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Abstract. Neural networks are typically initialized such that the hid-
den pre-activations’ theoretical variance remains constant to avoid the 
vanishing and exploding gradient problem. This condition is necessary 
to train very deep networks, but numerous analyses show this to be 
insufficient. We explain this behavior by analyzing the empirical vari-
ance, which is more meaningful in the practical setting that deals with 
data sets of finite size. We demonstrate its discrepancy with the theo-
retical variance, which grows with depth. We study the output distribu-
tion of neural networks at initialization and find that its kurtosis grows 
to infinity with increasing depth, even if the theoretical variance stays 
constant. As a result, the empirical variance vanishes: its asymptotic 
distribution converges in probability to zero. Our analysis focuses on 
fully connected ReLU networks with He-initialization, but we hypothe-
size that many more random weight initialization methods suffer from 
vanishing or exploding empirical variance. We support this hypothesis 
experimentally and demonstrate the failure of state-of-the-art random 
initialization methods in very deep regimes. 

Keywords: vanishing gradient · empirical variance · kurtosis · ReLU 

1 Introduction 

The main heuristic for deriving initialization methods for deep neural networks 
is to keep the theoretical variance of the output or gradient distribution constant 
over all hidden layers. The idea is that this ensures proper propagation of the 
input signal through the network and therefore mitigates the vanishing gradient 
problem [ 3, 13]. This approach has been used to derive two initialization methods: 
so-called Glorot [ 8] and He-initialization [ 11]. However, these methods are still 
not sufficient to train arbitrarily deep networks. Other statistical properties have 
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been shown to explode or vanish even under constant variance [ 5, 9, 10, 24], while 
in the meantime, still no initialization method has been demonstrated to work 
for very deep networks. 

Here, we take another look at the consequences of keeping the theoretical vari-
ance constant and analyze distributional properties that go beyond this second 
central moment. Specifically, with a focus on He-initialization [ 11], we analyze 
the dynamics of the kurtosis, the fourth standardized moment, as a signal is 
propagated through a neural network that is He-initialized. Under mild assump-
tions, we prove that the kurtosis of the output distribution grows to infinity with 
increasing depth. As we will show, the surprising effect of this is that the empir-
ical variance has to go to zero (in probability), despite the constant theoretical 
variance. Consequently, almost all outputs are mapped to zero by an arbitrarily 
deep network. We call this problem the vanishing empirical variance. 

Our analysis suggests that the problem of vanishing empirical variance may 
concern many more random initialization schemes. We demonstrate this empiri-
cally for state-of-the-art random initialization methods for fully connected ReLU 
networks. We also show that ZerO [ 27], which is a deterministic method that 
keeps empirical variance constant, can train very deep and narrow networks, a 
fact not realized by its authors. 

In Sect. 2, we recall the literature related to our work. In Sect. 3, we define 
the basic setup we consider, nuancing the original analysis of He-initialization 
from [ 11]. In Sect. 4, we analyze this setting and come to our main theoretical 
result. In Sect. 5, we show its practical consequences for the empirical variance of 
the output distribution at initialization. In Sect. 6, we present our experimental 
results. Finally, in Sect. 7, we discuss how our analysis extends to other types of 
layers and other activation functions. 

2 Related Work 

The idea to initialize the weights by sampling them i.i.d. from a zero-mean 
symmetric distribution such that the variance is kept constant over all layers 
is known at least since the work by [ 4]. It was popularized as a “trick” by [ 19]. 
[ 8] extended it to balance the need to keep the output variance and the gradi-
ent variance constant, while [ 11] analyzed the specific case of ReLU activation. 
Further extensions of this work to the specific case of highly popular ResNets 
[ 12] have been  given by [  26] and  [  1]. Other approaches to random weight initial-
ization include orthogonal initialization [ 22], delta-orthogonal initialization [ 25], 
data-dependent LSUV [ 20] or MetaInit initialization [ 6], and GSM initialization 
[ 5]. Another approach is to initialize the weights deterministically. Examples 
are identity initialization [ 2] and ZerO initialization [ 27]. Although our focus is 
He-initialization [ 11], we hypothesize that our claims extend to other random 
initialization methods, which we corroborate in our experiments. 

Various results indicate that controlling the variance is not sufficient to miti-
gate gradient problems. [ 9] showed that the empirical variance of gradients grows 
exponentially with increasing depth, while [ 10] and  [  5] showed the same for
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the empirical variance of the lengths of activations and pre-activations, respec-
tively. [ 24] demonstrated that with increasing depth, the output distribution 
has increasingly heavy tails. We add to this line of research by studying kurto-
sis of the output distribution, which directly relates to its empirical variance. 
Our analysis shows that even if we keep the theoretical variance constant, the 
empirical variance will tend to zero. 

