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Abstract
Synthetic microbial co-cultures can enhance bioprocess performance by division-of-labor strategies that, through spatial 
segregation of product-pathway modules, circumvent or mitigate negative impacts of the expression of an entire product 
pathway in a single microorganism. Relative abundance of the microbial partners is a key parameter for the performance of 
such co-cultures. Population control strategies based on genetic engineering have been explored, but the required interventions 
may impose an additional metabolic burden and thereby negatively affect co-culture performance. Regulation of co-culture 
composition by controlled substrate feeding strategies or temperature control requires real-time population monitoring. 
Process analytical technology (PAT) is an approach for real-time monitoring and control of processes, enabling continuous 
observation of co-cultivation that may serve as a foundation for population control strategies. In this review, we discuss 
PAT methods for monitoring synthetic co-cultures, either through direct biomass measurements or by tracking soluble or 
volatile metabolites. We discuss advantages, limitations, and applications of established as well as emerging technologies 
and conclude that leveraging PAT for precise, real-time population control has the potential to enhance stability, efficiency, 
and industrial scalability of synthetic co-cultures.

Keywords  Synthetic co-culture · Process analytical technology · Real-time monitoring · Industrial biotechnology · 
Microbiology · Process control

Introduction

Microbial biotechnology contributes to the transition 
towards a sustainable economy by using microorganisms, 
often subjected to classical strain improvement and/or 
genetic modification, for the large-scale production of chem-
icals, pharmaceuticals, and food ingredients from renewable 
resources [1]. Industrial processes in microbial biotechnol-
ogy are predominantly based on single microbial strains 
and operated under aseptic conditions. While simplifying 
optimization of microorganisms and process parameters, 

the use of such monocultures also brings about limitations, 
for example when dealing with complex substrate mixtures 
and/or dynamic process conditions. Microbial waste-water 
purification in non-aseptic, open systems demonstrates the 
power of multi-species microbial communities to address 
such challenges during the conversion of complex materi-
als and substrates at the end of the anaerobic food chain [2]. 
However, open mixed communities are difficult to engineer 
due to complex population dynamics and unknown interac-
tions between the strains [2].

Recently, interest has intensified in exploring the poten-
tial of using defined co-cultures of two or more microbial 
strains for microbial biotechnology applications. Laboratory 
studies have demonstrated that co-cultivation strategies can 
help balance product pathways to mitigate byproduct for-
mation and circumvent problems originating from enzyme 
promiscuity and host-dependent incompatibilities to express 
specific enzymes [3–5]. Furthermore, removal or production 
of intermediates by syntrophic species can influence reac-
tion thermodynamics and, thereby, their feasibility [2]. As 
the species composition of synthetic co-cultures is defined 
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and simpler than that of open mixed cultures, engineering of 
individual species is possible, as is the case for pure cultures. 
Despite the potential of synthetic co-cultures for industrial 
biotechnology, upscaling from laboratory to industrial scale 
remains a challenge. While open mixed cultures typically 
have stable chemical, metabolic, and ecological equilibria, 
those in synthetic co-cultures can be highly sensitive to pro-
cess parameters. A suboptimal population equilibrium can 
lead to diminished product titers and yields [6]. To optimize 
population composition and prevent population instability, 
monitoring and controlling the relative abundance of the 
microbial strains in synthetic consortia is a key objective.

The challenge of monitoring the population composition 
in defined microbial consortia can be addressed by different 
strategies. One category of strategies involves off-line meth-
ods, i.e., methods that require the collection of a sample and 
analysis on a stand-alone device, sometimes also including 
sample preparation. Examples to monitor species abundance 
in co-cultures off-line are rDNA sequencing and PCR analy-
sis [7–9]. Even though off-line methods allow highly precise 
quantitative and qualitative data, these do not allow real-time 
monitoring of the population composition. For successful 
implementation of automated population dynamics control 
strategies, real-time monitoring of the population composi-
tion is required, and off-line analytics are not suitable for 
this purpose.

Analytical techniques enabling automated monitoring and 
control are referred to as Process Analytical Technologies 
(PAT). PAT is defined as an approach for designing, analyz-
ing, and controlling manufacturing processes through timely 
measurements of critical process parameters [10]. In addi-
tion to the traditional pH, dissolved oxygen, temperature, 
capacitance, and off-gas O2 and CO2 analysis, measurements 
of substrates and metabolites using PAT tools can provide 
deeper insight into the system’s behavior and allow for the 
development of tailor-made control strategies. Real-time 
measurements in bioreactors may involve three configura-
tions: (1) in in-line, a PAT sensor is inserted in the process; 
(2) in on-line, measurements are performed outside the bio-
reactor using a bypass loop; and (3) in at-line, automated 
sampling connected to an analyzer. Depending on the PAT 
tool, a continuous stream of information on biomass com-
position as well as biomass, substrates, and/or metabolites 
concentration can be captured, facilitating the opportunity 
to immediately respond to changing dynamics. The abil-
ity to automate and speed up process decisions makes PAT 
an interesting approach for co-culture population dynamics 
control.

