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A tour of Marchenko redatuming: Focusing the 
subsurface wavefield

Abstract
Marchenko redatuming can retrieve the impulse response to 

a subsurface virtual source from the single-sided surface reflection 
data with limited knowledge of the medium. We illustrate the 
concepts and practical aspects of Marchenko redatuming on a 
simple 1D acoustic lossless medium in which the coupled March-
enko equations are exact. Defined in a truncated version of the 
actual medium, the Marchenko focusing functions focus the 
wavefields at the virtual source location and are responsible for 
the subsequent retrieval of the downgoing and upgoing components 
of the medium’s impulse response. In real seismic exploration, 
where we have no access to the truncated medium, we solve the 
coupled Marchenko equations by iterative substitution, relying 
on the causality relations between the focusing functions and the 
desired Green’s functions along with an initial estimate of the 
downgoing focusing function. We show that the amplitude accu-
racy of the initial focusing function influences that of the retrieved 
Green’s functions. During each iteration, propagating an updated 
focusing function into the actual medium can be approximated 
by explicit convolution with the broadband reflection seismic data 
after appropriate processing, which acts as a proxy for the true 
medium’s reflection response.

Introduction
Recent research on data-driven single-sided focusing, also 

known as Marchenko redatuming, has shown that the Green’s 
response to a subsurface virtual source can be retrieved from 
single-sided surface reflection measure-
ments. Superior to conventional reda-
tuming methods, Marchenko redatum-
ing has the potential to correctly 
retrieve all orders of internal multiples 
and to achieve target-oriented imaging, 
free of spurious events. The 1D March-
enko equation is well known in inverse 
scattering problems. Broggini and 
Snieder (2012) show that, going beyond 
seismic interferometry, Marchenko 
redatuming succeeds with single-sided 
illumination only, without requiring 
physical subsurface receivers. Based on 
the reciprocity theorems for one-way 
wavefields, Wapenaar et al. (2013) and 
Slob et al. (2014) derive 3D Marchenko 
equations, valid for lossless acoustic 

Tianci Cui1,3, Ivan Vasconcelos2, Dirk-Jan van Manen3, and Kees Wapenaar4

inhomogeneous media. van der Neut et al. (2015a) illustrate 
how the redatumed Green’s function can be retrieved by iterative 
substitution of the coupled Marchenko equations, with limited 
knowledge of the medium, together with the surface reflection 
data and an estimate of the direct arrival of the inverse transmis-
sion response. Ongoing research has extended the theory and 
application of Marchenko redatuming to elastodynamic media 
(e.g., da Costa Filho et al., 2014; Wapenaar and Slob, 2014), 
complex media (Vasconcelos et al., 2014, 2015; Vasconcelos and 
van der Neut, 2016), dissipative media (Slob, 2016), and for data 
including free-surface multiples (e.g., Singh et al., 2015; Staring 
et al., 2016).

This tutorial works through a synthetic example for a 1D 
acoustic lossless medium without a free surface, where the March-
enko equation is exact. The theory of Marchenko redatuming is 
introduced at an intuitive level to illustrate the physics behind it. 
We discuss the implementation of Marchenko redatuming in the 
context of seismic exploration.

1D acoustic medium and the recorded wavefields
A 1D acoustic medium with three reflectors is modeled for which 

the wave propagation velocity and mass density vary with depth as 
shown in Figure 1a. We define this actual medium as “state B” while 
“state A” in Figure 1b is its truncated version, which is the same as 
the actual medium above the desired focusing datum at 300 m, 
indicated by a virtual source (hollow stars in Figure 1), and is 
reflection-free below it. In conventional seismic acquisition, a surface 

1Schlumberger Gould Research.
2Formerly Schlumberger Gould Research; presently Department of 

Earth Sciences, Utrecht University.
3Institute of Geophysics, ETH Zürich.
4Department of Geoscience and Engineering, Delft University of 

Technology.
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Figure 1. (a) State B: actual medium with underburden. (b) State A: truncated medium without underburden.
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geophone (solid triangles in Figure 1) 
records the reflection response to a surface 
source (solid stars in Figure 1). Seismic 
source redatuming aims at retrieving the 
response to a subsurface virtual source, 
recorded by the surface geophone.