Proper initialization of neural networks is only a prerequisite to ensure fast 
convergence to a good solution of the given optimization problem. [ 23] showed  
that for standard random weight initialization methods, the number of iterations 
required to converge grows exponentially in depth. [ 7] reached a similar conclu-
sion, while [ 15] showed that the convergence speed is independent of depth for 
the case of orthogonal initialization. However, our work questions the possibility 
of convergence of very deep randomly initialized networks in practice, even with 
initialization schemes designed to overcome the problem of large depth, such as 
orthogonal initialization [ 22] or GSM initialization [ 5]. 

3 Preliminaries 

We consider fully connected networks with leaky ReLU nonlinearities. For an 
input x ∈ Rw0 , and a neural network with depth d ∈ N, widths  (wl)d 

l=0 ⊂ N, 
and negative slope a ∈ R, the output y(l) ∈ Rwl of the lth layer is recursively 
defined as 1

y(0) = x, y(l) = W(l) φa(y(l−1)) 

where for all l = 1, ..., d W(l) ∈ Rwl×wl−1 is a weight matrix and φa : R → R is 
leaky ReLU with the negative slope parameter a ∈ R, applied entry-wise 

φa(x) =  
ax, if x <  0, 
x, otherwise. 

We treat x and (W(l) )d 
l=1 as random variables and analyze distributional prop-

erties of y(d) with increasing d. We study tHe-initialization method by [ 11] which  
takes the entries of each weight matrix W(l) to be i.i.d. symmetric variables with 
variance 2 

wl(a2+1) . This method preserves several distributional properties of the 
input random vectors. 

Definition 1 (He random vector). We say that a random vector x ∈ Rw is a 
He random vector if all variables in x have mean zero, symmetric 2, uncorrelated, 
and homoscedastic with some variance σ2 

x.
1 Throughout the paper, for vectors and matrices we use upper indices to indicate 

the layer, and lower indices to refer to entries. For scalars, we use the lower indices 
to indicate the layer. For the function φa we use the lower index to indicate the 
negative slope parameter a. 

2 By a symmetric random variable we mean a random variable with a probability 
distribution symmetric around its mean. 
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Proposition 1 (He-initialization). If for all l = 1, ..., d weight matrices W(l) 

are i.i.d., zero-mean, and symmetric with variance equal to 2 
wl(a2+1) , then for 

an input He random vector x with variance σ2 
x the output random vector y(d) is 

a He random vector with variance σ2 
x. 

A proof for Proposition 1 has been given by [ 11] under the stronger assump-
tion of preservation of independence of vector entries. For simplification, [ 11] 
assumed that independence is preserved through the network, but for our analy-
sis it is important to realize that what actually is preserved is uncorrelatedness. 
We provide a proof with this modification in the supplementary material. 

One may ask how to make sure that the properties of He random vector 
are satisfied at the input. The Proposition 2 below shows that if we include 
an additional weight matrix before the first activation, it transforms any input 
random vector to a He random vector. 

Proposition 2 (Any random vector can be transformed to a He ran-
dom vector). For any finite-variance random vector x ∈ Rw, if  W ∈ Rw×w 

is a random matrix of i.i.d. zero-mean, symmetric variables with finite variance 
such that W and x are mutually independent, then z = Wx is a He random 
vector with some variance σ2 

z . 

Proof. Consider a specific entry zi in z, zi = 
w 

k=1 

Wikxk. For any i, k, Wik is sym-

metric and zero-mean, and so must be Wikxk. Because zi is a sum of zero-mean 
and symmetric random variables, it is zero-mean and symmetric. All entries of 
z have the same variance because it is expressed with the same formula, so they 
are homoscedastic with some variance σ2 

z . Lastly, we will show that zi, zj are 
uncorrelated for any i, j, i = j. Consider covariance of two entries zi, zj 

Cov[zi, zj ] =  E[zizj ] − E[zi]E[zj ]. 

Because E[zi] is equal to zero, it simplifies to 

Cov[zi, zj ] =  E[zizj ] =  E[( 
w 

k=1 

Wikxk)( 
w 

k=1 

Wjkxk)] 

= E[ 
w 

k1=1 

w 

k2=1 

Wik1xk1Wjk2xk2 ] =  
w 

k1=1 

w 

k2=1 

E[Wik1 ]E[xk1Wjk2xk2 ] = 0. 

We will assume that inputs are always He random vector and that networks 
are initialized according to Proposition 1. Effectively, the outputs for each hidden 
layer will be He random vectors too. 

4 Theory 

We present our main theoretical results. We derive the relation between input 
and output kurtosis in a neural network (Proposition 3) and prove that for
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bounded-width networks, it goes to infinity with increasing depth (Theorem 1). 
Here, kurtosis of a random variable x is defined as Kurt[x] =  E[ (x−E[x])4 

V ar[x]2 ]. We  
will analyze the case with E[x] = 0  which simplifies it to Kurt[x] = 1 

V ar[x]2 E[x
4]. 

