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Abstract. Neural networks are typically initialized such that the hid-
den pre-activations’ theoretical variance remains constant to avoid the
vanishing and exploding gradient problem. This condition is necessary
to train very deep networks, but numerous analyses show this to be
insufficient. We explain this behavior by analyzing the empirical vari-
ance, which is more meaningful in the practical setting that deals with
data sets of finite size. We demonstrate its discrepancy with the theo-
retical variance, which grows with depth. We study the output distribu-
tion of neural networks at initialization and find that its kurtosis grows
to infinity with increasing depth, even if the theoretical variance stays
constant. As a result, the empirical variance vanishes: its asymptotic
distribution converges in probability to zero. Our analysis focuses on
fully connected ReLLU networks with He-initialization, but we hypothe-
size that many more random weight initialization methods suffer from
vanishing or exploding empirical variance. We support this hypothesis
experimentally and demonstrate the failure of state-of-the-art random
initialization methods in very deep regimes.

Keywords: vanishing gradient - empirical variance - kurtosis - ReLU

1 Introduction

The main heuristic for deriving initialization methods for deep neural networks
is to keep the theoretical variance of the output or gradient distribution constant
over all hidden layers. The idea is that this ensures proper propagation of the
input signal through the network and therefore mitigates the vanishing gradient
problem [3,13]. This approach has been used to derive two initialization methods:
so-called Glorot [8] and He-initialization [11]. However, these methods are still
not sufficient to train arbitrarily deep networks. Other statistical properties have
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been shown to explode or vanish even under constant variance [5,9,10,24], while
in the meantime, still no initialization method has been demonstrated to work
for very deep networks.

Here, we take another look at the consequences of keeping the theoretical vari-
ance constant and analyze distributional properties that go beyond this second
central moment. Specifically, with a focus on He-initialization [11], we analyze
the dynamics of the kurtosis, the fourth standardized moment, as a signal is
propagated through a neural network that is He-initialized. Under mild assump-
tions, we prove that the kurtosis of the output distribution grows to infinity with
increasing depth. As we will show, the surprising effect of this is that the empir-
ical variance has to go to zero (in probability), despite the constant theoretical
variance. Consequently, almost all outputs are mapped to zero by an arbitrarily
deep network. We call this problem the vanishing empirical variance.

Our analysis suggests that the problem of vanishing empirical variance may
concern many more random initialization schemes. We demonstrate this empiri-
cally for state-of-the-art random initialization methods for fully connected ReLU
networks. We also show that ZerO [27], which is a deterministic method that
keeps empirical variance constant, can train very deep and narrow networks, a
fact not realized by its authors.

In Sect. 2, we recall the literature related to our work. In Sect. 3, we define
the basic setup we consider, nuancing the original analysis of He-initialization
from [11]. In Sect.4, we analyze this setting and come to our main theoretical
result. In Sect. 5, we show its practical consequences for the empirical variance of
the output distribution at initialization. In Sect. 6, we present our experimental
results. Finally, in Sect. 7, we discuss how our analysis extends to other types of
layers and other activation functions.

2 Related Work

The idea to initialize the weights by sampling them i.i.d. from a zero-mean
symmetric distribution such that the variance is kept constant over all layers
is known at least since the work by [4]. It was popularized as a “trick” by [19].
[8] extended it to balance the need to keep the output variance and the gradi-
ent variance constant, while [11] analyzed the specific case of ReLU activation.
Further extensions of this work to the specific case of highly popular ResNets
[12] have been given by [26] and [1]. Other approaches to random weight initial-
ization include orthogonal initialization [22], delta-orthogonal initialization [25],
data-dependent LSUV [20] or Metalnit initialization [6], and GSM initialization
[5]. Another approach is to initialize the weights deterministically. Examples
are identity initialization [2] and ZerO initialization [27]. Although our focus is
He-initialization [11], we hypothesize that our claims extend to other random
initialization methods, which we corroborate in our experiments.

