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Abstract

Commercial Driver Steering Assistance Systems (DSAS) currently available in mid- to high-end vehi-
cles focus on path-tracking performance without taking into account the steering intentions of the driver.
When DSAS is conflicting with the intentions of the driver it risks being turned off, resulting in discomfort
and reduced safety. Improved driver-automation interaction can be achieved by sharing vehicle lateral
control through torques on the steering wheel. Moreover, integrating a driver steering-torque model in
the DSAS controller allows the system to better match driver intentions, limitations, and capabilities.

The work in this thesis presents a data-driven approach to driver steering-torque modelling. An
existing steering-angle-based approach is modified, parametrized, and evaluated for estimating driver
steering-torque instead, making the driver model appropriate for the development of new torque- feed-
back based DSAS. Driver behaviour is modelled by learning the parameters of a Hidden Markov Model
(HMM). Subsequently, steering-torque estimation is performed by inferring the HMM model with Gaus-
sian Mixture Regression (GMR).

In addition, as the HMM approach has not yet been considered for estimating driver steering-torque,
an extensive parameter selection framework is presented for the objective selection of the model’s
degrees-of-freedom. First, a feature selection step evaluates the relevance of features that describe
the model’s output behaviour. Thereafter, an iterative overfitting criteria is employed to appropriately
select the model configuration. Final model behaviour is determined by adjusting the metric weights of
a linear performance score with the aim to make a trade-off between model estimation accuracy and
smoothness.

Naturalistic driver steering-torque data from seven participants was gathered in a fixed-base driving
simulator, located at Toyota Motor Europe (TME) in Belgium. The data was used for the training,
evaluation, and testing of the modified HMM approach. Results on a test set indicated that model
performance is dependent on individual driver behaviour, rather than driver skill level. Furthermore,
the results demonstrated that an average accuracy of 92% is achieved while estimations are 37%
smoother and require 90% less data compared to a baseline model.

Keywords: Haptic Shared Control, Driver Model, Data-Driven, Hidden Markov Model, Feature
Selection
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Introduction

Vision Zero is the long-term goal of the European Commission towards nearly zero road related deaths
by 2050. Although the number of deaths have decreased by 55% between 2001 and 2018, still in
2018 alone more than 25.000 people lost their lives on European roads [10]. To reach their goal,
the European Commission (EC) revised the General Safety Regulation in 2019. Among others, the
regulation mandates the implementation of a Lane Keeping Assist System (LKAS) in new road vehicles
by 2022 [34].

LKAS belong to a subclass of Driver Assistance Systems (DAS) called Driver Steering Assistance
Systems (DSAS). DSAS can (partially) take over the lateral control of the vehicle by applying a guidance
signal on the steering column, assisting the driver to stay within lane boundaries. By doing so, driver
and automation system share the lateral control of the vehicle simultaneously. However, a limitation of
current implementations is that the main focus of DSAS is purely based on path-tracking performance,
without taking into account the interaction with the driver. If the system is conflicting with the steering
intentions of the driver, the system can be considered intrusive. This in turn leads to driver discomfort,
reduced safety, and a high chance of being rejected by the driver who will switch the system off [26].

To improve Human-Machine Interaction (HMI), Abbink et al. summarized in the 2012 work [1] im-
portant guidelines for designing automation systems interacting with humans:

* Human perspective: the human operator should always interact and receive feedback with the
automation system continuously.

» Automation perspective: knowledge about the human operator should be integrated in the au-
tomation system to better understand and match the intentions of the operator.

Continuous interaction between human operator and automation system was proposed by Abbink et
al. in [1] to be achievable through the sharing of forces on a common interface, a concept named
Haptic Shared Control (HSC) [2]. Better understanding the intentions and capabilities of the human
operator can be achieved through the proper modeling and integration of human behaviour in automa-
tion systems. Relating this to DSAS, this entails that improved interaction between driver and DSAS
can be achieved when lateral control is shared through torques on the steering wheel. Combining this
concept with the integration of a driver steering-torque behavioural model, DSAS can take into account
driver intentions, capabilities, and limitations. This gives DSAS the opportunity to gain driver trust, im-
prove driving comfort, and perform efficient interventions while minimizing conflict [36, 15]. However,
while HSC-based DSAS is an experimentally validated concept, accurately modelling driver steering
behaviour is still a research challenge due to the highly complex, stochastic, and variable nature of
human behaviour [20].



2 1. Introduction

The goal of a driver steering behaviour model is to accurately describe the relation in which the driver
translates perceived information about the driving scenario to a steering action on the steering-wheel
[24]. This perceived information can be understood as,

* Visual: perception of vehicle surroundings through the drivers’ eyes.
» Sensory: perception of ego-vehicle motion through vestibular and kinesthetic sensory systems.

* Feel: tactile and haptic feel through the steering wheel.

State-of-the-art literature on driver steering behaviour modelling can roughly be categorized in para-
metric, non-parametric and mixed approaches. Parametric approaches often follow a theoretical back-
ground in which the steering task is modelled after physical principles using a priori assumed analytical
models. Examples of such parametric approaches are the Cybernetic Driver Model by L. Saleh et al.
[35] and an optimal-control-based approach by T. Niu and D. Cole [29]. Based on experiments, both
approaches define sub-models for perceptual, cognitive, and neuromuscular dynamics differently. Re-
spective model parameters are tuned by hand or learned from data to accurately fit the driver behaviour.
Advantages of parametric approaches is that they provide an intuitive understanding of the human
steering task. Furthermore, the mentioned approaches have already found experimental implemen-
tations in haptic shared controllers, respectively in [25] and [21]. However, while the perceptual and
neuromuscular sub-models are thoroughly researched, human cognitive functions is a highly non-linear
process and still subject to active research and thus are only approximated by parametric models.

Non-parametric approaches do not define model structure a priori. Instead, the structure is inferred
from data using machine-learning or statistical methods. An example of a non-parametric driver model
is the neural network-based approach by S. Jugade [18]. A two-layer feed-forward neural network
was proposed to predict driver steering actions as a function of the driving scenario. Depending on
the quality of the training data, advantages of such non-parametric approaches include the ability to
learn detailed and non-linear descriptions of the steering task, directly fitted to the driver. However, a
disadvantage of the black-box model structure is that model interpretation and intuition is lost. Further-
more, such models are typically maneuver specific (e.g. lane keeping only) and require retraining for
alternative maneuvers.

Mixed approaches aim to combine the advantages of parametric models, that is model intuition,
with that of non-parametric approaches, being the ability to learn non-linear descriptions and directly
fitting to personal driver behaviour. This is achieved by assuming part of the model structure to follow a
theoretical background with a priori defined sub-models for upper-level dynamics. The model structure
is then completed with a data-driven approach, often statistical- or machine-learning-based, to define
the lower-level model functions. Examples of mixed approaches are the Motion Primitives (MP) driver
model by M. Flad et al. [12] and the Hidden Markov Model (HMM) based driver model by S. Lefévre et
al. [22]. However, both the mentioned non-parametric and mixed model approaches are steering-angle
based and have not yet been considered for modelling driver steering-torque.

Summarizing, to improve Human-Machine Interaction between driver and DSAS, literature suggests
to adopt the HSC concept in combination with the integration of a driver steering-torque behaviour
model in the DSAS. However, while HSC is a validated concept, accurately modelling driver behaviour
is still a research challenge due to the complex, stochastic and variable nature of human behaviour.
Mixed parametric / non-parametric modelling approaches are attractive methods due to their ability to
capture this complex non-linear behaviour. However, current approaches have not yet been considered
for modelling driver steering-torque directly.
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1.1. Research Objectives

To address the lack of mixed-parametric approaches to driver steering-torque behaviour modelling, the
work in this thesis presents a Hidden Markov Model based approach. The main goal of this thesis is to
develop and evaluate the implementation and parameterization of an HMM approach to time-varying
driver steering-torque behaviour modelling. The intended purpose is to make this model appropriate
for the integration in new torque-feedback based DSAS. The main goal is broken down in the following
research objectives:

+ Investigate how the parameters of a Hidden Markov Model are learned and how the model can
be inferred to respectively, capture and estimate driver steering-torque behaviour.

» Perform a virtually simulated parameter sensitivity study to investigate how the model parameters
influence estimation quality.

» Develop an evaluation method to determine suitable features and model configurations that op-
timize the estimation quality.

» Design and perform a driver experiment in a fixed-base driving simulator to generate naturalistic
driver steering-torque data for the training, evaluation and testing of the HMM model.

1.2. Thesis Structure

This thesis is structured as follows. Main findings and results of the proposed approach are presented
in the form of an IEEE journal paper in Chapter 2. The Appendices A to E provide respectively, an
in-depth explanations on model and inference methodology (Appendix A), details on data collection
(Appendix B), extended results of the parameter sensitivity study (Appendix C), the parameter selection
methodology (Appendix D), and supplementary results to the main findings (Appendix E).






Journal Paper

This chapter presents the main findings and results of the proposed approach in the form of an IEEE
journal paper.



Data-driven Steering-Torque Behaviour Modelling: A Hidden
Markov Model Approach

Current commercial Driver Steering Assistance Systems (DSAS) focus on path-tracking performance without taking into account
driver intentions. Improved driver-automation interaction can be achieved by sharing vehicle lateral control through torques.
Furthermore, integrating a driver steering-torque model allows to better match driver intentions. In this research, an existing driver
model is adapted and parametrized for estimating driver steering-torque. Driver behaviour is modelled by learning the parameters
of a Hidden Markov Model (HMM) and estimation is performed with Gaussian Mixture Regression (GMR). A parameter selection
framework enables to select model hyper-parameters objectively. First, feature relevance is determined with an extensive feature
selection step. Thereafter, an iterative overfitting criteria is employed to select the number of hidden states. Final model behaviour is
determined by adjusting the metric weights of a linear cost-function with the aim to trade-off estimation accuracy and smoothness.
Naturalistic driver steering-torque data from seven participants was gathered in a fixed-base driving simulator at Toyota Motor
Europe for the training, evaluation, and testing of the proposed model. The results demonstrate that a 92% model accuracy can be

achieved while the estimated steering-torque is 37% smoother and requires 90% less data compared to a baseline model.

Index Terms—Haptic Shared Control, Driver Model, Data-Driven, Hidden Markov Model, Feature Selection

I. INTRODUCTION

RIVER Steering Assistance Systems (DSAS) can (par-
tially) take over the lateral control of the vehicle, thus
sharing control with the driver. However, current commercial
DSAS mainly focus on path-tracking performance without
taking into account interaction with the driver. When DSAS
is conflicting with the steering intentions of the driver, it risks
being turned off [1], resulting in discomfort and reduced safety.
To improve Human-Machine Interaction (HMI), Abbink et
al. summarized in [2] important automation design guide-
lines. Firstly, the human operator should interact and receive
feedback with the automation system continuously. Secondly,
knowledge about the human operator should be integrated to
match intentions and capabilities. The former can be achieved
with interaction through forces on the steering-wheel, referred
to as Haptic Shared Control (HSC) [3], while the latter is
achieved through the integration of a driver behavioural model.
When integrated, the combination of these two methods allow
DSAS to gain driver trust, improve driving comfort, and
perform efficient interventions while minimizing conflict [4],
[5]. However, while HSC-based DSAS is an experimentally
validated concept, accurately modelling driver steering be-
haviour is still a research challenge due to the highly complex,
stochastic, and variable nature of human behaviour [6].
State-of-the-art literature on driver behaviour modelling
can be categorized in parametric, non-parametric and mixed
approaches. Parametric approaches model the steering task
based on physical theoretic principles using a priori assumed
analytical models. This provides an intuitive understanding
of the human steering task. Parameterization is often done
by hand or learned from data. Examples of parametric driver
models are the Cybernetic Driver Model developed by L. Saleh
et al. [7] and an optimal-control-based approach developed
by T. Niu and D. Cole [8]. Both models have already found
experimental implementations in haptic shared controllers ([9]
and [10], respectively). Each model assumes different sub-
models for driver cognitive, perceptual, and neuromuscular

dynamics. However, while the perceptual and neuromuscular
sub-models are thoroughly researched, human cognitive pro-
cessing is highly non-linear and still subject to active research
and thus only approximated by parametric models.

Non-parametric approaches infer model structure from data
using machine-learning methods without a priori assumptions.
Depending on the quality of the data, this enables to learn
detailed and non-linear descriptions of the steering behaviour
directly fitted to the driver. An example of a non-parametric
model is the feed-forward neural-network-based approach by
S. Jugade [11]. However, the black-box structure makes that
model interpretation and intuition is lost. Furthermore, non-
parametric approaches are often maneuver specific and require
retraining for new maneuvers.

Mixed approaches aim to combine model intuition of para-
metric models with the ability of non-parametric approaches to
learn non-linear descriptions. Part of the model structure fol-
lows a theoretical background, while the model is completed
with data-driven design. Examples are the Motion Primitives
(MP) driver model by M. Flad et al. [12] and the Hidden
Markov Model (HMM) based driver model by S. Lefevre et
al. [13]. Both models assume upper-level dynamics of which
the lower-level functions are learned with statistical methods.
However, the mentioned non-parametric and mixed approaches
model human steering-angle behaviour and have not yet been
investigated to directly model steering-torque.

The current work proposes to adapt the HMM approach of
[13] to model driver steering-torque instead. In the work by
Lefevre et al., an HMM-based driver model is implemented
in an MPC-based Lane Departure Warning controller. The
model provides the controller with a personalized (learned)
steering-angle reference signal when the controller predicts
an unintentional lane departure. This reference is taken into
account in the optimization criterion to guide the vehicle
back in the lane as close to what the driver would do. The
focus of this work is on modifying the HMM model to
provide a continuous steering-torque signal instead, making
the model appropriate for the development of new torque-



feedback based driver assistance systems [10]. Furthermore,
an extensive parameter selection framework is presented to
design the preferred model behaviour.

This paper is structured as follows. The proposed driver
model and the inference process for estimating driver steering-
torque is explained in Section II and a preliminary parameter
sensitivity study is included in Section III. Next, Section IV
introduces the parameter selection framework, followed by
a driving simulator experiment in Section V for generating
naturalistic steering-torque data to validate the approach. The
results are presented in Section VI and the conclusions are
highlighted in Section VIIL

II. DRIVER MODEL

The goal of a driver steering-torque model is to accurately
describe the relation in which the driver translates perceived
information about the driving scenario to a steering-torque
action on the steering-wheel [14]. Modelling human steering
behaviour with HMMs was introduced by A. Pentland and
A. Liu in [15]. In the work, human behaviour is considered
to consist of a set of discrete states, each with their own
control behaviour, sequenced together with a Markov chain.
Lower- and higher-level driving maneuvers can be described
by hierarchically organizing the set of states. Lefevre et al.
proposed in [13] to use single Gaussian normal distributions
as the state control behaviours to learn the relation between
the driving scenario and the steering-angle. The current work
adopts the normal distributions, but learns the relation with
the steering-torque instead. This section first elaborates on the
model structure in Section II-A and subsequently explains the
model inference process for estimating driver steering-torque
in Section II-B.

