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Abstract. In this paper we suggest some algorithms for the fluid-structure interaction
problem stated using a domain decomposition framework. These methods involve stabilized
pressure segregation methods for the solution of the fluid problem and fixed point iterative
algorithms for the fluid-structure coupling. These coupling algorithms are applied to the
aeroelastic simulation of suspension bridges. We assess flexural and torsional frequencies
for a given inflow velocity. Increasing this velocity we reach the value for which the flutter
phenomenon appears.

1 INTRODUCTION

The interaction between a fluid and a structure appears in a wide variety of fields.
Probably, the most analyzed fluid-structure interaction problem is the aeroelastic one
(specially for aeronautical applications), for instance in the simulation of the action of a
fluid (air) over a structure (such as a wing or a bridge). Recently, an increasing interest
in the simulation of haemodynamics has motivated a lot of research on fluid-structure
algorithms appropriate for the blood-vessel system.

The implementation of a coupled problem can be done using two different global strate-
gies. The monolithic strategy implies the solution of the coupled problems simultaneously.
Partitioned methods are usually used in order to keep software modularity and to allow
the use of the numerical methods developed for every field separately. When using pres-
sure segregation methods for the fluid problem (as in this work) partitioned procedures
are naturally adapted, since a global iterative scheme is already needed to couple the
velocity and pressure calculations.

The use of explicit procedures for the coupling has been deeply studied by Farhat and
co-authors in the framework of aeroelasticity1. On the other side, for haemodynamics

1



Santiago Badia and Ramon Codina

more elaborated algorithms are needed for the coupling. In order to obtain convergence,
Newton and quasi-Newton algorithms have been suggested2,3. The relaxation of these
methods is a key aspect in order to reach convergence when dealing with these problems,
and some possibilities have been used4,5. For a simplified blood-vessel system is studied,
the added mass effect and the big impact of the relaxation on the convergence has been
nicely explained6.

Let us list what we need in order to solve a fluid-structure problem. In these prob-
lems the displacement of the structure changes the domain of the fluid. Then, the fluid
equations have to be able to deal with moving domains. With this aim we use an ALE (Ar-
bitrary Lagrangian Eulerian) approach. Some ALE formulations have been analyzed7,8.
The fluid solver for incompressible flows is a key point of the algorithm because it con-
sumes most of the CPU time. The monolithic treatment of the Navier-Stokes equations
is involved (for the system solver) and time consuming. In order to improve the situ-
ation, we suggest the use of pressure segregation methods in their fractional step and
predictor-corrector forms9. On the other hand, we use the orthogonal subgrid scale sta-
bilized finite element method10 for the space discretization, that allows the use of equal
velocity-pressure interpolation. Less attention is paid to the structure solver. The follow-
ing exposition can be applied to any kind of structural problem, with linear or nonlinear
material behavior.

We have organized the present work as follows. In Section 2 we state every field prob-
lem in its continuous level and some notation is introduced. We write the strong and
weak form of the governing equations of the coupled problem. In Section 3 we write
the interface equation associated to the problem under consideration, using a Domain
Decomposition framework. Some methods have been listed. Finally, at the fully discrete
level, we introduce the fluid solvers and appropriate coupling procedures (Section 4). In
particular, pressure segregation methods are suggested. In Section 5 we justify the algo-
rithms chosen for the numerical experimentation and applications. Section 6 is devoted
to the application of these methods to the simulation of bridge aerodynamics. Section 7
concludes the paper by drawing some conclusions.

2 THE CONTINUOUS PROBLEM

In this section we introduce the fluid-structure problem at the continuous level. Firstly,
we treat some aspects about the problem domain, the definition of its movement and its
restriction to the fluid and structure, the domain velocity and the matching conditions
that these restrictions satisfy on the interface. Secondly, we state the governing equations
of the fluid and structure problems and suggest how to calculate the domain displacement.
We conclude this section with the matching conditions (that is, continuity of some values)
that have to be imposed over the interface between the fluid and the solid.

We denote by Ωt the domain occupied by the heterogeneous mechanical system at a
given time t > 0. This domain is divided into the structure domain Ωs

t and its complement
Ωf

t occupied by the fluid. We denote by Σt ≡ ∂Ωf
t ∩ ∂Ωs

t the fluid-structure interface.
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Further, nf is the outward normal of Ωf
t on Σt and ns its counterpart for the structure.

The total domain Ωt is defined at every time instant by a family of mappings At

At : Ω0 −→ Ωt,

where Ω0 is the reference domain associated to t = 0.
Let us introduce some notation. Given a function f : Ωt × [0, T ] −→ R defined at the

current domain we indicate by f̂ = f ◦At the corresponding function defined at the initial
configuration,

f̂ : Ω0 × [0, T ] −→ R, f̂(x0, t) = f(At(x0), t).

Furthermore, the time derivatives at the initial configuration are defined as follows:

∂f

∂t

∣∣∣∣
x0

: Ωt × (0, T ) −→ R,
∂f

∂t

∣∣∣∣
x0

(x, t) =
∂f̂

∂t
(x0, t).