First, we prove Proposition 3 in which we will derive the exact recursive for-
mula for the dynamics of kurtosis over consecutive layers. The derived formula 
tracks two statistical properties in a linear matrix difference equation: kurtosis 
and covariance of squared outputs. We take the mild assumption, which is sat-
isfied with Proposition 2 that the covariance of squared outputs is equal for any 
two outputs. 

In the proof of Proposition 3, we will use two lemmas 1 and 2 that are given 
first. 

Lemma 1. Let x be a zero-mean, symmetric random variable with V ar[x] =  σ2 
x 

and Kurt[x] =  κx. Then  E[φ4 
a(x)] = (a

4+1) 
2 σ4 

xκx. 

Proof. 

E[φ4 
a(x)] = 

∞ 

−∞ 

φ4 
a(x)p(x)dx = 

0 

−∞ 

a4 x4 p(x)dx + 

∞ 

0 

x4 p(x)dx 

= 
1 
2 
a4 

∞ 

−∞ 

x4 p(x)dx + 
1 
2 

∞ 

−∞ 

x4 p(x)dx = 
a4 + 1  

2 
E[x4] =  

a4 + 1  
2 

σ4 
xκx. 

Lemma 2. Let x, y be identically distributed, uncorrelated, zero-mean, symmet-
ric random variables with variances σ2 

x, kurtoses κx and Cov[x2 , y2] =  c. Then  
E[φ2 

a(x)φ
2 
a(y)] = (a

2+1)2 

4 (σ4 
x + c). 

Proof. 

E[φ2 
a(x)φ

2 
a(y)] = 

R2 

φ2 
a(x)φ

2 
a(y)p(x, y)dxdy 

= 

R
2 
+ 

x2 y2 p(x, y)dxdy + 2a2 

R+×R− 

x2 y2 p(x, y)dxdy 

+ a4 

R
2 
− 

x2 y2 p(x, y)dxdy = 
1 
4 
(a2 + 1)2 E[x2 y2] 

Recall that Cov[x2 , y2] = E[x2 y2] − E[x2]E[y2] so E[x2 y2] =  Cov[x2 , y2] +  
E[x2]E[y2]. We get  as  a result  

E[φ2 
a(x)φ

2 
a(y)] = 

(a2 + 1)2 

4 
(σ4 

x + c).
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Proposition 3. Consider a network that is He-initialized with a distribution 
that has kurtosis κw and that has output random vectors y(l) at every layer l 
with variance σ2 

x. Let  
cl = Cov[(y (l) i )2 , (y (l) j )

2] 

be the covariance between any two squared entries from y(l) and let κl = 
Kurt[y (l) i ] be the kurtosis of every entry i in y(l), then the kurtoses of consecutive 
layers are recursively related through the linear matrix difference equation 

k(l+1) = A(l) k(l) 

where k(l) = [κl, cl, 1]T and 

A(l) = 

⎡ 

⎢⎣ 

2(a4+1)κw 

wl(a2+1)2 
3(wl−1) 

wlσ4 
x 

3(wl−1) 
wl 

2(a4+1)σ4 
x 

wl(a2+1)2 
wl−1 

wl 

−σ4 
x 

wl 

0 0 1  

⎤ 

⎥⎦ . 

Consequently, the relation between the input kurtosis and the output kurtosis at 
depth d + 1  is 

k(d+1) = 
d 

l=0 

A(d−l) k(0) . 

Proof. We will derive the formula for κl+1, then for  cl+1. We have  E[y (l+1) 
i ] = 0, 

V ar[y (l+1) 
i ] =  σ2 

x, so  κl+1 = Kurt[y (l+1) 
i ] =  1 σ4 

x 
E[(y (l+1) 

i )4]. We can expand 

E[(y (l+1) 
i )4] =  E[( 

wl 

j=1 

W (l+1) 
ij φa(y (l) j ))

4] using the multinomial theorem. Because 

the weight matrix entries are i.i.d., zero-mean and symmetric, the terms with 
the odd powers vanish. We get 

E[(y (l+1) 
i )4] =  

wl 

j=1 

E[(W (l+1) 
ij φa(y (l) j ))

4] 

+ 
wl 

j,k=1 
j=k 

4 
2, 2 

E[(W (l+1) 
ij φa(y (l) j ))

2(W (l+1) 
ik φa(y (l) k ))

2]. 

Using Lemma 1, we find that 

E[(W (l+1) 
ij φa(y (l) j ))

4] =  
4 

w2 
l (a2 + 1)2 

κw 
(a4 + 1)  

2 
σ4 

xκl = 
2(a4 + 1)  

w2 
l (a2 + 1)2 

κwσ4 
xκl. 

