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Abstract

Synthetic microbial co-cultures can enhance bioprocess performance by division-of-labor strategies that, through spatial
segregation of product-pathway modules, circumvent or mitigate negative impacts of the expression of an entire product
pathway in a single microorganism. Relative abundance of the microbial partners is a key parameter for the performance of
such co-cultures. Population control strategies based on genetic engineering have been explored, but the required interventions
may impose an additional metabolic burden and thereby negatively affect co-culture performance. Regulation of co-culture
composition by controlled substrate feeding strategies or temperature control requires real-time population monitoring.
Process analytical technology (PAT) is an approach for real-time monitoring and control of processes, enabling continuous
observation of co-cultivation that may serve as a foundation for population control strategies. In this review, we discuss
PAT methods for monitoring synthetic co-cultures, either through direct biomass measurements or by tracking soluble or
volatile metabolites. We discuss advantages, limitations, and applications of established as well as emerging technologies
and conclude that leveraging PAT for precise, real-time population control has the potential to enhance stability, efficiency,
and industrial scalability of synthetic co-cultures.

Keywords Synthetic co-culture - Process analytical technology - Real-time monitoring - Industrial biotechnology -
Microbiology - Process control

Introduction

Microbial biotechnology contributes to the transition
towards a sustainable economy by using microorganisms,
often subjected to classical strain improvement and/or
genetic modification, for the large-scale production of chem-
icals, pharmaceuticals, and food ingredients from renewable
resources [1]. Industrial processes in microbial biotechnol-
ogy are predominantly based on single microbial strains
and operated under aseptic conditions. While simplifying
optimization of microorganisms and process parameters,
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the use of such monocultures also brings about limitations,
for example when dealing with complex substrate mixtures
and/or dynamic process conditions. Microbial waste-water
purification in non-aseptic, open systems demonstrates the
power of multi-species microbial communities to address
such challenges during the conversion of complex materi-
als and substrates at the end of the anaerobic food chain [2].
However, open mixed communities are difficult to engineer
due to complex population dynamics and unknown interac-
tions between the strains [2].

Recently, interest has intensified in exploring the poten-
tial of using defined co-cultures of two or more microbial
strains for microbial biotechnology applications. Laboratory
studies have demonstrated that co-cultivation strategies can
help balance product pathways to mitigate byproduct for-
mation and circumvent problems originating from enzyme
promiscuity and host-dependent incompatibilities to express
specific enzymes [3-5]. Furthermore, removal or production
of intermediates by syntrophic species can influence reac-
tion thermodynamics and, thereby, their feasibility [2]. As
the species composition of synthetic co-cultures is defined
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and simpler than that of open mixed cultures, engineering of
individual species is possible, as is the case for pure cultures.
Despite the potential of synthetic co-cultures for industrial
biotechnology, upscaling from laboratory to industrial scale
remains a challenge. While open mixed cultures typically
have stable chemical, metabolic, and ecological equilibria,
those in synthetic co-cultures can be highly sensitive to pro-
cess parameters. A suboptimal population equilibrium can
lead to diminished product titers and yields [6]. To optimize
population composition and prevent population instability,
monitoring and controlling the relative abundance of the
microbial strains in synthetic consortia is a key objective.

The challenge of monitoring the population composition
in defined microbial consortia can be addressed by different
strategies. One category of strategies involves off-line meth-
ods, i.e., methods that require the collection of a sample and
analysis on a stand-alone device, sometimes also including
sample preparation. Examples to monitor species abundance
in co-cultures off-line are rDNA sequencing and PCR analy-
sis [7-9]. Even though off-line methods allow highly precise
quantitative and qualitative data, these do not allow real-time
monitoring of the population composition. For successful
implementation of automated population dynamics control
strategies, real-time monitoring of the population composi-
tion is required, and off-line analytics are not suitable for
this purpose.

Analytical techniques enabling automated monitoring and
control are referred to as Process Analytical Technologies
(PAT). PAT is defined as an approach for designing, analyz-
ing, and controlling manufacturing processes through timely
measurements of critical process parameters [10]. In addi-
tion to the traditional pH, dissolved oxygen, temperature,
capacitance, and off-gas O, and CO, analysis, measurements
of substrates and metabolites using PAT tools can provide
deeper insight into the system’s behavior and allow for the
development of tailor-made control strategies. Real-time
measurements in bioreactors may involve three configura-
tions: (1) in in-line, a PAT sensor is inserted in the process;
(2) in on-line, measurements are performed outside the bio-
reactor using a bypass loop; and (3) in at-line, automated
sampling connected to an analyzer. Depending on the PAT
tool, a continuous stream of information on biomass com-
position as well as biomass, substrates, and/or metabolites
concentration can be captured, facilitating the opportunity
to immediately respond to changing dynamics. The abil-
ity to automate and speed up process decisions makes PAT
an interesting approach for co-culture population dynamics
control.

The goal of this review is to describe the current sta-
tus of research applying in-/on-/at-line PAT for monitoring
defined co-culture processes. We focus on PAT that do not
involve genetic engineering (e.g., the expression of fluores-
cent tags). Although techniques that use genetic engineering
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can give high-resolution optical insight into the abundance
of the fluorescent species, the strategy is restricted to micro-
organisms that are genetically accessible. Moreover, from a
bioprocessing perspective, the metabolic burden imposed
by the required expression of heterologous proteins, as well
as potential mutations in the responsible genes, may nega-
tively affect culture performance under industrial process
conditions [11-13]. The first section of this review describes
applications of PAT for monitoring interspecies dynamics by
using biomass as an analyte. Subsequently, PAT applications
are reviewed that measure soluble and volatile (bio)chemi-
cals as a basis for synthetic co-culture monitoring. A sche-
matic overview of the covered PAT applications is presented
in Fig. 1. In Table 1, we listed publications that used PAT for
monitoring of synthetic co-cultures. Analytical technologies
applied to co-cultures covered in this review are summarized
in Table 2, including advantages, disadvantages, and case
studies reported in the literature. The working principle of
the PAT methodologies used for co-culture monitoring is
illustrated in Fig. 2. For an overview of off-line monitoring
methods or methods involving genetic engineering, we refer
to the review of Schlembach et al. [14]. Finally, we discuss
how PAT can be implemented in co-culture bioprocesses
through feedback control.

Direct biomass measurements
Flow cytometry

Flow cytometry (FC) is a technique to detect and measure
physical and chemical characteristics of single cells as they
pass through a laser in a fluid stream (Fig. 2A). FC generates
different readouts, specifically forward scatter (FSC), side
scatter (SSC), and fluorescence. FSC is light scattered in
the forward direction (i.e., along the same axis as the beam)
and is proportional to the diameter of the cell. SSC measures
light that is scattered at a 90° angle to the laser beam and is
influenced by internal cellular complexity, such as the pres-
ence of dense structures, organelles, or a nucleus. Together,
FSC and SSC allow for the acquisition of relevant cellular
data, such as the number of cells or the size of the cells [15].

FSC and SSC data was used to distinguish between spe-
cies in an Escherichia coli-Saccharomyces cerevisiae co-cul-
ture [16, 17] and a Lactobacillus plantarum-Kazachstania
bulderi co-culture [17]. Populations of the yeasts S. cerevi-
siae and K. bulderi were gated based on events with FSC
signal area higher than 10°°, while those of the bacteria E.
coli and L. plantarum were defined as events with lower
FSC values [17]. In both publications, cells were grown
in a Segregostat, which is a continuous cultivation set-up
originally developed to control phenotypic subpopulations
in pure cultures of E. coli and Pseudomonas putida through
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Fig. 1 Process analytical technology applied for monitoring of co-
cultures per type of analyte. Biomass can be directly measured to
assess the biomass composition, or alternatively, soluble and volatile
substrates and metabolites from fermentation can serve as proxies for

substrate pulsing [18]. Martinez et al. first used the Seg-
regostat and FC measurements to control the population
dynamics of an S. cerevisiae-E. coli co-culture [16]. Glu-
cose depletion gave S. cerevisiae a fitness advantage over
E. coli, as yeast can grow on overflow metabolites ethanol
and acetate. Upon pulsing a glucose-containing substrate,
the specific growth rate of E. coli exceeded that of its yeast
partner, which enabled continuous control of growth rates
and population dynamics. In subsequent work, Martinez
et al. developed a model based on metabolic networks to
predict the pulsing frequency [17]. The predictive model
was successfully applied in a Segregostat to a cooperative
co-culture (K. bulderi and L. plantarum) and a competitive
co-culture (E. coli and S. cerevisiae). In this case, FSC and
SSC signals were used to monitor the co-culture in real time
to enable the control strategy.