A. Model Structure

The steering behaviour of the driver is modelled with a fully
connected HMM. The aim of the model is to learn the joint
probability distribution between the current driving scenario,
defined as a vector of measured features, ' € R™Vs, and the
driver steering-torque 7. The model is described by the num-
ber of hidden states K, determining the model configuration,
and three model parameters related to the model’s behaviour,
collectively denoted as 8 = {m, A, B}. w € R¥ is a vector
of prior probabilities for starting in state k = {1,..., K} at
time t = 1. A € RE>X is a matrix of probabilities, denoted
as the (discrete) state transition matrix. Each element ajy
describes the probability of transitioning between state j at
time ¢ — 1 to state k at time ¢, for j,k = {1,..., K}. The
parameter B is the set of state emission (control) behaviours,
by = P(x¢]k) for k = {1,...,K}, and is defined as a
probability distribution of being in state k£ and observing
x; = [Fy, T#]", the combined observation vector at time t.
As the steering-torque 7y is a continuous variable, each state
emission distribution is assumed to be a single multivariate
Gaussian, by, ~ N(ug,Xx). The mean py and covariance
matrix X are defined by the mean and covariance of the input
(F) and output (Ty) features, denoted as,

F FF yFT
= [Z’g} and 5 = ETF gn] M)

Denoting s; as the state at time ¢, the random variable

S = {s1,..., s7} denotes the hidden state sequence from time
t = 1 to time ¢t = T. Together with the random variable
X = {x1,...,x7}, denoted as the observation sequence, the

joint state-observation probability distribution P (X, S|0) is
defined in [16] as,

p(X,S(0) =
T

H (zelse, B) (2)

p(si|m)

T
H P(St|$t_1, A)
t=2

The model parameters 60 = {mA,B} are learned from
recorded driving data with the Baum-Welch Algorithm [17],
an adapted version of the Expectation-Maximization (EM) Al-
gorithm [18]. The type of features F' and the number of hidden
states K are free model parameters and are determined with
the parameter selection framework, explained in Section IV.

B. Model Inference

At each time instant, the state emission distributions rep-
resent a mixture of K multivariate Gaussians. Therefore,
estimation of driver steering-torque 755" is performed with
Gaussian Mixture Regression (GMR) [19] and is calculated
as,

Pst
37 = E atk

where ayj, represents the mixture weights. Calinon et al.
proposed in [20] to calculate the mixture weights recursively
through the HMM representation, considering both spatial and
temporal information contained in the HMM. This recursive
calculation is known as the Forward Variable [17] and is
defined as,

ESETED) T E D] @)

K
(Z]‘:1 afﬂ,ﬂﬂc) N(Ft\ka, EkFF)
off = ———— @
>im1 [(Zj:latflvja’ji) N(Fug , 2FF)

and corresponds to the probability of observing the partial
observation sequence {Fi, F5, ..., F;} until time ¢ and being
in state k, given the model parameters 6 [17]. The Forward
Variable af & 18 initialized with prior probability 7, as,
aFk o WkN(Flh-Llljv E]IjF) (5)
Lk ™ K
23:1 [WjN(Flmka EEF)}

III. PARAMETER SENSITIVITY STUDY

An offline simulated pilot study was performed in IPG Car-
Maker with the aim to investigate model potential of capturing
and estimating driver steering-torque and to investigate the
impact of the free model parameters, the type of features and
number of hidden states. Steering-torque data was generated
by simulating two virtual IPGDriver behaviours (defensive
and aggressive) for two hours each. Both drivers followed
a continuous highway lane-keeping pursuit strategy at fixed
longitudinal vehicle speed of 100 km/h. To ensure high-fidelity
realistic simulations, vehicle dynamics were simulated with
a non-linear vehicle model with proprietary steering system



TABLE 1
BENCHMARK MODEL PERFORMANCE

Metric Defensive  Generic | Aggressive  Generic
Accuracy [%] 89.9 90.1 90.9 90.8
RMSE7 [Nm] 0.165 0.162 0.145 0.147

[21], parametrized to represent a Toyota production vehicle.
Subsequently, driver-dependent and generic benchmark HMM
models were trained and validated. The models were trained
with eighteen candidate features (see Appendix, Table A.1)
and five hidden states to ensure sufficient model complexity.

A. Results & Discussion

Both driver-dependent models are able to fit well on the
simulated data, shown by Table I, with an accuracy around
90% and an ~0.15 Nm RMSE. Furthermore, the generic driver
model is able to match this performance for both drivers.
Observing that the generic model marginally improves on the
defensive driver while doing slightly worse on the aggressive
driver, potentially indicates that both behaviours are being
averaged.

However, although the steering-torque is estimated accu-
rately, the signal oscillates around the true value, seen in Fig-
ure la. From a Human-Machine Interaction (HMI) perspective,
using such signals as reference for lateral controllers might
result in uncomfortable steering wheel vibrations and thus
should be kept to a minimum. From a modelling perspective
this might indicate that the model is overfitted on the data.
This can be observed in Figure 1b, as these oscillations are
mainly produced by individual states.

Results from a preliminary parameter sensitivity study ob-
served that the estimation quality is highly influenced by
the number and type of features. Using fewer features im-
proved estimation smoothness while similar accuracies to the
benchmark model were achieved. Furthermore, the quality is
also determined by the number of hidden states. Fewer states
increased estimation smoothness, while more states increased
estimation accuracy. From these observations it was concluded
that final model behaviour is susceptible to the specific features
the number of hidden states selected. Furthermore, as similar
performance is achieved with less information, it strengthens
the suspicion of model overfitting.

Following these conclusions, Section IV introduces a frame-
work for the objective selection of the free model parameters
with the aim to prevent overfitting. Furthermore, a model
evaluation function is introduced that allows to balance model
estimation accuracy with the smoothness of the estimation in
order to keep the oscillations to a minimum.

IV. PARAMETER SELECTION FRAMEWORK

Initially, features and states were selected with the aim to
obtain an accurate steering-torque estimation without taking
into account model limitations. The sensitivity analysis showed
that using too many features or states causes oscillations
in the estimated signal, indicating possible overfitting. This
section proposes a feature selection and overfit prevention
framework to objectively find an optimal feature subset and
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Fig. 1: Virtual Model Estimation Performance. (a) Accurate but os-
cillating estimations around 156s. (b) State probabilities o
indicate that oscillations are generated by single states.

number of states K that maximizes estimation accuracy and
generalisation capabilities, while minimizing oscillations. The
framework consists of three parts, shown in Figure 2. Step one
involves a feature selection method that generates candidate
subsets. In step two, feature relevance is determined based on
an evaluation function and one optimal subset is selected. The
last step involves selecting the number of states K by fixing
the feature subset. After the parameters are determined, final
model performance is evaluated on a test set in Section VI.
This section is organized as follows. Feature selection is
introduced in Section IV-A, followed by the proposed method
in Section IV-B. Section IV-C describes the optimal subset
selection and determining the number of states K is explained
in Section IV-D.

A. Feature Selection Background

Relevant features are strongly related to the regression target
and their contribution cannot be described by other features
[22]. Removing redundant and irrelevant features with feature
selection improves learning speed and model performance,
while reducing risk of overfitting and required data storage
[23]. As opposed to feature extraction, where data dimen-
sionality is reduced by constructing new relevant features,
feature selection is preferred in applications where the original
features have physical interpretations (e.g., the steering wheel
angle dsw 4). Feature selection reduces data dimensionality
by directly selecting a relevant subset, making the final model
more easily interpretable. Methods are categorized as super-
vised or unsupervised based on the availability of a regression
target in the learning phase. Supervised methods determine
feature relevance via correlation with the regression target,
while unsupervised methods determine feature relevance by
alternative criteria, as labeled data is missing [24]. The current
work proposes a supervised method since the driver steering-
torque is treated as the regression target. However, literature on
supervised methods for HMMs is limited and often research
specific [23].
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Fig. 2: The proposed parameter selection framework as explained in Sections IV-B to IV-D.

Therefore, the current proposed method is an extension of
the work [25] by Fabian Faller, where an extensive feature
selection analysis was performed for the HMM-based predic-
tion of unintentional lane changes. The analysis consists of
two wrapper-based selection methods, one performing an ex-
haustive search and the other performing a sequential forward
search (SFS) [26], respectively. Wrapper methods determine
inter-feature dependencies and redundancies by utilizing the
training algorithm as a performance measure [27]. This makes
wrappers computationally expensive but allow them to obtain
better performing subsets. Since the number of possible candi-
date subsets in an exhaustive search grows exponentially with
the number of features, Faller manually selected 11 of 24 total
features, resulting in the evaluation of 2047 candidate subsets.
Contrary to the exhaustive method, the SFS-wrapper only
generates a fraction of the possible candidate subsets, allowing
for a broader search over all candidate features. Faller uses
the SFS-wrapper to validate the candidate subsets generated
by the exhaustive wrapper. With both methods, Faller was able
to successfully identify several optimal feature subsets. Even
though the HMM was used as a classifier, due to the promising
results and lack of alternative regression-based strategies for
HMMs [23], a similar approach is adopted.

The current work adopts and extends the method of Faller
by replacing the manual pre-selection with a filter method, see
Section IV-B. Filter methods are independent of the learning
algorithm and rank features based on data performance metrics
[27]. They are computationally efficient but do not always
remove all redundant features [22]. By feeding the filter output
to the exhaustive wrapper, this problem is alleviated. Such
filter-wrapper combinations were proposed as hybrid methods
to combine the best properties of filters and wrappers [27].
Additionally, the current work implements a weighted per-
formance score, see Section IV-C, allowing the evaluation of
the learning algorithm to make a trade-off between estimation
accuracy and estimation smoothness.

B. Feature Selection Methodology

The proposed method consists of two methods in parallel.

Method 1: is the hybrid method. First, a filter will rank
the candidate features according to their univariate relevance
with the steering-torque. The absolute Spearman correlation

coefficient is chosen as the ranking criteria, evaluating the
monotonic relationshipl, defined as,

6N a2

I N

(6)

where N is the number elements and d; is the difference
in rank of element ¢. The ten strongest correlated features are
selected. These features then form the new candidate subset
for the exhaustive wrapper, determining inter-dependencies
and redundancies in this subset. For ten features, the wrapper
generates (trains) 1023 candidate subsets (models). The chosen
training algorithm is a two-state (KX = 2) HMM to balance
model complexity with computation time. Model evaluation
with the performance score is performed subsequently, see
Section I'V-C.

Method 2: is a wrapper running in parallel to the hy-
brid method. A sequential forward search (SFS) is selected,
performing a search over all 18 candidate features. Starting
with an empty “best feature set”, new candidate subsets are
generated by combining the best set” with each remaining
candidate feature, separately. Only the feature which combi-
nation with the best set” maximizes the performance score
is added to the “best set”, and the process is repeated. The
process is terminated either when selecting the next feature
does not increase the performance score by more than 1%
or all features are selected. The same two-state HMM is
chosen as the training algorithm. Since this selection process
is dependent on the performance score, model evaluation is
performed simultaneously.

C. Feature Selection Analysis

Selecting the optimal feature subset consists of three steps.
The first step determines feature relevance based on feature
occurrence. Based on the observed occurrences, the second
step groups these features into new subsets. The last step
selects the optimal subset from the grouped subsets.

Step 1: Preliminary results showed that no single best
feature subset exists for all validation recordings. Therefore,
feature relevance is determined by counting feature occur-
rences. First, for each validation recording, the best performing

Irelationship at non-constant rate



model is determined by evaluating the Performance Score
(PS). The PS enables to balance estimation accuracy with
estimation smoothness, defined as,

PS = wy % [[(100 = A7 est) || + w2 * [SMrp et (7)

where Ar ., and SMr s are respectively the model
accuracy and estimation smoothness metrics, defined in the
Appendix, and w; and wy are the metric weights. Models
with lower PS are considered better. Once evaluated for a
specific weight trade-off, the individual features in the best
selected models are counted cumulatively. The higher the
count, the more relevant the feature is considered. This process
is repeated for both wrapper methods, over a range of weight
settings, to map feature relevance for different accuracy and
smoothness trade-offs. The goal is to select the weight trade-
off that results in the simplest model with an optimal balance
between estimation accuracy and smoothness.

Step 2: For the selected weight trade-off, new feature
subsets are generated by combining the results of both wrapper
methods and grouping on feature relevance. To limit the
number of new possible feature combinations, three selection
strategies are defined. The new subsets contain...

o Strict Selection: ...features with at least 66% relevance.
e Mild Selection: ...features with at least 33% relevance.
o Liberal Selection: ...features counted at least once.

For each generated subset, a new two-state HMM is trained.
Fixing the weight trade-off, selected in Step 1, allows to
directly compare the trained models by their PS. Additionally,
to put model performance into perspective, a baseline model
was trained with all eighteen candidate features and two
hidden states.

Step 3: The optimal feature subset is selected based on the
model with the lowest PS.

D. State Selection

Final model complexity is determined by fixing the feature
subset and selecting the number of states K accordingly.
Increasing the states allows to capture driver steering-torque in
greater detail. However, this also increases model dependency
on the training data, known as overfitting. A common method
to prevent overfitting is to evaluate the Bayesian Information
Criteria (BIC) [28] on a large variety of models. The model
with the lowest BIC score is considered to generalize best.
However, as Faller noted in [25], the BIC is exclusively based
on the models likelihood for a given training set. Therefore, it
provides an uncertain estimation of the models’ ability to gen-
eralize. Alternatively, Faller proposed that by evaluating model
performance on the (unseen) validation set, generalisation
capabilities and thus model complexity is ensured implicitly.
Extending the method of Faller in the current work, the PS
(7) provides a means to balance the selection of the number
of hidden states between accurate and smooth estimation.

The state selection process works as follows: New models
are trained for a range of states, while the feature subset
remains fixed. Subsequently, the performance score for each
model is evaluated on each validation recording for different

weight trade-offs. For each trade-off, state selection is per-
formed in two ways. The first method selects a general number
of states based on the average PS over all recordings. The
second method selects a number of states per recording. The
general number of states is then selected as the average over
all recordings. For both methods, the search is terminated if
the addition of another state does not improve the PS by >1%.
Final state selection is determined by the minimum of the two
methods.