The goal of this review is to describe the current sta-
tus of research applying in-/on-/at-line PAT for monitoring 
defined co-culture processes. We focus on PAT that do not 
involve genetic engineering (e.g., the expression of fluores-
cent tags). Although techniques that use genetic engineering 

can give high-resolution optical insight into the abundance 
of the fluorescent species, the strategy is restricted to micro-
organisms that are genetically accessible. Moreover, from a 
bioprocessing perspective, the metabolic burden imposed 
by the required expression of heterologous proteins, as well 
as potential mutations in the responsible genes, may nega-
tively affect culture performance under industrial process 
conditions [11–13]. The first section of this review describes 
applications of PAT for monitoring interspecies dynamics by 
using biomass as an analyte. Subsequently, PAT applications 
are reviewed that measure soluble and volatile (bio)chemi-
cals as a basis for synthetic co-culture monitoring. A sche-
matic overview of the covered PAT applications is presented 
in Fig. 1. In Table 1, we listed publications that used PAT for 
monitoring of synthetic co-cultures. Analytical technologies 
applied to co-cultures covered in this review are summarized 
in Table 2, including advantages, disadvantages, and case 
studies reported in the literature. The working principle of 
the PAT methodologies used for co-culture monitoring is 
illustrated in Fig. 2. For an overview of off-line monitoring 
methods or methods involving genetic engineering, we refer 
to the review of Schlembach et al. [14]. Finally, we discuss 
how PAT can be implemented in co-culture bioprocesses 
through feedback control.

Direct biomass measurements

Flow cytometry

Flow cytometry (FC) is a technique to detect and measure 
physical and chemical characteristics of single cells as they 
pass through a laser in a fluid stream (Fig. 2A). FC generates 
different readouts, specifically forward scatter (FSC), side 
scatter (SSC), and fluorescence. FSC is light scattered in 
the forward direction (i.e., along the same axis as the beam) 
and is proportional to the diameter of the cell. SSC measures 
light that is scattered at a 90° angle to the laser beam and is 
influenced by internal cellular complexity, such as the pres-
ence of dense structures, organelles, or a nucleus. Together, 
FSC and SSC allow for the acquisition of relevant cellular 
data, such as the number of cells or the size of the cells [15].

FSC and SSC data was used to distinguish between spe-
cies in an Escherichia coli-Saccharomyces cerevisiae co-cul-
ture [16, 17] and a Lactobacillus plantarum-Kazachstania 
bulderi co-culture [17]. Populations of the yeasts S. cerevi-
siae and K. bulderi were gated based on events with FSC 
signal area higher than 105.5, while those of the bacteria E. 
coli and L. plantarum were defined as events with lower 
FSC values [17]. In both publications, cells were grown 
in a Segregostat, which is a continuous cultivation set-up 
originally developed to control phenotypic subpopulations 
in pure cultures of E. coli and Pseudomonas putida through 
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substrate pulsing [18]. Martinez et al. first used the Seg-
regostat and FC measurements to control the population 
dynamics of an S. cerevisiae-E. coli co-culture [16]. Glu-
cose depletion gave S. cerevisiae a fitness advantage over 
E. coli, as yeast can grow on overflow metabolites ethanol 
and acetate. Upon pulsing a glucose-containing substrate, 
the specific growth rate of E. coli exceeded that of its yeast 
partner, which enabled continuous control of growth rates 
and population dynamics. In subsequent work, Martinez 
et al. developed a model based on metabolic networks to 
predict the pulsing frequency [17]. The predictive model 
was successfully applied in a Segregostat to a cooperative 
co-culture (K. bulderi and L. plantarum) and a competitive 
co-culture (E. coli and S. cerevisiae). In this case, FSC and 
SSC signals were used to monitor the co-culture in real time 
to enable the control strategy.

In FC, fluorescent channels can be used to detect and 
quantify fluorescence in a specific range of wavelengths, 
thereby characterizing a distinct cell population. Dis-
tinguishing subpopulations by FC can be performed by 
expressing one or more heterologous fluorescent proteins 
to mark (an) individual strain(s) [11, 19–21]. Alternatively, 
at-line biomarker staining (e.g., DNA, RNA, or lipids) for 
gram-negative bacteria with purpose-built automated stain-
ing devices has been successfully applied to circumvent 
the metabolic burden of heterologous fluorescent protein 
expression [22, 23]. In aquatic ecosystems with undefined 
microbial communities, staining with SYBR® Green I and 