In FC, fluorescent channels can be used to detect and
quantify fluorescence in a specific range of wavelengths,
thereby characterizing a distinct cell population. Dis-
tinguishing subpopulations by FC can be performed by
expressing one or more heterologous fluorescent proteins
to mark (an) individual strain(s) [11, 19-21]. Alternatively,
at-line biomarker staining (e.g., DNA, RNA, or lipids) for
gram-negative bacteria with purpose-built automated stain-
ing devices has been successfully applied to circumvent
the metabolic burden of heterologous fluorescent protein
expression [22, 23]. In aquatic ecosystems with undefined
microbial communities, staining with SYBR® Green I and

* Enzyme-based

electrochemical biosensors

population dynamics in the co-culture. Other co-culture bioprocess
parameters were monitored based on soluble (bio)chemical measure-
ments. Abbreviations: SIFT-MS, selected-ion flow-tube mass spec-
trometry

subsequent FC could discriminate individual prokaryotes
based on nucleic acid content of bacterial cells [23, 24].
Yet, discrimination between individual prokaryotes with bio-
marker staining, with the goal to enable real-time co-culture
monitoring, faced complications. For example, phenotypic
changes resulting from co-cultivation of bacteria can have
a profound effect on cell concentration estimates by FC
analyses on SYBR® Green I-stained bacteria [25]. These
effects originated from interactions between the bacterial co-
cultivation partners, since similar FC analyses on mock com-
munities, constructed by mixing different biomarker-stained
axenic cultures, outperformed strain-specific gPCR and 16S
rRNA gene amplicon sequencing in terms of species quan-
tification. In another study, Haberkorn et al. attempted to
quantify the abundance of individual prokaryotic species
(Tistrella mobilis, Pseudomonas pseudoalcaligenes, and
Sphingopyxis) in a defined co-culture with phototrophic
Chlorella vulgaris by FC with at-line biomarker staining
[26]. Emissions collected on the F11/FL3 fluorescent chan-
nels measured the stained nucleic acids of the bacterial cells
and chlorophyll autofluorescence of the algal cells, thereby
allowing for automated monitoring of the population sizes
of bacteria and algae. However, this approach could not dis-
criminate the prokaryotic subpopulation because co-cultiva-
tion of algae and bacteria caused a shift of the localization
of the prokaryotes on the fluorescent channels. Therefore,
monitoring of the prokaryotic populations following the
methods as described by [24] was not possible.

@ Springer
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In situ microscopy

Off-line characterization of microbial species by micros-
copy is a widely established method. Over the last dec-
ades, in situ optical microscopy and deep learning image
analysis algorithms enabled rapid extraction of quantita-
tive information on microbial cells from microscopy data.
Examples include monitoring of fungi [27], microalgae [28,
29], mammalian cells [30-32], and yeast cells [33, 34] with
in situ microscopes to determine growth and, in the case of
algae, intracellular fatty acid accumulation. Although in situ
microscopy is not yet applied to monitoring of synthetic co-
cultures, Gustavsson et al. successfully applied this method
to detect and quantify fungal contaminations (by the yeasts
Candida utilis or Pichia stipitis) in hybridoma cell cultures
[35]. Furthermore, unicellular planktonic species could be
identified from water samples using an in situ imaging sys-
tem and convolutional neural networks [36]. This shows
that in situ microscopy can be used for species identification
using custom-made image processing algorithms.

Imaging FC is a microscopy technique that combines the
high-throughput sampling of traditional FC with individual
cell imaging, thereby enabling direct visualization of cellular
properties. In addition to cell area, also more complicated
metrics can be assessed to provide information on marker
localization and cell morphology (e.g., shape, biomarker
intensity, texture, and granularity) [37]. Studies focusing
on morphological characteristics and spatial distributions
have employed imaging FC combined with staining agents to
analyse the lipid content of algal cells [38], cell-cycle phase
in yeast [39], and 3D structures of mammalian cells [40].
Because of the high specificity of imaging FC and its ability
to detect multiple biomarkers, it has the potential to quantify
morphologically similar species that cannot be distinguished
by only using FSC and SSC.

Co-cultures of species with significantly different cell
sizes can be challenging to monitor using microscopy-
based techniques because of the required magnification.
Guez et al. used a 40 X objective for hybridoma cells [32],
the same as for yeast [34], whereas a 10 X objective was
used for the algae Chlamydomonas reinhardtii [29] and the
yeast Pichia pastoris [27]. Gustavsson et al. reported that
E. coli cells present as contaminants in a hybridoma cell
culture could not be depicted as separate objects, even at
the highest (non-specified) magnification [35]. The authors
suggested that high-resolution in situ microscopy could
resolve this issue. Alternatively, specific staining can be
used to address this problem. For example, Schiavone et al.
monitored adhesion events of bacteria and yeast with imag-
ing FC (60 X magnification) by tracking E. coli cells with
heterologously expressed GFP [41]. Based on currently
available information, the FSC signal of FC may be more
suitable for quantifying co-cultures of species with large size

differences compared to imaging FC because of its relative
simplicity, lower costs, and availability in many life-science
laboratories.

Impedance spectroscopy

Biomass can also be determined based on the frequency-
dependent polarizability of cells as a response to an alter-
nating electric field. This method is known under various
names, including impedance spectroscopy, dielectric spec-
troscopy, capacitance measurement, and permittivity meas-
urement. Cell polarizability depends on different variables
related to the cell state, described by the Cole—Cole equation
[61, 62]. Parameters of the Cole—Cole equation allow for
the derivation of additional information about cells, such
as their size [63] and specific growth rate [64] as well as
their responses to nutritional status [65] and chemical stress
factors [66]. Although dielectric spectroscopy was used to
monitor (among others) cell size, shape, concentration, and
growth phases for different species during growth in pure
cultures [67], we have not found studies in which this tech-
nique was applied to synthetic co-cultures.

Over the last two decades, high-throughput analysis of
single-cell dielectric properties was established using imped-
ance FC. Using this technique, at-line measurements were
performed on single cells (~ 1000 cells/s) in microfluidic
systems to measure polarizability, membrane capacitance,
and cytoplasm conductivity, thereby allowing cell charac-
terization (Fig. 2A). Zhang et al. distinguished three groups
of bacteria with different morphologies (bacilli, cocci, and
vibrio) and two species of bacilli (E. coli and Salmonella
enteritidis) using impedance FC in combination with deep
learning approaches [42]. Impedance FC was also applied
to distinguish different mammalian cell types, such as vari-
ous tumor cell lines, red blood cells, and red cell ghosts [68,
69]. A challenge of impedance FC is the sensitivity to vari-
ation in medium conductivity, which can lead to inaccurate
results when medium composition changes throughout a
fermentation process [51]. Based on the currently available
results, impedance FC shows potential to monitor and con-
trol synthetic co-cultures in a similar fashion as optical FC
but based on cells’ conductivity. However, further develop-
ment is needed to improve user-friendliness, reliability, and
cost-effectivity of impedance FC systems [50].