We denote by d(x, t) the displacement of the domain evaluated at the current configu-

ration. Then, we could write the mapping At as At(x0, t) = x0+d̂(x0, t). We split the do-
main displacement into its fluid and structure restriction as d = RΩs

t
d+RΩf

t
d =: ds +df .

From the trace theorem we know that

ds|Σt = df |Σt (1)

has to be satisfied. Moreover, we define

w =
∂df

∂t

∣∣∣∣
x0

, (2)

which is the domain velocity that we will require in order to write the fluid equations in
an ALE framework.

In the present work we assume a Newtonian incompressible fluid. We use the ALE
formulation in order to write the Navier-Stokes equations on moving domains. In what
follows we only consider the boundary conditions on Σt. The rest of boundary conditions
are essential for the definition of the problem but do not affect the following exposition.
For this reason we have omitted them for the sake of clarity. The Navier-Stokes equations
that govern the fluid problem read as follows: find a velocity field u and a pressure field
p such that

ρf
∂u

∂t
− µ∆u + ρfu · ∇u +∇p = ρff f in Ωf

t × (0, T ), (3a)

∇ · u = 0 in Ωf
t × (0, T ), (3b)
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where ρf is the density and µ the viscosity of the fluid. The Cauchy stress tensor for the
fluid is σf = −pI + 2µε(u) where ε(u) = (∇u + (∇u)T )/2 is the strain rate tensor and
I the identity matrix. We denote by σf

n := σf |Σt · nf the normal stress on Σt.
At this point, using the Reynolds formula for the time derivative, we can write the

fluid equations (3) in the ALE framework as follows: find a velocity u and a pressure p
such that

ρf
∂u

∂t

∣∣∣∣
x0

− µ∆u + ρf (u−w) · ∇u +∇p = ρff f in Ωf
t × (0, T ), (4a)

∇ · u = 0 in Ωf
t × (0, T ). (4b)

The structure can easily handle with moving domains using a fully Lagrangian frame-
work. For instance, we consider an elastic structure. We denote by σs

n := σs|Σt · ns the
normal stress on Σt. The displacement of the structure domain ds is assumed equal to
the structure displacement.

The fluid displacement df is arbitrary but has to satisfy condition (1). Thus, we can
write df as an arbitrary extension of ds|Σt into Ωf

t , that we denote by df = Ext (ds|Σt).
Different choices of the lifting operator Ext(·) have been proposed in the literature. Herein,
we adopt an harmonic extension evaluated at the current domain Ωf

t . In this case, df is
solution of the Laplace problem.

At this point, suitable matching conditions have to be applied on the interface Σt.
These are continuity of normal stresses (due to the action-reaction principle) and velocities
(due to the perfect adherence of the fluid to the structure):

u =
∂d̂s

∂t
on Σt × (0, T ), (5)

σf
n + σs

n = 0 on Σt × (0, T ). (6)

Then, the fluid-structure coupled problem is completely defined by the fluid problem
(4), the structure problem , the fluid domain displacement, and the interface matching
conditions (1), (5) and (6). For the space discretization of the equations, let us to write
the weak form of the system. Given t ∈ (0, T ), the functional spaces

V(Ωf
t ) :=

{
v : Ωf

t → Rd,v = v̂ ◦ (Af
t )
−1, v̂ ∈ (H1(Ωf

0))
d
}

,

V0(Ω
f
t ) :=

{
v ∈ V(Ωf

t )|v|Σt = 0
}

,

Q(Ωf
t ) :=

{
q : Ωf

t → R, q = q̂ ◦ (Af
t )
−1, q̂ ∈ L2(Ωf

0)
}

,

Γ(Σt) :=
{
γ : Σt → Rd, γ = γ̂ ◦ (At|Σt)

−1, γ̂ ∈ (H1/2(Σ0))
d
}

,

will allow us to write the governing equations of the fluid (4) in their weak forms. The
notation used here is as follows: L2(ω) denotes the space of square integrable functions
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in a spatial domain ω, H1(ω) is the space of functions in L2(ω) with first derivatives in
L2(ω), and H1/2(σ) is the space of functions defined on a d − 1-manifold σ that are the
trace of functions in H1(ω), with σ ⊂ ∂ω. For functions f and g defined on a d- or
d−1-manifold, we write 〈f, g〉ω :=

∫
ω

fg dω, omitting the subscript when ω is the domain

where the problem under consideration is posed. For σ a d−1-manifold and f ∈ H1/2(σ),
the space of functions g such that 〈f, g〉σ < ∞ is denoted by H−1/2(σ). Finally, (·, ·)
denotes the usual L2 product in the domain where the problem considered is posed.

3 THE DOMAIN DECOMPOSITION APPROACH

In this section we reformulate the fluid-structure problem in a Domain Decomposition
(DD onwards) framework11. First, the fluid problem is introduced in this framework, and
after that, the structure problem. The resulting interface equation is written in different
forms, in order to justify the use of different algorithms suggested in the literature for the
fluid-structure problem.