subsequent FC could discriminate individual prokaryotes 
based on nucleic acid content of bacterial cells [23, 24]. 
Yet, discrimination between individual prokaryotes with bio-
marker staining, with the goal to enable real-time co-culture 
monitoring, faced complications. For example, phenotypic 
changes resulting from co-cultivation of bacteria can have 
a profound effect on cell concentration estimates by FC 
analyses on SYBR® Green I-stained bacteria [25]. These 
effects originated from interactions between the bacterial co-
cultivation partners, since similar FC analyses on mock com-
munities, constructed by mixing different biomarker-stained 
axenic cultures, outperformed strain-specific qPCR and 16S 
rRNA gene amplicon sequencing in terms of species quan-
tification. In another study, Haberkorn et al. attempted to 
quantify the abundance of individual prokaryotic species 
(Tistrella mobilis, Pseudomonas pseudoalcaligenes, and 
Sphingopyxis) in a defined co-culture with phototrophic 
Chlorella vulgaris by FC with at-line biomarker staining 
[26]. Emissions collected on the F11/FL3 fluorescent chan-
nels measured the stained nucleic acids of the bacterial cells 
and chlorophyll autofluorescence of the algal cells, thereby 
allowing for automated monitoring of the population sizes 
of bacteria and algae. However, this approach could not dis-
criminate the prokaryotic subpopulation because co-cultiva-
tion of algae and bacteria caused a shift of the localization 
of the prokaryotes on the fluorescent channels. Therefore, 
monitoring of the prokaryotic populations following the 
methods as described by [24] was not possible.

Fig. 1   Process analytical technology applied for monitoring of co-
cultures per type of analyte. Biomass can be directly measured to 
assess the biomass composition, or alternatively, soluble and volatile 
substrates and metabolites from fermentation can serve as proxies for 

population dynamics in the co-culture. Other co-culture bioprocess 
parameters were monitored based on soluble (bio)chemical measure-
ments. Abbreviations: SIFT-MS, selected-ion flow-tube mass spec-
trometry
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In situ microscopy

Off-line characterization of microbial species by micros-
copy is a widely established method. Over the last dec-
ades, in situ optical microscopy and deep learning image 
analysis algorithms enabled rapid extraction of quantita-
tive information on microbial cells from microscopy data. 
Examples include monitoring of fungi [27], microalgae [28, 
29], mammalian cells [30–32], and yeast cells [33, 34] with 
in situ microscopes to determine growth and, in the case of 
algae, intracellular fatty acid accumulation. Although in situ 
microscopy is not yet applied to monitoring of synthetic co-
cultures, Gustavsson et al. successfully applied this method 
to detect and quantify fungal contaminations (by the yeasts 
Candida utilis or Pichia stipitis) in hybridoma cell cultures 
[35]. Furthermore, unicellular planktonic species could be 
identified from water samples using an in situ imaging sys-
tem and convolutional neural networks [36]. This shows 
that in situ microscopy can be used for species identification 
using custom-made image processing algorithms.

Imaging FC is a microscopy technique that combines the 
high-throughput sampling of traditional FC with individual 
cell imaging, thereby enabling direct visualization of cellular 
properties. In addition to cell area, also more complicated 
metrics can be assessed to provide information on marker 
localization and cell morphology (e.g., shape, biomarker 
intensity, texture, and granularity) [37]. Studies focusing 
on morphological characteristics and spatial distributions 
have employed imaging FC combined with staining agents to 
analyse the lipid content of algal cells [38], cell-cycle phase 
in yeast [39], and 3D structures of mammalian cells [40]. 
Because of the high specificity of imaging FC and its ability 
to detect multiple biomarkers, it has the potential to quantify 
morphologically similar species that cannot be distinguished 
by only using FSC and SSC.

Co-cultures of species with significantly different cell 
sizes can be challenging to monitor using microscopy-
based techniques because of the required magnification. 
Guez et al. used a 40 × objective for hybridoma cells [32], 
the same as for yeast [34], whereas a 10 × objective was 
used for the algae Chlamydomonas reinhardtii [29] and the 
yeast Pichia pastoris [27]. Gustavsson et al. reported that 
E. coli cells present as contaminants in a hybridoma cell 
culture could not be depicted as separate objects, even at 
the highest (non-specified) magnification [35]. The authors 
suggested that high-resolution in situ microscopy could 
resolve this issue. Alternatively, specific staining can be 
used to address this problem. For example, Schiavone et al. 
monitored adhesion events of bacteria and yeast with imag-
ing FC (60 × magnification) by tracking E. coli cells with 
heterologously expressed GFP [41]. Based on currently 
available information, the FSC signal of FC may be more 
suitable for quantifying co-cultures of species with large size 

differences compared to imaging FC because of its relative 
simplicity, lower costs, and availability in many life-science 
laboratories.