V. DRIVING SIMULATOR EXPERIMENT

Human driving contains variability in behaviour due to the
stochastic nature of human movements. When presented with
identical scenarios, humans seldom reproduce an identical
action [6]. Therefore, to validate HMM driver modelling for
naturalistic driving, a driving experiment was performed in a
fixed-base simulator at Toyota Motor Europe (TME), Belgium.
The goal of the experiment was to gather sufficient naturalistic
driving data for training, validation, and testing of a generic
driver HMM steering-torque model.

A. Driving Scenario

The designed scenario consists of 200km of randomly
generated three-lane highway, each lane 3.5 meter in width.
Road coordinates were defined in MATLAB and interpolated
using the IPG CarMaker Scenario Editor. The height profile
of a real-world highway scene was added to reduce average
look-ahead distance and increase participant immersion. The
scenario is split into 24 sections of five minutes (approximately
eight kilometers) to avoid degradation of participant concen-
tration per trial. Twelve sections were specifically designed
to maximize scenario variability and are used for generating
training data. The remaining twelve sections were designed to
provide new driving scenarios for model validation and testing.
Participants were tasked to manually follow the center lane as
close to their preferred driving style without secondary tasks.
No other driver assist was implemented except for a cruise
controller, keeping vehicle speed at 100 km/h for the duration
of each trial.

B. Experimental Procedure

A total of 7 participants took part in the experiment. All
participants were staff members of TME, averaging 32 years
of age (SD = 6.6 years), with knowledge on vehicle dynamics.
Participants, except one, were in possession of a driver’s
license for an average of 15 years (SD = 6.5). Among the
participants there were two expert test drivers, two advanced,
two intermediate and one novice driver. The experiment took
place in a fixed-base driving simulator with a mock-up Toyota
production vehicle in front of a 210° projection screen, see
Figure 3. The CarMaker scenarios were rendered with rFpro
software. Participants performed two sessions, split over sep-
arate days, each in which twelve sections were driven. The
order in which the sections were presented was randomized
for every session and every participant. At the start of the first
session, participants were able to familiarize themselves with
the conditions during a test trial that was not recorded.



Fig. 3: Driving Simulator at Toyota Motor Europe.

C. Dataset Allocation

A total of 168 runs were recorded, resulting in 840 minutes
(14 hours) of driving time. The recordings on the training
sections for all participants, 84 in total (420 min.), are used
for model training. Half of the remaining 84 recordings is used
for model validation (42 recordings, 210 min.) and the other
half is used for model testing (42 recordings, 210 min.).

VI. RESULTS & DISCUSSION
A. Feature Correlation

Features were ranked based on the average correlation over
all training recordings. The ten strongest correlated features
included in the exhaustive wrapper of sub-method 1 are
summarized in Table II. The deviation angle at 10 meters is the
single remaining feature that is strongly correlated (r; = 0.88),
but is disregarded due to the exhaustive wrapper feature limit.
Feature relevance of the SFS-wrapper should determine if this
is justified. The remaining features did not show a stronger
correlation than 7y = 0.4 and are therefore disregarded based
on weak correlation.

TABLE 11
FEATURE CORRELATION

Features [7s] D
1 Steering Wheel Angle 0.9557 0
2 Deviation Angle @30m | 0.9484 0
3 Road Curvature @10m 09321 0
4 Road Curvature @30m 09251 0
5 Yaw Rate 0.9249 0
6 Lateral Acceleration 09143 0
7 Roll Angle 09123 0
8 Road Curvature @0m 0.9099 0
9 Slip Angle 0.9062 0
10 | Lateral Velocity 0.9058 0
11 | Deviation Angle @10m [ 0.8848 0

B. Determining Feature Relevance

The influence of different weight trade-offs was mapped in
ten percent intervals. The maximum feature count possible is
equal to the number of validation recordings, 42. From the
mapping of the exhaustive wrapper in Figure 4a it is observed
that for increased weight on estimation smoothness, overall
feature relevance decreases up to a balanced trade-off. This
also means that the average number of features contained in
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Fig. 4: Mapping influence of metric weights on feature counts.
Weights are denoted as accuracy/smoothness.

the subsets decreases, indicating simpler models. Furthermore,
while vehicle dynamics and driver input have increased rele-
vance for more accurate estimations, road preview features
becomes more relevant when smoother signals are preferred,
which makes sense intuitively.

From the feature count of the SFS wrapper method, seen
in Figure 4b, it is observed that the SWA and Yaw Rate
are still important for model accuracy and road preview
features for estimation smoothness. However, the results show
a more conservative count. A possible explanation for this
difference is that the SFS method does not explore all possible
feature combinations. It was observed that model performance
increases rapidly for small feature subset and that the search is
terminated pre-maturely. Results from the exhaustive method
showed however, that unexplored feature combinations per-
formed better on the same validation recordings. Furthermore,
as the disregarded features are barely selected (seen in Fig-
ure 4c), it is assumed that feature pre-selection based on
correlation with the steering-torque is justified.

Selecting the weight trade-off is based on a combination
of estimation accuracy and smoothness scores and feature
relevance. It is observed from Figure 5 that accuracy and
smoothness scores remain approximately constant over the
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Fig. 5: Influence of metric weights on model performance for the

exhaustive wrapper method.
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range 100/0 to 40/60, averaging 89% and 2.94Nm/s, respec-
tively, while for the same range overall feature relevance
decreases. Basically, similar accuracy and smoother estimation
is achieved with fewer features and thus simpler models.
However, given the outliers, equal model performance is
not guaranteed for all recordings. The outliers correspond
to the recordings of the “Novice” participant and potentially
indicates decreased model performance for novice drivers.
To visualize model performance, Figure 6 compares the
estimated signals of models with different weight trade-offs.
The figure shows that a smooth model is only able to approx-
imate the true steering-torque and lacks accuracy. As more
weight is given to accurate estimations, approximation quality
increases rapidly. For further analysis, a 50/50 weight trade-
off is preferred as it objectively provides a balance between
estimation accuracy and estimation smoothness, while reduc-
ing model complexity. Increasing the weight on smoothness
significantly degrades model accuracy, while increasing the
weight on accuracy further degrades estimation smoothness.

True Torque

1k W: 0/100, A: 57.1%, SM: 1.14 Nm/s
——W: 50/50, A: 89.9%, SM: 2.44 Nm/s
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Fig. 6: Steering-torque estimations of the optimal models for differ-
ent weight trade-offs.

C. Optimal Feature Subset

Final performance still depends on a specific feature subset.
As only partial feature relevance overlap between methods was
observed, the new subsets are based on the exhaustive (1), SFS
(2), and combined (3) feature relevance. All combinations are
found in Appendix, Table A.2. For each subset, new two-state
HMMs were trained and performance on the validation record-
ings is compared for a 50/50 weight trade-off in Figure 7. The
baseline model, defined in Section IV-C, is the most accurate

(avg. 91%) but also the least smooth (avg. 5.82 Nm/s). Except
for ”Strict 2” and "Mild 2” (producing smooth estimations,
avg. 1.22 Nm/s, but inaccurate, avg. 62%), all remaining
selection strategies improved upon the baseline model based
on their respective performance scores. As each selection
was able to achieve similar accuracies (8940.08%), sorting
is dictated by the respective smoothness scores. Noticeable is
that the selection with the least amount of features, Strict 17,
is able to achieve the smoothest estimations (2.86 Nm/s) and
therefore the best performance score. For this reason, “Strict
17 is selected as the preferred feature subset, consisting of the
steering wheel angle, gy 4, and the yaw rate, 9.
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Fig. 7: Performance score of subset strategies

D. State Selection

New models were trained for K € {1, ...,20}. The influence
of metric weights on state selection was mapped in ten percent
intervals. From Figure 8 it is observed that more hidden states
are preferred for more accurate models, while fewer hidden
states are in favor of smoother estimations. Furthermore,
selecting the number of hidden states based on the average
K over individual recordings shows a more conservative state
selection for a majority of the settings and should thus be
preferred over the average PS selection. However, what the
performance metrics in Figures 8a and 8b show is that select-
ing fewer hidden states significantly reduces model accuracy
while only marginally improving the smoothness. As both
metrics stay virtually constant for weights over 50% (resp.),
a balanced weight trade-off is selected. Looking at Figure 8c,
this results in a selection of five hidden states.

E. Model Testing

To put final model performance into perspective, a Baseline
(BL) model was trained with all eighteen candidate features
and five hidden states. Both the Generic Driver (GD) model
and BL model were evaluated on the test set. Comparing
average model performance in Figures 9a and 9b, shows
that the GD model is able to match BL model accuracy
while simultaneously producing 37% smoother estimations on
average. This is best observed in Figure 9c, where the GD
model significantly reduces noise in the estimated steering-
torque. However, model performance did not improve equally
for each participant. Steering behaviour of the “Novice”
participant was the hardest to estimate both accurately and
smoothly, averaging 90% and 4.22 Nm/s respectively, and is
best observed in Figure 9d. The reduced model performance
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can be explained by observing the more abrupt steering
behaviour of the participant itself, which causes the model to
adjust the estimations accordingly, reducing the metric scores.
Among the remaining participants, performance appears to be
dependent on individual steering behaviour rather than skill
level. However, current participant sample size is insufficient
to draw general conclusions and this observation will have to
serve as an hypothesis for further research.
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Generic Driver (GD) model.

VII. CONCLUSION

The HMM-based method presented in this work addressed

the lack of data-driven approaches to driver steering-torque
behaviour modelling by modifying the state emission proba-
bilities. With the aid of the parameter selection framework,
a generic driver model was able to accurately estimate driver
steering-torque for multiple drivers while keeping the estima-
tions as smooth as possible. Results on a separate test set
indicated that model performance is dependent on individual
driver behaviour, rather than driver skill level.
The implementation of the weighted performance score in the
parameter selection framework, allowing a trade-off between
accuracy and estimation smoothness, provided the insight to
appropriately select the free model parameters while prevent-
ing model overfitting. By first selecting the feature subset
based on feature relevance, preferred basic model behaviour
can be designed. Subsequent state selection enables to further
fine-tune this behaviour.

VIII. FUTURE WORK

While the results show the potential of the proposed ap-
proach for modelling driver steering-torque behaviour, param-
eter choices were based on objective metrics without taking
into account driver steering feel. In order to validate the
selected parameters, directions of future work include the
implementation of the proposed driver model in a DSAS. For
example, a Lane Keeping Assist controller similar to [13] and
conduct subjective simulator experiments comparing different
weight trade-off settings. Once validated, other directions
include model robustness to noise, online learning approaches
(e.g. [29]) for adaptation to individual and time-varying driver
behaviour, and a wider scope of driving scenarios (varying
speed, traffic, off-highway, etc.). Furthermore, as was proposed
by the authors of [15], the hidden states can be organized
hierarchically to represent not only lower- but also higher-level
behaviour, such as lane-changing or overtaking. To the best of
the author’s knowledge, combining multiple HMM to explain
more complex steering behaviour has not yet been investigated
in combination with GMR estimation.

APPENDIX
A. Model Performance Metrics

« Root-mean-square-error (RMSE) of estimated steering-
torque, RMSET ¢,

N
1 2
RMSETyeSt = N ; (Ti,est - Ti,d) (8)
o Model estimation accuracy, A cst,
At st = |1 = =————RMSEr .4 100 9
T,est { SD(Td) T, t:| X 9)

o Smoothness of estimated steering-torque, SMr cqt,

1 N
SMr st = NZ(W o) (10)



B. List of investigated Candidate Features

TABLE A.1
CANDIDATE FEATURES.

Feature Name Symbol  Unit

Driver Input
Steering Wheel Angle Osw A rad
Steering Wheel Velocity ésw A rad/s
Steering Wheel Acceleration Osw A rad/s?

Vehicle Dynamics

Lateral Velocity vy m/s
Lateral Acceleration ay m/s?
Slip Angle B rad
Yaw Rate w rad/s
Yaw Acceleration 1[) rad/s?
Roll Angle o) rad
Roll Velocity é rad/s
Roll Acceleration é rad/s?

Road Preview
Deviation Distance @0Om €y m
Deviation Angle @0m €40 rad
Road Curvature @0m 0 1/m
Deviation Angle @10m ey10 rad
Road Curvature @10m P10 1/m
Deviation Angle @30m €30 rad
Road Curvature @30m 030 1/m

C. List of Selection Strategies based on feature relevance

TABLE A.2
SELECTION STRATEGIES
> ()
;5644 v @ S e oA > o S O
Counts
Exhaustive | 42 | 41 | 24 | 20 | 16 | 11 4 4 0 0
SFS 7 4 1 21 0 0 37 1 8 2
Strategies
Strict 1 X X
Strict 2 X
Strict 3 X X X
Mild 1 X X X X X
Mild 2 X X
Mild 3 X X X X X X
Liberal 1 X X X X X X X | X
Liberal 2 | X X X X X | X | X | X
Liberal 3 X X X X X X X [ X | X|X
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Hidden Markov Models &
Gaussian Mixture Regression

The goal of a driver steering-torque model is to accurately describe the relation in which the driver
translates perceived information about the driving scenario to a steering-torque action on the steering-
wheel [24]. In the current work, the behaviour of the driver is assumed to consist of a set of discrete
internal states, each with their own control behaviour, sequenced together with a Markov chain [31],
known as a Hidden Markov Model (HMM). The control behaviour is assumed to consist of single mul-
tivariate Gaussian normal distributions, one for each state. This allows the driver steering-torque to be
estimated with Gaussian Mixture Regression (GMR), a multivariate regression method.

This chapter elaborates on the model structure that is an HMM in Appendix A.1. The section dis-
cusses what parameters define the model and how these parameters are learned from the data. The
discussed theory is based on Chapter 13 of the book "Pattern Recognition and Machine Learning” by
Christopher M. Bishop [5] and the paper "A Tutorial on Hidden Markov Models” by Lawrence R. Rabiner
[32]. Furthermore, Appendix A.2 explains the concept of model inference with GMR and how it is ap-
plied to HMMs. The discussed theory is based on the paper "Latent Gaussian Mixture Regression for
Human Pose Estimation” by Yan Tian et al. [37] and the paper "Learning and Reproduction of Gestures
by Imitation” by Sylvain Calinon et al. [6]. This chapter is concluded with the software implementation
in Appendix A.3.
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16 A. Hidden Markov Models & Gaussian Mixture Regression

A.1. Hidden Markov Models

The non-holonomic properties of road vehicles make that successive observations on the driving sce-
nario cannot be assumed to be independent. Therefore, estimating the next value of driver steering-
torque can be considered as a problem where we wish to estimate the next value in a time-series of
observations. A suitable model to explain the dependencies between successive observations in a
time-series is the Hidden Markov Model (HMM).