Let us consider the time discretized version of (4) using backward-differencing formulas
(BDF) for the time integration at time step tn+1 = (n + 1)δt, δt > 0 being the time step
size (assumed constant for simplicity). We denote the BDF-p operator as

Dpf
n+1 =

1

δtγp

p∑
i=0

αi
pf

n+1−i (7)

where f is a generic time dependent function, fn denotes its approximation at tn, k is the
order of accuracy of the scheme and γp and αi

p are the parameters that define the BDF
numerical integration. The first and second order BDF methods are defined as:

D1f
n+1 = fn+1 − fn,

D2f
n+1 =

3

2
(fn+1 − 4

3
fn +

1

3
fn−1).

At a fixed time step n + 1, let us denote by λ the interface variable corresponding to
the displacement on the fluid-structure interface, d|Σtn+1 . We denote by FLδt the operator
that gives the velocity and pressure field at tn+1 for a given λ,

FLδt : Γ(Σtn+1) → V(Ωf
tn+1)×Q(Ωf

tn+1)

λ 7→ (un+1, pn+1)

There are multiple choices for the FLδt(λ) operator, corresponding to the different pos-
sibilities for the time approximation of the incompressible Navier-Stokes equations, such
as the monolithic system or the fractional step version at the continuous level in space.
Let us start with the monolithic scheme, denoted by MNδt(λ). In this case, FLδt(λ) =
(un+1, pn+1) is computed by solving the problem: given λ ∈ Γ(Σtn+1), find un+1 ∈
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V(Ωf
tn+1) and pn+1 ∈ Q(Ωf

tn+1) such that

ρf

δt

(
Dku

n+1, v
)

+ µ
(∇un+1,∇v

)
+ ρf

(
(un+1 −wn+1) · ∇un+1, v

)

−(pn+1,∇ · v) = ρf〈fn+1
f , v〉 ∀v ∈ V0(Ω

f
tn+1), (8a)

(∇ · un+1, q
)

= 0 ∀q ∈ Q(Ωf
tn+1), (8b)

un+1 =
1

δtγp

(
λ +

p−1∑
i=0

αi
pd

n−i

)
on Σtn+1 . (8c)

Borrowing classical concepts from domain decomposition methods, we can define the
Steklov-Poincaré interface operator for the fluid as follows: Sf is the Dirichlet-to-Neumann

map in Ωf
t such that

Sf : H1/2(Σt) → H−1/2(Σt)

λ 7→ σf
n. (9)

This operator consists of solving the fluid problem given a value for the interface variable
λ, that is FLδt(λ), and recover the normal stress on the interface σf

n.
We point out that the Steklov-Poincaré operator Sf for the fluid is nonlinear. It involves

two different non-linearities: one associated to the convective term of the Navier-Stokes
equations and a second one due to the fact that the fluid domain Ωf

t ≡ Ωf
t (λ) does depend

on the interface variable (shape non-linearity).
Analogously for the structure, we can define the Steklov-Poincaré operator Ss, which in

this case consists of solving the structure problem using λ as Dirichlet boundary condition
for ds on Σt and extract the value of the normal stress σs

n on Σt. Therefore, this is a
mapping between the trace of the displacement field d and the space of normal stresses
exerted by the structure. Again, this operator is nonlinear even for linear constitutive
equations (as the elastic case considered) because of the shape derivative (the deformation
of the solid domain). Let us introduce also S−1

s , which is the so called Poincaré-Steklov
interface operator : S−1

s is the Neumann-to-Dirichlet map in Ωs
t such that

S−1
s : H−1/2(Σt) → H1/2(Σt)

σs
n 7→ λ. (10)

The operator S−1
s consists of solving the structure problem using σs

n as Neumann bound-
ary condition on Σt and recover ds on the boundary. S−1

s will be used for fixed point
algorithms.

At this point the interface condition (6) that involves continuity of normal stresses on
Σt can be easily rewritten as: find λ ∈ Γ(Σtn+1) such that

Sf (λ) + Ss(λ) = 0. (11)
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An alternative form of the interface equation, obtained by applying the inverse of the
Steklov-Poincaré operator S−1

s in (11), reads as: find λ ∈ Γ(Σtn+1) such that

−S−1
s (Sf (λ)) = λ. (12)

This expression motivates the use of the fixed point algorithm. The iterative fixed point
procedure can be written as: given λk, with k ≥ 0, find λk+1 such that

−S−1
s (Sf (λ

k)) = λk+1, (13)

where Sf (λ) is associated to an appropriate semi-discrete fluid solver FLδt(λ). The ini-
tialization λ0 of the iterative process is treated in Section 5. Let us explain this equation:
given a value for the interface displacement λk, we solve the fluid problem for this λk using
FLδt(λ

k) and recover the normal stresses on the interface σf
n, that is to say, we compute

Sf (λ
k). Then, we calculate the structure problem with σs

n = σf
n as boundary condition

on the fluid-structure interface. It gives a new value of the interface displacement, that
now we call λk+1. In this case we solve the Neumann-to-Dirichlet Poincaré-Steklov inter-
face operator −S−1

s (σf
n). This procedure is repeated until convergence. The solution of

the fluid problem FLδt(λ) requires nonlinear iterations. Thus, algorithm (13) involves the
use of nested iterative loops.