Fluorescence spectroscopy

In fluorescence spectroscopy, light excites a fluorophore to
a higher energy state, and a photon is emitted at a different
wavelength as the molecule relaxes to the lower energy state
(Fig. 2B). The range of frequencies (i.e., energy) of emit-
ted photons as a result of a particular excitation frequency
is known as the emission spectrum. Constructing a matrix

@ Springer
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tering, side scattering, and fluorescence effects can be measured and
linked to cell size, cell complexity, and auto-fluorescence. Impedance
flow cytometry measures the frequency-dependent polarizability as
cells pass through an electric current in a microfluidic chamber. B
Light-matter interactions employed by spectroscopy, showing fluo-

B Spectroscopy

Fluorescence Transmittance
Light source Detector

\ /
Excitation
filter '

Sample
Absorbance Scattering
D Selected-ion flow-tube

mass spectrometry

Reagent selection ' Analyte ionization ' Analyte quantitation
|

Sampleinlet Quadrupole

Quadrupole
mass filter

mass filter
\

. P
| [

lon source \ | /

Carrier gas inlet Particle multiplier

rescence, transmittance, absorbance, and scattering. C In an enzyme-
based electrochemical sensor, an enzyme either generates or con-
sumes a redox-active compound (R) during the conversion of a target
analyte. The resulting change in the electrical signal is measured and
correlated to the concentration of the target substance. D SIFT-MS
works by introducing a sample into a flow tube where it reacts with
precursor ions. The resulting product ions are analysed by a quad-
rupole mass analyzer to identify and quantify volatile organic com-
pounds in real time

@ Springer



5618

N.A. Dambruin et al.

consisting of the emission spectra for a range of excitation
frequencies can be used to collect information on all fluores-
cent compounds in a sample. Emission spectra of the amino
acids tryptophan, phenylalanine, and tyrosine function as
a unique cellular autofluorescence fingerprint. This finger-
print was utilized off-line to differentiate between lactic
acid bacteria and yeast, between different yeast species, and
between different bacterial species [53, 54]. Nevertheless,
the application of an autofluorescence signal for real-time
biomass quantification is not straightforward, as it requires
signal calibration for different organisms and growth media.
In both studies, cells had to be suspended in distilled water
or saline solutions to avoid fluorescence interference of the
media components with the low-intensity autofluorescence
of cells. This is different for organisms with distinct autoflu-
orescent molecules, such as photosynthetic pigments. Using
a portable fluorescent sensor platform, green algae (Chlo-
rella vulgaris) and cyanobacteria (Spirulina) were quantified
by measuring chlorophyll a and phycocyanin fluorescence
emission spectra, respectively. Biomass could be classified
and quantified from pre-mixed cultures of the two species
with a 2-16% error in biomass concentration prediction,
which reflected an absolute deviation of 4-39 mg/L over a
range up to 250 mg/L [55].

A new development where the autofluorescence finger-
print is combined with FC is called spectral FC. In classic
FC, excitation with one specific wavelength is followed by
the collection of one emission peak at a given wavelength.
Spectral FC controls only the excitation and collects an
emission spectrum across many wavelengths, similar to
fluorescence spectroscopy [70]. The increased number of
wavelengths detected in spectral FC allows for the identifica-
tion of specific fluorochromes or a spectral fingerprint of the
cell. Spectral FC has been used in clinical contexts for (off-
line) monitoring of therapeutic responses [71] and immune
cell characterization [72]. We have not encountered exam-
ples of studies in which spectral FC was applied for species
identification. Given the potential of autofluorescence-based
cell characterization and FC, studies on the potential of this
technique for monitoring population dynamics in synthetic
co-cultures appear to be highly relevant.

Scattered light spectroscopy

When a laser light that passes through a sample, particles or
molecules scatter the light in all directions (Fig. 2B). The
intensity and wavelength of the scattered light depend on the
size, shape, and composition of the particles, as well as the
wavelength of the incident light. The scattered light can be
measured across different positions over a wide excitation
spectrum. The resulting spectra depend on the composition
of the cytoplasm, cell wall characteristics, cell shape, and
cell size [56, 57]. Using a fluorimeter system, Geinitz et al.

@ Springer

demonstrated in-line quantification of the abundancies of the
bacterium Lactococcus lactis and the yeast Kluyveromyces
marxianus in microtiter-plate co-cultures based on scattered
light intensity [43]. Spectral differences were mainly attrib-
uted to intracellular compounds and directly corresponded
to the biomass concentration rather than to produced metab-
olites. Despite an overlap of scattered light spectra, mul-
tivariate data analysis allowed for differentiation between
the species. Up to 4 g/L off-set cell dry weight within a 12
g/L range compared to the reference off-line method was
reported. Assessment of the accuracy of this method was
difficult because both the in-line and off-line measurements
were influenced by changing cell size. Moreover, since the
study was performed in microtiter plates [43], experiments
with light scattering techniques in a bioreactor context are
required to obtain more insight into signal interference by
other particles, such as gas bubbles.

UV/Vis absorbance

Absorbance, also referred to as optical density, measures
the amount of light absorbed by a sample at a specific
wavelength (Fig. 2B). Based on the Lambert-Beer law,
absorbance can be used to determine the concentration of
a substance in solution. Wavelengths in the range of UV
and visible light regions are often employed for absorb-
ance measurements. Off-line absorbance measurements
on microbial communities have been based on pigments
(especially chlorophyll @ and b), which occur in phototro-
phic microorganisms and show absorbance peaks at different
wavelengths. This allowed quantification of different types
of phototrophs in co-cultures of coccoid cyanobacteria and
brown algae (Cyclotella sp.) and in co-cultures of Nanno-
chloropsis salina and Phaeodactylum tricornutum, with
prediction errors between 0.4 and 13.4% [58]. Furthermore,
Stone et al. calibrated absorbance measurements to deter-
mine individual cell concentrations in a co-culture of the
bacterium Methylomicrobium buryatense and the yeast Sch.
stipitis, with an average percentage error of up to 5% for
individual species biomass concentrations up to 1.75 g/L
[44]. It should be noted that this method was only applied in
an off-line manner, as samples were centrifuged and diluted
in water prior to absorbance measurements. Conversion of
this methodology to at-line measurements should be achiev-
able, as automatic dilution of the samples is required to guar-
antee that high biomass concentrations fall within the linear
range of detection.

Infrared and Raman spectroscopy
Infrared (IR) spectroscopy measures the light that is

absorbed at wavelengths in the IR region, which corre-
sponds to specific vibrational state transitions of molecules
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in the sample [52]. Each molecule produces a characteristic
absorption pattern, or “fingerprint,” based on its functional
groups and structure. The outputs are spectra that reflect the
chemical composition and abundance of the molecules in
the sample. An important drawback of IR spectroscopy is
the interference of water molecules, which can overshadow
peaks belonging to (bio)chemical compounds of interest.
Raman spectroscopy, on the other hand, is based on light
scattering rather than absorbance and is considered comple-
mentary to IR spectroscopy. Raman spectroscopy measures
inelastic scattering from a monochromatic radiation source
(e.g., lasers) [73], where the resulting spectra are the sum
of the scattering effects caused by all Raman-active com-
ponents in a sample. Raman-active compounds exhibit a
change in polarizability during molecular vibrations. This
provides a unique spectral fingerprint of the sample’s chemi-
cal composition. Although Raman spectra are not subject
to large interference from polar molecules such as water,
fluorescent molecules can cause interference [74].