Assuming that the medium is lossless 
and that there are no free-surface mul-
tiples, we model the reflection and 
transmission responses with the finite 
difference method. Figure 2 shows the 
recorded wavefields by igniting a Gauss-
ian-shaped, zero-phase wavelet into the 
actual and truncated medium, respec-
tively. Note that in state A, the transmis-
sion response T (t) is the response of the 
medium between the subsurface virtual 
source and the surface receiver, whereas 
in state B, the transmission response G(t) 
includes the response of the medium 
below the subsurface virtual source. In 
an idealized scenario, where the trans-
mission response T (t ) and reflection 
response RA(t) of the truncated medium 
were assumed to be known, the transmis-
sion response G (t) could be retrieved 
directly from the single-sided reflection 
response R(t) of the actual medium, 
using the coupled Marchenko equations. 
We will discuss an iterative Marchenko 
scheme to retrieve G(t) in a practical case 
where we have no access to the truncated 
medium information. As indicated by 
Figure 1a, the desired transmission 
response G (t) — i.e., the total redatumed Green’s function — 
consists of the downgoing Green’s function G +(t) and the upgoing 
Green’s function G −(t), and they can be retrieved separately. Note 
that the + and − signs used here indicate the propagation directions 
at the virtual source, which are opposite to common notations, 
which use these signs to indicate the propagation directions observed 
at a virtual receiver.

The coupled Marchenko equations
Wapenaar et al. (2013) and Slob et al. (2014) introduce the 

so-called focusing functions f1
+(t) and f1

-(t) in Marchenko reda-
tuming based on state A. As defined by time-domain equations 
1 and 2, the downgoing focusing function f1

+(t) is the inverse of 
the transmission response in the truncated medium, and its 
reflection response in the truncated medium is the upgoing focus-
ing function f1

-(t),

T (t) * f1
+(t) = δ(t)                              (1)

RA(t) * f1
+(t) = f1

-(t),                            (2)

where the asterisk indicates convolution. Here, both focusing 
functions f1

±(t) are essentially the focusing wavefields observed 
at the surface. Figure 3 shows the focusing functions calculated 

directly from the transmission and reflection responses of the 
truncated medium in Figure 2. We later discuss how they can be 
retrieved from the reflection response of the actual medium.

Derived from the reciprocity theorems for one-way wavefields, 
the time-domain coupled Marchenko equations 3 and 4 directly 
relate the surface reflection response to the desired Green’s func-
tions in state B via the focusing functions defined in state A,

G+(t) = R(t) * f1
+(t) – f1

-(t)                    (3)

G-(t) = –R(t) * f1
-(–t) + f1

+(–t).                 (4)

Figures 4a and 4b are the downgoing and upgoing Green’s 
functions, calculated once knowing the focusing functions. 
Their sum (Figure 4c, dotted red) is the total retrieved Green’s 
function, which matches the surface recorded transmission 
response to a real source at the focusing datum in the actual 
medium (Figure 4c, solid blue), thus verifying the coupled 
Marchenko equations.

Figures 5 and 6 display the wavefields and space-time propaga-
tion diagrams associated with the Marchenko system, to physically 
interpret the coupled Marchenko equations. All of the wavefields 
are expressed in pressure on the same gray scale, where white and 
black indicate the positive and negative pressure values, respectively. 

Figure 2. (a) Reflection responses of the truncated medium RA(t) and the actual medium R(t). (b) Transmission 
responses of the truncated medium T (t ) and the actual medium G(t ).

Figure 3. (a) Downgoing focusing function f1
+(t ). (b) Upgoing focusing function f1

–(t ). The vertical dotted lines 
denote the transmitted direct arrival time td and its time reversal –td.
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On top of the propagation diagrams are 
the corresponding traces being injected 
into the medium. The traveltime of the 
transmitted direct arrival from the focus-
ing datum to the acquisition surface is 
denoted as td. In Figure 5a, injecting the 
shifted seismic wavelet at −td (solid red) 
into the truncated medium will generate 
the upgoing primary reflections (dashed 
blue) as well as the undesired downgoing 
coda (dotted red), which reaches the 
focusing datum. In Figure 5b, the focus-
ing function f1