Various results indicate that controlling the variance is not sufficient to miti-
gate gradient problems. [9] showed that the empirical variance of gradients grows
exponentially with increasing depth, while [10] and [5] showed the same for
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the empirical variance of the lengths of activations and pre-activations, respec-
tively. [24] demonstrated that with increasing depth, the output distribution
has increasingly heavy tails. We add to this line of research by studying kurto-
sis of the output distribution, which directly relates to its empirical variance.
Our analysis shows that even if we keep the theoretical variance constant, the
empirical variance will tend to zero.

Proper initialization of neural networks is only a prerequisite to ensure fast
convergence to a good solution of the given optimization problem. [23] showed
that for standard random weight initialization methods, the number of iterations
required to converge grows exponentially in depth. [7] reached a similar conclu-
sion, while [15] showed that the convergence speed is independent of depth for
the case of orthogonal initialization. However, our work questions the possibility
of convergence of very deep randomly initialized networks in practice, even with
initialization schemes designed to overcome the problem of large depth, such as
orthogonal initialization [22] or GSM initialization [5].

3 Preliminaries

We consider fully connected networks with leaky ReLU nonlinearities. For an
input x € R*°, and a neural network with depth d € N, widths (w;){, C N,
and negative slope a € R, the output y) € R% of the Ith layer is recursively
defined as'

y(O) = x, y(l) — W(l)¢a(y(l_1))

where for all l =1,...,d WO ¢ Rurxwi-t jg 5 weight matrix and ¢, : R — R is
leaky ReLLU with the negative slope parameter a € R, applied entry-wise

balz) = {ax, if z <0,

x, otherwise.

We treat x and (W(l))f:1 as random variables and analyze distributional prop-
erties of y(¥) with increasing d. We study tHe-initialization method by [11] which
takes the entries of each weight matrix WO to be i.id. symmetric variables with
variance m This method preserves several distributional properties of the
input random vectors.

Definition 1 (He random vector). We say that a random vector £ € R" is a
He random vector if all variables in x have mean zero, symmetric?, uncorrelated,
and homoscedastic with some variance o>

b

! Throughout the paper, for vectors and matrices we use upper indices to indicate
the layer, and lower indices to refer to entries. For scalars, we use the lower indices
to indicate the layer. For the function ¢, we use the lower index to indicate the
negative slope parameter a.

2 By a symmetric random variable we mean a random variable with a probability
distribution symmetric around its mean.



The Vanishing Empirical Variance 365

Proposition 1 (He-initialization). If for alll = 1, ..., d weight matrices w
are i.i.d., zero-mean, and symmetric with variance equal to W, then for

an input He random vector x with variance o2 the output random vector y D s
a He random vector with variance o>

T

A proof for Proposition 1 has been given by [11] under the stronger assump-
tion of preservation of independence of vector entries. For simplification, [11]
assumed that independence is preserved through the network, but for our analy-
sis it is important to realize that what actually is preserved is uncorrelatedness.
We provide a proof with this modification in the supplementary material.

One may ask how to make sure that the properties of He random vector
are satisfied at the input. The Proposition 2 below shows that if we include
an additional weight matrix before the first activation, it transforms any input
random vector to a He random vector.

Proposition 2 (Any random vector can be transformed to a He ran-
dom vector). For any finite-variance random vector x € R™, if W € R¥*v
s a random matriz of i.i.d. zero-mean, symmetric variables with finite variance
such that W and x are mutually independent, then z = Wex is a He random
vector with some variance o2.
w

Proof. Consider a specific entry z; in z, z; = Wikxy. For any i, k, Wy is sym-
metric and zero-mean, and so must be Wikx: . ]13ecause z; is a sum of zero-mean
and symmetric random variables, it is zero-mean and symmetric. All entries of
z have the same variance because it is expressed with the same formula, so they
are homoscedastic with some variance o2. Lastly, we will show that z;, z; are

uncorrelated for any i, j, ¢ # j. Consider covariance of two entries z;, z;
Covlz;, z;] = E[ziz;] — Elz;]|E[2;].