We can get a closed-form formula for E[(W (l+1) 
ij φa(y (l) j ))

2(W (l+1) 
ik φa(y (l) k ))

2] using 
Lemma 2 

E[(W (l+1) 
ij φa(y (l) j ))

2(W (l+1) 
ik φa(y (l) k ))

2] =  

= 
2 

wl(a2 + 1)  

2 (a2 + 1)2 

4 
(σ4 

x + cl) =  
σ4 

x + cl 

w2 
l 

.
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Putting the two above to the multinomial expansion of E[(y (l+1) 
i )4] given in the  

beginning, we get 

E[(y (l+1) 
i )4] =  

2(a4 + 1)  
wl(a2 + 1)2 

κwσ4 
xκl + 6  

wl 

2 
σ4 

x + cl 

w2 
l 

= 
2(a4 + 1)  

wl(a2 + 1)2 
κwσ4 

xκl + 3wl(wl − 1) σ
4 
x + cl 

w2 
l 

Finally, we should divide E[(y (l+1) 
i )4] by σ4 

x to get 

κl+1 = 
2(a4 + 1)κw 

wl(a2 + 1)2 
κl + 

3(wl − 1) 
wlσ4 

x 
cl + 

3(wl − 1) 
wl 

. 

Next, consider cl+1 = Cov[(y (l+1) 
i )2 , (y (l+1) 

j )2] for any i, j, i = j 

cl+1 = Cov[(y (l+1) 
i )2 , (y (l+1) 

j )2] =  E[(y (l+1) 
i )2(y (l+1) 

j )2] − E[(y (l+1) 
i )2]E[(y (l+1) 

j )2] 

= E[( 
wl 

k=1 

W (l+1) 
ik φa(y (l) k ))

2( 
wl 

k=1 

W (l+1) 
jk φa(y (l) k ))

2] − σ4 
x 

= 
4 

w2 
l (a2 + 1)2 

wl 

k1=1 

wl 

k2=1 

E[φ2 
a(y (l) k1 

)φ2 
a(y (l) k2 

)] − σ4 
x 

where the sum wl 

k1=1 
wl 

k2=1 E[φ
2 
a(y (l) k1 

)φ2 
a(y (l) k2 

)] is 

wl 

k1=1 

wl 

k2=1 

E[φ2 
a(y (l) k1 

)φ2 
a(y (l) k2 

)] = 
wl 

k2=1 
k2=k1 

(a2 + 1)2 

4 
(σ4 

x + cl) +  
wl 

k=1 

a4 + 1  
2 

σ4 
xκl 

= 
wl(wl − 1)(a2 + 1)2 

4 
(σ4 

x + cl) +  
wl(a4 + 1)  

2 
σ4 

xκl. 

Putting it all together, we get 

cl+1 = 
2(a4 + 1)σ4 

x 
wl(a2 + 1)2 

κl + 
wl − 1 

wl 
cl − σ

4 
x 

wl 
. 

and k(l+1) = [κl+1, cl+1, 1]T is of the desired form. 

Now, we will show in Theorem 1, that with the dynamics derived in Proposi-
tion 3, for any valid k(0) , κd will grow to infinity. To this end, we will first prove 
three lemmas that describe the properties of matrices A(l) and their products. 
In Lemma 3, we will show that any product of such matrices is of a form param-
eterized with four positive parameters. Next, in Lemma 4, we will show that any 
matrix A(l) has a positive eigenvalue that is strictly larger than 1. The proof of
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Lemma 4 uses the Perron theorem, which we provide with a reference to a proof 
in the appendix in the supplement. We combine these two properties in Lemma 
5 to show that for any A = A(l) raised to a power m, all its positive parameters 
will tend to infinity with m → ∞  and so its norm tends to infinity. We use this 
property in the proof of Theorem 1. 

Lemma 3. Consider the product of matrices B = d 
l=0 A

(d−l) as given in 
Proposition 3, with w >  1. B is of the form 

B = 

⎡ 

⎣ 
α β 

σ4 
x 

β 
γσ4 

x δ σ4 
x(δ − 1) 

0 0 1  

⎤ 

⎦ (1) 

with γ >  0, α ≥ γ, δ >  0, β ≥ δ. 

Proof. We prove the lemma by induction on d. For  d = 0  we have B = A(0) , 
which is satisfied by the definition of A(0) . Assume that (1) is satisfied for some 
d ∈ N. Denote C = d 

l=0 A
(d−l) and B = A(d+1) C. We can write 

A(d+1) = 

⎡ 

⎣ 
α1 

β1 
σ4 
x 

β1 

γ1σ
4 
x δ1 σ

4 
x(δ1 − 1) 

0 0 1  

⎤ 

⎦ , 

C = 

⎡ 

⎣ 
α2 

β2 
σ4 
x 

β2 

γ2σ
4 
x δ2 σ

4 
x(δ2 − 1) 

0 0 1  

⎤ 

⎦ 

with ∀i=1,2, γi > 0, αi ≥ γi, δi > 0, βi ≥ δi. A(d+1) C is 
⎡ 

⎣ 
α1α2 + β1γ2 

α1β2+β1δ2 
σ4 
x 

α1β2 + β1δ2 
(γ1α2 + δ1γ2)σ4 

x γ1β2 + δ1δ2 σ4 
x(γ1β2 + δ1δ2 − 1) 

0 0 1  

⎤ 

⎦ . 