Impedance spectroscopy

Biomass can also be determined based on the frequency-
dependent polarizability of cells as a response to an alter-
nating electric field. This method is known under various 
names, including impedance spectroscopy, dielectric spec-
troscopy, capacitance measurement, and permittivity meas-
urement. Cell polarizability depends on different variables 
related to the cell state, described by the Cole–Cole equation 
[61, 62]. Parameters of the Cole–Cole equation allow for 
the derivation of additional information about cells, such 
as their size [63] and specific growth rate [64] as well as 
their responses to nutritional status [65] and chemical stress 
factors [66]. Although dielectric spectroscopy was used to 
monitor (among others) cell size, shape, concentration, and 
growth phases for different species during growth in pure 
cultures [67], we have not found studies in which this tech-
nique was applied to synthetic co-cultures.

Over the last two decades, high-throughput analysis of 
single-cell dielectric properties was established using imped-
ance FC. Using this technique, at-line measurements were 
performed on single cells (~ 1000 cells/s) in microfluidic 
systems to measure polarizability, membrane capacitance, 
and cytoplasm conductivity, thereby allowing cell charac-
terization (Fig. 2A). Zhang et al. distinguished three groups 
of bacteria with different morphologies (bacilli, cocci, and 
vibrio) and two species of bacilli (E. coli and Salmonella 
enteritidis) using impedance FC in combination with deep 
learning approaches [42]. Impedance FC was also applied 
to distinguish different mammalian cell types, such as vari-
ous tumor cell lines, red blood cells, and red cell ghosts [68, 
69]. A challenge of impedance FC is the sensitivity to vari-
ation in medium conductivity, which can lead to inaccurate 
results when medium composition changes throughout a 
fermentation process [51]. Based on the currently available 
results, impedance FC shows potential to monitor and con-
trol synthetic co-cultures in a similar fashion as optical FC 
but based on cells’ conductivity. However, further develop-
ment is needed to improve user-friendliness, reliability, and 
cost-effectivity of impedance FC systems [50].

Fluorescence spectroscopy

In fluorescence spectroscopy, light excites a fluorophore to 
a higher energy state, and a photon is emitted at a different 
wavelength as the molecule relaxes to the lower energy state 
(Fig. 2B). The range of frequencies (i.e., energy) of emit-
ted photons as a result of a particular excitation frequency 
is known as the emission spectrum. Constructing a matrix 
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Fig. 2   A schematic of the working principle of flow cytometry, spec-
troscopy, enzyme-based electrochemical sensors, and selected-ion 
flow-tube mass spectrometry (SIFT-MS). A In optical flow cytom-
etry, single cells pass through a laser in a fluid stream. Forward scat-
tering, side scattering, and fluorescence effects can be measured and 
linked to cell size, cell complexity, and auto-fluorescence. Impedance 
flow cytometry measures the frequency-dependent polarizability as 
cells pass through an electric current in a microfluidic chamber. B 
Light-matter interactions employed by spectroscopy, showing fluo-

rescence, transmittance, absorbance, and scattering. C In an enzyme-
based electrochemical sensor, an enzyme either generates or con-
sumes a redox-active compound (R) during the conversion of a target 
analyte. The resulting change in the electrical signal is measured and 
correlated to the concentration of the target substance. D SIFT-MS 
works by introducing a sample into a flow tube where it reacts with 
precursor ions. The resulting product ions are analysed by a quad-
rupole mass analyzer to identify and quantify volatile organic com-
pounds in real time
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consisting of the emission spectra for a range of excitation 
frequencies can be used to collect information on all fluores-
cent compounds in a sample. Emission spectra of the amino 
acids tryptophan, phenylalanine, and tyrosine function as 
a unique cellular autofluorescence fingerprint. This finger-
print was utilized off-line to differentiate between lactic 
acid bacteria and yeast, between different yeast species, and 
between different bacterial species [53, 54]. Nevertheless, 
the application of an autofluorescence signal for real-time 
biomass quantification is not straightforward, as it requires 
signal calibration for different organisms and growth media. 
In both studies, cells had to be suspended in distilled water 
or saline solutions to avoid fluorescence interference of the 
media components with the low-intensity autofluorescence 
of cells. This is different for organisms with distinct autoflu-
orescent molecules, such as photosynthetic pigments. Using 
a portable fluorescent sensor platform, green algae (Chlo-
rella vulgaris) and cyanobacteria (Spirulina) were quantified 
by measuring chlorophyll a and phycocyanin fluorescence 
emission spectra, respectively. Biomass could be classified 
and quantified from pre-mixed cultures of the two species 
with a 2–16% error in biomass concentration prediction, 
which reflected an absolute deviation of 4–39 mg/L over a 
range up to 250 mg/L [55].

A new development where the autofluorescence finger-
print is combined with FC is called spectral FC. In classic 
FC, excitation with one specific wavelength is followed by 
the collection of one emission peak at a given wavelength. 
Spectral FC controls only the excitation and collects an 
emission spectrum across many wavelengths, similar to 
fluorescence spectroscopy [70]. The increased number of 
wavelengths detected in spectral FC allows for the identifica-
tion of specific fluorochromes or a spectral fingerprint of the 
cell. Spectral FC has been used in clinical contexts for (off-
line) monitoring of therapeutic responses [71] and immune 
cell characterization [72]. We have not encountered exam-
ples of studies in which spectral FC was applied for species 
identification. Given the potential of autofluorescence-based 
cell characterization and FC, studies on the potential of this 
technique for monitoring population dynamics in synthetic 
co-cultures appear to be highly relevant.