In-line Raman and IR spectroscopy are popular PAT
tools because of their rapid and non-invasive nature [75,
76]. Yet, only one publication reports on its applicability
for analysing microbial co-cultures. Grassi et al. used IR
spectroscopy to monitor lactic acid fermentation of milk
by a co-culture of Streptococcus thermophilus and Lac-
tobacillus bulgaricus [46]. By combining transmission
and reflectance principles depending on the viscosity of
the milk, the authors followed the milk’s texture in-line
and in real time. Curd development caused by lactic-acid
induced protein denaturation described by the IR data
could be associated with pH, acidity, and lactic acid con-
centration, but correlation to co-culture population com-
position was not assessed. Other studies suggest that high
biomass concentrations in monocultures cause a baseline
shift in the in-line Raman and IR spectra due to particu-
late scattering effects rather than molecular scattering or
light absorption [77, 78]. Moreover, available analytical
models for biomass determination in monocultures often
do not address the origin of observed peaks (e.g., [79, 80]),
and it is therefore unclear if spectral peaks correspond
with intracellular compounds. This complicates direct dis-
crimination of specific species. Nevertheless, successful
analyses of lipid content in algae and carotenoid content in
yeast monocultures using in-/on-line Raman spectroscopy
show its potential to monitor intracellular compounds in
real time [81, 82]. Other applications include cell sorting
devices coupled to Raman spectroscopy (Raman-activated
cell-sorting [83]). Single-cell Raman spectra can reflect
phenotypic and intrinsic biochemical fingerprints of cells
and have been used to detect and sort microbes from mixed
cultures. For example, unculturable carotenoid-contain-
ing bacteria could be discovered from Red Sea samples
and lipid-rich Rhodotorula glutinis could be sorted after

mixing with an S. cerevisiae cell suspension [84, 85]. A
current challenge of this technique is the low throughput
due to the small cross section of spontaneous Raman scat-
tering. Research to overcome this limitation is in progress,
resulting in a current maximum throughput of ~ 13 cells
per second [85].

Indirect biomass monitoring
Soluble (bio)chemicals

Quantitative and direct biomass measurements of co-
cultivated species or strains with similar morphologies
are complex tasks considering the characteristics of the
available PAT. When direct biomass measurements are not
possible, real-time measurements of the species-specific
metabolites offer an alternative way to estimate biomass
concentrations via empirical or model-based correlations.
We identified two studies that applied this approach to
synthetic co-cultures.

Lee et al. quantitatively monitored P. putida and E. coli
in co-culture using a combination of absolute optical den-
sity and fluorescence spectroscopy as well as a time deriva-
tive of the optical density and fluorescence spectrum [45].
Abundance of P. putida correlated well with the fluorescent
signal, which was attributed to the P. putida extracellular
metabolite pyoverdine. This metabolite showed a signal at
a wavelength at which E. coli cultures showed negligible
fluorescence. As pyoverdine production by P. putida was
variable depending on temperature, data-driven mathemati-
cal models were required for the quantification of P. putida.
In 7-day turbidostat runs, Lee et al. reached a consistent
10% offset between the on-line estimated composition and
the flow cytometric ground truth, possibly caused by biofilm
formation [45].

The second metabolite-based study on population com-
position in synthetic co-cultures employed a biosensor [47].
In the reported batch co-culture, Acetobacterium woodii pro-
duced lactate from H, and CO,. Subsequently, the lactate
was consumed by Clostridium drakei to produce caproate.
The lactate concentration could be measured on-line with
enzyme-based electrochemical biosensors and was used to
control the H, feed. Enzyme-based electrochemical biosen-
sors are highly sensitive, and their outputs do not require
complicated data processing and analysis (Fig. 2C). How-
ever, enzymes can be sensitive to harsh environments, result-
ing in lower reproducibility [S9]. While the study of Herzog
and coauthors did not directly use the lactate concentration
to determine population dynamics [47], it did allow for
matching of the lactate production rate of A. woodii to the
lactate consumption capacity of C. drakei. This example
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demonstrates the potential of real-time control to optimize
substrate feeding for synthetic co-cultures.

Volatile (bio)chemicals

Volatile compounds generated by microbial metabolism
can serve as a basis for monitoring synthetic co-cultures
via off-gas analysis. Organic volatile compounds (VOCs)
are of special interest, as these are often tightly connected
with specific metabolic pathways and can be quantified at-
line with spectrometric techniques, such as selected-ion-
flow-tube mass spectrometry (SIFT-MS). SIFT-MS uses
microwave plasma to ionize air and water vapor to form
positive and negative precursor ions that are separated into
single ionic species in a quadrupole mass filter and injected
into a carrier gas (Fig. 2D). This carrier gas flow is then
introduced into a flow tube where the ions interact with the
VOC s in the sample. A second mass spectrometer (usually
a quadrupole) analyzes the product ions based on charge
and mass. Most research related to biomarker VOCs aims
to identify specific microorganisms through off-gas analysis,
as, for example, applied to human breath [86]. Only a few
papers explored the application of VOC analysis to study
population dynamics or control strategies in microbial co-
cultures. Sovova et al. monitored the population dynamics of
a batch co-culture consisting of Serratia rubidaea, Serratia
marcescens, and E. coli by measuring ammonia, ethanol,
acetaldehyde, propanol, acetoin, acetone, and acetic acid
in the gas phase with SIFT-MS [48]. This work showed
that, even in binary mixtures of species of the same genus,
the headspace gas composition can function as a finger-
print for specific bacterial species. However, because an
orthogonal method to determine the culture composition in
the co-cultures was not reported, quantification accuracies
are unknown. In addition, the publication mentions “rapid
analysis” of the volatile compounds, but the exact duration
of the measurements was not specified. Other work shows
how the population dynamics of Salmonella aureus and E.
coli were reflected by the profiles of 3-methylbutanoic acid
and 3-methylbutanal, which are characteristic VOCs for S.
aureus, and of indole, a characteristic marker of E. coli [60].
Although these measurements were not performed in real
time, the reported work does show the potential of VOC
profiling for real-time measurements. Further exploration
of this approach should include how environmental factors
such as temperature, pressure, and humidity in fermentation
set-ups affect the performance of MS-based techniques.
For both soluble and volatile (bio)chemical-based
approaches, it should be noted that the use of metabolite
concentrations to infer population composition implicitly
assumes a consistent correlation of metabolite production
with the abundance of the responsible microbial species
or strain. This assumption may not always be valid due to
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varying metabolic states, substrate availability, or inter-strain
interactions [87, 88]. Therefore, data analysis models must
be extensively calibrated with representative data, if neces-
sary, under different regimes, to correlate metabolite con-
centrations to biomass concentrations.

PAT for co-culture control

The studies covered in this review focus on assessing the
suitability of various PAT tools for co-culture monitoring,
often with the primary goal to generate data with higher
temporal resolution or to resolve co-culture population
dynamics. Only a few papers report on more advanced appli-
cations of real-time data, such as process control. In feed-
back-based process control, the control variable is continu-
ously measured and compared against a predefined target.
For instance, in pH regulation, a pH probe monitors the pH
level, which is then compared to a set target. If a deviation
from the setpoint occurs, the controller activates adjustments
to restore balance. In the case of pH control, a base is titrated
into the broth to correct the pH value. To regulate popula-
tion dynamics in co-cultures, researchers have investigated
various control strategies. Some approaches involve genetic
engineering, such as incorporating intracellular signaling
mechanisms (e.g., quorum sensing circuits [89]) coupled to
lysis switches [12], or enabling growth through gene expres-
sion (e.g., antibiotic resistance cassettes or anti-toxins) [11,
90, 91]. Other control strategies exploit differences in opti-
mal growth conditions under varying environmental factors.
These include adjusting culture pH [92], temperature [93],
medium supply (e.g., glucose or nitrogen source) [16, 94], or
controlling the supply of essential amino acid to auxotrophs
[95, 96].

