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Simple Summary: Computer-aided diagnosis systems to improve significant prostate cancer (PCa)
diagnoses are being reported in the literature. These methods are based on either deep learning or
radiomics. However, there is a lack of scientific evidence comparing these methods on the same
external validation sets. The aim of our study was to compare the performance of a deep-learning
model with the performance of a radiomics model for significant-PCa diagnosis on various cohorts.
We collected multiparametric magnetic resonance images and pathology data from four patient
cohorts (644 patients in total). One of the cohorts was used to develop a deep-learning model and a
radiomics model. Both models were tested on the three remaining cohorts. The comparison shows
that whereas the performance of the deep-learning model was higher on the training cohort, the
radiomics model outperformed the deep-learning model in all the testing cohorts, making it a more
accurate tool with which to detect clinically significant prostate cancer.

Abstract: The computer-aided analysis of prostate multiparametric MRI (mpMRI) could improve
significant-prostate-cancer (PCa) detection. Various deep-learning- and radiomics-based methods
for significant-PCa segmentation or classification have been reported in the literature. To be able
to assess the generalizability of the performance of these methods, using various external data sets
is crucial. While both deep-learning and radiomics approaches have been compared based on the
same data set of one center, the comparison of the performances of both approaches on various
data sets from different centers and different scanners is lacking. The goal of this study was to
compare the performance of a deep-learning model with the performance of a radiomics model for
the significant-PCa diagnosis of the cohorts of various patients. We included the data from two
consecutive patient cohorts from our own center (n = 371 patients), and two external sets of which one
was a publicly available patient cohort (n = 195 patients) and the other contained data from patients
from two hospitals (n = 79 patients). Using multiparametric MRI (mpMRI), the radiologist tumor
delineations and pathology reports were collected for all patients. During training, one of our patient
cohorts (n = 271 patients) was used for both the deep-learning- and radiomics-model development,
and the three remaining cohorts (n = 374 patients) were kept as unseen test sets. The performances
of the models were assessed in terms of their area under the receiver-operating-characteristic curve
(AUC). Whereas the internal cross-validation showed a higher AUC for the deep-learning approach,
the radiomics model obtained AUCs of 0.88, 0.91 and 0.65 on the independent test sets compared
to AUCs of 0.70, 0.73 and 0.44 for the deep-learning model. Our radiomics model that was based
on delineated regions resulted in a more accurate tool for significant-PCa classification in the three
unseen test sets when compared to a fully automated deep-learning model.
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1. Introduction

Prostate cancer (PCa) diagnosis using prostate-specific antigen (PSA) and transper-
ineal ultrasound-guided biopsies combined with multiparametric magnetic resonance
imaging (mpMRI) is recommended by the European guidelines [1] and common practice.
In the literature, it was shown that the multiparametric MRI (mpMRI)-targeted biopsy can
non-invasively and more accurately characterize PCa lesions as compared to the standard
systematic transrectal ultrasound-guided (TRUS) biopsy [2–4]. Furthermore, the combina-
tion of the MRI-targeted biopsy with the systematic biopsy increases the overall accuracy
of PCa diagnoses [5].

The mpMRI interpretation of the prostate was standardized by the Prostate Imaging
Reporting and Data System (PI-RADS) v2. However, the visual interpretation by radiolo-
gists can still lead to the under-diagnosis of clinically significant PCa and the over-diagnosis
of insignificant PCa [6].

A computer-aided quantitative analysis of prostate mpMRI could improve PCa de-
tection and may help in the standardization of mpMRI interpretation [7]. Ultimately, it
may contribute to improving the diagnostic chain [8], thereby reducing over- and under-
diagnoses in prostate-cancer management [9]. Several methods for significant-PCa seg-
mentation [10–12] or classification [13–15] using deep-learning networks or radiomics
approaches have been reported in the literature. Both approaches offer different capabili-
ties, challenges and difficulties [16]. Comparing the performance of both approaches based
on the scientific literature can be difficult.

First, because direct comparison of the methods is often not specifically addressed or
examined [17]. Second, in general, these developed methods are cohort dependent, and
their performance may substantially decrease for independent test data. Differences in
the data sets used, such as the selected patient population, the data-set size, the scanner
type and manufacturer, the MRI protocols, the image quality, the radiologist’s delineations,
the pathology material (biopsies or radical prostatectomies), and the pathology reports
may all substantially influence the model performance [18]. Several approaches (deep
learning and radiomics) have been compared based on the same data set [19]; however,
the comparison of the performances of both approaches on multiple data sets obtained at
different institutions is lacking.