Because E[z;] is equal to zero, it simplifies to
w w
Cov[z;, z;] = Elz;z] = E[(Z Wika:k)(z Wikzk)]
k=1 k=1
=E[> > Wi,k Wikzr) = > Y E[Wik, B[z, Wik, zs,] = 0.
k1=1ko=1

k1=1ky=1

We will assume that inputs are always He random vector and that networks
are initialized according to Proposition 1. Effectively, the outputs for each hidden
layer will be He random vectors too.

4 Theory

We present our main theoretical results. We derive the relation between input
and output kurtosis in a neural network (Proposition 3) and prove that for
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bounded-width networks, it goes to infinity with increasing depth (Theorem 1).

Here, kurtosis of a random variable x is defined as Kurt[z] = E[%] We
will analyze the case with E[z] = 0 which simplifies it to Kurt[z] = VMM s E[z].

First, we prove Proposition 3 in which we will derive the exact recursive for-
mula for the dynamics of kurtosis over consecutive layers. The derived formula
tracks two statistical properties in a linear matrix difference equation: kurtosis
and covariance of squared outputs. We take the mild assumption, which is sat-
isfied with Proposition 2 that the covariance of squared outputs is equal for any
two outputs.

In the proof of Proposition 3, we will use two lemmas 1 and 2 that are given
first.

2

Lemma 1. Let x be a zero-mean, symmetric random variable with Var(z] = o2

and Kurt[x] = k.. Then E[¢2(x)] = (a® H)a‘l/@;E

Proof.
00 0 o]
Elgg(2)] = | ¢u(@)p(z)de = [ a*a’p(a)de+ [ 2'p(z)dz
[ [ et |
= %a4 / rip(x)dr —|—% / zip(x)de = CLTHIE[J:4] =2 ;10;1/%.

Lemma 2. Let x,y be identically distm'buted uncorrelated, zero-mean, symmet-
ric random variables with variances o2, kurtoses r, and Cov|x?,y*] = c. Then

E[¢2(x)¢2(y)] = “F (o 4+ ¢).
Proof.

syt - [ iomta s

= / 2*y*p(z, y)dzdy + 2a° / 2?y?p(z, y)dady
:] Ry XR_

1
+a / 2*y*p(x, y)dedy = 7(a® + 1)°E[2%y’]
R2

Recall that Cov[z?,y?] = E[z?y?] — E[z?E[y?] so E[z%y?] = Cov[z?,y*] +
E[z?|E[y?]. We get as a result
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Proposition 3. Consider a network that is He-initialized with a distribution
that has kurtosis k., and that has output random vectors Yy at every layer |
with variance o2. Let

! 1
ar = Covl(y,), (y")’]
be the covamance between any two squared entries from y» and let k; =

Kurt[ ] be the kurtosis of every entry i in Yy, then the kurtoses of consecutive
layers are recursively related through the linear matriz difference equation

JAG 2 y {OF 0]

where K'Y = [k, ¢;,1]T and

2(a*+1)kw 3(w;—1) 3(w;—1)

wi(a24+1)2 w0l wy
A(l) — 2(a4+1)0i w;—1 —Ui
wy (a2+1)2 wy wy

0 1

Consequently, the relation between the input kurtosis and the output kurtosis at
depth d+1 s

Eld+D) (HA (d—1) )
i) =0,

Proof. We will derive the formula for x;41, then for ¢;11. We have Ely;

Varly"™] = 62, so kipy = Kurty™)] = 2 STE[(y (10Y4) . We can expand
wy

E[(ylaﬂ))‘*] =E[(> Wi(jﬂ)d)a(y](.l)))‘l] using the multinomial theorem. Because
j=1

the weight matrix entries are i.i.d., zero-mean and symmetric, the terms with

the odd powers vanish. We get

y ! ZE (W5 bay]))

+ 2 <2 2) (W da ()2 (W g ().