Scattered light spectroscopy

When a laser light that passes through a sample, particles or 
molecules scatter the light in all directions (Fig. 2B). The 
intensity and wavelength of the scattered light depend on the 
size, shape, and composition of the particles, as well as the 
wavelength of the incident light. The scattered light can be 
measured across different positions over a wide excitation 
spectrum. The resulting spectra depend on the composition 
of the cytoplasm, cell wall characteristics, cell shape, and 
cell size [56, 57]. Using a fluorimeter system, Geinitz et al. 

demonstrated in-line quantification of the abundancies of the 
bacterium Lactococcus lactis and the yeast Kluyveromyces 
marxianus in microtiter-plate co-cultures based on scattered 
light intensity [43]. Spectral differences were mainly attrib-
uted to intracellular compounds and directly corresponded 
to the biomass concentration rather than to produced metab-
olites. Despite an overlap of scattered light spectra, mul-
tivariate data analysis allowed for differentiation between 
the species. Up to 4 g/L off-set cell dry weight within a 12 
g/L range compared to the reference off-line method was 
reported. Assessment of the accuracy of this method was 
difficult because both the in-line and off-line measurements 
were influenced by changing cell size. Moreover, since the 
study was performed in microtiter plates [43], experiments 
with light scattering techniques in a bioreactor context are 
required to obtain more insight into signal interference by 
other particles, such as gas bubbles.

UV/Vis absorbance

Absorbance, also referred to as optical density, measures 
the amount of light absorbed by a sample at a specific 
wavelength (Fig. 2B). Based on the Lambert–Beer law, 
absorbance can be used to determine the concentration of 
a substance in solution. Wavelengths in the range of UV 
and visible light regions are often employed for absorb-
ance measurements. Off-line absorbance measurements 
on microbial communities have been based on pigments 
(especially chlorophyll a and b), which occur in phototro-
phic microorganisms and show absorbance peaks at different 
wavelengths. This allowed quantification of different types 
of phototrophs in co-cultures of coccoid cyanobacteria and 
brown algae (Cyclotella sp.) and in co-cultures of Nanno-
chloropsis salina and Phaeodactylum tricornutum, with 
prediction errors between 0.4 and 13.4% [58]. Furthermore, 
Stone et al. calibrated absorbance measurements to deter-
mine individual cell concentrations in a co-culture of the 
bacterium Methylomicrobium buryatense and the yeast Sch. 
stipitis, with an average percentage error of up to 5% for 
individual species biomass concentrations up to 1.75 g/L 
[44]. It should be noted that this method was only applied in 
an off-line manner, as samples were centrifuged and diluted 
in water prior to absorbance measurements. Conversion of 
this methodology to at-line measurements should be achiev-
able, as automatic dilution of the samples is required to guar-
antee that high biomass concentrations fall within the linear 
range of detection.

Infrared and Raman spectroscopy

Infrared (IR) spectroscopy measures the light that is 
absorbed at wavelengths in the IR region, which corre-
sponds to specific vibrational state transitions of molecules 

5618



Application of process analytical technology for real‑time monitoring of synthetic co‑culture…

in the sample [52]. Each molecule produces a characteristic 
absorption pattern, or “fingerprint,” based on its functional 
groups and structure. The outputs are spectra that reflect the 
chemical composition and abundance of the molecules in 
the sample. An important drawback of IR spectroscopy is 
the interference of water molecules, which can overshadow 
peaks belonging to (bio)chemical compounds of interest. 
Raman spectroscopy, on the other hand, is based on light 
scattering rather than absorbance and is considered comple-
mentary to IR spectroscopy. Raman spectroscopy measures 
inelastic scattering from a monochromatic radiation source 
(e.g., lasers) [73], where the resulting spectra are the sum 
of the scattering effects caused by all Raman-active com-
ponents in a sample. Raman-active compounds exhibit a 
change in polarizability during molecular vibrations. This 
provides a unique spectral fingerprint of the sample’s chemi-
cal composition. Although Raman spectra are not subject 
to large interference from polar molecules such as water, 
fluorescent molecules can cause interference [74].