If we set α = α1α2 + β1γ2, β = α1β2 + β1δ2, γ = γ1α2 + δ1γ2, δ = γ1β2 + δ1δ2, 
we get that B = A(l+1) C is of the desired form with 

γ = γ1α2 + δ1γ2 > 0, α  = α1α2 + β1γ2 ≥ γ >  0, 
δ = γ1β2 + δ1δ2 > 0, β  = α1β2 + β1δ2 ≥ δ >  0. 

Lemma 4. The largest eigenvalue of any matrix A(l) from Proposition 3 is 
larger than 1. 

Proof. Consider the matrix A(l) for some l = 0, ..., d. Its characteristic polyno-
mial is of the form 

det(A(l) − λI) = (λ2 + bλ + c)(1 − λ)
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where λ2 + bλ + c is the characteristic polynomial of a matrix A(l) 
− equal to 

A(l) but with row 3 and column 3 removed. A(l) 
− is positive and by the Perron 

theorem it has two distinct real eigenvalues λmax and λmin such that λmax > 0 
and λmax > |λmin|. We will show that λmax > 1. 

Express λmax using trace and determinant of A(l) 
− , 

λmax = 
tr(A(l) 

− )+ tr2(A(l) 
− )−4det(A(l) 

− ) 
2 , with tr(A(l) 

− ) and det(A(l) 
− ): 

tr(A(l) 
− ) =  

2(a4 + 1)κw 

wl(a2 + 1)2 
− 1 

wl 
+ 1, 

det(A(l) 
− ) =  

2(a4 + 1)(wl − 1)(κw − 3) 
w2 

l (a2 + 1)2 
. 

We consider two cases for tr(A(l) 
− ) and show that in both of them λmax > 1. 

If tr(A(l) 
− ) ≥ 2, then  λmax > 1 because λmax > tr(A(l) 

− ) 
2 . Otherwise, if  1 ≤ 

tr(A(l) 
− ) < 2, then  

λmax(A
(l) 
− ) > 1 

⇔ tr2(A(l) 
− ) − 4det(A(l) 

− ) > 2 − tr(A(l) 
− ) 

⇔ tr2(A(l) 
− ) − 4det(A(l) 

− ) > 4 − 4tr(A(l) 
− ) +  tr2(A(l) 

− ) 

⇔ tr(A(l) 
− ) > det(A(l) 

− ) + 1  

which is always satisfied, because for κw < 3, we have det(A(l) 
− ) + 1  < 1 ≤ 

tr(A(l) 
− ), and  for  κw ≥ 3 

det(A(l) 
− ) =  

2(a4 + 1)(wl − 1)(κw − 3) 
w2 

l (a2 + 1)2 

< 2(a
4 + 1)(κw − 3) 
wl(a2 + 1)2 

< 2(a
4 + 1)(κw − 1) 
wl(a2 + 1)2

≤ tr(A(l) 
− ) − 1. 

This proves that λmax > 1. 

Lemma 5. Consider the matrix A = A(l) from Proposition 3 raised to the 
power m. If  m → ∞, then αm, βm, γm, δm from the representation of Am in 
the form from Lemma 3 go to infinity. 

Proof. By Lemma 4 λmax(A) > 1 so lim
m→∞ ||Am|| = ∞, so it must be that at  

least one of αm, βm, γm, δm goes to infinity. Consider four cases: 

1. Assume αm tends to infinity. From the proof of Lemma 3, γm+1 = γ1αm + 
δ1γm > γ1αm, so  γm must tend to infinity. In the same way, δm+1 = γmβ1 + 
δmδ2 > γmβ1, so  δm must tend to infinity too. Because βm > δm, βm must 
tend to infinity as well.
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2. Assume βm tends to infinity. From the proof of Lemma 3, αm+1 = αmα1 + 
βmγ1, so  αm must tend to infinity, and so γm and δm as shown above in 1. 

3. Assume γm tends to infinity. Then αm must tend to infinity because αm ≥ γm 
for any m, and  so  βm and δm must tend to infinity as shown above in 1. 

4. Assume δm tends to infinity. Then βm must tend to infinity because βm ≥ δm 
for any m, and  so  αm and γm must tend to infinity as shown above in 2. 

Theorem 1. For any He-initialized network with widths bounded from below by 
2 and from above by some wmax, the output-distribution kurtosis grows to infinity 
with increasing depth for any input He random vector. 

Proof. We can express the vector k(d+1) at depth d + 1  as k(d+1) = B(d) k(0) 

with B(d) = d 
l=0 A

(d−l) parameterized by αd, βd, γd, δd from Lemma 3. We  
can write that 

κd+1 = αdκ0 + 
βd 

σ4 
x 
c0 + βd. 