+(t) (solid and dashed red) 
is injected into the truncated medium 
from time −td onwards. Its coda f1m

+ (t) 
(dashed red) propagates and meets the 
upgoing primary reflection (dashed blue; 
which is defined as f1

-(t) by equation 2 
at each corresponding depth) to cancel 
the subsequent downgoing coda as in 
Figure 5a. As a result, the direct arrival  
f1d

+ (t) (solid red) is focused at the focusing 
datum and at time zero. This focusing 
process is defined by equation 1. In the 
actual medium, the focused event acts 
as a pure downgoing virtual source (hol-
low star) to generate the wavefield associ-
ated with G+(t), which is described by 
Marchenko equation 3 and is shown in 
Figure 5c.

As is predicted by Marchenko 
equation 4 and shown by Figure 6a, 
injecting the time-reversed focusing 
function f1 -(–t) (dashed blue) into the 
actual medium generates the time-
reversed focusing function f1+ (–t) 
(dashed and solid red). The subsequent 
waves propagate as if there is a pure 
upgoing virtual source (reverse polar-
ity compared to the downgoing virtual 
source) at the focusing datum and at 
time zero indicated by a hollow star 
(the interception between the focusing 
datum and the elongated f1d

+ (–t) in 
dotted red). This generates the wave-
field associated with −G−(t), whose 
direct arrival −Gd

−(t) overlaps with 
f1d

+ (–t) (solid red). The wavefield G −(t) 
generated from a real source (solid 
star) is displayed in Figure 6b with 
reverse polarity. It is computed by 
subtracting the wavefield G +(t) in 
Figure 5c from the total wavefield 
G(t), which, in turn, is modeled by 
igniting a real source located at the 
focusing datum and at time zero. Subtracting Figure 6b from 
Figure 6a, Figure 6c shows that their wavefields are the same 

Figure 4. (a) Downgoing Green’s function G+(t). (b) Upgoing Green’s function G−(t). (c) Total Green’s functions by 
direct modeling and Marchenko redatuming. The vertical dotted lines denote the transmitted direct arrival time td 
and its time reversal −td.

Figure 5. Wavefields of (a) injecting the source wavelet at −td into the truncated medium, (b) injecting the focusing 
function f1

+(t ) into the truncated medium, (c) injecting the focusing function f1
+(t ) into the actual medium where the 

hollow star indicates the virtual source location. The horizontal dotted lines in each figure denote specific depth levels: 
the black are the reflectors, the white are the acquisition surface and the focusing datum from top to bottom.

Figure 6. Wavefields of (a) injecting the focusing function f1
–(−t ) into the actual medium where the hollow star 

denotes the virtual source location, (b) −G −(t ) modeled with a real subsurface source indicated by a solid star. The 
solid red ray indicates the direct arrival of the Green’s function –Gd(t ). (c) Difference between Figures 6a and 6b. 
The horizontal dotted lines in each figure denote specific depth levels: the black are the reflectors, the white are the 
acquisition surface and the focusing datum from top to bottom.

following the direct arrival f1d
+ (–t) (solid red), verifying that 

the wavefield G −(t) is generated as described by Marchenko 
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equation 4, although the subsurface 
source is not physically formed.

The iterative Marchenko scheme
In practice, seismic acquisition 

obtains the reflection response of the 
actual medium, where no information 
about the truncated medium is available 
a priori and neither are the focusing func-
tions. However, it is possible to solve the 
underdetermined coupled Marchenko 
equations because of the causality proper-
ties of the focusing functions and the 
desired Green’s functions. In this tutorial, 
we rely on an iterative scheme (e.g., van 
der Neut et al., 2015a), although other 
approaches such as direct inversion are 
also available.