In-line Raman and IR spectroscopy are popular PAT 
tools because of their rapid and non-invasive nature [75, 
76]. Yet, only one publication reports on its applicability 
for analysing microbial co-cultures. Grassi et al. used IR 
spectroscopy to monitor lactic acid fermentation of milk 
by a co-culture of Streptococcus thermophilus and Lac-
tobacillus bulgaricus [46]. By combining transmission 
and reflectance principles depending on the viscosity of 
the milk, the authors followed the milk’s texture in-line 
and in real time. Curd development caused by lactic-acid 
induced protein denaturation described by the IR data 
could be associated with pH, acidity, and lactic acid con-
centration, but correlation to co-culture population com-
position was not assessed. Other studies suggest that high 
biomass concentrations in monocultures cause a baseline 
shift in the in-line Raman and IR spectra due to particu-
late scattering effects rather than molecular scattering or 
light absorption [77, 78]. Moreover, available analytical 
models for biomass determination in monocultures often 
do not address the origin of observed peaks (e.g., [79, 80]), 
and it is therefore unclear if spectral peaks correspond 
with intracellular compounds. This complicates direct dis-
crimination of specific species. Nevertheless, successful 
analyses of lipid content in algae and carotenoid content in 
yeast monocultures using in-/on-line Raman spectroscopy 
show its potential to monitor intracellular compounds in 
real time [81, 82]. Other applications include cell sorting 
devices coupled to Raman spectroscopy (Raman-activated 
cell-sorting [83]). Single-cell Raman spectra can reflect 
phenotypic and intrinsic biochemical fingerprints of cells 
and have been used to detect and sort microbes from mixed 
cultures. For example, unculturable carotenoid-contain-
ing bacteria could be discovered from Red Sea samples 
and lipid-rich Rhodotorula glutinis could be sorted after 

mixing with an S. cerevisiae cell suspension [84, 85]. A 
current challenge of this technique is the low throughput 
due to the small cross section of spontaneous Raman scat-
tering. Research to overcome this limitation is in progress, 
resulting in a current maximum throughput of ~ 13 cells 
per second [85].

Indirect biomass monitoring

Soluble (bio)chemicals

Quantitative and direct biomass measurements of co-
cultivated species or strains with similar morphologies 
are complex tasks considering the characteristics of the 
available PAT. When direct biomass measurements are not 
possible, real-time measurements of the species-specific 
metabolites offer an alternative way to estimate biomass 
concentrations via empirical or model-based correlations. 
We identified two studies that applied this approach to 
synthetic co-cultures.

Lee et al. quantitatively monitored P. putida and E. coli 
in co-culture using a combination of absolute optical den-
sity and fluorescence spectroscopy as well as a time deriva-
tive of the optical density and fluorescence spectrum [45]. 
Abundance of P. putida correlated well with the fluorescent 
signal, which was attributed to the P. putida extracellular 
metabolite pyoverdine. This metabolite showed a signal at 
a wavelength at which E. coli cultures showed negligible 
fluorescence. As pyoverdine production by P. putida was 
variable depending on temperature, data-driven mathemati-
cal models were required for the quantification of P. putida. 
In 7-day turbidostat runs, Lee et al. reached a consistent 
10% offset between the on-line estimated composition and 
the flow cytometric ground truth, possibly caused by biofilm 
formation [45].

The second metabolite-based study on population com-
position in synthetic co-cultures employed a biosensor [47]. 
In the reported batch co-culture, Acetobacterium woodii pro-
duced lactate from H2 and CO2. Subsequently, the lactate 
was consumed by Clostridium drakei to produce caproate. 
The lactate concentration could be measured on-line with 
enzyme-based electrochemical biosensors and was used to 
control the H2 feed. Enzyme-based electrochemical biosen-
sors are highly sensitive, and their outputs do not require 
complicated data processing and analysis (Fig. 2C). How-
ever, enzymes can be sensitive to harsh environments, result-
ing in lower reproducibility [59]. While the study of Herzog 
and coauthors did not directly use the lactate concentration 
to determine population dynamics [47], it did allow for 
matching of the lactate production rate of A. woodii to the 
lactate consumption capacity of C. drakei. This example 
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demonstrates the potential of real-time control to optimize 
substrate feeding for synthetic co-cultures.

Volatile (bio)chemicals

Volatile compounds generated by microbial metabolism 
can serve as a basis for monitoring synthetic co-cultures 
via off-gas analysis. Organic volatile compounds (VOCs) 
are of special interest, as these are often tightly connected 
with specific metabolic pathways and can be quantified at-
line with spectrometric techniques, such as selected-ion-
flow-tube mass spectrometry (SIFT-MS). SIFT-MS uses 
microwave plasma to ionize air and water vapor to form 
positive and negative precursor ions that are separated into 
single ionic species in a quadrupole mass filter and injected 
into a carrier gas (Fig. 2D). This carrier gas flow is then 
introduced into a flow tube where the ions interact with the 
VOCs in the sample. A second mass spectrometer (usually 
a quadrupole) analyzes the product ions based on charge 
and mass. Most research related to biomarker VOCs aims 
to identify specific microorganisms through off-gas analysis, 
as, for example, applied to human breath [86]. Only a few 
papers explored the application of VOC analysis to study 
population dynamics or control strategies in microbial co-
cultures. Sovová et al. monitored the population dynamics of 
a batch co-culture consisting of Serratia rubidaea, Serratia 
marcescens, and E. coli by measuring ammonia, ethanol, 
acetaldehyde, propanol, acetoin, acetone, and acetic acid 
in the gas phase with SIFT-MS [48]. This work showed 
that, even in binary mixtures of species of the same genus, 
the headspace gas composition can function as a finger-
print for specific bacterial species. However, because an 
orthogonal method to determine the culture composition in 
the co-cultures was not reported, quantification accuracies 
are unknown. In addition, the publication mentions “rapid 
analysis” of the volatile compounds, but the exact duration 
of the measurements was not specified. Other work shows 
how the population dynamics of Salmonella aureus and E. 
coli were reflected by the profiles of 3-methylbutanoic acid 
and 3-methylbutanal, which are characteristic VOCs for S. 
aureus, and of indole, a characteristic marker of E. coli [60]. 
Although these measurements were not performed in real 
time, the reported work does show the potential of VOC 
profiling for real-time measurements. Further exploration 
of this approach should include how environmental factors 
such as temperature, pressure, and humidity in fermentation 
set-ups affect the performance of MS-based techniques.