Controllers prevalent in the bioprocessing field include
simple ON-OFF control, where the controller is switched
on when the error is positive and switches off when the error
is zero or negative. Alternatively, the proportional-integral-
derivative (PID) controller, a classic control algorithm
commonly implemented across engineering, is applied in
multiple papers discussed in this review [45, 47]. PID con-
trollers apply three control terms: (1) proportional control
(“P” term), which reacts to current error; (2) integral con-
trol (“I” term), which addresses accumulated past errors;
and (3) derivative control (“D” term), which predicts future
errors. PID controllers are computationally simple to imple-
ment and do not require a model or deep understanding of
the biological system for tuning [97]. Lee et al. reported
that population composition in a 7-day turbidostat experi-
ment could be stabilized by integrating a PI control algo-
rithm to tune population dynamics based on temperature
changes [45]. The species in the co-culture (E. coli and
P. putida) responded with different time scales to chang-
ing temperatures, which was used to further optimize the
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control strategy. Next to optimizing population dynamics in
co-cultures, process yield can be optimized by controlling
other variables, such as accumulation of metabolic interme-
diates. Herzog et al. prevented accumulation of the transfer
metabolite lactate using a PID control-based H, feed [47].
Real-time measurements minimized substrate addition and
the results of this study provided insight into the fluctuat-
ing lactate uptake rate throughout different phases of the
fermentation.

Advanced control strategies can be applied when real-
time data acts as input for model predictive control, which
integrates measurement data with knowledge about metabo-
lism and interspecies interactions. Model predictive control
uses a dynamic model of the system to predict future behav-
ior and optimizes control actions over a time horizon. At
each step, the algorithm solves an optimization problem to
find the best control inputs that minimize a cost function
while satisfying constraints. Martinez et al. implemented
such a model predictive control strategy, where interactions
and long-term effects of substrate pulsing were predicted
based on knowledge about metabolic networks and temporal
culture composition measured by real-time FC [17]. This
study illustrates that a combination of mechanistic modelling
and real-time data has the potential to predict the course of
the fermentation in real time.

Model predictive control based on mechanistic models
relies on a deep understanding of species and processes to
effectively utilize limited real-time data (e.g., lactate concen-
tration or FC data) for decision-making. In cases where such
detailed knowledge is not available, data-driven modelling
can accelerate process control implementation for synthetic
co-cultures without requiring extensive prior knowledge.
Integrating multiple PAT sensors (e.g., monitoring biomass,
soluble and volatile biochemical compounds) alongside
standard process parameters (pH, temperature, dissolved
oxygen) provides a black-box process understanding. This
approach can serve as a foundation for data-driven models,
as previously demonstrated for monocultures [98]. How-
ever, a purely data-driven approach risks oversimplifica-
tion, potentially leading to unreliable correlations. A hybrid
approach that integrates mechanistic and data-driven mod-
elling enables real-time model refinement and improves the
interpretation of unexpected events [99]. Regardless of the
chosen modelling strategy, real-time PAT integration for co-
culture bioprocesses will be essential for population dynam-
ics monitoring and predictive control.

Outlook

Synthetic microbial co-cultures have the potential to expand
the solution space for industrial biotechnology by several
advantages, including division of labor and mitigation of
byproduct formation [2]. In many co-culture processes,

control of population dynamics is required to optimize pro-
duction titres and maintain a stable community composi-
tion. PAT can play a key role in the development of control
strategies by providing real-time process data and facili-
tate direct actuation when performance parameters are not
met. Monitoring co-culture population dynamics requires
real-time identification and quantification of species, and
ideally information about the phenotypic state of the cells.
These parameters can be measured through direct biomass
measurements or based on soluble or volatile (bio)chemical
concentrations. As the selection of a suitable analytical tech-
nique depends on species-specific traits, including but not
limited to intracellular carotenoids, cell wall structures, or
specific metabolites, it is considered impossible to identify
a single PAT tool that is applicable to all co-cultures.

FC is an established PAT for co-culture biomass mon-
itoring based on cell size, internal complexity, and auto-
fluorescence. However, FC cannot differentiate between
morphologically similar populations based on FSC and
SSC signals. This limits the application of classic FC for
the analysis of synthetic co-cultures composed of different
engineered strains of the same species [100]. Moreover, vari-
ations in phenotypic states, such as cell aggregate formation
or varying cell size, can strongly influence the accuracy of
the FC measurements [25]. To overcome the limitations of
using solely FSC and SSC signals, many promising devel-
opments are reported where FC is integrated with other
techniques, such as microscopy and spectroscopy (imped-
ance, fluorescence, and Raman). Microscopic techniques
can provide spatial information, whereas spectral techniques
provide cell-specific (bio)chemical information. The com-
bination with the fluidic systems in FC equipment results
in high-throughput single-cell measurements that analyze
cells based on characteristics complementary to classic FC
output. Nevertheless, more research is needed to explore
applications in co-culture bioprocesses, specifically in terms
of distinguishing different and similar species, the influence
of medium compositions, measurement times in relation to
required control responses, and data analytical workflows.
In addition, FC is a sophisticated technique that requires
specialized operators and a significant investment. Develop-
ments to make advanced FC techniques more affordable and
accessible to research and development labs can play a key
role in unlocking their potential for co-culture bioprocess
control.

In addition to combining analytical techniques into one
device, it is also envisioned that combining separate PAT
for soluble and volatile (bio)chemical detection in a single
setup will provide a holistic view on process performance
and co-culture metabolism. In turn, this may provide data
to build more representative metabolic models that lie at
the core of advanced model predictive control strategies.
To achieve an integrated approach to quantitatively capture
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soluble and volatile analytes, a key focus area is gas phase
PAT. Currently, off-gas monitoring of co-cultures consists
of the application of SIFT-MS, while volatile measurements
in monoculture bioprocessing also apply techniques such
as chemical sensors [101, 102], gas chromatography [103,
104], or other mass spectrometry-based techniques [105].
This highlights the wide array of techniques to be explored
for co-culture specific volatile biomarkers and to assess their
potential for population dynamics control.

The application of co-cultures in biotechnology is still
developing, especially in terms of operational simplicity,
costs, and versatility of different organisms. To optimize
co-culture bioprocesses and realize its industrial potential,
PAT is essential for generating data that builds performance
understanding and enables effective control. The unique
characteristics of population dynamics and varying popu-
lation compositions require co-culture-specific analytical
target profiles. These profiles will guide the PAT field to
extend the application of existing analytical techniques as
well as the development of novel sensors, thereby provid-
ing a wide range of tools for co-culture-specific bioprocess
control strategies.

Author contribution Nicole Dambruin: conceptualization, methodol-
ogy, formal analysis, investigation, writing—original draft, writing—
review and editing, visualization. Jack Pronk: writing—review and
editing, supervision, funding acquisition. Marieke Klijn: conceptualiza-
tion, resources, writing—original draft, writing—review and editing,
supervision, administration, funding acquisition.

Funding This project is funded by the Department of Biotechnology
of Delft University of Technology as part of the Zero Emission Bio-
technology programme and by a Stevin Grant awarded to J.T. P. by the
Netherlands Science Foundation NWO.

Declarations
Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Timmis K, de Vos WM, Ramos JL, Vlaeminck SE, Prieto A,
Danchin A, et al. The contribution of microbial biotechnology

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

to sustainable development goals. Microb Biotechnol.
2017;10(5):984-7.

Diender M, Olm IP, Sousa DZ. Synthetic co-cultures: novel
avenues for bio-based processes. Curr Opin Biotechnol.
2021;67:72-9.

. Rafieenia R, Klemm C, Hapeta P, Fu J, Garca MG, Ledesma-

Amaro R. Designing synthetic microbial communities with the
capacity to upcycle fermentation byproducts to increase produc-
tion yields. Trends in Biotechnology. 2025;43(3):601-19.
Brooks SM, Marsan C, Reed KB, Yuan S-F, Nguyen D-D,
Trivedi A, et al. A tripartite microbial co-culture system for de
novo biosynthesis of diverse plant phenylpropanoids. Nat Com-
mun. 2023;14(1):4448.

. Zhou K, Qiao K, Edgar S, Stephanopoulos G. Distribut-

ing a metabolic pathway among a microbial consortium
enhances production of natural products. Nat Biotechnol.
2015;33(4):377-83.