An HMM is a probabilistic modelling method that models a double stochastic process of which one
is unobservable, commonly referred to as process states, and as a function of these process states
produces another, this time observable, stochastic process. A simple example to get a feeling for this
concept suggested by Rabiner in [32] is a set of N urns that each contain a set of M colored balls. A
person will pick according to some random hidden process one specific urn and from that urn will pick
one ball. Subsequently, the person only shows you the ball color without telling you from which urn the
ball came. The person puts the ball back in the urn it came from, and repeats the process. By doing
so, you end up with a finite observable sequence of ball colors that was generated according to the
random hidden process. The observed sequence can then be used as the observable output of the
HMM.

Coupling this idea to modelling human behaviour, Pentland first proposed in [31] that the human
driver can be considered as the unobservable stochastic process, consisting of an unknown number of
states, controlling the lateral movement of the vehicle. In the 2014 work [22], Lefevre et al. proposed
this method for modelling driver steering-angle behaviour. The model is used for detecting unintentional
lane changes and subsequently generates a reference signal for a Model Predictive Controller (MPC)
to steer the vehicle back in the lane, mirroring the observed drivers’ behaviour as close as possible. In
the present work it is proposed to use this method for modelling driver steering-torque behaviour with
the intended application of integrating the model in a continuous Driver Steering Assistance System
(DSAS). The HMM aims to model a joint probability density function between the driving scenario (e.g.
steering wheel angle, lane center deviation, and road curvature), denoted as a feature vector F € RYf of
length N, and the driver steering-torque, denoted as T,,. These observations, denoted as x = [F, Td]T,
will serve as the observable output for the HMM.

A.1.1. Structure

A Hidden Markov Model consists of a set of discrete latent model states s. Each state is responsible
for a different part of the observed output x, through a conditional probability distribution p(x|s) (e.g.
a vector of ball color probabilities). It is then assumed that the state sequence S = {sy, ..., sy} forms a
first-order Markov chain, meaning the current state s, depends solely on the previous attained state
s¢_, through a conditional probability distribution p(s;|s;_1). By doing so it can be shown with graph
theory ([5], p607) that the current observation x; is dependent on all previous observations {xy, ..., x;_1},
while limiting the number of model parameters needed to describe the model. The corresponding graph
network of the joint state-observation sequence is illustrated in Figure A.1.

The conditional probability distributions p(s;|s;—1) and p(x|s) are respectively called the state tran-
sition distribution and the state emission distribution. Since an HMM consists of discrete latent states,
the state transition distribution p(s;|s;_;) corresponds to a matrix where each element denotes the
probability of transitioning from one state to another. This matrix will be denoted as A. In this work, a
fully connected HMM is used, meaning all states can be reached from any state including the same
state, as this resembles the ability of the driver to switch between all types of behaviours including
keeping the same behaviour. Other HMM types exist and can be found in [32]. To initialize the state
sequence S at time t = 1, a marginal probability distribution, denoted as = = p(s;), is introduced that
describes the probability of starting in a particular state k.

In contrast to the urn-ball example, where the state emission distribution p (x|s) is a vector of
probabilities because there is a finite number of colors, modelling the continuous driving observations
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Figure A.1: Graphical interpretation of a Hidden Markov Model [5]. The arrows indicate the conditional probability
distributions between states s and observations x. As depicted, the current state s; is dependent only on on the previous
attained state s,_, through the conditional probability distribution p (s;|s¢—) and the current observation x is dependent
only on the current state s, through the conditional probability distribution p (x¢|s¢)-

x = [F, Td]T requires a continuous distribution. Therefore, each state emission distribution p(x|s) is
assumed to be a single multivariate Gaussian distribution, denoted as b, ~ N (u, Z;) for state k. The
set of all state emission distributions will be denoted as B. The mean y;, and covariance matrix X, of
each state distribution consists of the mean and covariance of each measured feature that is described
by state k, concatenated as follows,

F FF FT
Hyk Xy Xy
= and I, = A1
Uy [#E] k [Z£F E;{"T:l ( )

where uf € R is the mean vector of the measured features, ul € R is the mean value of the
steering-torque, 2fF € RV7*Ms is the auto-covariance matrix for the measured features, Xf7 € R is the
auto-covariance for the steering-torque, and £1F € R¥"r and =£T € RY/*! are the cross-covariance
matrices of the measured features and the steering-torque.

Summarizing, to fully describe an HMM, the parameter set 6 = {K,m, A, B} needs to be defined

where,

1. Kis the number of model states.

2. m = p(s,) is the marginal probability distribution of initializing the state sequence in state k at
timet = 1.

3. A = p (s;|s¢—1) is the conditional state transition matrix.

4. B = p (x|s;) is the set of conditional state emission distributions.

Given the state sequence S = {s4,..,sr}, and the observation sequence X = {xy,.., xr}, both of
length T, and the parameter set 9, the joint probability distribution over the states and the observations
[5] can be written as,

T T
p(x,510) = p(silm) || [pGselsen d|[ [pcelse ) (A2)
t=2 t=1

How the parameter set 6 is defined will be explained in the following section.

A.1.2. Training an HMM

The next step is to find the set of model parameters 6 that maximizes the likelihood of observing the
observation sequence X. The likelihood function is obtained by marginalizing over the latent variables
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S in the joint probability density function of Equation (A.2) as,

p(X10) = > p (X,510) (A3)
N

However, since the latent variables are unobservable, Equation (A.3) is equivalent to summing
over all possible state sequences that the stochastic process could go through. There exists no way of
solving this problem analytically [32]. Therefore, iterative procedures like the Expectation-Maximization
(EM) algorithm [8] are used to locally maximize the likelihood function of incomplete (or latent) data.
The method iterates over two steps.

1. In the Expectation (E)-step a posterior distribution over the latent variables p(S|X, Bom) is com-

puted, in which 8°'“ is the current parameter setting initialized with K-means clustering, to eval-
uate the expectation of the logarithm of the complete-data likelihood function Equation (A.3) [5]
defined as the Q-function Q(6,6°'%) in [8],

0(0,6%) = Z p(s1%,0¢) Inp (x,56) (A4)
Q

which is a function of the model parameters 6.

2. The Maximization (M)-step then maximizes the Q-function Equation (A.4) w.r.t. the model param-
eters 6 as,

6" = argmaxQ (6]6°'*) (A.5)
0

until a local optimum is found or an iteration limit is reached.

To give an intuitive explanation on the workings of the EM-algorithm, Rabiner gives a derivation
of the re-estimation equations for updating the model parameters 6 in [32]. First, two variables are
introduced as,

1. The joint posterior distribution of two successive states . ; is defined as the probability of being
in state k at time t, and state j at time ¢t + 1, given the observation sequence X and the model
parameters 6,

ft,kj =p(se =k, sex1 =J1X,60) (A.6)

2. The marginal posterior distribution of the states y,  is defined as the probability of being in state
k at time t, given the observation sequence X and the model parameters 6. For a model of K
states this can be expressed in terms of ¢, ; as,

K
Ve = P(se = KIX,0) = ) & (A7)
j=1

Summing &, ; over the observation time t = {1,..,T — 1} results in a quantity representing the
expected number of transitions from state k to state j during the observation sequence X. Similarly,
summing ., over time represents the expected number of times state k is visited, Equations (A.8a)
and (A.8b) respectively.

T-1

Z e xj = E[transition from state k to state j] (A.8a)
t=1

T-1

Z Yer = E[visit state k] (A.8b)

t=1
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To determine the quantities &, ; and y, . efficiently, Baum et al. introduced the Forward-Backward
Algorithm [32], which is discussed in Appendix A.1.3. Both quantities serve as the basis for updating
the model parameters 6. The probability of starting in a particular state r;, is updated as the frequency
of being in state k at time instance t = 1,

T = Y1k (A.9)

The conditional state transition probabilities A are updated as the ratio of the frequency of transi-
tioning from state k to state j, Equation (A.8a), over the frequency of visiting state k, Equation (A.8b),

T-1
new Zt=1 ft,kj

new — -1 (A.10)
! Zf=11 Ytk

Since the state emission probabilities B are assumed multivariate gaussians, the parameters
and X, defining the conditional state emission distribution b, of state k are updated as,

T
new _ Zt:1 Vt,kxt
H ™ = T
Zt=1 Yik

T T

Zt=1 Ytk (e — px) (e — i)
T
Zt=1 Vt,k

(A.11a)

new _
W =

(A.11b)

A.1.3. Forward-Backward Algorithm

Since direct computation over all possible state sequences Equation (A.3) is computationally infeasible,
Baum et al. introduced an efficient algorithm to calculate the variables ¢, ; and y x, called the Forward-
Backward Algorithm [32]. As the name suggests the algorithm consists of two parts, the forward and
backward procedure.

1. In the forward procedure, the algorithm inductively calculates the probability of being in state k
after seeing the partial observation sequence {x4, .., x;} until time t, given the model parameters
0, denoted as the forward variable a. ,

at‘k = p(xl,...,xt, St‘ = k|9) (A12)
The induction algorithm works its way forward along the observation sequence X startingatt = 1
as follows,
Step 1: Initialization, a4 = mEby(x1) 1<k<K (A.13a)
K
Step 2: Induction, @4k = Zat,jak,- be(xey) 1<t<T-11<k<K (A13b)
j=1
K
Step 3: Termination, p (X|0) = Z ar g (A.13c)
k=1

2. Inthe backward procedure, the algorithm inductively calculates the probability of seeing the partial
observation sequence starting from t + 1 until time T, given of being in state k at time t and the
model parameters 6, denoted as the backward variable f; ,

Bex = p(Xt41, Xes2, - TlSe =k, 0) (A.14)
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Now the induction algorithm works its way backwards along the observation sequence X starting
at time T as follows,

Step 1: Initialization,  fr, =1 1<k<K (A.15a)
K
Step 2: Induction, B = Z Wb (tes)Brare  T—1<t<1,1<k<K (A.15b)
=1
K
Step 3: Termination, p (X|0) = Z P11 by (x1) (A.15¢)
k=1

The forward variable a ) and backward variable f;, can now be used to define the variables & ;
and y;x ([5], Section 13.2.2) introduced in Appendix A.1.2. The definition of {; ;. ; and y; ;. are as follows
[32],

. e Qb (Xes1)Bersn,j
Eeij = (e = ko Seqr = jIX,0) = —f— (A.16)
k=1 Z]‘:l e i jbj(Xer1) B,
N 8
Xtk Ptk
Ve = P(se = KIX,0) = ) Eoy = it (A17)
= k=1 %t kPrk

Now the update equations Equations (A.9) to (A.11) can be used to update the parameter set 6.

A.2. Gaussian Mixture Regression

Using Gaussian distributions as the HMM state emissions, a probabilistic distribution between input
and output features is learned directly in the form of a Gaussian Mixture Model (GMM). This allows for
the derivation of explicit conditional distributions for model inference with Gaussian Mixture Regression
(GMR) as employed in [37].

A.2.1. General Concept

GMR is a parametric regression method where it is assumed that the joint variables (x,y), where
x € RN~ is some input vector of length N, and y € RM» is the target output vector of length N,, follow a
Gaussian mixture distribution with K components ([37], section 2) denoted as,

K
PeLY) = ) TP (6, Yt 3i) (A18)

k=1

where p(x, y; ug, Zi) is the multivariate Gaussian distribution for mixture component k. The param-
eters my, we = [l w7, I = 255,275 275, 227] indicate respectively, the mixture weights, means,
and covariances of each mixture.

The global regression function can then be formulated using Bayes rule. The result is a mixture of
distributions conditioned on the input variable and is defined as [37],

K

p(xy) _ - &
5 —;wkpmx,uk,zi) (A19)

p(y|x) =

where p(y|x; dx, £2) is the conditional distribution of mixture component k and wy, is the mixing
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weight defined as,
P (6 i, Z5°)

K
Y= TP (6, 27

W = (A.20)

Since the conditional distribution of a partitioned normal random variable is also a normal distribution
[9], the mean i, and covariance £, of each mixture component k is defined as,

e = B+ 20 EEO T o0 — 1) (A.21a)
I =3 - E sy (A.21Db)

Given a new input signal x™"%, the estimate of the output signal y°st is obtained by computing the
expectation over the regression function Equation (A.19), which can be expressed as the weighted sum
of the means g, [37],

K
y&t=E[pWIn)] = Z Wi (A.22)
k=1

From Equation (A.22) it follows that, since the parameters for the Gaussian emission distributions
are learned during the training process, the regression step is performed with a limited number of
computations and can therefore be considered a computationally efficient approach. Furthermore,
GMR s able to handle several missing variables since it considers any input-to-output variable mapping,
simply by using different partitioning of the variables [14].

A.2.2. GMR inference on HMM

In the case of an HMM, the Gaussian mixture distributions p(x,y; ux, Zx) are the respective Gaus-
sian state emission distributions b, for k = 1, ..., K. For the proposed driver steering-torque model, the
steering-torque Ty is considered as the output variable y and the features F used in the model, are con-
sidered as the input variables x. Adapting the GMR method for inference on an HMM, the input-output
variables are partitioned as was proposed in Equation (A.1) in Appendix A.1.1,

b z;jT]

F

Hyi
= and X, = A.23
Ur [#E] k [ZIEF Z?{"T ( )

where {u, Z,.} are the Gaussian distribution parameters for state k and k = {1, ..., K} are the index of
the individual K states. The distribution of each mixture component is now denoted as p(T|F; fix, £i),
where ji, and %, are defined as,

fep = " +ZEECEEDTHE - weH (A.24a)
5, = XIT — 5TF (2FF)-15FT (A.24b)

where F; is the vector of input feature values at the estimated time-step t. The estimation of the
drivers’ steering-torque Tj_stf can then be computed as,

K
Tgy = Z W [tk (A.25)
=1

One issue remains, namely how to determine the mixture weights w; in Equation (A.25). Until
now, the set of state emission distributions B was considered as a Gaussian Mixture Model as was
done in the original GMR framework. The weight for mixture k was defined as the probability of the
observation x belonging to mixture component k. However, to consider both spatial and temporal
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information contained in the HMM, Calinon et al. proposed in [6] to represent the mixture weights w;
with the HMM Forward Variable a. ; (see Appendix A.1.3), representing the probability of observing the
partial observation sequence {x4, .., x;} and being in state k at time t. To use the forward variable in
Equation (A.25), the induction algorithm of Equation (A.13) is adapted by only involving the values of
the input variables F as follows,

» The Adapted Forward Procedure

Step 1: Initialization,  af, = m,bf (x1) 1<k<K (A.26a)
K
Step 2: Induction, afyip = lz af jagj| b (tee1) 1<t<T-1,1<k<K (A26b)
=1
K
Step 3: Termination, p (X|0) = Z ar g (A.26¢)
k=1

where the emission distributions bf is defined by the partitioned parameters N (uf, Z5F). With the
newly defined mixture weights, the current driver steering-torque estimate T5%(t) is calculated with the
current feature values F; as,

K
TR = ) age (" + 31 (1) (R - 1)) (A.27)

=1

A.3. Software Implementation

The implementation of the proposed HMM+GMR approach is done in MATLAB 2017b, the program
shared by all parties involved in this project. Additionally, the program used for data gathering, IPG Car-
Maker, provides a MATLAB tool to convert CarMaker-data to be used in the MATLAB format. The im-
plementation of the HMM method is done with the open-source Probabilistic Modelling Toolkit (PMTK3
1) for MATLAB. This toolkit is designed by former professor Kevin P. Murphy at the University of British
Columbia as additional source material for his book “Machine Learning: A Probabilistic Perspective”
[28]. The included HMM implementation in the toolkit made the modelling process in this thesis work sig-
nificantly easier, reducing the effort for training and validating models and opened up time for analysing
the steering-torque estimation quality.