For both soluble and volatile (bio)chemical-based 
approaches, it should be noted that the use of metabolite 
concentrations to infer population composition implicitly 
assumes a consistent correlation of metabolite production 
with the abundance of the responsible microbial species 
or strain. This assumption may not always be valid due to 

varying metabolic states, substrate availability, or inter-strain 
interactions [87, 88]. Therefore, data analysis models must 
be extensively calibrated with representative data, if neces-
sary, under different regimes, to correlate metabolite con-
centrations to biomass concentrations.

PAT for co‑culture control

The studies covered in this review focus on assessing the 
suitability of various PAT tools for co-culture monitoring, 
often with the primary goal to generate data with higher 
temporal resolution or to resolve co-culture population 
dynamics. Only a few papers report on more advanced appli-
cations of real-time data, such as process control. In feed-
back-based process control, the control variable is continu-
ously measured and compared against a predefined target. 
For instance, in pH regulation, a pH probe monitors the pH 
level, which is then compared to a set target. If a deviation 
from the setpoint occurs, the controller activates adjustments 
to restore balance. In the case of pH control, a base is titrated 
into the broth to correct the pH value. To regulate popula-
tion dynamics in co-cultures, researchers have investigated 
various control strategies. Some approaches involve genetic 
engineering, such as incorporating intracellular signaling 
mechanisms (e.g., quorum sensing circuits [89]) coupled to 
lysis switches [12], or enabling growth through gene expres-
sion (e.g., antibiotic resistance cassettes or anti-toxins) [11, 
90, 91]. Other control strategies exploit differences in opti-
mal growth conditions under varying environmental factors. 
These include adjusting culture pH [92], temperature [93], 
medium supply (e.g., glucose or nitrogen source) [16, 94], or 
controlling the supply of essential amino acid to auxotrophs 
[95, 96].

Controllers prevalent in the bioprocessing field include 
simple ON–OFF control, where the controller is switched 
on when the error is positive and switches off when the error 
is zero or negative. Alternatively, the proportional-integral-
derivative (PID) controller, a classic control algorithm 
commonly implemented across engineering, is applied in 
multiple papers discussed in this review [45, 47]. PID con-
trollers apply three control terms: (1) proportional control 
(“P” term), which reacts to current error; (2) integral con-
trol (“I” term), which addresses accumulated past errors; 
and (3) derivative control (“D” term), which predicts future 
errors. PID controllers are computationally simple to imple-
ment and do not require a model or deep understanding of 
the biological system for tuning [97]. Lee et al. reported 
that population composition in a 7-day turbidostat experi-
ment could be stabilized by integrating a PI control algo-
rithm to tune population dynamics based on temperature 
changes [45]. The species in the co-culture (E. coli and 
P. putida) responded with different time scales to chang-
ing temperatures, which was used to further optimize the 
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control strategy. Next to optimizing population dynamics in 
co-cultures, process yield can be optimized by controlling 
other variables, such as accumulation of metabolic interme-
diates. Herzog et al. prevented accumulation of the transfer 
metabolite lactate using a PID control-based H2 feed [47]. 
Real-time measurements minimized substrate addition and 
the results of this study provided insight into the fluctuat-
ing lactate uptake rate throughout different phases of the 
fermentation.

Advanced control strategies can be applied when real-
time data acts as input for model predictive control, which 
integrates measurement data with knowledge about metabo-
lism and interspecies interactions. Model predictive control 
uses a dynamic model of the system to predict future behav-
ior and optimizes control actions over a time horizon. At 
each step, the algorithm solves an optimization problem to 
find the best control inputs that minimize a cost function 
while satisfying constraints. Martinez et al. implemented 
such a model predictive control strategy, where interactions 
and long-term effects of substrate pulsing were predicted 
based on knowledge about metabolic networks and temporal 
culture composition measured by real-time FC [17]. This 
study illustrates that a combination of mechanistic modelling 
and real-time data has the potential to predict the course of 
the fermentation in real time.