Jones JA, Wang X. Use of bacterial co-cultures for the efficient
production of chemicals. Curr Opin Biotechnol. 2018;53:33-8.
Rebecchi C, Sarra C. Physiological and molecular techniques
for the study of bacterial community development in sausage
fermentation. J Appl Microbiol. 1998;84(6):1043-9.

. Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y. Stable coexist-

ence of five bacterial strains as a cellulose-degrading community.
Appl Environ Microbiol. 2005;71(11):7099-106.

Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive
effects of an antibiotic on the human gut microbiota, as revealed
by deep 16S rRNA sequencing. PLoS Biol. 2008;6(11):e280.
Simon LL, Pataki H, Marosi G, Meemken F, Hungerbiihler K,
Baiker A, et al. Assessment of recent process analytical technol-
ogy (PAT) trends: a multiauthor review. Org Process Res Dev.
2015;19(1):3-62.

Gutiérrez Mena J, Kumar S, Khammash M. Dynamic cyberge-
netic control of bacterial co-culture composition via optogenetic
feedback. Nat Commun. 2022;13(1):4808.

Scott SR, Din MO, Bittihn P, Xiong L, Tsimring LS, Hasty J.
A stabilized microbial ecosystem of self-limiting bacteria using
synthetic quorum-regulated lysis. Nat Microbiol. 2017;2(8):1-9.
Wu G, Yan Q, Jones JA, Tang YJ, Fong SS, Koffas MAG. Meta-
bolic burden: cornerstones in synthetic biology and metabolic
engineering applications. Trends Biotechnol. 2016;34(8):652-64.
Schlembach I, Griinberger A, Rosenbaum MA, Regestein
L. Measurement techniques to resolve and control popula-
tion dynamics of mixed-culture processes. Trends Biotechnol.
2021;39(10):1093-109.

Heins A-L, Hoang MD, Weuster-Botz D. Advances in automated
real-time flow cytometry for monitoring of bioreactor processes.
Eng Life Sci. 2022;22(3-4):260-78.

Martinez JA, Delvenne M, Henrion L, Moreno F, Telek S, Dusny
C, et al. Controlling microbial co-culture based on substrate puls-
ing can lead to stability through differential fitness advantages.
PLoS Comput Biol. 2022;18(10):e1010674.

Martinez JA, Bouchat R, Gallet de Saint Aurin T, Martinez LM,
Caspeta L, Telek S, et al. Automated adjustment of metabolic
niches enables the control of natural and engineered microbial
co-cultures. Trends in Biotechnology. 2025;43(5):1116-39.
Sassi H, Nguyen TM, Telek S, Gosset G, Griinberger A, Delvigne
F. Segregostat: a novel concept to control phenotypic diversifica-
tion dynamics on the example of Gram-negative bacteria. Microb
Biotechnol. 2019;12(5):1064-75.

Liu Y, Tu X, Xu Q, Bai C, Kong C, Liu Q, et al. Engineered
monoculture and co-culture of methylotrophic yeast for de novo
production of monacolin J and lovastatin from methanol. Metab
Eng. 2018;45:189-99.

Dinh CV, Chen X, Prather KLJ. Development of a quorum-
sensing based circuit for control of coculture population


http://creativecommons.org/licenses/by/4.0/

Application of process analytical technology for real-time monitoring of synthetic co-culture...

5623

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

composition in a naringenin production system. ACS Synth Biol.
2020;9(3):590-7.

Kinet R, Richelle A, Colle M, Demaegd D, von Stosch M,
Sanders M, et al. Giving the cells what they need when they
need it: biosensor-based feeding control. Biotechnol Bioeng.
2024;121(4):1270-82.

Besmer MD, Hammes F. Short-term microbial dynamics in a
drinking water plant treating groundwater with occasional high
microbial loads. Water Res. 2016;107:11-8.

Buysschaert B, Kerckhof F-M, Vandamme P, De Baets B, Boon
N. Flow cytometric fingerprinting for microbial strain dis-
crimination and physiological characterization. Cytometry A.
2018;93(2):201-12.

Prest EI, Hammes F, Kotzsch S, van Loosdrecht MCM, Vrou-
wenvelder JS. Monitoring microbiological changes in drinking
water systems using a fast and reproducible flow cytometric
method. Water Res. 2013;47(19):7131-42.

Mermans F, Chatzigiannidou I, Teughels W, Boon N. Quan-
tifying synthetic bacterial community composition with flow
cytometry: efficacy in mock communities and challenges in
co-cultures. mSystems. 2025;10(1):e01009-24.

Haberkorn I, Off CL, Besmer MD, Buchmann L, Mathys A.
Automated online flow cytometry advances microalgal ecosys-
tem management as in situ, high-temporal resolution monitor-
ing tool. Front Bioeng Biotechnol. 2021;9:642671.

Marquard D, Enders A, Roth G, Rinas U, Scheper T, Lindner P.
In situ microscopy for online monitoring of cell concentration
in Pichia pastoris cultivations. J Biotechnol. 2016;234:90-8.
Marba-Ardébol A-M, Emmerich J, Neubauer P, Junne S.
Single-cell-based monitoring of fatty acid accumulation in
Crypthecodinium cohnii with three-dimensional holographic
and in situ microscopy. Process Biochem. 2017;52:223-32.
Havlik I, Reardon KF, Unal M, Lindner P, Prediger A, Babitzky
A, et al. Monitoring of microalgal cultivations with on-line,
flow-through microscopy. Algal Res. 2013;2(3):253-7.
Liider C, Lindner P, Bulnes-Abundis D, Lu SM, Liicking T,
Solle D, et al. In situ microscopy and MIR-spectroscopy as
non-invasive optical sensors for cell cultivation process moni-
toring. Pharmaceutical Bioprocessing. 2014;2(2):157-66.
Wiedemann P, Worf M, Wiegemann HB, Egner F, Schwiebert
C, Wilkesman J, et al. On-line and real time cell counting and
viability determination for animal cell process monitoring by
in situ microscopy. BMC Proceedings. 2011;5(8):77.

Guez J-S, Lacroix P-Y, Chateau T, Vial C. Deep in situ micros-
copy for real-time analysis of mammalian cell populations in
bioreactors. Sci Rep. 2023;13(1):22045.

Belini VL, Suhr H, Wiedemann P. Online monitoring of the
morphology of an industrial sugarcane biofuel yeast strain via
in situ microscopy. J Microbiol Methods. 2020;175:105973.
Marba-Ardébol A-M, Emmerich J, Muthig M, Neubauer P,
Junne S. Real-time monitoring of the budding index in Saccha-
romyces cerevisiae batch cultivations with in situ microscopy.
Microb Cell Fact. 2018;17:1-12.

Gustavsson R, Mandenius C-F, Lofgren S, Scheper T, Lindner
P. In situ microscopy as online tool for detecting microbial
contaminations in cell culture. J Biotechnol. 2019;296:53-60.
Le KT, Yuan Z, Syed A, Ratelle D, Orenstein EC, Carter ML,
et al. Benchmarking and automating the image recognition
capability of an in situ plankton imaging system. Front Mar
Sci. 2022;9:869088.

Rees P, Summers HD, Filby A, Carpenter AE, Doan M.
Imaging flow cytometry. Nature Reviews Methods Primers.
2022;2(1):86.

Traller JC, Hildebrand M. High throughput imaging to the dia-
tom Cyclotella cryptica demonstrates substantial cell-to-cell

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

variability in the rate and extent of triacylglycerol accumula-
tion. Algal Res. 2013;2(3):244-52.

Patterson JO, Swaffer M, Filby A. An imaging flow cytometry-
based approach to analyse the fission yeast cell cycle in fixed
cells. Methods. 2015;82:74-84.

Hua X, Han K, Mandracchia B, Radmand A, Liu W, Kim H,
et al. Light-field flow cytometry for high-resolution, volumet-
ric and multiparametric 3D single-cell analysis. Nat Commun.
2024;15(1):1975.