Note that it must be that c0 ≥ −σ4 
x, because 

c0 = Cov[(y (0) i )2(y (0) j )2] 

= E[(y (0) i )2(y (0) j )2] − E[y (0) i ]2 E[y (0) j ]2 = E[(y (0) i )2(y (0) j )2] − σ4 
x ≥ −σ4 

x. 

We can consider the output of the first layer as the actual input, so we can even 
say that c0 = σ4 

x(−1+ ) for some 0, because c1 = γ1σ4 
xκ0+δ1c0+σ4 

x(δ1−1) > 
γ1σ

4 
xκ0 − σ4 

x for some γ1 > 0 and δ1 > 0. 
We  can write then that  

κd+1 = αdκ0 + 
βd 

σ4 
x 
c0 + βd = αdκ0 + βd 

To know that κd+1 goes to infinity with d → ∞, it is enough to show that 
lim 

d→∞ 
||B(d)|| = ∞, because it would imply that one of αd, βd, γd or δd goes to 

infinity, in which case κd+1 goes to infinity. We will show that lim 
d→∞ 

λmax(B(d) ) =  

∞, which implies that lim 
d→∞ 

||B(d)|| = ∞. Because for any two matrices M1 and 
M2 λmax(M1M2) =  λmax(M2M1), we can consider λmax of a rearranged matrix 
product 

λmax(B(d) ) =  λmax 

d 

l=0 

A(l) = λmax 

wmax 

w=2 

Amw 
w , 

where Aw denotes a matrix A(l) from Proposition 3 for a specific width w, and  
mw the number of occurrences of such matrices until depth d. With d → ∞, there  
is at least one w for which mw → ∞. For such widths w, Amw 

w behaves according 
to Lemma 5. The product wmax 

w=2 A
mw 
w consists of a finite number of matrices
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of the form from Lemma 3 and at least one matrix with all positive parameters 
from Lemma 3 going to infinity. In effect, the positive parameters from Lemma 
3 for this product goes to infinity, which implies that λmax ( 

wmax 

w=2 A
mw 
w ) goes 

to infinity. As a result, with d → ∞, λmax(B(d) ) → ∞. 

We set the width to satisfy w >  1, but the same can be proven by allowing 
for w = 1. This requires an additional assumption that either |a = 1  or κw = 1. 

5 Vanishing Empirical Variance 

Theorem 1 has important consequences for He-initialized networks. That the 
kurtosis grows to infinity implies that, for any finite sample size, the observed 
empirical variance will converge in probability to zero. Combined with the other 
properties preserved through He-initialization, this practically means that vir-
tually all outputs map arbitrarily close to zero for a sufficiently deep network. 
And this happens despite the theoretical variance being constant. 

Let us explain this implication more formally. 3 For variance of the empirical 
variance S2 

n and the kurtosis, it holds that V ar[S2 
n] = κ − n−3 

n−1 
σ4 

n , where  
n is the sample size, κ is the kurtosis and σ2 is the theoretical variance. For 
large n, we can approximate distribution of the ratio S2 

n 

σ2 by χ2(DFn) 
DFn 

, where  
DFn = 2σ4 

V ar[S2 
n] 

= 2n 
κ−n−3 

n−1 
. This can alternatively be expressed in terms of the 

gamma distribution S2 
n 

σ2 ∼ Γ (k = DFn 

2 , θ  = 2 
DFn 

). With kurtosis κ growing to 
infinity, DFn shrinks to zero for any n ∈ N, so the shape parameter k shrinks 
to zero and the scale parameter θ = 1 k grows to infinity. The probability density 
function for this distribution is given as f(x; k, θ) =  f(x; k, 1 k ) =  x

k−1e−kx kk 

Γ (k) . For  
any x >  0, with  k → 0, this converges to zero because the numerator converges 
to a constant and the denominator grows to infinity. The speed of convergence 
is faster for large x. 

When training sufficiently deep networks on machines with finite precision 
using finite datasets, we will observe outputs to be zeroed out. As a result, 
propagated gradients will be zeros and the weights of the network will remain 
at their initialization values. 

6 Experiments 

Theorem 1 shows that He-initialization suffers from the vanishing empirical vari-
ance problem. We now hypothesize that problems with empirical variance con-
cern all fully random initialization methods that initialize weight matrices with 
off-diagonal entries, because this induces increased dependence of outputs. If 
the theoretical variance is kept constant or decreases, the empirical variance 
vanishes, otherwise it explodes. Here, we present empirical evidence supporting

3 We refer to [ 21] for a detailed treatment and proofs. 
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this hypothesis. We verify it experimentally for five state-of-the-art random ini-
tialization methods: Glorot by [ 8], He by [ 11], orthogonal by [ 22], GSM by [ 5], 
and MetaInit by [ 6]. We also show that ZerO proposed by [ 27] is superior to all 
these methods in very deep regimes. 

All experiments are performed on constant-width ReLU networks on MNIST 
[ 18] and  CIFAR10 [  17]. The inputs are preprocessed so that the means of all 
channels are zero and the variances are one. The experiments were run on a 
machine with a single Intel i7-11850H CPU. The code is available at https:// 
github.com/Grzejdziok/vanishing-empirical-variance. 