We are also interested on a linearized version of Sf . We denote by FLδt(u
n+1
∗ ; γ)

the linearized fluid operator that differs from the non-linearized version, i.e. (8), in the
fact that the convective term in the momentum equation of the fluid has been replaced
by un+1

∗ · ∇un+1 with un+1
∗ given. We also denote by S̃f (u

n+1
∗ ) the linearization of Sf

around the point un+1
∗ , that is, involving the solution of the linearized fluid problem with

FLδt(u
n+1
∗ ; γ). In the next section we suggest the use of the semi -linear interface operator

in some cases. We stress the fact that S̃f (u
n+1
∗ ) is non linear due to the shape derivative.

A different version of the fixed point algorithm (13) is obtained when using the semi-
linearized version of the interface operator Sf for the fluid. In this case the fixed point
algorithm reads as follows: given λk and un+1,k with k > 0, compute λk+1 by

−S−1
s (S̃f (u

n+1,k; λk)) = λk+1. (14)

and obtain un+1,k+1 from FLδt(u
n+1,k; λk). The procedure is repeated until a selected

norm of un+1,k+1−un+1,k and (or) λk+1−λk is below a threshold tolerance. When using
the algorithm (14) the same loop deals with the coupling of the fluid and structure systems
and the nonlinearity of the fluid equations.

The semi-linearized fixed point algorithm (14) involves the domain update at each
iteration. This situation can be relaxed by using some criteria over (λk+1 − λk) in order
to decide to update or to freeze the domain at the current iteration (that is to say, to
neglect or not the shape derivative). Alternatively, instead of freezing the domain, we
can use a transpiration method (cheaper than the movement of the domain), in order to
accelerate the iterative process.
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Alternative forms of the interface equation (11) motivate different iterative algorithms
for the coupling. Besides the iterative algorithm for the coupling, a relaxation method is
advisable in order to improve the convergence properties of all the previous algorithms.

4 THE DISCRETE PROBLEM

This section is devoted to the fully discretized version of the coupling problem. We are
focused on the discretization of the fluid. Three different sorts of methods are considered:
monolithic, pressure-correction and predictor-corrector. Every method is introduced and
stated. In the applications we consider the stabilized versions of these schemes using
orthogonal subgrid scales. However, for the sake of clarity, we omit the stabilization terms
in the formulation. We refer the reader to a set of articles that deal with stabilized pressure
segregation methods9,12. The use of a stabilized space discretization allows us to use the
same low-order finite element space for the interpolation of velocity and pressure. After the
exposition of the alternative methods for the fluid problem, we state the discrete extension
operator used for the calculation of the fluid domain movement. Finally, we suggest some
coupling procedures taking into account the fluid solver used. These procedures are stated
for being used in Section 6.

4.1 The discrete fluid problem

The fully discretized version of the monolithic scheme (8), denoted by MNδt,h(λh),
reads as follows: for n = 0, 1, 2, ..., given λh ∈ Γh(Σtn+1) (understood as the displacement
on the solid boundary at time step n), find un+1

h ∈ Vh(Ω
f
tn+1) and pn+1

h ∈ Qh(Ω
f
tn+1) such

that,

ρf

δt

(
Dku

n+1
h , vh

)
+ µ

(∇un+1
h ,∇vh

)
+ ρf

(
(un+1

h −wn+1) · ∇un+1
h ,vh

)

−(pn+1
h ,∇ · vh) = ρf〈f f ,vh〉 ∀vh ∈ Vh,0(Ω

f
tn+1), (15a)(∇ · un+1

h , qh

)
= 0 ∀qh ∈ Qh(Ω

f
tn+1), (15b)

un+1
h =

1

δtγp

(
λh +

p−1∑
i=1

αi
pd

n+1−i
h

)
on Σtn+1 , (15c)

where Γh(Σtn+1), Vh(Ω
f
tn+1) and Qh(Ω

f
tn+1) are classical finite element approximation

spaces of the functional spaces Γ(Σtn+1), V(Ωf
tn+1) and Q(Ωf

tn+1), respectively.
Again, we consider the linearized version of MNδt,h(λh) around un+1

∗,h , denoted by

MNδt,h(u
n+1
∗,h ; λh). MNδt,h(λh) implies the computation of velocities and pressure together.

A substantial reduction of the computational cost is obtained when using a splitting
technique. These techniques allow the uncoupling of velocity and pressure computation.
Herein, we consider a pressure-correction method obtained at the discrete level12.