7,k=1
J#k
Using Lemma 1, we find that
4 (a* +1) 2(a* +1)
E(WI Vg, - N P C e 7 B Yo
[( ¢ ( )) ] wlz(ag <+>1)2"£ 9 Okl ,wl2(a2 +1)2H 0Kl

We can get a closed-form formula for E[(Wi(jﬂ)qﬁa(y§l)))2(Wi(,iﬂ)(ba(y,(cl)))Q] using
Lemma 2

E(WI T 6a(yi))2 WS u(y))?] =

2 (a®>+1)2, , o+ ¢
= (wl(a2 ¥ 1)) n (O'x—FCl) = U/l2 .
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Putting the two above to the multinomial expansion of E[(y UH)) ] given in the
beginning, we get

2(a4+1) wy o2 + ¢
E[(y )4 = wo 6 z
[(yz ) } wl(ag + 1)2"'i [P + 9 wl2
2(a* 4+ 1) 4 o4+
= wl(aQ m 1)2/€wdzl€l + 3wl(wl — 1) w2

i
(4+1)y4 4
Finally, we should divide E[(y; " )] by o2 to get

2(a* + 1)Ky 3(w; — 1 3(w; — 1
_ 2+ D 3w - )¢ 4 B —1)
w0, wy

Next, consider ¢;+1 = Cov[(y (l+1))27 (yj(-lﬂ))z] for any 4, 7,1 # j

e = Covl(y™)2, ()% = Bl (™% — Bl E( )

K2

—E[(ZWE,i“ a(y")) ZWJE”%( )2 - o

k=1

(l) 4
CL2+1 2 Z Z ykl ykg )] Oy

k1=1ks=1

where the sum Zk . k2 LE[p? (y]ill))¢2 (y,(é))]

wy 2 2 wy 4
1 (a + 1) a*+1
5 3" Ess - 35 CE e 3
k1=1ky=1 ko=1 k=1
ko#kq
wy(w; — 1)(a? + 1)2 wy(a* + 1)
= 1 (02 + )+ 5 1.

Putting it all together, we get

2(a* +1)02 w; — 1 ol

1 I

wi(a? +1)2 w; w;

Cl41 =

and K'Y = [k1,1, c141, 1]7 is of the desired form.

Now, we will show in Theorem 1, that with the dynamics derived in Proposi-
tion 3, for any valid k(O), kq will grow to infinity. To this end, we will first prove
three lemmas that describe the properties of matrices A® and their products.
In Lemma 3, we will show that any product of such matrices is of a form param-
eterized with four positive parameters. Next, in Lemma 4, we will show that any
matrix A?) has a positive eigenvalue that is strictly larger than 1. The proof of



The Vanishing Empirical Variance 369

Lemma 4 uses the Perron theorem, which we provide with a reference to a proof
in the appendix in the supplement. We combine these two properties in Lemma
5 to show that for any A = AW raised to a power m, all its positive parameters
will tend to infinity with m — oo and so its norm tends to infinity. We use this
property in the proof of Theorem 1.

Lemma 3. Consider the product of matrices B = H?:o AlD g given in
Proposition 3, with w > 1. B is of the form

o G% 1]
B= |yol 6 ol(6-1) (1)
0 0 1

withy >0, a > 7,6 >0, 8>6.

Proof. We prove the lemma by induction on d. For d = 0 we have B = A(O),
which is satisfied by the definition of A”). Assume that (1) is satisfied for some
d € N. Denote C = H?:o A7) and B = AYC. We can write

o % b1
A(dJrl) = 710';1 51 0'3((51 — 1) ’
0 0 1
Qg 5—2 B2
C= 'YQO';L 52 0';1(52 — 1)
0 O 1

with Viz19, 7 > 0, a; > 7, 8 > 0, B > 6;. AT C s

arag + By, fatbioe a1 + 102

(rra2 + 6172)0% 1152 + 616 ol(y1B2 + 0102 — 1)
0 0 1

If we set a = ajag + B172, B = a1f2 + B1d2, ¥ = M2 + 0172, 6 = 7152 + 0102,
we get that B = AUDC s of the desired form with

Y=maz+ 0172 >0, a=aar+ Py >7>0,
0=mB2+ 0102 >0, B=aifs+ Bi1d2>6>0.

Lemma 4. The largest eigenvalue of any matriz AD from Proposition 38 is
larger than 1.