To capture the causality of the 
focusing functions and the desired 
Green’s functions, a windowing opera-
tor θ{.} is introduced. This operator is 
designed to remove all the events arriv-
ing at and after td as well as all the 
acausal events at and before −td. The 
timing of the direct arrival and its time 
reversal is denoted by the vertical dotted 
lines in Figures 3 and 4. As is seen from 
Figure 3a, the downgoing focusing 
function  is composed by its direct arrival  
(dotted red) at −td and a following coda  
between −td and td. Applying the win-
dowing operation to the downgoing 
focusing function gives

θ f1
+(t ){ }=θ f1d

+ (t )+ f1m
+ (t ){ } = f1m

+ (t ) .          (5)

Figure 3b shows that the upgoing focusing function f1
-(t) arrives 

between −td and td so that

θ f1
−(t ){ } = f1

−(t ) .                            (6)

Because of causality, all the events of the Green’s functions appear 
at or after td (Figure 4) such that

θ G +(t ){ }= 0 ,                               (7)

and

θ G −(t ){ }= 0 .                               (8)

Thus, the coupled Marchenko equations 3 and 4 after the window-
ing operation on both sides become

θ R(t )∗ f1d
+ (t )+ f 1m

+ (t )⎡⎣ ⎤⎦{ }= f1
−(t ) ,             (9)

and

θ R(t )∗ f1
−(−t ){ } = f1m

+ (−t ) .               (10)

With acquisition of the reflection response R(t) and an estimate 
of the initial focusing function f1d

+ (t), equations 9 and 10 can be 
solved by iterative substitution.

To start the iteration, the initial value of f1m
+ (t) is assumed to 

be zero so that the first estimate of f1-(t) can be obtained by 
equation 9 and then be inserted into equation 10 to update the 
value of f1m

+ (t ). During the second iteration, the estimate of f1m
+ (t ) 

from the first iteration is added to f1d
+ (t) to get the second estimate 

of f1
-(t ), update f1m

+ (t ) again, and proceed to the next iterations. 
Figures 7 and 8 show the focusing function updates of the first 
and third iterations, compared to the ones calculated from the 
known truncated medium responses. The difference of the esti-
mates is invisible between the third and fourth iterations on the 
same scale as the corresponding focusing function plot, implying 
that the iterative Marchenko scheme converges after three itera-
tions for this simple 1D acoustic medium.

In theory, the initial focusing function f1d
+ (t ) is the direct arrival 

of the inverse transmission response in the truncated medium. In 
practice, it is often approximated as the direct arrival of the 

Figure 7. Focusing function f1
+(t ) updates of (a) the first and (b) third iterations compared to the one calculated 

from the known T (t) in Figure 3a. The vertical dotted lines denote the transmitted direct arrival time td and its time 
reversal −td. (c) Difference of the estimated f1

+(t ) between the third and fourth iterations.

Figure 8. Focusing function f1
–(t ) updates of (a) the first and (b) third iterations compared to the one calculated 

from the known T(t ) and RA(t) in Figure 3b. The vertical dotted lines denote the transmitted direct arrival time td 
and its time reversal −td. (c) Difference of the estimated f1

–(t ) between the third and fourth iterations.
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time-reversed transmission response, 
which can be computed in a reference 
macro-velocity model. As is shown in 
Figure 9a, the direct arrival of T(−t ) 
shares the traveltime with that of T−1(t), 
while its amplitude is incorrect, resulting 
in an overall amplitude error of the 
retrieved Green’s function in Figure 9c.

The iterative Marchenko scheme by  
explicit data convolution

In the numerical example shown 
earlier, each iteration is conducted by 
propagating an updated focusing function 
or its time reversal into the real medium 
by means of numerical simulation. In that 
case, the convolutions with the reflectivity 
operator remain implicit in the process of 
injecting the corresponding wavefields 
into the medium, either physically or 
numerically. In practice, it is unrealistic 
to repeat the seismic acquisition many 
times so that each time a specific set of 
surface sources are designed to yield cor-
responding focusing functions. Instead, 
the operations involving R(t) during each 
Marchenko iteration can be conducted 
using explicit convolution with recorded 
data: where R(t) is no longer the true 
reflection response of the medium, but is 
taken from finite-time, finite-bandwidth 
reflection seismic data, after appropriate 
signal processing (e.g., source deconvolu-
tion, data regularization, and removal of 
direct arrivals and free-surface effects).