We denote by FSδt,h(λh) the following problem: given λh ∈ Γh(Σtn+1), find un+1
h ∈

Vh(Ω
f
tn+1) and pn+1

h ∈ Qh(Ω
f
tn+1) from the following scheme:
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1. Find ûn+1
h ∈ Vh(Ω

f
tn+1) such that

ρf

γpδt

(
ûn+1

h −
p−1∑
i=0

αi
pu

n−i
h , vh

)
+ µ

(∇ûn+1
h ,∇vh

)

+ρf

(
(ûn+1

h −wn+1) · ∇ûn+1
h ,vh

)

−(p̃n+1
h ,∇ · vh) = ρf〈fn+1

f ,vh〉 ∀vh ∈ Vh,0(Ω
f
tn+1), (16a)

ûn+1
h =

1

δtγp

(
λh −

p−1∑
i=0

αi
pd

n−i
h

)
on Σtn+1 . (16b)

2. Find pn+1
h ∈ Qh(Ω

f
tn+1) such that

− γpδt
(
Πh

(∇pn+1
h −∇p̃n+1

h

)
,∇qh

)
= ρf

(
ûn+1

h ,∇qh

) ∀qh ∈ Qh(Ω
f
tn+1). (17)

3. Find un+1
h ∈ Vh(Ω

f
tn+1) such that

ρf

δtγp

(
un+1

h − ûn+1
h ,vh

)− (pn+1
h − p̃n+1

h ,∇ · vh) = 0 ∀vh ∈ Vh,0(Ω
f
tn+1), (18a)

un+1
h =

1

δtγp

(
λh +

p−1∑
i=0

αi
pd

n−i
h

)
on Σtn+1 . (18b)

In step 2, p̃n+1
h is an appropriate approximation to pn+1

h and Πh is the L2 projection onto
the velocity space. We consider an incremental fractional step method when p̃n+1

h = pn
h.

This method has an splitting error of order O(δt2). The results are much better than for
total projection methods, where p̃n+1

h = 0, without extra computational cost. Equation
(17) of the second step of the method can be approximated by the pressure Poisson
equation12: find pn+1

h ∈ Qh(Ω
f
tn+1) such that

−γpδt
(∇pn+1

h −∇p̃n+1
h ,∇qh

)
= ρf

(
ûn+1

h ,∇qh

) ∀qh ∈ Qh(Ω
f
tn+1). (19)

This approximation introduces the same artificial boundary condition that we find
when we do the splitting at the continuous level, that is, ∂pn+1/∂n = 0 on the Dirichlet
boundary of the velocity. This misbehavior is of special interest for fluid-structure inter-
action problems, due to the fact that the fluid-structure interface is a Dirichlet boundary.
We defend the use of (17) if we want to avoid the artificial boundary conditions. The sys-
tem matrix associated to (17) is cumbersome, but can be tackled when using an iterative
solver.

For the pressure-correction method we only consider the fixed point iteration algorithm
using nested loops, as justified below.
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When we use an iterative implicit procedure for the coupling, the fluid problem is
evaluated (at least) as many times as coupling iterations. Thus, it is natural to put
in the momentum equation p̃n+1

h = pn+1,k
h , pn+1,k

h being the pressure obtained at the
previous iteration. In fact, if the resulting scheme converges, the intermediate velocity
un+1

h converges to the end-of-step velocity ûn+1
h . Furthermore, un+1

h converges to the
solution of the monolithic fluid system. Thus we do not need to distinguish between ûn+1

h

and un+1
h and (18) can be ignored. The final system to be solved at every coupling iteration

is the following: given λk
h ∈ Γh(Σtn+1) and pn+1,k

h ∈ Qh(Ω
f
tn+1), find un+1,k+1

h ∈ Vh(Ω
f
tn+1)

and pn+1,k+1
h ∈ Qh(Ω

f
tn+1) such that

ρf

δt

(
Dku

n+1,k+1
h ,vh

)
+ µ

(
∇un+1,k+1

h ,∇vh

)
+ ρf

(
(un+1,k+1

h −wn+1) · ∇un+1,k+1
h ,vh

)

− (pn+1,k
h ,∇ · vh) = ρf〈f s,vh〉 ∀vh ∈ Vh,0(Ω

f
tn+1), (20a)

− γpδt
(
Πh

(
∇pn+1,k+1

h −∇pn+1,k
h

)
,∇qh

)
= ρf (u

n+1,k+1
h ,∇qh) ∀qh ∈ Qh(Ω

f
tn+1), (20b)

un+1,k+1
h =

1

δtγp

(
λh +

p−1∑
i=0

αi
pd

n−i
h

)
on Σtn+1 . (20c)

This problem is denoted by PCδt,h(p
n+1,k
h ; λk

h). We remark that in the case presented nested
loops are needed: an internal loop to deal with the nonlinearity of the convective term
and an external for the convergence to the monolithic fluid system (for fluid problems)
or the monolithic coupling system (for fluid-structure problems). Again, there is the
possibility to use one loop for everything. In this case the fluid solver is denoted by
PCδt,h(u

n+1,k
h , pn+1,k

h ; λk).
Method (20) (and obviously its modified version using one loop) are predictor-corrector

schemes. These methods have been introduced9 without the fluid-structure motivation.
In these references the stabilization terms omitted in the present exposition are carefully
treated.