Proof. Consider the matrix AW for some I =0, ..., d. Its characteristic polyno-
mial is of the form

det(AY —AT) = (A2 +bA+¢)(1 - ))
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O]

where A2 4+ b\ + c is the characteristic polynomial of a matrix A’ equal to

A® but with row 3 and column 3 removed. A is positive and by the Perron
theorem it has two distinct real eigenvalues A, and Ay, such that Apq. >0
and Aoz > |Amin|. We will show that A\pe. > 1.

Express Anmaz using trace and determinant of A(_l) ,
r A(l> r2 A(l) —_4de A(l)
Amaz = (A H\/t (2 =) adet(A ), with tr(A(l)) and det(Ag))z
2(a* + 1)Ky 1
Ay = 20 T DR 1y

w(a®+1)2  w
2(a* 4+ 1) (w; — 1) (ky — 3)

l
det(AY) = et 1)

We consider two cases for tr(A(_l)) and show that in both of them M4z > 1.

H(AD
If tr(Ag)) > 2, then A, > 1 because Aoz > ¢ (';‘ ). Otherwise, if 1 <

tr(A(l)) < 2, then

which is always satisfied, because for k,, < 3, we have det(A(l)) +1 <1<
tr(A(l)), and for Kk, > 3

a* +1)(w; — 1)(ky — 3)

det(AY) = 2

w?(a® +1)2
2(a* + 1)(kyw —3) _ 2(a* + 1) (kyw — 1) )
< tr(A —1.
< wy(a? +1)2 wy(a? +1)2 < tr(AZ)

This proves that Apq. > 1.

Lemma 5. Consider the matric A = AW from Proposition 3 raised to the
power m. If m — oo, then ay,, Bm, Ym, Om from the representation of A™ in
the form from Lemma & go to infinity.

Proof. By Lemma 4 Apqz(A) > 150 lim [|[A™|| = oo, so it must be that at

least one of &y, B, Ym, Om goes to infinity. Consider four cases:

1. Assume «,, tends to infinity. From the proof of Lemma 3, v,,11 = 7100m +
01Ym > V1Qm, SO Y must tend to infinity. In the same way, d,,41 = V1 +
Omb2 > YmpPB1, s0 §,, must tend to infinity too. Because G,, > 6., B must
tend to infinity as well.
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2. Assume [, tends to infinity. From the proof of Lemma 3, a1 = aman +
BmY1, SO i, must tend to infinity, and so -, and J,, as shown above in 1.
3. Assume 7, tends to infinity. Then «,,, must tend to infinity because a,,, > Vi

for any m, and so f3,, and J,, must tend to infinity as shown above in 1.
4. Assume §,, tends to infinity. Then 3,, must tend to infinity because 5, > 6.,
for any m, and so «a,, and 7, must tend to infinity as shown above in 2.

Theorem 1. For any He-initialized network with widths bounded from below by
2 and from above by some Wyaz, the output-distribution kurtosis grows to infinity
with increasing depth for any input He random vector.

Proof. We can express the vector k(@ at depth d + 1 as k(@) = Bk
with B@ = Hf:o AD parameterized by ag, 84, V4, 0¢ from Lemma 3. We
can write that

Ba
Kd4+1 = Qgko + €0 + Ba.
xr

Note that it must be that co > —o2, because

co = Cov[(yt”)? (y\")?]

?

= E[(y")2 ("% - Ely\V12Ely\ ") = E[(y\”)2(4\")?] — o2 > —ol.

We can consider the output of the first layer as the actual input, so we can even
say that co = o2(—1+¢) for some € > 0, because ¢; = y104k0+01co+02(61—1) >
710;1&0 — 0;1 for some y; > 0 and §; > 0.

We can write then that

B
Kd+1 = Qgko + FCO + B4 = agko + Ba€.