"https://github.com/probml/pmtk3


https://github.com/probml/pmtk3

Data Acquisition

Learning the parameters of the state-transition and -emission probabilities with the Expectation- Max-
imization algorithm requires a sufficient amount of data. This chapter elaborates on the process of
collecting driver steering-torque data for two data-sets, sharing common aspects. The first data-set
was collected virtually in IPG CarMaker for a preliminary parameter sensitivity study, see Appendix C.
The second data-set was collected experimentally in a fixed-base simulator for the analysis of model
performance on naturalistic driving data, see Appendix E. The common aspects shared by the data-
sets are the driving scenario (a three-lane highway designed from scratch), a high-fidelity non-linear
vehicle model with proprietary steering system and additional sensors, and the collected data features.

This chapter is structured as follows. Appendix B.1 elaborates upon the driving scenario design
process, followed by a description of the vehicle model in Appendix B.2. A description of the type of
data features is given in Appendix B.3, after which this chapter is concluded with the allocation of the
collected data in Appendix B.4.

23
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B.1. Driving Scenario Design

In order to gain control on how the naturalistic driving data was generated, new virtual highway sce-
narios were designed. Twelve out of the 24 sections were specifically designed to maximize scenario
variability and are used for generating training data. The twelve remaining sections were designed to
provide new driving scenarios for model validation and testing. This section elaborates on the design
choices made.

B.1.1. Pseudo-Randomized Road Generation

The generated highway sections consist of straight and curved road elements. Straight elements were
defined by their length L [m]. Element lengths were sampled ranging from 25 to 200m with 25m in-
tervals. Each curved element is defined by three parameters, being (1) the direction (left or right), (2)
the radius R [m] (defining element curvature), and (3) the angle 6 [deg] (defining element length by
S = RO x /180). To ensure a wide variety of cornering situations similar to real-world highways, ele-
ment radii were sampled ranging from R = 300 to 1200 meters with 100 meter intervals. The minimum
radius (maximum curvature) provides sharp cornering up to a maximum lateral acceleration of 3 m/s?
@ 100 km/h. The purpose of the scenarios were controlled by using specific settings for element radii,
summarized in Table B.1. The idea behind the sharp (S), medium (M), and light (L) sections were to
generate, respectively higher, medium, and lower amplitude and frequency steering motions. Com-
bining each of the settings (SM, ML, SL) enabled to generate combinations of those frequencies, as
sharper corners transition into shallower corners and vice versa. The angles 6 ranged from 10 to 20 de-
grees with 5 degree interval. For model training purposes, two sections for each of the first six settings
were generated. The remaining twelve sections for validation and testing purposes were generated
with the seventh setting, combining all types of cornering situations.

Table B.1: The 7 settings that define the virtual highway sections. For each setting, the radii R that
defines the curvature were sampled at 100m interval, the angles 6 that define the curve length were
sampled at 5 degrees interval ranging from 10 and 20 degrees.

Setting Name Radii [m] Comments

1 S 300 - 600 Only sharp curved corners

2 M 600 - 900 Only medium curved corners

3 L 900 - 1200  Only lightly curved corners

4 SM 300 - 900 Combination of sharp and medium curved corners

5 ML 600 - 1200 Combination of medium and lightly curved corners

6 SL %%%ﬁ%%g‘ Combination of sharp and lightly curved corners

7 SML 300-1200 Combination of sharp, medium and lightly curved corners

Sections were generated by first calculating the relative coordinates of the road elements, and con-
catenating the elements randomly to obtain the absolute coordinates. However, to ensure a balanced
dataset constraints were set, defined as follows. For each section, the following settings needed to be
distributed as uniformly as possible,

» Element directions (including straight elements).
» Element radii (curved only).

» Element angles (curved only).

Finally, an elevation profile was added to the sections to enhance simulator immersion. Furthermore, it
would ensure that driver road preview would occasionally be blocked by road crests, making the road
less predictable. The profile was taken from an existing scenario in the simulator and by inverting both
horizontally and vertically, four variations of this profile were created. Each section got assigned one
at random.
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To illustrate the complete road generation process, a flowchart is shown in Figure B.1. After coor-
dinate interpolation in the IPG CarMaker Scenario Editor, road lines, hills and trees were added to the
environment, providing reference points for the driver.

Element Directions
Uniformly distribute straight,
left, and right elements

Find
element index

Radii
uniformly distr. over curved
elements

Section Settings

A 4

Angles Lengths
uniformly distr. over curved Uniformly dist. over straight

elements elements

Relative Coordinates
calculate [X,Y]

Concatenate
to obtain absolute [X,Y]

Satisfied
(user choice

Add Elevation

in Z direction

ve Y

Terminate IPG
Return section coord. CarMaker

Figure B.1: Flowchart illustrating the generation of new highway section coordinates.

B.2. Vehicle Model

The vehicle dynamics were simulated with a custom non-linear vehicle model and a proprietary non-
linear steering system [27] developed in Simulink by Toyota Motor Europe '. The parameters of the
model are tuned to represent a Toyota production vehicle. The implementation of this model allows
for the realistic simulation of real-world scenarios with high fidelity. The local coordinate system used
in the model is the native right-handed system that is used in CarMaker. This system is located on
the ground, at the rearmost point of the vehicle, and oriented such that the positive x-axis points in
the driving direction, the positive y-axis points to the left of the vehicle, and the positive z-direction
is up, see Figure B.2. In order to collect the necessary features, the vehicle model is equipped with
several sensors. An Inertial Measurement Unit (IMU) is located at the vehicle Center of Mass (COM)
and is used to measure inertial body movements (Vehicle Dynamics in Table B.2). Furthermore, three
ideal road sensors are placed at respectively, the front axle of the vehicle, 10 meters, and 30 meters
ahead of the vehicle to measure the road preview (Road Preview section in Table B.2. The road
sensors simulate the use of a forward facing camera measuring the respective quantities. The non-
linear steering system outputs the remaining driver input features, including driver steering-torque,
steering-angle, and derivatives.

"https://www.toyota-europe.com/
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roll X

Figure B.2: Vehicle coordinate system. Prius lllustration from https://www.vecteezy.com/free-vector/
toyota).

B.3. Candidate Features

The variables describing the driving scenario F, at a particular time instant ¢t and defining the dimen-
sions of the Gaussian emission distribution B, are denoted as features. For the current study, an
pre-selection of 18 features was made. The details on the selected feature set are presented in Ta-
ble B.2. In the sensitivity study, all features were used to test the proposed modelling approach. With
the data collected from the simulator experiment, all features were recorded and a parameter selection
framework is implemented to select the optimal model parameters (see Appendix D).

Table B.2: List of pre-selected candidate features that describe the driving scenario.

Feature Name | Symbol | Unit | Real-world feasability
Driver Input
Steering Wheel Angle Oswa rad Steer Angle Sensor
Steering Wheel Velocity Oswa rad/s | SAS
Steering Wheel Acceleration | gy, 4 rad/s? | SAS
Vehicle Dynamics
Lateral Velocity vy, m/s IMU
Lateral Acceleration a, m/s? IMU
Slip Angle B rad Estimation
Yaw Rate P rad/s | IMU
Yaw Acceleration P rad/s? | IMU
Roll Angle ¢ rad IMU
Roll Velocity ) rad/s | IMU
Roll Acceleration ) rad/s? | IMU
Road Preview
Deviation Distance @Om €y0 m Camera
Deviation Angle @0Om eyo rad Camera
Road Curvature @0Om Do 1/m Camera
Deviation Angle @10m ey10 rad Camera
Road Curvature @10m D10 1/m Camera
Deviation Angle @30m €30 rad Camera
Road Curvature @30m D30 1/m Camera

B.4. Scenario Allocation

For the proper validation and testing of performance and generalisation capabilities of the proposed
modelling approach, the dataset is split into a training, validation and test set. As the purpose of
the first twelve generated sections was to present the model with an as wide as possible range of
cornering situations, these sections are used for the training of the HMM model. This comes down to
approximately one hour of training data per participant. The remaining twelve sections were designed
to present the model with new scenarios. For the sensitivity study, all twelve remaining sections are


https://www.vecteezy.com/free-vector/toyota
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used for generating validation data, totalling one hour of data. For the analysis on naturalistic driving
data, the first six sections are used for model validation, totalling 30 minutes per participant, and the
other six sections for model testing, another 30 minutes per participant.






Parameter Sensitivity Study

The parameters defining the state transition matrix and the state emission distributions of the Hidden
Markov Model are learned from data by applying the Expectation-Maximization algorithm. However,
not all parameters can be determined by this algorithm. The remaining free parameters to select are
the type of features in the state emission distributions and the number of hidden states. To investigate
how these model parameters influence the estimation behaviour, a preliminary parameter sensitivity
study has been performed. The aim of the study was twofold. Firstly, an offline simulated experiment
was performed in IPG CarMaker to gather virtual driving data. This data is then used for the training
and evaluation of benchmark HMM models. Secondly, this data is used to investigate how varying of
the type of features and number of model states impact the benchmark performance.

This chapter is structured as follows. Appendix C.1 explains how the virtual driver behaviours are
generated, followed by an analysis of this behaviour in Appendix C.2. Evaluating the performance
of the benchmark models is presented in Appendix C.3, followed by the results of varying the model
parameters in Appendix C.4. The conclusions are highlighted in Appendix C.5.
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C.1. Virtual Drivers

Driving data was generated by simulating two virtual behaviours following a continuous highway lane-
keeping pursuit strategy at a fixed longitudinal vehicle speed of 100 km/h. To simulate driving be-
haviours, IPG CarMaker includes a build-in IPGDriver which allows to add human control actions (e.g.
steering, throttle, braking, gear shifting, etc.) and limitations (e.g. longitudinal-, lateral accelerations)
to the vehicle simulation. The IPGDriver model is based on an advanced PID controller using preview
points and real driver measurements to increase behaviour realism [30]. The two driving styles used in
the sensitivity study are based on the "defensive” and "aggressive” parameter presets that come with
the IPGDriver, see Table C.1. The defensive preset is interpreted as a careful driver that limits corner
cutting and absolute accelerations to a specific direction (e.g. first brake, then steer). The aggressive
preset is interpreted as a sportier driver, allowing for increased corner cutting (thus increased lateral
deviation from the lane center) and increased absolute accelerations (e.g. brake and steer simulta-
neously). Both presets are modified by adding a tolerated lateral lane center deviation of 0.5 and 1.0
meters, respectively, to increase (robotic) behavioural variability.

Table C.1: Predefined IPGDriver parameter presets with modification in last column.

Preset Max. long. Max. long. Max. lat. Corner cut | Tol. lat.
acc. [m/s?] dec. [m/s?] acc. [m/s?] coeff. [-] | dev. [m]

Defensive 2 2 3 0.2 0.5

Aggressive 4 6 5 0.8 1.0

C.2. Virtual Steering Behaviour Analysis

Figure C.1 shows a section of the dataset where the difference in driving style between the two drivers
can be observed. The example shows both drivers transitioning from a left hand curve (from 150 to
155s) to a right hand curve (from 155 to 165s), indicated by a positive to negative transition of both
steering angle Figure C.1b and steering torque Figure C.1c at around 155s. It can be observed that the
defensive driver (in blue) tries to catch up with each corner as the lateral deviation of the vehicle has
the opposite sign related to the steering angle and steering torque in both curves. On the other hand,
the aggressive driver (in red) can be seen to actively cut the corners as the lateral deviation remains
the same sign as the steering angle and torque in both curves. Looking at these figures, the difference
in behaviour is small but it can be observed that the aggressive driver requires slightly less steering-
wheel-angle and -effort (torque) to negotiate the curves compared to the defensive driver, indicated by
the lower peaks in Figure C.1b and Figure C.1c, respectively.

To quantify the behaviour of both drivers over the whole dataset, Table C.2 presents the root-mean-
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Figure C.1: Comparing the driving behaviour of the defensive driver (in blue) and the aggressive driver (in red) on a
section where the road transitions from a left-hand curve into a right-hand curve. (a) Lateral distance from the vehicle to
the lane center. (b) Steering wheel angle. (c) Driver steering-torque input.
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square (RMS) and maximum value of the driver steering-torque, lateral deviation, velocity, and accel-
eration, steering wheel angle and velocity on the training dataset. The table shows that, on average,
the aggressive driver applies slightly less steering torque T,; on the steering wheel compared to the
defensive driver while allowing for an increased lateral deviation e,,, from the lane center. As a result
of this behaviour a reduction in vehicle lateral response (v,, a,) is observed. The maximum value of
the steering wheel velocity 65,4 further indicate that the aggressive driver is able to react with higher
speed compared to the defensive driver, while limiting the steering range and effort, indicated by the
lower maximum value of the steering wheel angle 65,, and steering torque T,.

Table C.2: Quantified Driver Characteristics over the whole dataset: RMS and maximum values of
various measured variables.

KPI Unit Defensive Aggressive
RMS T, [Nm] 1.6705 1.6409
Max Ty [Nm] 4.2637 4.0869
RMS e, [m] 0.4131 0.4665
Max e, [m] 1.1285 1.4975
RMS v, [m/s] 0.0626 0.0607
RMS a, [m/s?] 0.9998 0.9653
RMS Osyyq  [deg] 7.1144 6.8679
Max Bsy 4 [deg] 24.7497 22.7767
RMS g4 [deg/s] 6.5095 6.1365
Max Osyya  [deg/s] 68.0953 170.1870

Although the difference in behaviour is minimal, the main subjective conclusion on comparing both
driving styles from Figure C.1 is that the aggressive driver shows a more anticipating steering behaviour
compared to the more passive behaviour of the defensive driver. This is objectively summarized in
Table C.2 as it shows that the aggressive driver requires less effort to follow the lane center, giving the
impression of a more advanced driving style, compared to a more novice driving style of the defensive
driver.