Let us remark that, along this section we have considered wn+1 independent of the
iterative process for the sake of clarity. However, this is not the general case.

4.2 The discrete fluid domain movement

As commented in the previous section, we use a harmonic extension operator on Ωf
t

in order to obtain df
h. The discrete problem reads as follows: given λk

h ∈ Γh(Σtn+1), find

(df
h)

n+1 ∈ Vh(Ω
f
tn+1) such that
(
∇(df

h)
n+1,∇vh

)
= 0 ∀vh ∈ Vh,0(Ω

f
tn+1), (21a)

(df
h)

n+1 = λh. (21b)

We call (df
h)

n+1 = Exth(λh). The harmonic operator is applied on Ωf
t because it allows

to solve this problem using the same mesh that we use to compute the fluid problem.

10



Santiago Badia and Ramon Codina

4.3 Coupling algorithms for the discrete problem

In this section we propose three different coupling procedures for the pressure segrega-
tion methods listed in Section 3, exploiting their properties. We only consider the fixed
point algorithms (13) and (14) for the coupling. Let us start with the pressure-correction
method. As commented above the use of this method will be restricted to cases where an
explicit procedure is used for the coupling. In this case the resulting iterative algorithm

is: given λ̃
n+1

h , find λn+1
h such that

λn+1
h = −S−1

s (Sf (λ̃
n+1

h )) (22)

and (un+1
h , pn+1

h ) = FSδt,h(λ̃
n+1

h ). Here, λ̃
n+1

h is an appropriate approximation of λn+1
h .

Different alternatives have been suggested in the literature. A first order approximation

in time is λ̃
n+1

h = λn
h. We can consider a more accurate second order approximation that

reduces the artificial energy introduced to the system1. However, numerical instabilities
occur much earlier with the second order predictor (see the numerical experimentation4.
In this work we have adopted as initial condition

λ̃
n+1

= −S−1
s ((σf

n)n), (23)

that is, we solve the structure problem at tn+1 using as Neumann boundary condition
the normal stress (σf

n)n exerted by the fluid at the previous time step. A second order
method of this type is

λ̃
n+1

= −S−1
s (2(σf

n)n − (σf
n)n−1). (24)

A stability analysis of an aeroelastic test case using (23) and (24) together with explicit
procedures has been developed13 with good results.

When using implicit procedures for the coupling we have claimed that predictor-
corrector schemes are superior. As commented above, there are some possibilities for
the iterative process. Let us start with the one-loop algorithm. For every coupling iter-
ation k ≥ 0, the problem to be solved is: given λn+1,k

h , un+1,k
h and pn+1,k

h , find λn+1,k+1
h

such that

λn+1,k+1
h = −S−1

s (S̃f (u
n+1,k
h ; λn+1,k

h )) (25)

with (un+1,k+1
h , pn+1,k+1

h ) = PCδt,h(u
n+1,k
h , pn+1,k

h ; λn+1,k
h ). Thus, in the implicit coupling

process, we have to solve (25) until convergence. In this method the same loop deals with
the non-linearity of the convective term and the convergence to the monolithic system.
Some other alternatives for the treatment of the iterations are possible. For instance, the
use of nested loops, one for the coupling and one for the non-linearity. This case is similar
to (25) but using Sf (λ

n+1,k
h ) together with the fluid solver (20). Further, a third algorithm

11
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could be used. At every coupling iteration k we could iterate over the predictor-corrector
method until convergence to the monolithic fluid system. However, for simplicity, we only
use (22) and (25) in the numerical experimentation. Alternative versions of (25) can be
tested for every application in order to identify which is faster.

5 ON SOME ALGORITHMS FOR AEROELASTICITY

As explained above, the appropriate algorithm for the solution of the coupled system
depends on the kind of problem to be solved. In this paper we have in mind aeroelastic
problems. Let us draw some features about this sort of applications:

• The fluid solver consumes much more CPU time than the structure. For this rea-
son, the number of fluid evaluations has to be minimized in order to optimize the
computational cost.

• The convergence of the coupling iterative process is easy. As explained in Section
1, this behavior is associated to the fact that the structure density is much larger
than the fluid density.

The use of Newton and Quasi-Newton methods, or the use of preconditioners together
with a Richardson iterative process are justified in some cases (for instance haemodynam-
ics) when the convergence of fixed point algorithms is very slow. However, for aeroelastic
problems the convergence rate of the last method is good. That, together with the fact
that the fixed point algorithm minimizes the number of fluid evaluations per iteration,
has motivated its choice for the application to bridge aerodynamics.