T

To know that kgqy1 goes to infinity with d — oo, it is enough to show that
dlim |IB@|| = oo, because it would imply that one of ag, B4, 74 or 84 goes to
—00

infinity, in which case k441 goes to infinity. We will show that dlim )\mam(B(d)) =
—00

00, which implies that dlim IB{|| = 0o. Because for any two matrices My and
— 00

M Aaz (M1 Ms) = Apae (MM ), we can consider A, 4, of a rearranged matrix
product

d Wmax
)\maw(B(d)) - A’ma;v <H A(l)> = A7na:c ( H AZM;) 5
=0 w=2

where A, denotes a matrix A?) from Proposition 3 for a specific width w, and
M., the number of occurrences of such matrices until depth d. With d — oo, there
is at least one w for which m,, — oco. For such widths w, A;}* behaves according

to Lemma 5. The product []i75" Al consists of a finite number of matrices
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of the form from Lemma 3 and at least one matrix with all positive parameters
from Lemma 3 going to infinity. In effect, the positive parameters from Lemma
3 for this product goes to infinity, which implies that A ([]75" A™) goes

w=2
to infinity. As a result, with d — 00, Amaa(B@) — cc.

We set the width to satisfy w > 1, but the same can be proven by allowing
for w = 1. This requires an additional assumption that either |a| # 1 or k,, # 1.

5 Vanishing Empirical Variance

Theorem 1 has important consequences for He-initialized networks. That the
kurtosis grows to infinity implies that, for any finite sample size, the observed
empirical variance will converge in probability to zero. Combined with the other
properties preserved through He-initialization, this practically means that vir-
tually all outputs map arbitrarily close to zero for a sufficiently deep network.
And this happens despite the theoretical variance being constant.

Let us explain this implication more formally.? For variance of the empirical

variance S2 and the kurtosis, it holds that Var[S2] = (nf 71—73) 2® where

n—1) n>

n is the sample size, x is the kurtosis and ¢2 is the theoretical variance. For

2 2
large n, we can approximate distribution of the ratio % by %Ff"), where

DF, = V{fﬁ;2] = - 2n__ This can alternatively be expressed in terms of the
n —a1
2
gamma distribution % ~ Ik = D?‘,G = DLFH) With kurtosis k growing to

infinity, DF,, shrinks to zero for any n € N, so the shape parameter k£ shrinks
to zero and the scale parameter 6 = % grows to infinity. The probability density
function for this distribution is given as f(x; k,0) = f(x; k, %) = % For
any x > 0, with &k — 0, this converges to zero because the numerator converges
to a constant and the denominator grows to infinity. The speed of convergence
is faster for large z.

When training sufficiently deep networks on machines with finite precision
using finite datasets, we will observe outputs to be zeroed out. As a result,
propagated gradients will be zeros and the weights of the network will remain
at their initialization values.

6 Experiments

Theorem 1 shows that He-initialization suffers from the vanishing empirical vari-
ance problem. We now hypothesize that problems with empirical variance con-
cern all fully random initialization methods that initialize weight matrices with
off-diagonal entries, because this induces increased dependence of outputs. If
the theoretical variance is kept constant or decreases, the empirical variance
vanishes, otherwise it explodes. Here, we present empirical evidence supporting

3 We refer to [21] for a detailed treatment and proofs.
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this hypothesis. We verify it experimentally for five state-of-the-art random ini-
tialization methods: Glorot by [8], He by [11], orthogonal by [22], GSM by [5],
and Metalnit by [6]. We also show that ZerO proposed by [27] is superior to all
these methods in very deep regimes.

All experiments are performed on constant-width ReLU networks on MNIST
[18] and CIFARI10 [17]. The inputs are preprocessed so that the means of all
channels are zero and the variances are one. The experiments were run on a
machine with a single Intel i7-11850H CPU. The code is available at https://
github.com/Grzejdziok /vanishing-empirical-variance.

6.1 The Necessity of Small Kurtosis for He-Initialization

We performed experiments to illustrate the negative impact of high output kur-
tosis at initialization on training. In the case of He-initialization, it is possible to
calculate the theoretical output kurtosis recursively applying the formula from
Proposition 4.3, given kg and ¢ for the input He random vector.

MNIST CIFAR10
0.9
0.8
0.7
0.61 *Za,
0.5) * &
o8
ol S ih ..
03] %y vttt
0.21 S Vambe o« o e,
0.1 - o 00 000 L ] L] L] o om0 - o L] L]

103 107 101t 10%° 107 101t 10%

Fig. 1. Test accuracy after 500 gradient steps vs output distribution kurtosis at initial-
ization for networks of varying widths, depths, and initialization distributions trained
on MNIST and CIFAR10. Results for 330 experiments per dataset.