Model predictive control based on mechanistic models 
relies on a deep understanding of species and processes to 
effectively utilize limited real-time data (e.g., lactate concen-
tration or FC data) for decision-making. In cases where such 
detailed knowledge is not available, data-driven modelling 
can accelerate process control implementation for synthetic 
co-cultures without requiring extensive prior knowledge. 
Integrating multiple PAT sensors (e.g., monitoring biomass, 
soluble and volatile biochemical compounds) alongside 
standard process parameters (pH, temperature, dissolved 
oxygen) provides a black-box process understanding. This 
approach can serve as a foundation for data-driven models, 
as previously demonstrated for monocultures [98]. How-
ever, a purely data-driven approach risks oversimplifica-
tion, potentially leading to unreliable correlations. A hybrid 
approach that integrates mechanistic and data-driven mod-
elling enables real-time model refinement and improves the 
interpretation of unexpected events [99]. Regardless of the 
chosen modelling strategy, real-time PAT integration for co-
culture bioprocesses will be essential for population dynam-
ics monitoring and predictive control.

Outlook

Synthetic microbial co-cultures have the potential to expand 
the solution space for industrial biotechnology by several 
advantages, including division of labor and mitigation of 
byproduct formation [2]. In many co-culture processes, 

control of population dynamics is required to optimize pro-
duction titres and maintain a stable community composi-
tion. PAT can play a key role in the development of control 
strategies by providing real-time process data and facili-
tate direct actuation when performance parameters are not 
met. Monitoring co-culture population dynamics requires 
real-time identification and quantification of species, and 
ideally information about the phenotypic state of the cells. 
These parameters can be measured through direct biomass 
measurements or based on soluble or volatile (bio)chemical 
concentrations. As the selection of a suitable analytical tech-
nique depends on species-specific traits, including but not 
limited to intracellular carotenoids, cell wall structures, or 
specific metabolites, it is considered impossible to identify 
a single PAT tool that is applicable to all co-cultures.

FC is an established PAT for co-culture biomass mon-
itoring based on cell size, internal complexity, and auto-
fluorescence. However, FC cannot differentiate between 
morphologically similar populations based on FSC and 
SSC signals. This limits the application of classic FC for 
the analysis of synthetic co-cultures composed of different 
engineered strains of the same species [100]. Moreover, vari-
ations in phenotypic states, such as cell aggregate formation 
or varying cell size, can strongly influence the accuracy of 
the FC measurements [25]. To overcome the limitations of 
using solely FSC and SSC signals, many promising devel-
opments are reported where FC is integrated with other 
techniques, such as microscopy and spectroscopy (imped-
ance, fluorescence, and Raman). Microscopic techniques 
can provide spatial information, whereas spectral techniques 
provide cell-specific (bio)chemical information. The com-
bination with the fluidic systems in FC equipment results 
in high-throughput single-cell measurements that analyze 
cells based on characteristics complementary to classic FC 
output. Nevertheless, more research is needed to explore 
applications in co-culture bioprocesses, specifically in terms 
of distinguishing different and similar species, the influence 
of medium compositions, measurement times in relation to 
required control responses, and data analytical workflows. 
In addition, FC is a sophisticated technique that requires 
specialized operators and a significant investment. Develop-
ments to make advanced FC techniques more affordable and 
accessible to research and development labs can play a key 
role in unlocking their potential for co-culture bioprocess 
control.

In addition to combining analytical techniques into one 
device, it is also envisioned that combining separate PAT 
for soluble and volatile (bio)chemical detection in a single 
setup will provide a holistic view on process performance 
and co-culture metabolism. In turn, this may provide data 
to build more representative metabolic models that lie at 
the core of advanced model predictive control strategies. 
To achieve an integrated approach to quantitatively capture 
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soluble and volatile analytes, a key focus area is gas phase 
PAT. Currently, off-gas monitoring of co-cultures consists 
of the application of SIFT-MS, while volatile measurements 
in monoculture bioprocessing also apply techniques such 
as chemical sensors [101, 102], gas chromatography [103, 
104], or other mass spectrometry-based techniques [105]. 
This highlights the wide array of techniques to be explored 
for co-culture specific volatile biomarkers and to assess their 
potential for population dynamics control.

The application of co-cultures in biotechnology is still 
developing, especially in terms of operational simplicity, 
costs, and versatility of different organisms. To optimize 
co-culture bioprocesses and realize its industrial potential, 
PAT is essential for generating data that builds performance 
understanding and enables effective control. The unique 
characteristics of population dynamics and varying popu-
lation compositions require co-culture-specific analytical 
target profiles. These profiles will guide the PAT field to 
extend the application of existing analytical techniques as 
well as the development of novel sensors, thereby provid-
ing a wide range of tools for co-culture-specific bioprocess 
control strategies.
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