Besides, the bottle neck of the coupling method is the fluid solver. In order to reduce
the computational cost associated to the fluid solver we suggest the use of fractional
step methods. Pressure-correction methods (16)-(18) and predictor-corrector methods
(20) are considered. The pressure-correction scheme (in its implicit, semi-implicit or
explicit version) is a good choice when using explicit procedures for the coupling. The
coupling problem to be solved in this case is the one defined in (22). When using implicit
procedures, as explained above for the fully discrete problem, the use of a predictor-
corrector scheme is more appropriate, because we can profit from the coupling iterations
in order for the fluid solver to tend to the monolithic system (decreasing the splitting
error). The nice property of this method is that, when reaching convergence, the solution
is the same as that obtained by the monolithic approach to the coupled problem. In (25)
we have stated the algorithm using only a single loop for the fluid and the coupling.

6 APPLICATIONS

6.1 Bridge Aerodynamics

Among the different topologies of bridges, suspension bridges span the greatest dis-
tances. However, the bending moments acting on the deck sections of this sort of bridges

12
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are relatively small. Even though the span between piles is very large, the distance be-
tween cables, that in fact are working as piles, is small. For this reason these structures
are flexible and light. These features make suspension bridges very influenced by wind
actions. While for other topologies the aeroelastic behavior is not considered important,
for suspension bridges it implies a key aspect of the design process.

In this work we study the flutter phenomenon. This dynamic phenomenon is induced by
the fluid-structure coupling (the energy transfer). The flutter happens when the damping
induced by the fluid to the structure makes the overall structure damping negative.

The flutter analysis has been developed by experimentation in wind tunnels. We point
out that in wind tunnels the flutter limit is not obtained directly, that is, increasing the
inflow velocity of the wind tunnel until failure. This flutter limit is obtained evaluating
the aeroelastic derivatives.

The increasing in the capability of computers together with the improvement of nu-
merical methods have motivated in the last decade the use of computer methods for the
analysis of bridge aerodynamics14.

The present application is devoted to the evaluation of flexural and torsional frequencies
of the Great Belt bridge for a given inflow velocity and the direct flutter simulation using
the methods introduced in the previous sections. The finite element method together with
stabilized predictor-corrector and pressure-correction fluid solvers for the coupling have
been used. The ALE framework has allowed to formulate the flow problem in moving
domains.

6.2 The bridge model

For the numerical aeroelastic analysis of bridges, the 3D problem is usually reduced to
a 2D problem. In fact, this is also the usual procedure for wind tunnel tests. In order
to simulate the correct natural frequencies in the fundamental symmetric flexural and
torsional modes, spring stiffnesses are applied to the elastic center of the cross-section.
Lumped mass and moment of inertia on the gravity center have been introduced to sim-
ulate the mass and moment of inertia per unit length. Furthermore, the 2D cross-section
is considered a rigid body.

Thus, the linearized ordinary differential equation (ODE) that governs the displacement
of the structure reads as follows: find the displacement vector ds ∈ R3 (for a 2d problem)
such that

Md̈s + Cḋs + Kds = f , (26)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix and
f is the external force exerted over the structure (including force and moment). We
point out that this external force depends on the displacement of the structure and thus
the problem is nonlinear. The damping coefficients are usually given as a percentage
logarithmic decrement.

13



Santiago Badia and Ramon Codina

For the time integration of the ODE (27) we use the unconditional stable constant-
average-acceleration scheme, also called trapezoidal rule, which is described by the follow-
ing set of equations:





Md̈s
n+1

+ Cḋs
n+1

+ Kdn+1
s = fn+1,

dn+1
s = dn

s + δtḋs
n

+ δt2

4

(
d̈s

n+1
+ d̈s

n
)

,

ḋs
n+1

= ḋs
n

+ δt
2

(
d̈s

n+1
+ d̈s

n
)

.

This second order accurate scheme is particularly appropriate for the case under consid-
eration due to the fact that preserves the energy of the structure, given by

Es =
1

2
ḋs ·Mḋs +

1

2
ds ·Kds, (27)

which is an important feature when analyzing the aeroelastic stability of the structure.

6.3 The coupling model

In this section we describe the fluid solver on moving domains and the coupling pro-
cedure that will be used for the direct analysis of flutter. The coupling procedure that
we use herein for the simulation of this phenomenon is implicit. As it is widely known,
explicit procedures introduce artificial energy to the system that can lead to undesirable
numerical instability1,4. Due to the fact that we want to assess the stability of the cou-
pling problem, intimately related to the energy transfer between fluid and structure, it is
justified the use of an implicit procedure that avoids this artificial energy. Further, the
implicit procedure tends to the solution of the monolithic coupled system, eliminating the
splitting error associated to staggered procedures.

Due to the complexity of external flows that appear in aeroelastic applications, and its
highly transient behavior, the use of second order methods are worth it, and even more
when no extra computational cost is introduced. We have used here the BDF-2 scheme,
both for the time integration of the momentum equation and for the evaluation of the
mesh velocity in the fluid domain. By doing this, and as it is proved8 for the convection-
diffusion equation, the ALE formulation does not spoil the second order of accuracy of
the fluid solver. The movement of the fluid domain has been computed by solving the
discrete problem (21).