We estimated the values for MNIST and CIFAR10 using 107 random samples.
For MNIST we got ¢y = 0.71, kg = 3.95 and for CIFAR10 we got ¢y = 0.10,
ko = 3.28. We trained networks of various depths and widths to observe the
relation between different values of kurtosis at initialization and test accuracy.
We trained constant-width He-initialized networks twice for each of all tuples
(width, depth, initialization distribution) for widths and depths from 5 to 50 with
step of 5, and the weight initialization distributions Bernoulli (k,, = 1), uniform
(kw = 1.8), normal (K, = 3). We used Adam optimizer [16] with learning rate
of 1074, B1 = 0.9, B2 = 0.999 and no weight decay.

We plotted test accuracy after 500 gradient steps over output kurtosis at
initialization. The results are given in Fig. 1. From the plots, we can see that
networks with large output kurtosis at initialization cannot be effectively trained.


https://github.com/Grzejdziok/vanishing-empirical-variance
https://github.com/Grzejdziok/vanishing-empirical-variance
https://github.com/Grzejdziok/vanishing-empirical-variance
https://github.com/Grzejdziok/vanishing-empirical-variance
https://github.com/Grzejdziok/vanishing-empirical-variance
https://github.com/Grzejdziok/vanishing-empirical-variance
https://github.com/Grzejdziok/vanishing-empirical-variance

374 M. Grzejdziak-Zdziarski et al.

10° He (normal dist.) 10° Glorot (normal dist.) orthogonal
—— p=0.900 —— p=0.900 Iy
p=0.990 p=0.990 10t Wﬂw
101 p=0.999 10! —— p=0.999 i
™,
10 W 107! 10-1{ — p=0.900
\W p=0.990
—— p=0.999
-3 -3 -3
07520 40 e0 80 100 07520 40 60 80 100 107%5"20 40 60 80 100
gsm metainit ZerO
M 104 — p=0.900 M 100
=0.990
L J\’\\AA P w‘//
10% b 10%] —— p=0.999 101
r\ MM\ 1023 /‘/’
10-1{ — p=0.900 10-2] — P=0.900
p=0.990 1010 p=0.990
—— p=0.999 —— p=0.999
1073 1073 1073
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Fig. 2. Estimated quantiles of the output empirical variance distribution over depth
given the whole CIFAR10. The plots use a logarithmic scale. ZerO is deterministic, so
all its quantiles are equal.

6.2 SOTA Initialization and Empirical Variance Problem

To see whether the problems with empirical variance occur for other state-of-the-
art initialization methods, we performed an experiment to estimate the empirical
variance distribution at the output.

For all random initialization methods considered, we initialized 10,000 neural
networks (1,000 for Metalnit) of constant width w = 10 and depth d = 100 and
calculated the empirical variance of a single output given the whole CIFAR10
training set as input. We then calculated quantiles at 0.9, 0.99, and 0.999 over
all different initializations and plotted these against layer depth in Fig. 2.

We observe that for all random initialization methods except Metalnit 90%
networks will have empirical variance lower than 1073 after 80 layers and all
quantiles monotonously decrease after 40 layers. For Metalnit, empirical vari-
ances explode. We observe a different behavior for ZerO, which initializes most
layers to identities. It keeps the empirical variance constant after the first layer.

6.3 Empirical Variance Problem: Practical Significance

To evaluate the practical significance of the problems with empirical variances
observed in the previous section, we trained neural networks of varying depths
on CIFARI10 and evaluated their test accuracy after 500 gradient steps. We used
Adam [16] as an optimizer with £; = 0.9, and 82 = 0.999 without weight decay.
We trained networks for two widths: 1) width 10 and depths from 0 to 100 with
a step of 10 and learning rate of 10~%, 2) width 200 and depths from 0 to 500
with a step of 50 and learning rate of 10~°.
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Fig. 3. Test accuracy after 500 gradient steps over network depth for fully connected
constant-width ReL U networks trained on CIFAR10. The curves indicate the means
and the bars indicate the minima and maxima over 5 repetitions.