Therefore, the aim of this study was to perform a comparison study of a deep-
learning method for significant-PCa segmentation and a radiomics-based significant-PCa-
classification method on various patient data sets.

2. Materials and Methods

In this study, we compared the performance of a recently developed deep-learning
network for significant-PCa segmentation [10] with a radiomics approach based on regions
of interest (ROIs) that were delineated by a radiologist. Both models were trained on the
same data set. Three data sets, representing various scanners, various patient populations
from different hospitals, and two different ground-truth methods were used to compare
the performances of both methods. PCa with an ISUP grade ≥ 2 (Gleason Score (GS) 3 + 4
and higher) was classified as significant [20]

2.1. Patient Data Sets

This study included four patient cohorts: an Active-Surveillance cohort (AS), a cohort
of men with previous negative systematic biopsies (Prodrome), the cohort included in the
Prostate Cancer Molecular Medicine study (PCMM) and the ProstateX challenge cohort, as
illustrated in Figure 1. The cohort of men participating in the Active-Surveillance study and
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the cohort of the previous-negative-biopsy men were acquired from prospective studies of
the Erasmus MC in Rotterdam, the Netherlands [21]. The usage of the data for this study
was HIPAA compliant and written informed consent with a guarantee of confidentiality
was obtained from the participants. The ProstateX data were publicly available and were
provided for the SPIE-AAPM-NCI ProstateX challenge [19,22,23]. The PCMM data set
was acquired retrospectively from two external healthcare centers in the Netherlands [18],
the data usage of this study was approved by the medical ethics review committee of the
Erasmus MC under the number NL32105.078.10.
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Figure 1. Flow diagram of patient exclusion and inclusion of the four cohorts used in this study:
(a) Active Surveillance, (b) Prodrome, (c) ProstateX, and (d) PCMM. ISUP: International Society of
Urological Pathology.

In total, 644 patients from all four cohorts were included in this study. The selected
patients were divided into a training set (Active-Surveillance cohort) and test sets (Pro-
drome, ProstateX and PCMM cohorts). The general patient characteristics (prostate volume,
age and prostate-specific antigen) of the sets are listed in Table 1. Prostate volume was
measured on T2-weighted (T2w) images using the ellipsoid formulation [24].

For the Active Surveillance cohort, initially, 377 consecutive patients with low-risk PCa
(defined as International Society of Urological Pathology “ISUP” grade 1) were prospec-
tively enrolled in our in-house database from 2016 to 2019. All participants received a
multi-parametric MRI and targeted biopsies of visible, suspicious (PI-RADS ≥ 3) lesions
at the baseline (3 months after diagnosis). A detailed description of the data set has been
published [25]. Patients who refused, who had no biopsy procedure, or whose MRI scans
had artifacts were excluded from the study. Since the systematic-biopsy locations were not
available, patients in whom significant PCa was found based only on systematic biopsies
were also excluded. The remaining cohort (n = 271) was divided into two groups based on
the pathology findings (Figure 1a). Some of the patients (n = 55) with an ISUP grade = 1
did not have an identifiable lesion on MRI, therefore no targeted biopsy was performed,
and the systematic biopsy was negative.

The Prodrome cohort contained 111 consecutive patients with prior negative biopsies
who were prospectively enrolled in our in-house database from 2017 to 2019. For each
patient, mpMRI with blinded systematic biopsies and MRI-targeted biopsies of visible, sus-
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picious (PI-RADS ≥ 3) lesions were performed. Patients who refused the biopsy procedure,
or whose MRI scans had artifacts were excluded from the study. Patients who were found
to have significant PCa based only on systematic biopsies were also excluded since the
exact locations of the systematic biopsies was unknown. The remaining cohort (n = 100)
was divided into two groups based on the pathology findings (Figure 1b).

Table 1. Clinical characteristics of the patients of the four cohorts (Active Surveillance, Prodrome,
ProstateX and PCMM) included in this study. Tumorr volume values are presented as median
(interquartile range). PZ: peripheral zone. TZ: transition zone. ISUP: International Society of
Urological Pathology. GSA: Gleason Score. PSA: Prostate Specific Antigen. NA: not available. (*)
The ISUP grade per lesion was not available for ProstateX challenge, the ground truth provided for
this set indicated whether the lesion had ISUP grade ≥ 1.