Assuming that the source wavelet to 
be deconvolved is unknown, blind decon-
volution (e.g., Robinson and Treitel, 
1980) is one of several possible approaches to estimate it from the 
data. Take the frequency-domain spiking deconvolution as an 
example. We estimate the amplitude spectrum of the source wavelet 
by smoothing that of the reflection response and assume that the 
wavelet phase is known to be zero. Because the estimated wavelet 
has the ambiguity of a scalar, the deconvolved reflection response 
needs to be correctly scaled so that the iterative Marchenko scheme 
converges. We scale the source wavelet estimated from the reflection 
response with respect to the known wavelet shown in Figure 10b. 
van der Neut et al. (2015b) and Brackenhoff (2016) further discuss 
the possibility of calculating the correct scaling factor in a realistic 
case where the source wavelet is unknown. Deconvolving this 
estimated wavelet from the reflection response gets a similar reflec-
tion estimate with a broader bandwidth as the deterministic decon-
volution by knowing the wavelet shown in Figure 10c. Starting 
with the direct arrival of T −1 as the initial focusing function, the 
total Green’s functions are properly retrieved by the iterative explicit 
convolution with the deconvolved reflection response from either 
the deterministic deconvolution or the blind deconvolution with 

correct scaling, although the latter has subtle amplitude errors as 
shown in Figure 11b.

Conclusions
In this tutorial, we illustrate Marchenko redatuming on a syn-

thetic model of a 1D acoustic lossless medium. For the sake of discus-
sion, by knowing its truncated version (not practical in real experi-
ments), we can directly calculate the focusing functions. As described 
by the coupled Marchenko equations, the focusing functions focus 
the wavefield in the subsurface to get the impulse response to the 
subsurface virtual source. In the more realistic case where truncated 
medium information is not available, we can solve the coupled 
Marchenko equations by iterative substitution, based on the causality 
properties of the focusing functions and the desired Green’s functions. 
With an estimate of the initial focusing function, the redatumed 
Green’s functions can be retrieved from the single-sided surface 
reflection response. The amplitude error of the estimated initial 
focusing function influences the accuracy of the retrieved Green’s 
functions. In seismic exploration, the iterative scheme can be 

Figure 9. (a) Initial focusing functions: direct arrival of the inverse transmission response and direct arrival of the 
time-reversed transmission response in the truncated medium. (b) The total Green’s function retrieved by Marchenko 
redatuming using the direct arrival of T −1(t) as the initial focusing function after three iterations compared to the 
one recorded from direct modeling. (c) The total Green’s function retrieved by Marchenko redatuming using the 
direct arrival of T (−t) as the initial focusing function after three iterations compared to the one recorded from direct 
modeling. The vertical dotted lines denote the transmitted direct arrival time td and its time reversal −td.

Figure 10. (a) Reflection response of the actual medium, same as the dotted red trace in Figure 2a. (b) The source 
wavelet estimated during the blind deconvolution followed by correct scaling compared to the known wavelet. (c) 
Deconvolved reflection response using the known source wavelet compared to that using the estimated wavelet 
followed by correct scaling.
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conducted by explicit convolution with 
the broadband reflection data after signal 
processing, acting as a proxy for the true 
medium’s reflection response.

Going from 1D to 3D, acoustic to 
elastodynamic, and/or simple to com-
plex media, the direct arrival of the 
time-reversed transmission response is 
less well-posed and thus harder to esti-
mate. Whether its accuracy is sufficient 
to initialize the focusing function may 
vary on a case-by-case basis, where the 
degree of lateral heterogeneity and the 
acquisition design will likely be the 
controlling factors for the success of the 
scheme. With some initial success on 
field data (e.g., Ravasi et al., 2016), we 
believe the scheme is already practical 
in cases where data coverage is sufficient and medium lateral 
heterogeneity is moderate. Improving the initial focusing functions, 
the windowing operator design, and the method’s applicability 
of handling unknown source wavelets, irregular acquisition geom-
etries, attenuation, and complex media are topics of ongoing 
research for Marchenko redatuming. 
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Figure 11. The Marchenko retrieved Green’s functions by iterative explicit convolution with the broadband reflection 
response from (a) the deterministic deconvolution and (b) the blind deconvolution with correct scaling after three 
iterations, compared to the one recorded from direct modeling. The vertical dotted lines denote the transmitted 
direct arrival time td and its time reversal −td.

D
ow

nl
oa

de
d 

02
/1

2/
18

 to
 1

31
.1

80
.1

30
.2

42
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/