The results are given in Fig.3. We can see that all random initialization
methods fail to train in very deep regimes and are inferior to ZerO, which does
not suffer from the problems with empirical variance.

7 Discussion

By analyzing the dynamics of the output’s kurtosis in He-initialized networks,
we identified two new problems in very deep neural networks: the exploding
kurtosis and the vanishing empirical variance problems. Our experiments show
that issues with exploding or vanishing empirical variance concern not only He-
initialization but also other state-of-the-art random initialization methods such
as Glorot [8], GSM [5], or Metalnit [6]. All of these methods fail to train very
deep networks, while our experiments show that with deterministic initialization
methods like ZerO [27], successful training is possible.

Our contribution is primarily theoretical and, in our experiments, we ana-
lyzed a toy architecture of constant-width fully connected ReLU networks that
illustrated our theoretical results. However, we hypothesize that our main result
about exploding kurtosis extends to setups that are commonly used in practice,
like transformers or convolutional networks. The addition of skip connections
cannot stop the growth of kurtosis because kurtosis explodes even for networks
without activation function, which is equivalent to setting the negative slope
parameter a to 1 in our analysis. Moreover, convolutional layers will induce even
more dependency of layer outputs due to parameter sharing, so we expect the
output kurtosis to grow even faster.

It is unclear whether using activation functions other than ReLU could mit-
igate this issue. Bounded activation functions like tanh or sigmoid reduce the
theoretical variance of their inputs, yet their impact on kurtosis is unclear.
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A Proof of Proposition 3.2

We first prove the following lemma.

Lemma 6. Let z be a zero-mean, symmetric random variable with Var[z] = o2.

Then E[¢?(z)] = —(a22+1)0_2'

xT

Proof.
0 oo
E[62(z)] = / Sl = [ dap)is+ [ epla)da
—00 0
2 i 2 L Ji 2 17 2
=a 2?p(x)de + | 2*p(x)dx = 3¢ x’p(x)dx + 5] p(x)dz
—o00 0 —0o0 —o0
2
1
= a ; 0’3

Below, we prove Proposition 3.2.

Proposition 4 (He-initialization). If for alll = 1, .., d weight matrices W
are i.i.d., zero-mean, and symmetric with variance equal to m, then for

an input He random vector x with variance o2 the output random vector YD s

a He random vector with variance o2.

Proof. Consider a He random vector x with variance o2 as input. We prove

the proposition by induction on d starting from the base case of d = 0 which
is satisfied by assumptions on the input vector. Assume that it holds for
some [. For [ + 1, we have y(+1) = W(H'l)gba(y(l)). Consider a specific entry
y,(JH) =y W,géﬂ)gba(ygl)). It is symmetric as it is a sum of symmetric ran-
dom variables. As it is a sum of uncorrelated variables, its variance is sum of
variances of the summands

Varly ZH) ZV(IT‘ Hl)(ba( )]
=ZE[(W&*”)Z]M@A“)}—E[W SUPEB P
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Lastly, consider Cov[y,(fﬂ), yj(Hl)] for k # j

Coufy™*, 5] = Efyl+ V0] — By R )
wiq wy
l 1 . .
=B W 0a N W6l

i=1 =1

ZZ WO o (W 6, (4]

’L() 121—
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35 R B GO 6,00 = 0

io=1141=1

So all entries in y;,, are uncorrelated.

B Perron Theorem

We provide the Perron theorem as given in [14]. We refer to this book for further
details and proofs.

Theorem 2 (Perron). Let A be a n X n matriz which is irreducible and non-
negative and n > 2. Let p(A) denote the spectral radius of A. Then:

1. p(A) >0,

2. p(A) is an algebraically simple eigenvalue of A,

3. there is a unique real vector x such that Ax = p(A)x and x1+xo+...4 2, = 1;
this vector is positive,

4. there is a unique real vector y such that y* A = y" p(A) and y1+yo+... 4y, =
1, this vector is positive,

5. |\l < p(A) for every eigenvalue \ of A such that X\ # p(A),

6. (p(A)~tA)™ — zy” as m — oo.
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