The formulation for the fluid problem that will be used is a stabilized pressure segre-
gation method. More specifically, a predictor-corrector method is considered because of
the fact that we use an implicit procedure, as justified in Section 5. We use a fixed point
iterative method to solve the nonlinear interface problem. More precisely, the method
used here is the integral version of the iteration scheme stated in (25).
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6.4 Assessment of frequencies and direct flutter simulation

This section is devoted to the numerical simulation of the flutter limit and the assess-
ment of frequencies of the Great Belt bridge (Denmark). The parameters that define the
problem have been extracted from the literature14. The problem domain and its finite
element discretization is shown in Figure 6.4. We have used an unstructured mesh of
48453 linear triangles for this simulation. A time step size of 0.01 s has been considered.
The horizontal movement is restricted, as it is usually assumed. We do not know which
are the appropriate elastic coefficients when analyzing the real sized problem with the
real inflow velocity. For this reason we have assumed the elastic coefficients used for the
dimensionless approximation analyzed by Selvam et al.14. It has to be taken into account
that this assumption affects the obtained results and complicates the comparison to wind
tunnel experiments.

Figure 1: Space domain of analysis and mesh used for the simulation

Firstly, given an inflow velocity of uin = (50, 0) m/s, we obtain the temporary response
of the bridge. In figures 2(a), 2(b) and 2(c) we show the vertical displacement, velocity
and acceleration. Figures 2(d), 2(e) and 2(f) show the rotation angle, angular velocity
and angular acceleration. We plot the results after some time of computation. These
plots prove the stability of the structure.

Using a Fourier Fast Transform we have obtained the frequencies associated to the
vertical displacement (flexural frequency) and rotation angle (torsional frequency). We
show these results in Figures 3(a) and 3(b). In both cases a clear dominant frequency
governs the movement.
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(c) Vertical acceleration vs. time
50 55 60 65 70 75 80 85 90 95 100

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06
Angle Θ

(d) Rotation angle vs. time
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Figure 2: Movement of the bridge for an inflow velocity uin = (50, 0) m/s
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Figure 3: Fourier transform of vertical displacement and rotation angle of the bridge for inflow velocity
uin = (50, 0) m/s

The average number of iterations needed for the convergence of the integral version
of method (25) to the monolithic system for a given time step is around 4 iterations per
time step for an inflow velocity of 50 m/s.

In a second step, we increase the inflow velocity until we reach the aeroelastic instability.
The flutter phenomenon appears for an inflow velocity of 55 m/s. We plot the same values
as before in figures 4- 5. We easily see in this case that the flutter instability appears for
this velocity. In fact, the instability is translational and torsional (see Figures 4(a) and
4(d)). We plot velocities and accelerations for vertical displacement and rotation angle in
Figures 4(b)- 4(c) and 4(e)- 4(f). The aerodynamic instability is clearly shown from the
increase of the structure energy (Figure 5).

Obviously, the number of iterations needed for the inflow velocity of 55 m/s increases
with the structure energy.

7 CONCLUSIONS

The coupling methods proposed herein for the calculation of the flutter limit have
shown an excellent behavior in aeroelastic applications. The coupling method proposed
converges to the monolithic problem (for the predictor-corrector solver). That is, the
coupling process does not introduced any extra error (apart from tolerance stop criteria).
Furthermore, this method shows a good convergence behavior for this kind of problems.

The other key point is the fact that the present methods uncouple the velocity and
pressure computation, that implies a high reduction of the computational cost of the fluid
problem, the bottle neck of aeroelastic simulations.

Summarizing, the key features of the formulation we propose are the use of second
order stabilized pressure segregation methods (both pressure-correction and predictor-
corrector versions) together with a second order ALE formulation, a second order structure
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(c) Vertical acceleration vs. time
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(d) Rotation angle vs. time
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Figure 4: Movement of the bridge for inflow velocity uin = (55, 0) m/s
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Figure 5: Bridge energy vs. time for inflow velocity uin = (55, 0) m/s

solver and a coupling iterative procedure that tends to the monolithic system. Thus,
the overall fluid-structure coupling procedure proposed herein is second order accurate in
time, an important property for highly transient external flows that appear in aeroelastic
applications.

We have applied this methods to the aeroelastic analysis of a bridge deck. The flutter
velocity of 55 m/s obtained herein differs from the 65-70 m/s obtained from the aeroelastic
derivatives assessed with wind tunnel tests. However, this gap could be expected, since
the problems solved are different. It seems that the elastic coefficient that should be used
for the direct analysis of flutter in dimensional form has to be higher than the one used
for the scaled problem.

In fact, numerical experiments using the same method (even the same software) are
in exceptional agreement with the wind tunnel results when assessing the aeroelastic
derivatives13. This is even more relevant considering that in this reference an explicit
coupling procedure has been used together with a pressure-correction method, thus intro-
ducing a splitting error and artificial energy.
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