C.3. Model Performance

For the analysis of model performance, driver-dependent and generic HMM models were trained. The
models were designed using the 18 candidate features from Table B.2 and five hidden states to ensure
model complexity. To evaluate generalisation capabilities, the individual driver models are also cross-
validated. From the results in Table C.3 it is observed that the difference in model performance is
negligible. Both individual driver models perform equally, where the behaviour of the defensive driver
is harder to estimate accurately. The generic driver model appears to perform as an average of both
individual driver models, improving upon the defensive model, while performing marginally worse than
the aggressive model. This means one of two things. Either each model has good generalisation
capabilities, or the difference in behaviour is negligible and are variations of the same behaviour. In
that case, intra-driver behaviour variability is captured well.

Table C.3: Model performance on driver validation data. Metric Scores: RMSE,, (Accuracy)

Model Defensive Driver Aggressive Driver
Defensive Model 0.1650 Nm (89.87%) | 0.1538 Nm (90.37%)
Aggressive Model | 0.1657 Nm (89.82%) | 0.1450 Nm (90.92%)
Generic Model 0.1621 Nm (90.05%) | 0.1471 Nm (90.79%)

Even though both models fit the virtual driving data well, taking a closer look at the estimations in
Figure C.2a reveals that the estimated signal fluctuates around the true steering-torque. As this can
lead to undesirable steering wheel vibrations, a preliminary parameter sensitivity study investigated
how these oscillations can be kept to a minimum.
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Figure C.2: Virtual Model Estimation Performance. (a) Accurate but oscillating estimations around 156s. (b) State
probabilities ay, indicate that oscillations are generated by single states.

C.4. Parameter Sensitivity Study

The forward variables a; determine what state is dominant depending on the observation F, at time
t (see Appendix A.2.2). Therefore, they determine final model behaviour. From the side-by-side com-
parison in Figure C.2, it is observed that the fluctuating estimations are generated by individual states,
while it was expected that the model would rapidly switch between different states to create such be-
haviours. The parameter that defines the behaviour of a single state is the chosen feature set F. As
mentioned by Li et al. in [23], having too many features might result in overfitting. Therefore, the
fluctuating estimations might be an indication that this has occurred.

To alleviate this, new generic driver models were trained with reduced feature sets, counting 15, 12,
and 9 features. For each set, five models were trained with randomly selected feature combinations. To
quantify the amount of oscillations in the estimations, a smoothness metric is defined as the standard
deviation of the estimated steering-torque rate,

N
. 1 .
SM =SD (Test) = N Z (Ti,est - “Test) (C1)
i=1

The smaller the value of SM becomes, the smoother the estimation is considered. Figure C.3 plots
the estimated steering-torque of the original generic driver model (in red) containing all 18 features
compared to the five best performing new models, sorted on the model accuracy. Two effects are
observed. First, both reducing the number of features (N < 18) as well as the choice of features (for
equal N) influence the smoothness of the estimated steering-torque. For example, two models with 12
features each achieve an accuracy of 90.8% but one produces a smoother estimation compared to the
other (SM = 2.98 vs. 3.24). Remarkable is that reducing the number of features even further (N=9)
makes the smoothness worse (3.10 vs. 2.98) but increases the accuracy (91.0% vs. 90.8%). The
second effect is that the difference in accuracy of the new models compared to the original model is
almost negligible. This means that a similar accuracy can be achieved with less information by properly
selecting the set of features.

All previous presented models are trained with a fixed number of five model states to purely look
at the influence of varying the features. As it has become clear how the behaviour of a single state
is influenced, the number of model states K determines the overall model configuration. By fixing the
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Figure C.3: Influence of varying the number of and specific selected features. (a) Instantaneous steering-torque esti-
mation. (b) Estimation error w.r.t. the aggressive driver steering-torque.

feature set, the influence of the number of hidden states can be investigated. A range of new driver
individual models were trained with respectively 1, 3, 7, and 9 states. Figure C.4 plots the estimated
steering-torque of the original model (with 5 states) compared to the newly trained models. Observed
is that increasing the number of states results in a higher accuracy. However, the estimated steering-
torque becomes less smooth as well (increased SM). Furthermore, with increased model complexity
the risk of overfitting also increases ([11], Section 5.4.1, p33). Therefore, an overfitting criterion needs
to be introduced to find the optimal number of model states.
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Figure C.4: Influence of varying the number of states. (a) Instantaneous steering-torque estimation. (b) Estimation error
w.r.t. the aggressive driver steering-torque.

C.5. Conclusion

The proposed approach is able to capture and estimate the steering-torque behaviour of both drivers
with high accuracy, validating the model approach on virtual driving data. Although marginal, the results
showed that a defensive driving style is harder to estimate compared to an aggressive driving style. The
small performance difference could be the cause of similar driving behaviours, meaning that behaviour
variability is captured as well. Furthermore, the model is able to reproduce non-linear steering-torque
by combining different state behaviours through the forward variable «a, ;. However, using many fea-
tures results in oscillations in the estimated signal, possibly indicating overfitting. By properly selecting
the number of and specific set of features, followed by selecting the number of states K, can signifi-
cantly reduce these oscillations. It is concluded that further investigation into the selection of model
parameters is recommended. Therefore, Appendix D introduces a framework for selecting the optimal
feature set and number of model states to balance model accuracy with estimation smoothness.






Parameter Selection Framework

In the parameter sensitivity study two things became apparent. Firstly, the 18 candidate features were
selected without taking into account model limitations. Each feature was assumed to contribute to-
wards accurately estimating driver steering-torque behaviour. However, it was observed that a similar
accuracy can be achieved with less features, which simultaneously smoothened the estimation sig-
nal. Secondly, increasing the number of hidden states increased the estimation accuracy as the data
structure can be captured in greater detail. However, more states also increased the oscillations. Both
observations are an indication of the model overfitting on the training data. This motivated the search
for the combination of features, called the feature set, and number of hidden states that improved the
estimation quality.

This chapter provides additional background on the implemented parameter selection framework.
The framework consists of a dimensionality reduction method (to systematically find an optimal fea-
ture set) and an overfitting prevention procedure (that selects the number of hidden states) to find the
model parameters that optimize the estimation quality. The chapter is organized as follows. First an
introduction to dimensionality reduction for HMMs is given in Appendix D.1. In order to evaluate model
performance, a model performance score is introduced in Appendix D.2. Next, Appendices D.3 and D.4
provide additional material on, respectively, the implemented feature and state selection methods, as
discussed in Chapter 2. Appendix D.5 summarizes the complete parameter selection process.
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D.1. Feature Selection Background

Including all 18 potential features in the model make that the Gaussian state emissions b, become
18 dimensional joint probability distributions. Two issues can arise. Either, with a limited number of
data points the data space quickly becomes sparse. This is called the curse of dimensionality [4] and
decreases generalisation performance on new data. A possible solution is to record more data but in
many applications the exact required data size is unknown and data recording can be a time consuming
and/or expensive process. The second issue that can arise is that in the case of sufficient data, having
too many features increases the risk of overfitting [23]. This also decreases generalisation capabilities
and irrelevant or redundant features introduce noise that further degrades model performance. A pos-
sible solution for this problem is Dimensionality Reduction. The aim is to reduce the dimensionality of
the data by constructing new lower dimensional features transformed from the original feature set, or
filter out the most relevant existing features to optimize the model performance. Given that the model
estimation is highly accurate but noisy, possibly due to the many included features, the current work
proposes a dimensionality reduction method in order to find a feature subset with high accuracy but
limited noise.

D.1.1. Dimensionality Reduction

Features can be categorized as either relevant, redundant or irrelevant, see Figure D.1. Relevant fea-
tures are strongly related to the regression target and their contribution cannot be described by other
features [19]. If it can be described by other features, it is considered redundant. In the case fea-
tures are weakly correlated, they are considered irrelevant. Removing redundant, irrelevant (or noisy)
features through dimensionality reduction improves learning speed, performance, generalization capa-
bilities and model interpretation while simultaneously reducing the risk of overfitting and data storage
[3, 23]. Dimensionality reduction methods can be broadly categorized as feature extraction or feature
selection methods.

Feature extraction methods reduce the dimensionality of the data by transforming the original high
dimensional data into a lower dimensional set by constructing new relevant features, eliminating the
redundant or irrelevant part of the data. An example is Principal Component Analysis (PCA), projecting
the original data onto the principal components while preserving as much variance as possible. The
components are considered as the newly constructed feature set. Feature extraction is often applied if
the original features lack physical meaning, e.g. the individual pixels in an image. However, interpreting
the new features is a challenge. Furthermore, all original features still need to be collected in order to
extract the new features.

In applications with features of physical meaning, feature selection methods are preferred. These
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Figure D.1: An example of feature relevance [23]. (a) Feature X is able to separate samples into classes and is therefore
relevant. (b) Feature Y separates the samples in the same way as Feature X, is therefore redundant and can be removed.
(c) Feature Z is not able to separate the samples, is therefore irrelevant and should be removed.
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directly select a subset from the original features according to an evaluation algorithm, retaining the
original meaning, thus increasing the interpretability of the final model. Furthermore, the disregarded
features excluded from the subset no longer have to be stored. Since the current work directly mea-
sures features of the driving scenario with physical meaning to them (e.g. steering wheel angle, lateral
velocity, road curvature, etc.), feature selection is the preferred dimension reduction method.

D.1.2. Feature Selection

Feature selection methods are further categorized into unsupervised and supervised methods. The
former is commonly implemented for classification problems to cluster unlabeled data. Supervised
methods are commonly used for both classification and regression problems since the correlation of a
feature with respectively, class label or regression target is used as a measure for feature relevance
[23]. In this work supervised methods are preferred since the steering-torque is considered as the
regression target. Supervised feature selection methods are sub-categorized as filter, wrapper, em-
bedded or hybrid methods, based on whether the model training algorithm is included in the process
[17]. Each sub-category consists of a selection- and an evaluation algorithm. The latter evaluates
the performance of candidate feature subsets generated by the former that searches to find the best
performing subset.

* Filter selection methods determine univariate or multivariate feature relevance by respectively
ranking single features or evaluating feature subsets, using an evaluation function. This function
is based on feature measures and relation with the regression target, independent of the training
algorithm. By being independent, filter methods are computationally cheap, but do not always
remove all redundant features [19].

» Wrapper selection methods include the model training algorithm as a method of evaluating the
subset performance. This allows such methods to determine dependency between multiple fea-
tures within the selected subset, obtaining better performing subsets compared to filter methods.
However, due to including the training algorithm they are computationally slow. Furthermore, they
are biased towards the training algorithm, needing a separate validation dataset for validating the
final subset.

» Hybrid selection methods are combinations of filter and wrapper methods with the aim to com-
bine the advantages and alleviate the disadvantages of both methods (e.g. proposed in [16] for
short-term load forecasting). First, a filter method reduces the high dimensional feature space by
selecting one or several potential feature subsets. Subsequently, a wrapper method aims to find
the best among them. Hybrid selection methods achieve the high accuracy paired with wrappers
and efficiency paired with filters.

» embedded selection methods are feature selection methods embedded in the learning algorithm
as part of the algorithms’ functionalities.

Jovi¢ et al. concluded in [17] that there exists no single best method and the choice for a particular
method is highly dependent on the application. They recommend future research to focus on optimizing
hybrid selection methods, as they offer the best results.

D.1.3. Feature Selection for HMMs

Literature provides plenty of reviews on feature selection methods. The majority focuses on classifica-
tion problems [7, 23, 38, 33], to a lesser extent on regression problems [19], or a combination of both
[17]. However, supervised feature selection methods specifically designed for HMMs are scarce and
research specific, as was concluded by Adams & Beling in [3].

An example of driver modelling specific feature selection is found in the 2016 thesis work [11] by
Fabian Faller, where an extensive feature selection analysis was performed on 24 features for predicting
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unintentional lane changes. Two wrapper-based selection methods were employed. The first method
performs an exhaustive search through all possible combinations of 11 manually pre-selected features.
To validate the resulting best feature subset, the second method performs a greedy search on all 24
features, starting with an empty feature set and adding the next feature that maximizes the model
performance. With the implemented strategy Faller was able to successfully identify several optimal
feature subsets.

The work by Faller deals with an HMM classification problem while the current work presents a
regression problem. However, due to the positive obtained result and a lack of alternative supervised
regression-based strategies specifically for driver modelling with HMMs, a similar approach is adopted.

D.2. Performance Score

Throughout the entire parameter selection process a single evaluation function is used to evaluate the
performance of all trained models. The aim of the function is to balance estimation accuracy with signal
smoothness. It is denoted as the Performance Score (PS) and expressed as,

PS =w; * ||(100 - AT,est)” + Wy * |[SMr est | (D.1)
where w; and w, are metric weights, Ar .. is the accuracy metric, and SMr ., is the smoothness

metric. A model with a lower PS is considered as a better model. The accuracy metric Ar ., is defined
as,

AT,ESt = [1 RMSET,ESf] X 100 (D2)

 SD(Ty)

where SD(Ty) is the standard deviation of the observed driver steering-torque, and RMSE7 ¢4, is the
root-mean-square-error (RMSE) of the estimated steering-torque. The latter is defined as,

N
1 2
RMSEreee = |~ O (Toest = Tia) (0.3)
i=1

where N is the length of the used datarecording. Subsequently, the smoothness metric is defined
as the standard deviation of the estimated steering-torque rate and expressed as,

N

. 1 . :

SMT,est =SD (Test) = N (Ti,est - Test) (D-4)
i=1

4

where f‘est is the mean of the estimated steering-torque rate, T,;.

Lastly, the two metrics in the PS are normalized for two reasons. Firstly, in order to be able to sum the
metrics up in the PS. Secondly, to be able to compare the PS of different models under consideration.
The normalization constant is calculated as follows. For each data recording x, the normalization
constant for metric n, ¢, is defined as the reciprocal of the sum of metric scores over M evaluated
models, expressed as,

1
= —— (D.5)
" Zf;’lzl Score,, 1,

where n is either the estimation accuracy or estimation smoothness score and Score,, ,,, is the metric
score for model m.
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D.3. Feature Selection Analysis

As no single best feature set exists for the entire validation dataset (see Appendix E.1.2, "Feature
Relevance Assumption”), feature relevance was assumed as a measure of feature importance. This
section provides flowcharts for illustrating how feature relevance was obtained for the exhaustive- and
the SFS feature selection methods, respectively shown in Figure D.2 and Figure D.3, as visual aid to
the explanation in Section IV-C of Chapter 2.
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Bit select
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N Recordings
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Weight Influence Weight
Select weights (W) Trade-offs
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Model Selection
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recording

Feature Count (FC)
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Terminate Search
Return Feature Relevance

Figure D.2: Flowchart illustrating the determination of feature relevance for the exhaustive feature selection method.
First, the candidate features are filtered by ranking based on correlation with the steering-torque, forming the "Exhaustive
Feature List”. The exhaustive wrapper then trains an HMM for every combination (1023), and evaluates the performance
metrics of all models separately. Then, for each weight trade-off and each recording, the performance score is calculated
for each model. Lastly, for each recording the model with the lowest PS is determined and the features are counted
cumulatively.
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Figure D.3: Flowchart illustrating the determination of feature relevance for the SFS feature selection method. As this
method requires the performance score, first the weight trade-off is selected. For each recording and the selected weight
trade-off, an empty "best set” is initialized. Then, for every combination of the "best set” and the remaining candidate
features, a model is trained, metric scores evaluated, and performance score calculated. The best set is updated with
the feature of the combination that maximizes the PS for that recording. This process is repeated until the PS is not
improved. Then, features in the best set are counted cumulatively, and this process is repeated for all recordings and all

weight trade-offs.