Training Cohort Testing Cohort

Patient Cohort Active
Surveillance Prodrome ProstateX * PCMM

Total Number of
patients 271 100 195 78

Patients with a
lesion ISUP
grade = 1

155 68 128 28

Patients with a
lesion ISUP
grade ≥ 2

116 32 67 50

Total number of
lesions 233 104 328 156

ISUP grade 1 100 52 254 77

ISUP grade ≥ 2 133 52 74 79

ISUP grade 2 124 45 NA 68

ISUP grade 3 3 6 NA 8

ISUP grade 4 & 5 6 1 NA 3

Lesions in PZ 150 60 191 104

Lesions in TZ 33 41 82 49

Lesions in other
zones (central,

anterior stroma)
38 3 55 3

Lesion volume
(mL) 0.3(0.2–0.8) 0.61 (0.3–1.0) 1.42 (1.4–3.2) 0.80 (0.2–1.1)

Prostate
Volume(mL) 43.1 (30.5–76.2) 50. (33–67) NA NA

Age (year) 67 ± 7 68 ± 4 NA NA

PSA(mean ± std
ng/mL) 10 ± 6 12 ± 4 NA 9 ± 7

The ProstateX cohort comprises 204 patients and included suspicious-lesion coordi-
nates and targeted-biopsy-based histopathological findings. Nine patients were excluded
due to image artifacts, registration and missing DWI images at b800. The remaining cohort
(n = 195) was divided into two groups based on the pathology findings (Figure 1c).

The PCMM cohort consists of 107 patients who were enrolled from 2011 to 2014 and in-
cluded lesion segmentations based on delineations made by a pathologist on prostatectomy
specimen photos. The MR images of these patients were correlated with the prostatectomy
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photos using manual registration [18]. Twenty-nine patients were excluded due to image
artifacts or low resolution (Figure 1d).

For each patient, two MRI sequences, axial T2w and diffusion-weighted images
(DWIs) with their apparent-diffusion-coefficient maps (ADC) were selected. For the AS,
Prodrome and ProstateX cohorts, the histopathology data from the MRI-targeted biopsies
were considered as reference standards. In the case of the PCMM data set, the ground truth
was obtained from pathology reports after the prostatectomy.

2.2. MR Imaging and Pre-Processing

For the Active Surveillance and Prodrome cohorts, the MRI scans were performed on
a 3T system (Discovery MR750, General Electric Healthcare, Chicago, IL USA), according
to the PI-RADS v2 guidelines [26]. The T2-weighted imaging (T2w) diffusion-weighted
imaging (DWI, b-values 50, 400 and 800) were acquired using a 32-channel pelvic phased-
array coil with 0.371 × 0.371 × 3.3 mm3 resolution. Apparent-diffusion-coefficient (ADC)
maps were constructed using scanner software. All MR images were reviewed by a
urogenital radiologist with over 6 years of prostate MRI experience. Individual lesions
with a PI-RADS score ≥ 3 were defined as suspicious and delineated in the T2w images.
The MRI-and-transrectal-ultrasound (TRUS)-fusion technique was used (UroStation™,
Koelis, France) to perform targeted biopsies with a maximum of 4 cores under ultrasound
guidance. One expert uropathologist reviewed the biopsy specimens according to the ISUP
2014 modified Gleason Score [27]. For every patient, binary masks were generated for our
experiments based on the delineations on the T2w images with biopsy-proven significant
PCa (ISUP grade ≥ 2). The DWIs with ADC values were manually and rigidly co-registered
to the T2w images for every patient. Furthermore, the 3D images were cropped to the
whole prostate region of interest with dimensions 128 × 192 × 24 voxels along the x, y and
z directions.

For the ProstateX cohort, MRI scans were acquired on one of two 3T MR systems
(MAGNETRON Trio and Skyra, Siemens Medical Systems, Erlangen, Germany). The
MRI protocol included T2w images acquired with 0.5 mm 2D resolution and 3.6 mm slice
thickness, DWI (b-values 40, 400 and 800) series acquired using single-shot-echo-planer
imaging with 2 mm 2D resolution and 3.6 mm slice thickness, and ADC maps constructed
using scanner software. Since the voxel sizes in the data from the ProstateX cohort varied,
all images were resampled to a uniform voxel spacing of 0.371 × 0.371 × 3.3 mm3, which
was the same as the Active Surveillance and Prodrome cohorts. The DWIs with ADC values
were manually and rigidly co-registered to the T2w images for every patient and cropped
to the whole prostate region of interest with dimensions 128 × 192 × 24 voxels along the x,
y and z directions. For every patient, significant PCa (ISUP grade 00) was delineated based
on each given lesion’s coordinates by one investigator with 6 months experience under
supervision and in consensus with a urogenital radiologist with over 6 years of prostate
MRI experience.