Schiavone M, Dagkesamanskaya A, Vieu P-G, Duperray M,
Duplan-Eche V, Francois JM. A flow cytometry method for
quantitative measurement and molecular investigation of the
adhesion of bacteria to yeast cells. Sci Rep. 2024;14(1):20935.
Zhang S, Han Z, Qi H, Liu S, Liu B, Sun C, et al. Convolutional
neural network-driven impedance flow cytometry for accurate
bacterial differentiation. Anal Chem. 2024;96(11):4419-29.
Geinitz B, Rehmann L, Biichs J, Regestein L. Noninvasive
tool for optical online monitoring of individual biomass
concentrations in a defined coculture. Biotechnol Bioeng.
2020;117(4):999-1011.

Stone KA, Shah D, Kim MH, Roberts NRM, He QP, Wang J. A
novel soft sensor approach for estimating individual biomass in
mixed cultures. Biotechnol Prog. 2017;33(2):347-54.

Lee TA, Morlock J, Allan J, Steel H. Directing microbial co-cul-
ture composition using cybernetic control. Cell Reports Methods.
2025;5(3).

Grassi S, Alamprese C, Bono V, Casiraghi E, Amigo JM. Model-
ling milk lactic acid fermentation using multivariate curve res-
olution-alternating least squares (MCR-ALS). Food Bioprocess
Technol. 2014;7:1819-29.

Herzog J, Mook A, Utesch T, Bengelsdorf FR, Zeng A-P. Lactate
based caproate production with Clostridium drakei and process
control of Acetobacterium woodii via lactate dependent in situ
electrolysis. Front Bioeng Biotechnol. 2023;11:1212044.
Sovova K, Cepl J, Markos A, §panél P. Real time monitor-
ing of population dynamics in concurrent bacterial growth
using SIFT-MS quantification of volatile metabolites. Analyst.
2013;138(17):4795-801.

Delvigne F, Martinez JA. Advances in automated and reactive
flow cytometry for synthetic biotechnology. Curr Opin Biotech-
nol. 2023;83:102974.

Lee KCM, Guck J, Goda K, Tsia KK. Toward deep biophysi-
cal cytometry: prospects and challenges. Trends Biotechnol.
2021;39(12):1249-62.

Bertelsen CV, Skands GE, Gonzéilez Diaz M, Dimaki M,
Svendsen WE. Using impedance flow cytometry for rapid
viability classification of heat-treated bacteria. ACS Omega.
2023;8(8):7714-21.

AlMasoud N, Muhamadali H, Chisanga M, AlRabiah H, Lima
CA, Goodacre R. Discrimination of bacteria using whole organ-
ism fingerprinting: the utility of modern physicochemical tech-
niques for bacterial typing. Analyst. 2021;146(3):770-88.
Bhatta H, Goldys EM, Learmonth RP. Use of fluorescence spec-
troscopy to differentiate yeast and bacterial cells. Appl Microbiol
Biotechnol. 2006;71:121-6.

Shlosberg Y, Farber Y, Hasson S, Bulatov V, Schechter I. Fast
label-free identification of bacteria by synchronous fluorescence
of amino acids. Anal Bioanal Chem. 2021;413(27):6857-66.
Shin Y-H, Barnett JZ, Gutierrez-Wing MT, Rusch KA, Choi J-W.
A hand-held fluorescent sensor platform for selectively estimat-
ing green algae and cyanobacteria biomass. Sens Actuators, B
Chem. 2018;262:938-46.

Wyatt PJ. Light scattering in the microbial world. J Colloid Inter-
face Sci. 1972;39(3):479-91.

Qiu L, Zhang L, Horowitz GL, Turzhitsky V, Coughlan MF,
Glyavina M, et al. Rapid detection and identification of bacteria

@ Springer



5624

N.A. Dambruin et al.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

directly from whole blood with light scattering spectroscopy
based biosensor. Sens Actuators, B Chem. 2021;346:130489.
Mehrubeoglu M, Teng MY, Zimba PV. Resolving mixed algal
species in hyperspectral images. Sensors. 2013;14(1):1-21.
Sun G, Wei X, Zhang D, Huang L, Liu H, Fang H. Immobiliza-
tion of enzyme electrochemical biosensors and their application
to food bioprocess monitoring. Biosensors. 2023;13(9):886.
Chen J, Tang J, Shi H, Tang C, Zhang R. Characteristics of vola-
tile organic compounds produced from five pathogenic bacteria
by headspace-solid phase micro-extraction/gas chromatography-
mass spectrometry. J Basic Microbiol. 2017;57(3):228-37.
Dabros M, Dennewald D, Currie DJ, Lee MH, Todd RW, Mari-
son IW, et al. Cole-Cole, linear and multivariate modeling of
capacitance data for on-line monitoring of biomass. Bioprocess
Biosyst Eng. 2009;32:161-73.

Swaminathan N, Priyanka P, Rathore AS, Sivaprakasam S, Sub-
biah S. Cole-Cole modeling of real-time capacitance data for esti-
mation of cell physiological properties in recombinant Escheri-
chia coli cultivation. Biotechnol Bioeng. 2022;119(3):922-35.
Randek J, Mandenius C-F. In situ scanning capacitance sensor
with spectral analysis reveals morphological states in cultures
for production of biopharmaceuticals. Sens Actuators, B Chem.
2020;313:128052.

Li M-Y, Ebel B, Blanchard F, Paris C, Guedon E, Marc A. Con-
trol of IgG glycosylation by in situ and real-time estimation of
specific growth rate of CHO cells cultured in bioreactor. Biotech-
nol Bioeng. 2019;116(5):985-93.

Ansorge S, Esteban G, Schmid G. On-line monitoring of
responses to nutrient feed additions by multi-frequency per-
mittivity measurements in fed-batch cultivations of CHO cells.
Cytotechnology. 2010;62:121-32.

Flores-Cosio G, Herrera-Lopez EJ, Arellano-Plaza M, Gschae-
dler-Mathis A, Sanchez A, Amaya-Delgado L. Dielectric prop-
erty measurements as a method to determine the physiological
state of Kluyveromyces marxianu s and Saccharomyces cerevi-
siae stressed with furan aldehydes. Appl Microbiol Biotechnol.
2019;103(23):9633-42.

Flores-Cosio G, Herrera-Lopez EJ, Arellano-Plaza M, Gschae-
dler-Mathis A, Kirchmayr M, Amaya-Delgado L. Application
of dielectric spectroscopy to unravel the physiological state of
microorganisms: current state, prospects and limits. Appl Micro-
biol Biotechnol. 2020;104(14):6101-13.

Spencer D, Morgan H. High-speed single-cell dielectric spec-
troscopy. ACS sensors. 2020;5(2):423-30.

Zhao Y, Wang K, Chen D, Fan B, Xu Y, Ye Y, et al. Develop-
ment of microfluidic impedance cytometry enabling the quan-
tification of specific membrane capacitance and cytoplasm
conductivity from 100,000 single cells. Biosens Bioelectron.
2018;111:138-43.

Sharma S, Boyer J, Teyton L. A practitioner’s view of spectral
flow cytometry. Nat Methods. 2024;21(5):740-3.

Johnson AM, Bullock BL, Neuwelt AJ, Poczobutt JM, Kas-
par RE, Li HY, et al. Cancer cell-intrinsic expression of MHC
class II regulates the immune microenvironment and response
to anti—-PD-1 therapy in lung adenocarcinoma. J Immunol.
2020;204(8):2295-307.

Vardaman lii D, Ali MA, Siam MHB, Bolding C, Tidwell H,
Stephens HR, et al. Development of a spectral flow cytometry
analysis pipeline for high-dimensional immune cell characteriza-
tion. J Immunol. 2024;213(11):1713-24.

Abu-Absi NR, Martel RP, Lanza AM, Clements SJ, Borys MC,
Li ZJ. Application of spectroscopic methods for monitoring of
bioprocesses and the implications for the manufacture of biolog-
ics. Pharmaceutical Bioprocessing. 2014;2(3):267-84.
McCreery RL. Raman spectroscopy for chemical analysis. New
York: John Wiley & Sons; 2000.