6.1 The Necessity of Small Kurtosis for He-Initialization 

We performed experiments to illustrate the negative impact of high output kur-
tosis at initialization on training. In the case of He-initialization, it is possible to 
calculate the theoretical output kurtosis recursively applying the formula from 
Proposition 4.3, given κ0 and c0 for the input He random vector. 

Fig. 1. Test accuracy after 500 gradient steps vs output distribution kurtosis at initial-
ization for networks of varying widths, depths, and initialization distributions trained 
on MNIST and CIFAR10. Results for 330 experiments per dataset. 

We estimated the values for MNIST and CIFAR10 using 107 random samples. 
For MNIST we got c0 = 0.71, κ0 = 3.95 and for CIFAR10 we got c0 = 0.10, 
κ0 = 3.28. We trained networks of various depths and widths to observe the 
relation between different values of kurtosis at initialization and test accuracy. 
We trained constant-width He-initialized networks twice for each of all tuples 
(width, depth, initialization distribution) for widths and depths from 5 to 50 with 
step of 5, and the weight initialization distributions Bernoulli (κw = 1), uniform 
(κw = 1.8), normal (κw = 3). We used Adam optimizer [ 16] with learning rate 
of 10−4, β1 = 0.9, β2 = 0.999 and no weight decay. 

We plotted test accuracy after 500 gradient steps over output kurtosis at 
initialization. The results are given in Fig. 1. From the plots, we can see that 
networks with large output kurtosis at initialization cannot be effectively trained.

https://github.com/Grzejdziok/vanishing-empirical-variance
https://github.com/Grzejdziok/vanishing-empirical-variance
https://github.com/Grzejdziok/vanishing-empirical-variance
https://github.com/Grzejdziok/vanishing-empirical-variance
https://github.com/Grzejdziok/vanishing-empirical-variance
https://github.com/Grzejdziok/vanishing-empirical-variance
https://github.com/Grzejdziok/vanishing-empirical-variance
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Fig. 2. Estimated quantiles of the output empirical variance distribution over depth 
given the whole CIFAR10. The plots use a logarithmic scale. ZerO is deterministic, so 
all its quantiles are equal. 

6.2 SOTA Initialization and Empirical Variance Problem 

To see whether the problems with empirical variance occur for other state-of-the-
art initialization methods, we performed an experiment to estimate the empirical 
variance distribution at the output. 

For all random initialization methods considered, we initialized 10,000 neural 
networks (1,000 for MetaInit) of constant width w = 10  and depth d = 100 and 
calculated the empirical variance of a single output given the whole CIFAR10 
training set as input. We then calculated quantiles at 0.9, 0.99, and  0.999 over 
all different initializations and plotted these against layer depth in Fig. 2. 

We observe that for all random initialization methods except MetaInit 90% 
networks will have empirical variance lower than 10−3 after 80 layers and all 
quantiles monotonously decrease after 40 layers. For MetaInit, empirical vari-
ances explode. We observe a different behavior for ZerO, which initializes most 
layers to identities. It keeps the empirical variance constant after the first layer. 

6.3 Empirical Variance Problem: Practical Significance 

To evaluate the practical significance of the problems with empirical variances 
observed in the previous section, we trained neural networks of varying depths 
on CIFAR10 and evaluated their test accuracy after 500 gradient steps. We used 
Adam [ 16] as an optimizer with β1 = 0.9, and  β2 = 0.999 without weight decay. 
We trained networks for two widths: 1) width 10 and depths from 0 to 100 with 
a step of 10 and learning rate of 10−4, 2) width 200 and depths from 0 to 500 
with a step of 50 and learning rate of 10−5.
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Fig. 3. Test accuracy after 500 gradient steps over network depth for fully connected 
constant-width ReLU networks trained on CIFAR10. The curves indicate the means 
and the bars indicate the minima and maxima over 5 repetitions. 

The results are given in Fig. 3. We can see that all random initialization 
methods fail to train in very deep regimes and are inferior to ZerO, which does 
not suffer from the problems with empirical variance. 

7 Discussion 

By analyzing the dynamics of the output’s kurtosis in He-initialized networks, 
we identified two new problems in very deep neural networks: the exploding 
kurtosis and the vanishing empirical variance problems. Our experiments show 
that issues with exploding or vanishing empirical variance concern not only He-
initialization but also other state-of-the-art random initialization methods such 
as Glorot [ 8], GSM [ 5], or MetaInit [ 6]. All of these methods fail to train very 
deep networks, while our experiments show that with deterministic initialization 
methods like ZerO [ 27], successful training is possible. 