D.4. State Selection

Increasing the number of hidden states allows to capture the driver steering-torque in greater detail.
However, this also increases the model dependency on the training data, known as overfitting. For
example, Figure D.4 shows the modelling of a two-feature dataset with a Gaussian mixture model
(equivalent to the HMM Gaussian state emissions without the temporal relations). Increasing the num-
ber of hidden states, respectively shown in Figures D.4b to D.4d, clearly shows that the data structure is
captured in greater detail with more states. However, by making the model too complex (Figure D.4d)

Feature Y

Feature X

(a) Dataset

4 05 0 05 1
Fealure X

(b) Two-state model

Feature Y

15 45 -4 05 0 05 1 15
Feature X

(c) Three-state model

Feature Y

:

A5 4 05 0 05 1 15

Fealure X

(d) Twelve-state model

Figure D.4: Model configuration example from [11]. Figures (b) to (d) show the probability density function (pdf) of the
models. Each magenta dot represents the mean of a mixture component. With increasing number of components, data
structure is captured in greater detail (b and c). However, a model with too many components starts picking up on local
data structures (d) which is undesired for model generalizability.



D.4. State Selection 41

it becomes too dependent on the specific structure of the training data. When presented with new data
samples the model is likely unable to generalize.

To prevent overfitting, generalisation capabilities are evaluated on a separate validation set, as
suggested by Faller in [11]. Extending the method, the current work utilizes the PS, Equation (D.1), to
trade-off the state selection between accurate and smooth estimations. lllustrating the state selection
methods, Figure D.5 and Figure D.6 present flowcharts for the individual and average state selection
methods, respectively.
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Figure D.5: Flowchart illustrating the Individual State Selection method. The method is initialized with the fixed selected
feature set and one hidden state. As the increase of the number of states is dependent on the model PS, first the weight
trade-off is selected. Then for each validation recording individually, the number of states is increased as long as the
model PS for that recording improves by more than 1%. When this criteria is not met, the number of hidden states that
last improved the PS for that recording is returned. This is repeated for all recordings, after which the number of hidden
states is averaged over all recordings before a new weight trade-off is selected. This process is repeated for all weight
trade-offs.
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Figure D.6: Flowchart illustrating the Average State Selection method. The method is initialized with the fixed selected
feature set and one hidden state. As the increase of the number of states is dependent on the model PS, first the weight
trade-off is selected. Then for all recordings simultaneously, the number of states is increased as long as the average
model PS over all recordings improves by more than 1%. When this criteria is not met, the number of hidden states that
last improved the PS is returned. This process is repeated for all weight trade-offs.
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D.5. Complete Parameter Selection Process

Figure D.7 illustrates the complete parameter selection process. Summarizing the process, first the
proposed feature selection method performs a limited exhaustive and complete sequential forward
search over the features in the training dataset. Subsequently, in the selection analysis, all models
are validated and feature occurrences are counted to determine a selection strategy. A performance
score sensitivity analysis will determine the final feature subset. Thereafter, the model configuration
is determined by fixing the feature subset and varying the number of hidden states. The model with
the best average performance on all recordings in the validation set, determines the number of hidden
states. Finally, model performance for the selected parameters is analysed by training the final model
and evaluate it on the test set.
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Figure D.7: The complete parameter selection framework.



Results & Discussion

The purpose of the parameter selection framework is to analyse what type of features and number
of hidden states should be selected to achieve preferred steering-torque estimation behaviour. By
selecting different weights for the Performance Score, a trade-off can be made to balance the model’s
estimation accuracy with the smoothness of the estimation.

This chapter provides supplementary results in Appendix E.1 to supporting the findings in the main
body Chapter 2 and is structured in the same order. Furthermore, limitations of the work and recom-
mendations for future work are discussed in Appendices E.2 and E.3, respectively. Lastly, Appendix E.4
explores the boundaries of the current presented model in a preliminary study in preparation for future
work.

43



44 E. Results & Discussion

E.1. Supplementary Results

The aim of the driving simulator experiment was to collect sufficient naturalistic driving data for the
training, validation and testing of the proposed HMM modelling approach. This section provides sup-
plementary results to support the main findings. Each subsection corresponds to the subsections of
Section VI. in Chapter 2.

E.1.1. Feature Correlation

Correlation coefficients per feature over all training recordings, presented visually in boxplots in Fig-
ure E.1, shows a clear distinction between stronger and weaker correlated features. Feature sorting is
based on the average correlation coefficient, without taking into account the spread.
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Figure E.1: Feature Correlation coefficients per feature over all training recordings, sorted on their average.

The average correlation coefficients of the disregarded features are summarized in Table E.1. Apart
from the deviation angle @10m, the remaining features were disregarded due to weak correlation with
the steering-torque.

Table E.1: Correlation coefficients corresponding to the disregarded features.

Disregarded Features |7g] P
Deviation Angle @10m 0.8848 0
Deviation Distance @0m 0.3812 | <0.01
Roll Velocity 0.3529 0
Yaw Acceleration 0.2863 0
Steering Wheel Velocity 0.2016 0
Deviation Angle @Om 0.1180 0.01
Steering Wheel Acceleration | 0.0748 0
Roll Acceleration 0.0138 0.20

E.1.2. Determining Feature Relevance

Feature relevance assumption: Initial investigation on feature relevance is performed by only focus-
ing on model accuracy. The PS weights w, , are set to a 100/0 trade-off and the model achieving the
lowest PS for a particular validation recording is selected. The results in Table E.2 show that there
exists a wide variety of feature combinations in the selected models and there exist no single best per-
forming model. For example, while the selected model for recording 19 only contains three features,
achieving an accuracy of 91%, the model for recording 6 requires all 10 candidate features while only
achieving 86% accuracy. However, looking at the individual features it is observed that some features
are selected more often than others. For example, the steering wheel angle (SWA, column 10) and yaw
rate (Yaw Rate, column 3) are included in every model, while the lateral acceleration (Lat. Acc., column
4) and roll angle (Roll Ang., column 1) are selected only for respectively 9 and 10 out of 42 recordings.
Therefore, obtaining feature relevance by counting the occurrences of features in the individual models
is assumed to be a viable method to determine what features should be included in the final model.



E.1. Supplementary Results

Table E.2: Results from preliminary feature occurrence. PS weights were 100/0, meaning focus was
purely on accuracy. For each validation recording (rows) an X marks a feature occurring in the best
performing model for that recording. The table shows that there exists a variety of models that perform
better on specific validation recordings.
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1 X X X X X X X |8543
2 X X X X X X | 86.34
3 X X X X X X | 81.36
4 X X X X X X | 86.08
5 X X X X | 8544
6 X X X X X X X X X X |86.19
7 X X X X X | 90.65
8 X X X X X | 89.97
9 X X X X X X |89.04
10 X X X X X X X X X X |89.24
11 X X X X X |91.38
12 X X X X X X X X X X 8971
13 X X X X X | 88.19
14 X X X X X | 89.20
15 X X X X X | 89.50
16 X X X X X X | 88.51
17 X X X X | 90.64
18 X X X X X | 88.99
19 X X X | 91.02
20 X X X X X | 90.90
21 X X X X X X X |89.21
22 X X X X X | 90.12
23 X X X X X X | 89.88
24 X X X X | 90.11
25 X X X X X X | 90.89
26 X X X X X X | 90.56
27 X X X X X X | 89.68
28 X X X X X X X X X X |8963
29 X X X X X X | 90.81
30 X X X X X X | 89.52
31 X X X X X X |90.68
32 X X X X X X |91.04
33 X X X X X | 89.52
34 X X X X X X X X |90.75
35 X X X X X X | 9168
36 X X X X X X X X X X |90.82
37 X X X | 91.49
38 X X X X | 91.22
39 X X X X X X | 90.72
40 X X X X | 90.81
41 X X X | 91.86
42 X X X X X X X X X X |90.67
Mean | 10 12 42 O 32 24 27 33 20 42 | 89.51

End of table
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Average feature subset size per trade-off: As weight on estimation smoothness increases, overall
feature relevance decreases up to balanced metric trade-off. From Figure E.2c it can be observed that
the average feature subset size of the best selected models decreases. This means that the selected
models for the validation recordings become simpler. This in turn decreases the risk of overfitting.
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Figure E.2: Influence of varying PS weights w, , on the average feature subset size of the best selected models. Smaller
average sizes indicate overall simpler models.

Objective balance between performance metrics: In order to determine a weight trade-off, the
performance metrics are compared, instead of the performance score. This has the following reason.
The performance score for each model is defined by two parameters, the selected weights and the
metric (accuracy and smoothness) normalization factor over all models considered. However, even
for the same model, the performance score of a particular model changes for different weight trade-
offs. Meaning, if for example the same model is considered optimal for multiple weight trade-offs,
their performance scores cannot directly be compared, such as in Figure E.3a. However, what the
figure does show, is an indication of where the objective balance between the two performance metrics
lies. Based on the figure this is around a 40/60 trade-off. In favor of increased model accuracy for all
participants, the current work considers a 50/50 trade-off as this increases average model accuracy
and thus deviates slightly from the objective balance.
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Significance of average model performance metrics: The metric scores can be directly com-
pared, as was done in Chapter 2. As the metric scores are close together for the trade-off range 100/0
to 40/60, a one-way ANOVA test was performed for both metrics to investigate if there is a significant
difference between average metric scores for different trade-offs. The results are summarized in Fig-

ure E.4. For both metrics the null hypothesis is rejected (p > 0.05), meaning that there is no significant
difference between the trade-offs, and thus a trade-off can be selected
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Figure E.4: The results from a one-way ANOVA test to investigate significant difference between average model per-
formance metrics for feature relevance.

E.1.3. Optimal Feature Subset

Performance Metrics of subset strategies: Figures E.5b and E.5c show the model accuracies and
estimation smoothness scores corresponding to the subset strategies performance scores, Figure E.5a
that was presented in Chapter 2. Improved results are obtained when subset selection is based solely
on feature relevance of the exhaustive wrapper (strategies "X1”) or where relevance of the SFS wrapper
complements the exhaustive wrapper (strategies "X3"), with the exception of "Liberal 2, as this subset

contains many similar features. Furthermore, the figures show the superior accuracy of the baseline
model, but also the worse estimation smoothness.
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Figure E.5: Metric results of the models corresponding to the final subset selections, sorted on the average performance
score.

Significance of average strategy performance: As the performance scores for the selection
strategies are close together for the first seven strategies, a one-way ANOVA test was performed to
investigate if there is a significant difference between average performance scores for different strate-
gies. The results are summarized in Figure E.4. The null hypothesis is rejected (p > 0.05), meaning
that there is no significant difference between the strategies, and thus a strategy can be selected
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Figure E.6: The results from a one-way ANOVA test to investigate significant difference between average performance
scores of several strategies.

E.1.4. State Selection

Visualizing the state selection methods: State selection was performed with two methods. Fig-
ure E.7 visualizes both methods for a 50/50 metric trade-off. The figures show that the performance
score keeps improving as K increases. However, with exponentially decreasing rate. As the average
PS, indicated in red, does not improve more than 1% for K = 7, state selection is terminated. The last
state that did improve (K = 6) is then considered as the optimal state.

Selection based on the average number of states per recording is shown with magenta inverted trian-
gles. Observed is that some recordings do not prefer as many states as the "average PS” selection
suggests. Therefore, the average over the recordings provides a middle ground between all recordings
and leads to a more conservative selection.

25
0.08 Recording PS Recording Improvement
Vv Recording K 201 v Recording K
0.07 ——Mean Recording K = 5 < ——Mean Recording K = 5
—a&—Mean PS 151 v —A—Mean Improvement
—_— ——MeanPSK=6 <] . ——Mean PSK=6
—0.06 o10r v ——Threshold = 1%
o 9]
o g S 5k A4
0.051 °
S
E oF
0.04 -
5F
L S T Y T Y SO ST SO N L S T Y T O B SO S SO T
123 456 7 8 91011121314151617 1819 20 1234567 8 91011121314151617 181920
K K

(a) Performance Score (b) Performance Score Rate

Figure E.7: Score gradients for increasing K.

Corresponding performance metrics: Plotted in Figure E.8 are the performance metrics corre-
sponding to the performance score of Figure E.7a. From the figure it is observed that the increasing
model accuracy has the most influence on the performance score, as smoothness scores stay relatively
constant over all validation recordings. The drop in performance improvement at K = 4 (Figure E.7b)
is caused by a reduction in estimation smoothness (Figure E.8b). However, as model accuracy keeps
increasing, the marginal decrease in smoothness is worth the increase in model states to K = 6 from a
performance score perspective. Similar figures can be plotted for other metric trade-offs.

Objective balance between performance metrics: Regarding the comparison between metric
trade-offs, the same reasoning holds as for feature relevance (see Appendix E.1.2). However, a similar
figure can be plotted for the state selection, seen in Figure E.9b. It is observed that a 30/70 metric
trade-off provides the best objective balance between model accuracy and estimation smoothness.
Referring to Figure E.9a, this results in a selection of three model states. However, looking at the
metrics individually, in Figures E.9c and E.9d, selecting fewer states significantly reduces estimation
accuracy while only marginally improving the smoothness. Therefore, (similar to feature relevance) in
favor of increased estimation accuracy, weight on smoothness is decreased and from Figure E.9a is
concluded that more states are preferred.
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Figure E.8: Gradient of performance metrics for increasing K.
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Figure E.9: Weight influence on the performance score of the optimal model states.

Significance of average model metric scores: Similar to the feature relevance, the metric scores
can be directly compared. As the accuracy scores are close together for the trade-off range 100/0 to
40/60 and all trade-offs for the smoothness, a one-way ANOVA test was performed for both metrics
to investigate if there is a significant difference between average metric scores for different trade-offs.
The results are summarized in Figure E.10. For both the accuracy in the mentioned range and the
smoothness scores, the null hypothesis is rejected (p > 0.05), meaning that there is no significant
difference between the trade-offs, and thus a trade-off can be selected.