@ Springer

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

Lin YK, Leong HY, Ling TC, Lin D-Q, Yao S-J. Raman spec-
troscopy as process analytical tool in downstream processing of
biotechnology. Chin J Chem Eng. 2021;30:204—-11.

Gerzon G, Sheng Y, Kirkitadze M. Process analytical technolo-
gies—advances in bioprocess integration and future perspectives.
J Pharm Biomed Anal. 2022;207:114379.

Ge Z, Cavinato AG, Callis JB. Noninvasive spectroscopy for
monitoring cell density in a fermentation process. Anal Chem.
1994;66(8):1354-62.

Klaverdijk M, Ottens M, Klijn ME. Single compound data sup-
plementation to enhance transferability of fermentation specific
Raman spectroscopy models. Analytical and Bioanalytical
Chemistry. 2025;417(9):1873-84.

Webster TA, Hadley BC, Dickson M, Busa JK, Jaques C, Mason
C. Feedback control of two supplemental feeds during fed-batch
culture on a platform process using inline Raman models for
glucose and phenylalanine concentration. Bioprocess Biosyst
Eng. 2021;44(1):127-40.

Goldrick S, Umprecht A, Tang A, Zakrzewski R, Cheeks M,
Turner R, et al. High-throughput Raman spectroscopy combined
with innovate data analysis workflow to enhance biopharmaceuti-
cal process development. Processes. 2020;8(9):1179.

Wieland K, Masri M, von Poschinger J, Briick T, Haisch C. Non-
invasive Raman spectroscopy for time-resolved in-line lipidom-
ics. RSC Adyv. 2021;11(46):28565-72.

Dzurendova S, Olsen PM, Byrtusova D, Tafintseva V, Shapaval
V, Horn SJ, et al. Raman spectroscopy online monitoring of bio-
mass production, intracellular metabolites and carbon substrates
during submerged fermentation of oleaginous and carotenogenic
microorganisms. Microb Cell Fact. 2023;22(1):261.

Song Y, Yin H, Huang WE. Raman activated cell sorting. Curr
Opin Chem Biol. 2016;33:1-8.

Song Y, Kaster A-K, Vollmers J, Song Y, Davison PA, Frentrup
M, et al. Single-cell genomics based on Raman sorting reveals
novel carotenoid-containing bacteria in the Red Sea. Microb Bio-
technol. 2017;10(1):125-37.

Zhang J, Lin H, Xu J, Zhang M, Ge X, Zhang C, et al. High-
throughput single-cell sorting by stimulated Raman-activated cell
ejection. Sci Adv. 2024;10(50):eadn6373.

Zuchowska K, Filipiak W. Modern approaches for detection
of volatile organic compounds in metabolic studies focusing
on pathogenic bacteria: current state of the art. J Pharm Anal.
2024;14(4):100898.

O’Hara M, Mayhew CA. A preliminary comparison of volatile
organic compounds in the headspace of cultures of Staphylococ-
cus aureus grown in nutrient, dextrose and brain heart bovine
broths measured using a proton transfer reaction mass spectrom-
eter. J Breath Res. 2009;3(2):027001.

Azzollini A, Boggia L, Boccard J, Sgorbini B, Lecoultre N,
Allard P-M, et al. Dynamics of metabolite induction in fungal
co-cultures by metabolomics at both volatile and non-volatile
levels. Front Microbiol. 2018;9:72.

Stephens K, Pozo M, Tsao C-Y, Hauk P, Bentley WE. Bacterial
co-culture with cell signaling translator and growth controller
modules for autonomously regulated culture composition. Nat
Commun. 2019;10(1):4129.

Liu F, Mao J, Lu T, Hua Q. Synthetic, context-dependent
microbial consortium of predator and prey. ACS Synth Biol.
2019;8(8):1713-22.

Lalwani MA, Kawabe H, Mays RL, Hoffman SM, Avalos JL.
Optogenetic control of microbial consortia populations for chem-
ical production. ACS Synth Biol. 2021;10(8):2015-29.
Davison BH, Stephanopoulos G. Effect of pH oscilla-
tions on a competing mixed culture. Biotechnol Bioeng.
1986;28(8):1127-37.



Application of process analytical technology for real-time monitoring of synthetic co-culture...

5625

93.

94.

95.

96.

97.

98.

99.

100.

Krieger AG, Zhang J, Lin XN. Temperature regulation as a tool
to program synthetic microbial community composition. Bio-
technol Bioeng. 2021;118(3):1381-92.

Hu M, Wang D, Tang X, Zhang Q, Zhao J, Mao B, et al. Improv-
ing the utilization efficiency of nitrogen source through co-
culture of Lactobacillus strains with different nitrogen source
metabolisms. LWT. 2024;191: 115701.

Kusuda M, Shimizu H, Toya Y. Reactor control sys-
tem in bacterial co-culture based on fluorescent proteins
using an Arduino-based home-made device. Biotechnol J.
2021;16(12):2100169.

Bertaux F, Sosa-Carrillo S, Gross V, Fraisse A, Aditya C,
Furstenheim M, et al. Enhancing bioreactor arrays for automated
measurements and reactive control with ReacSight. Nat Com-
mun. 2022;13(1):3363.

Borase RP, Maghade DK, Sondkar SY, Pawar SN. A review of
PID control, tuning methods and applications. Int J Dyn Control.
2021;9:818-27.

Von Stosch M, Oliveria R, Peres J, de Azevedo SF. Hybrid
modeling framework for process analytical technology: appli-
cation to Bordetella pertussis cultures. Biotechnol Prog.
2012;28(1):284-91.

Albino M, Gargalo CL, Nadal-Rey G, Albk MO, Krhne U, Ger-
naey KV. Hybrid modeling for on-line fermentation optimization
and scale-up: a review. Processes. 2024;12(8):1635.

Verhoeven MD, de Valk SC, Daran J-MG, van Maris AJA, Pronk
JT. Fermentation of glucose-xylose-arabinose mixtures by a

101.

102.

103.

104.

105.

synthetic consortium of single-sugar-fermenting Saccharomyces
cerevisiae strains. FEMS Yeast Res. 2018;18(8):foy075.

Feng Y, Tian X, Chen Y, Wang Z, Xia J, Qian J, et al. Real-
time and on-line monitoring of ethanol fermentation process by
viable cell sensor and electronic nose. Bioresources Bioprocess.
2021;8(1):37.

Chen H, Huo D, Zhang J. Gas recognition in E-nose system: a
review. IEEE Trans Biomed Circuits Syst. 2022;16(2):169-84.
Comberbach DM, Scharer JM, Moo-Young M. Application of
the headspace gas chromatographic technique for continuous
monitoring of the acetone-butanol-ethanol fermentation. Enzyme
Microb Technol. 1985;7(11):543-8.

You D-W, Seon Y-S, Jang Y, Bang J, Oh J-S, Jung K-W. A port-
able gas chromatograph for real-time monitoring of aromatic
volatile organic compounds in air samples. J] Chromatogr A.
2020;1625:461267.

Khomenko I, Stefanini I, Cappellin L, Cappelletti V, Franceschi
P, Cavalieri D, et al. Non-invasive real time monitoring of yeast
volatilome by PTR-ToF-MS. Metabolomics. 2017;13:1-13.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer



	Application of process analytical technology for real-time monitoring of synthetic co-culture bioprocesses
	Abstract
	Introduction
	Direct biomass measurements
	Flow cytometry
	In situ microscopy
	Impedance spectroscopy
	Fluorescence spectroscopy
	Scattered light spectroscopy
	UVVis absorbance
	Infrared and Raman spectroscopy

	Indirect biomass monitoring
	Soluble (bio)chemicals
	Volatile (bio)chemicals
	PAT for co-culture control
	Outlook

	References


