 ∼ 6 × 10−4Nm/rad, optimal frequency ranges from 12 to 15Hz, and optimal heaving
amplitude decreases from near 60◦ for r̂1 = 0.4 to near 0◦ for r̂1 = 0.6. The optimal sweeping
amplitude is still π/2, the same as fully active optimal kinematics, which is not plotted. The passive
pitching amplitude ranges from 80◦ to 60◦, and the power consumption ranges from 80 to 30W/Kg,
both of which are larger than those for fully active optimal kinematics. The low efficiency of the passive
pitching kinematics compared to active pitching kinematics can be explained by the introduction of the
heaving motion, which is essential to generate enough lift force for passive pitching kinematics. On the
other hand, it is worth mentioning that both the complexity and the total mass of the wing actuation
mechanism are significantly reduced with passive pitching motion, and that the power required for
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Figure 7: Optimal spring stiffness k, frequency f , heaving amplitude θm and corresponding passive
pitching amplitude ηm and power consumption P̂ for passive pitching kinematics with different wing
shapes for ”∞” pattern kinematics. These discrete results are fitted linearly to better reflect the trend.

active pitching was not considered.

6 Conclusions

Wing shapes described by the BPDF offer more options for FWMAVs compared to the quarter-ellipse
wing shape or completely mimicking insect wings, and they are easy to fabricate due to the straight
leading edge and smooth wing edges. From the analysis of optimization results applied to these wing
shapes for hovering flight, some useful guidelines for wing design of FWMAVs are obtained. Firstly,
as approximately harmonic motions are relatively easy to achieve by various actuation mechanisms
especially for those based on crank-link mechanism, simply from the perspective of hovering flight,
the fully actively actuated harmonic kinematics might be the most efficient scheme, while combined
with a wing torsion along the span which can be achieved by deceasing the torsion stiffness. If
passive flapping-wing pitching is adopted, kinematics with heaving motion is a better way to save
energy. When considering the weight of the whole FWMAV which benefits from the simplicity of the
actuation mechanism compared to a fully actuated mechanism, the ”less” efficient passive pitching
kinematics seems still favorable as a whole. Finally, for those FWMAVs mainly designed for hovering,
wing shapes with larger r̂1 are recommended.

In the near future, more general kinematics might be considered for the optimization and the
performance of kinematics with both passive pitching and torsion is also of great interest.
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