E.1.5. Model Testing

Personal behaviour versus skill level: Among the remaining participants, model performance ap-
pears to be dependent on the participant personal steering behaviour rather than skill level. For ex-
ample, the generic driver model achieves the highest accuracy with the smoothest estimation for both
participants "Intermediate 2" (A=93.5%, SM=1.99Nm/s) and "Advanced 2” (A=93.6%, SM=1.96Nm/s).
Similar observations are seen for the participants of similar skill levels, i.e. "Intermediate 17 (A=92.5%,
SM=2.86Nm/s) and "Advanced 1” (A=93.1%, SM=2.71Nm/s).
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Figure E.10: The results from a one-way ANOVA test to investigate significant difference between average model
performance metrics on state selection.
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Figure E.11: Baseline Performance Comparison.

As was stated in Chapter 2, the difference in model performance between participants was mainly
due to the behaviour of the participant itself. If the behaviour is more abrupt, the model also has to be
more abrupt, "negatively” impacting performance metrics. This is best observed in Figure E.12, com-
paring the steering-torques of the best ("Advanced 1”) and worst ("Novice”) modelled participants, nego-
tiating the same corner. As the "Novice” participant makes more abrupt steering corrections compared
to the "Advanced” participant, the generic driver model mimics this behaviour, inherently decreasing
the smoothness score. Furthermore, this also influences the overall accuracy for this participant as the
model sometimes overshoots (i.e. around 275s).
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Time
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Figure E.12: Comparing the estimated steering-torque for the novice and an advanced participant.

Model Reproducibility: in the E-step of the EM-algorithm, see Appendix A.1.2, the parameters of
the prior probabilities m;, are initialized at random (constrained between zero and one). The parameters
of the Gaussian normal distributions (mean and covariance) are initialized with the K-means algorithm
([5], Chapter 9). The K-means algorithm itself initializes the cluster means by randomly selecting K
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data points. To investigate the robustness of the approach to the random initialization process, the
training algorithm is repeated ten times and results are summarized in Table E.3. From the table it is
concluded that the 95% confidence interval (ClI) for a sample size of ten models is sufficiently small to
assume that the correct model parameters are found consistently.

Table E.3: Model reproducibility results for a model sample size of ten.

(a) Estimation Accuracy, % (b) Estimation Smoothness, Nm/s
Participant Mean 95% CI Min. Max. Participant Mean 95% ClI Min. Max.
Novice 89.7 | 89.3 90.1 | 88.5 | 90.1 Novice 422 | 421 424|420 | 4.26

Intermediate 1 | 925 | 923 92.6 | 92.0 | 92.6 Intermediate1 | 2.86 | 2.86 2.86 | 2.85 | 2.87
Intermediate 2 | 934 | 93.3 93.6 | 93.0 | 93.6 Intermediate 2 | 2.01 | 1.99 2.02 | 1.99 | 2.06
Advanced 1 929 | 926 93.1 | 921 | 93.1 Advanced 1 273 | 271 276 | 271 | 2.81
Advanced 2 93.6 | 934 93.7 | 93.2 | 93.6 Advanced 2 198 | 196 2.00 | 1.96 | 2.03
Expert 1 91.8 | 916 919|913 | 92.0 Expert 1 3.60 | 3.59 3.61 | 3.58 | 3.64
Expert 2 92.8 | 927 929|924 | 92.9 Expert 2 3.07 | 3.06 3.07 | 3.06 | 3.09
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E.2. Limitations

Simulator Immersion: Unfortunately, due to Covid-19 measures taken by the Belgian government,
availability of the TME simulator was limited during the span of the research. This has resulted in in-
sufficient time to explore simulator performance for the presented scenario lengths. A cascading effect
of this was that the designed scenarios were functional but had reduced visual immersion representing
realistic highways. Feedback from participants indicated being distracted during the experiment due
to a lack of visual cues. This was assumed to be advantageous from a behaviour perspective as it
is thought of that driver steering variability would increase due to inattention. However, this does limit
reflection of true participant steering behaviour. Therefore, for future experiments, more time needs to
be allocated to make scenarios of this length more visually engaging. Adding land- and road attributes
(e.g. overhead signs, highway exits, lane barriers, distant housing, etc.) will provide the necessary
visual cues for increased participant immersion.

Hardware Upgrades: During pilot experiments, large oscillating steering-torques were observed
in situations where participants drove in a straight line. This in turn got picked up by the HMM, resulting
in a false reflection of participant steering behaviour. The opted short-term solution involved tuning
steering model parameters such to minimize this behaviour while retaining natural steering feel, albeit
with increased steering effort. These settings were validated by a TME expert technician (represent-
ing steering feel of older generation vehicles), and experiments were started due to limited simulator
availability (also Covid-19 related). The long-term solution was found during the experiment and in-
volved replacing parts of the steering-column. It was decided that this would be fixed after experiments
had finished to preserve uniform experimental conditions. Once replaced, additional experiments on
both training and validation data were performed with several participants. Steering model parameters
were not changed. From Figure E.13, it is observed that the new steering column dynamics do not
have significant impact on model performance. However, further influence of different steering model
parameters on model performance has not been investigated.
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Figure E.13: Baseline and Generic Driver Model Performance before and after steering column replacement.

Feature Selection Methods: The scarcity of literature on feature selection for HMM [3] and the fact
that the aim of this work was not to find the best method, has led to the adoption of simpler methods as
performed in [11]. The presented results in this work show that the hybrid (filter and exhaustive wrap-
per) and sequential forward selection methods are also effective for parameterizing HMM-based driver
steering-torque models. However, especially the selected wrapper methods in combination with the
size of the presented data-set and the analysis of different weight trade-offs, makes the current method
computationally expensive. As the current work was performed offline, this did not have any immediate
impact on the results. However, this can lead to limitations for online scenarios. This motivates the
potential for exploring and comparing efficient selection methods for HMM-based regression problems.
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E.3. Recommendations for Future Work

Steering-Torque Predictions: While the presented results show the potential of the proposed ap-
proach to model and estimate driver steering-torque behaviour, parameter choices were based on
objective metrics without taking into account driver steering feel. In order to validate the selected pa-
rameters subjectively, it is proposed to implement the HMM driver model in a driver steering assistance
system. As the current work focused on lane-keeping behaviour, a Lane Keeping Assist controller sim-
ilar to the work [22] by S. Lefevre et al. is a potential application. Steering-torque can be predicted
recursively over a prediction horizon by alternating between a bicycle model (to predict future vehicle
heading) and steering-torque estimation (providing bicycle model input). The obtained prediction will
serve as a reference signal to a non-linear model predictive (NMPC) controller. Once implemented,
different weight trade-offs can be compared in a subjective simulator experiment. Furthermore, this
provides the opportunity to compare subjective feel between the steering-angle based HMM of [22]
and the proposed steering-torque based HMM from the current work.

Data Quality: Steering wheel related features (e.g. steering-torque, position, velocity, acceleration)
were measured with actual sensors in the steering column. Since in the current work model training
was performed offline, these features could be pre-processed with a zero-phase low pass filter to filter
out measurement noise. The remaining features were recorded directly through CarMaker, resulting
in a high quality dataset. This benefited model training and have shown to perform well for offline
estimation. In order to utilize the proposed modelling approach for real-world applications, additional
pre-processing steps need to be applied before model training. On the one hand due to noisier real-
world measurements. On the other hand that some features need to be extracted first, e.g. road
preview features need to be extracted from a front facing cameras. In that case, also model robustness
to noise can be investigated.

Personalized Driver Models: an interesting results was that model performance appeared to be
related to personal driver behaviour. It was shown throughout intermediate results that there was no
single best model to capture the behavioural variability of all participants equally. This motivates the
concept of personalized driver steering-torque models. Possible scenarios include training models
directly for one specific driver, or, adapting the generic driver model to the driver with online-learning
methods. The latter has been investigated in [13] by J. Geukes, using adaptable HMMs for predicting
lane change maneuvers and provides a valuable starting point for adaptable steering-torque models.

Model Potential: The longitudinal speed of the vehicle was fixed with a cruise controller to 100km/h
in an attempt to avoid the influence of variable speed on driver steering behaviour. Adapting the model
to different scenarios, such as variable speed or including traffic, is easily achievable by including
the necessary features (e.g. longitudinal speed or distance to surrounding vehicles, respectively) in
the analysis. It would be interesting to see how much these features contribute to steering-torque
estimation. Furthermore, as was proposed by A. Pentland and A. Liu in [31], the hidden states of the
model can be organized hierarchically to represent not only lower- (e.g. following a target lane) but
also higher-level behaviour, such as lane-changing or overtaking. By modelling each maneuver with a
different HMM (each with hidden states representing the lower-level behaviour), and sequencing these
maneuver models with a Markov Chain, one will be able to obtain more complex driver steering-torque
behaviour models. To the best of my knowledge, these more complex behaviour models have not yet
been investigated in combination with GMR estimation.



54 E. Results & Discussion

E.4. Preliminary Results

Even though the sections used for model validation and testing were generated randomly, fundamen-
tally they consist of the same elements as the training set. Just in a different order. To investigate
model generalisation boundaries, a preliminary study with alternative scenarios was performed. Eval-
uated scenarios include:

Sharper Corners: for increased steering-effort and higher lateral accelerations.
» Wider Lanes: for increased steering variability.
» Lane Changes: for deviation from the target lane.

» Evasive Maneuvers: for increased and rapid changes in driver steering-torque.

For each scenario, performance of the Generic Driver (GD) Model is compared to the Baseline (BL)
Model. Furthermore, vehicle speed remained fixed to 100km/h.

Sharper Corners: Three new scenarios of five minutes were generated similar to the experiment

scenarios but with corner radii sampled between 175 and 300 meters with 25 meter intervals. All sce-
narios were driven by one participant.
Result: The results show a reduced performance for both models. The BL model averaged 80.0%
accuracy with a smoothness of 6.25Nm/s. The GD model averaged 78.2% accuracy with a smooth-
ness of 3.81Nm/s. This again validates that the GD model achieves similar performance with around
39% smoother estimations, which can be clearly observed from Figure E.14b. The reduction in perfor-
mance of both models can be explained in situations with increased steering effort (larger torques), see
Figure E.14a. Zooming in on one of such situations, Figure E.14b show the mismatch between driver
torque and model estimation at 37s. Due to the Gaussian distribution, the models are able to make an
estimation. However, the worse performance is thought to originate from that these situations occur at
the tails of the emission distributions, where the likelihood is minimal, and thus estimation is uncertain.
Therefore, both models generalize bad to such situations and require additional training.
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Figure E.14: Baseline and Generic Driver Model Performance on randomly generated sections with sharper corners.
Observed again is the reduced estimation noise and worse performance for larger torques.

Wider Lanes: A new 5-meter wide single lane scenario of 5km long was designed. The road con-
sists of four straight segments, alternated with four sinusoidal segments of varying amplitudes, see
Figure E.16b. All participants performed the experiment and were only instructed to follow their pre-
ferred driving style without clarifying the lane-following strategy.

Result: Compared to the test results in Figure E.11, a wider road does not significantly impact model
performance, see Figure E.15. Both models achieve similar results for all participants, except the BL
model for participant "Expert 1”. From the recording, shown in Figure E.16, it is observed that this is
caused by poor estimations around straight and sinusoidal segment transitions, which are discontinu-
ous. The poor estimations are thought to originate from that both the inclusion of road preview features
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in the BL model and the significant corner cutting behaviour of the participant (therefore deviating from
training data), the BL model cannot handle these discontinuities. Since the GD model does not contain
road preview features, it does not suffer the same problem.
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Figure E.15: Baseline and Generic Driver Model Performance metrics on a scenario with increased lane-width.
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Figure E.16: Baseline and Generic Driver Model estimation performance on a scenario with increased lane-width.

Lane Changes (LC): Two new simple scenarios were designed: A straight-line scenario and a

curved scenario with one left- and one right-hand turn. During each scenario, two lane changes were
performed in both directions (left and right). Each scenario was repeated three times and driven by
one participant.
Result Sraight-line LC: In a straight line, the BL model seems to suffer significantly in accuracy during
lane-changes compared to the GD model, see Figure E.17. BL model performance averages 63.1%
accuracy with a smoothness of 2.53 Nm/s over three runs. The GD model averages 87.3% accuracy
with a smoothness of 3.56 Nm/s. Similar to corner cutting of a wide lane, this is thought to originate from
the fact that the BL model has road preview features, which are not correctly trained for large deviations
from the center lane. To solve this issue, the target lane should switch during a lane change. This was
not investigated in this study. However, this does not seem a problem for the GD model, again due to
the fact that the GD model does not include road preview features.

Result Curved LC: During both curvature negotiation and lane changing, the BL model does not
seem to suffer as much in accuracy compared to the straight line scenario, see Figure E.18. Further-
more, also the GD model performance is improved. BL model performance averages 87.4% accuracy
with a smoothness of 2.50 Nm/s over three runs. The GD model averages 91.8% accuracy with a
smoothness of 3.19 Nm/s. The improved performance is thought of to be explained by the fact that the
lateral deviation of a lane change during curvature negotiation can be compared to cutting the corner.

Evasive Maneuvers: The maneuvers were simulated by rapidly turning the steering wheel at a
random moment during a straight-line driving scenario. Both left and right maneuvers were repeated
two times and driven by one participant.

Result: Both models were unable to properly estimate the driver steering-torque, see Figure E.19.
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Figure E.17: Baseline and Generic Driver Model Performance during a straight-line lane change scenario.
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Figure E.18: Baseline and Generic Driver Model Performance during a curved lane change scenario.

Similar to the previous scenarios, this is thought of to be explained by that the increased steering-
torque has a low likelihood of occurring for the current trained Gaussian distributions, and thus the
model not being able to handle the situation. As generating training data for evasive maneuvers is not
very practical, steering-torque should be estimated by evasive controllers instead.
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Figure E.19: Baseline and Generic Driver Model Performance during an evasive maneuver. Global Estimation (top)
and vehicle path data (bottom).

Conclusion: For the majority of the presented tests, both the BL model as well as the GD model
were still able to accurately estimate driver steering-torque. However, model limitations were discov-
ered when newly presented data points lie in the tails of the state emission distributions. This appeared
to be input-feature (e.g. road preview), and also output-feature dependable (steering-torque). It is
thought of that the low likelihood of the data-point is causing the increase in estimation error.
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Additionally to the presented test scenarios, it would be interesting to be able to train and validate
HMM driver models with more realistic, real-world scenarios. Towards the end of this thesis, an interest-
ing workflow for virtual road generation in CarMaker, based on real-world geographic data, was found
in Chapter 2.3.2 of the work [30] by M. Olofsson and J. Pettersson and provides a valuable starting
point.
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