Our contribution is primarily theoretical and, in our experiments, we ana-
lyzed a toy architecture of constant-width fully connected ReLU networks that 
illustrated our theoretical results. However, we hypothesize that our main result 
about exploding kurtosis extends to setups that are commonly used in practice, 
like transformers or convolutional networks. The addition of skip connections 
cannot stop the growth of kurtosis because kurtosis explodes even for networks 
without activation function, which is equivalent to setting the negative slope 
parameter a to 1 in our analysis. Moreover, convolutional layers will induce even 
more dependency of layer outputs due to parameter sharing, so we expect the 
output kurtosis to grow even faster. 

It is unclear whether using activation functions other than ReLU could mit-
igate this issue. Bounded activation functions like tanh or sigmoid reduce the 
theoretical variance of their inputs, yet their impact on kurtosis is unclear.
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A Proof of Proposition 3.2 

We first prove the following lemma. 

Lemma 6. Let x be a zero-mean, symmetric random variable with V ar[x] =  σ2 
x. 

Then E[φ2 
a(x)] = (a

2+1) 
2 σ2 

x. 

Proof. 

E[φ2 
a(x)] = 

∞ 

−∞ 

φ2 
a(x)p(x)dx = 

0 

−∞ 

a2 x2 p(x)dx + 

∞ 

0 

x2 p(x)dx 

= a2 

0 

−∞ 

x2 p(x)dx + 

∞ 

0 

x2 p(x)dx = 
1 
2 
a2 

∞ 

−∞ 

x2 p(x)dx + 
1 
2 

∞ 

−∞ 

x2 p(x)dx 

= 
a2 + 1  

2 
σ2 

x 

Below, we prove Proposition 3.2. 

Proposition 4 (He-initialization). If for all l = 1, ..., d weight matrices W(l) 

are i.i.d., zero-mean, and symmetric with variance equal to 2 
wl(a2+1) , then for 

an input He random vector x with variance σ2 
x the output random vector y(d) is 

a He random vector with variance σ2 
x. 

Proof. Consider a He random vector x with variance σ2 
x as input. We prove 

the proposition by induction on d starting from the base case of d = 0  which 
is satisfied by assumptions on the input vector. Assume that it holds for 
some l. For  l + 1, we have  y(l+1) = W(l+1) φa(y(l)). Consider a specific entry 
y (l+1) 

k = wl 

i=1 W (l+1) 
ki φa(y (l) i ). It is symmetric as it is a sum of symmetric ran-

dom variables. As it is a sum of uncorrelated variables, its variance is sum of 
variances of the summands 

V ar[y (l+1) 
k ] =  

wl 

i=1 

V ar[W (l+1) 
ki φa(y (l) i )] 

= 
wl 

i=1 

E[(W (l+1) 
ki )2]E[φ2 

a(y (l) i )] − E[W (l+1) 
ki ]2 E[φa(y (l) i )]2 

= 
wl 

i=1 

V ar[W (l+1) 
ki ] 

(a2 + 1)  
2 

σ2 
x = 

wl 

i=1 

2 
(a2 + 1)wl 

(a2 + 1)  
2 

σ2 
x 

= 
wl 

i=1 

σ2 
x 

wl 
= σ2 

x.
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Lastly, consider Cov[y (l+1) 
k , y  (l+1) 

j ] for k = j 

Cov[y (l+1) 
k , y  (l+1) 

j ] =  E[y (l+1) 
k y (l+1) 

j ] − E[y (l+1) 
k ]E[y (l+1) 

j ] 

= E[( 
wl 

i=1 

W (l+1) 
ki φa(y (l) i ))( 

wl 

i=1 

W (l+1) 
ji φa(y (l) i ))] 

= E[ 
wl 

i0=1 

wl 

i1=1 

W (l+1) 
ki0 

φa(y (l) i0 
)W (l+1) 

ji1 
φa(y (l) i1 

)] 

= 
wl 

i0=1 

wl 

i1=1 

E[W (l+1) 
ki0 

φa(y (l) i0 
)W (l+1) 

ji1 
φa(y (l) i1 

)] 

= 
wl 

i0=1 

wl 

i1=1 

E[W (l+1) 
ki0 

]E[φa(y (l) i0 
)W (l+1) 

ji1 
φa(y (l) i1 

)] = 0. 

So all entries in yl+1 are uncorrelated. 

B Perron Theorem 

We provide the Perron theorem as given in [ 14]. We refer to this book for further 
details and proofs. 

Theorem 2 (Perron). Let A be a n × n matrix which is irreducible and non-
negative and n ≥ 2. Let  ρ(A) denote the spectral radius of A. Then:  

1. ρ(A) > 0, 
2. ρ(A) is an algebraically simple eigenvalue of A, 
3. there is a unique real vector x such that Ax = ρ(A)x and x1+x2+...+xn = 1; 

this vector is positive, 
4. there is a unique real vector y such that yT A = yT ρ(A) and y1+y2+...+yn = 
1; this vector is positive, 

5. |λ| < ρ(A) for every eigenvalue λ of A such that λ = ρ(A), 
6. (ρ(A)−1A)m → xyT as m → ∞. 
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