The MRI scans of the PCMM data set were obtained from three different 3T MR
systems. Two were Siemens Medical system models (MAGNETRON Trio and Skyra)
with the same characteristics as the models described for the ProstateX cohort. The third
scanner model was from Philips (Achieva). The MRI protocol included T2w images with
0.27 mm 2D resolution and 3.00 mm slice thickness, DWIs (b-values 100, 300, 450, 600,
750) with 1.03 mm 2D resolution and 3 mm slice thickness, and ADC maps obtained
from the scanner. The images from the Philips MRI were acquired using an endorectal
coil. All the original images were sampled to match the voxel spacing of the Active
Surveillance cohort and cropped from the central region of the image having dimensions of
128 × 192 × 24 voxels along the x, y and z directions. The lesion delineations were based on
the manual registration with the pathology specimens delineated by an expert pathologist.

All the T2-weighted images in this study were pre-processed using z-scoring for pixel-
intensity normalization. The MRI scans from the patient populations included in this study
were from 2013 to 2019. Therefore, high b-values images (>1400) were acquired for only a
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portion of the patient cohorts. Since we did not want to mix the artificially extrapolated
and the acquired high b-value images, we chose to focus on the raw data.

2.3. Development of the Models

For this experiment, both models were trained on images from the Active Surveillance
cohort. Whereas the deep-learning network was trained to identify significant PCa in
images of the whole prostate, the radiomics model was trained to identify significant PCa
based on the ROIs that were delineated by the radiologist.

2.3.1. Deep-Learning Network

A fully convolutional neural network (CNN), as described in a recently published
previous work was used [10]. Three 3D MR images (T2w, DWI (b-value closest to 800) with
corresponding ADC map) were used as inputs for the CNN. Each sequence was considered
as a separate input channel. The network contained twelve single 3D convolution layers.
Batch normalization (BN) was added after each 3D convolution to improve the convergence
speed during training. In the final layer, a 3D convolution having 1 × 1 × 1 kernel size was
used to map the computed features to the predicted significant-PCa segmentation.

The network was trained in Python (version 3.5.3) using Keras (version 2.0.2) with
Tensor Flow (version 1.0.1) as the backend. During training and prediction, a GeForce
GTX TITAN Xp GPU (NVIDIA Corporation) was used. The loss function during training
was the binary cross-entropy metric and was optimized using an Adam optimizer with
a learning rate of 0.01. For better generalization, data augmentation was implemented in
all images during training, which included rotation (0–50, along x,y,z-axes) and shearing
(along x,y,z-axes) with rigid transformation and 50% probability. The output of the trained
network was the binary segmentation (voxel values from 0 to 1) of clinically significant
PCa lesions.

2.3.2. Radiomics Model Development

The radiomics model that was used to classify ROIs as significant versus insignificant
PCa was developed with the open-source Workflow for Optimal Radiomics Classification
(WORC) package for python [18,28]. Similar to the deep-learning network, the inputs for
WORC were the T2w MRIs, the DWIs (b-value closest to 800) and ADC maps. Additionally,
the ROIs of the lesion delineations were provided. Within the ROIs, 564 radiomic features
quantifying intensity, shape, texture and orientation were extracted from the two MR
images and the ADC map.

WORC performs an automated search amongst a wide variety of algorithms and their
corresponding parameters in order to determine the optimal combination that maximizes
the prediction performance on the training set. During each iteration, WORC generates
1000 workflows by using different combinations of methods and parameters. The internal
evaluation of the model was performed by using a 100x random-split cross-validation.

At the end of each cross-validation, the 100 best-performing solutions were combined
in an ensemble as a single classification model by averaging their probability predictions.
The details regarding the feature computation, model selection and optimization can be
found in Appendices A and B, respectively.

2.4. Methods Performance Comparison

The performances of both methods were evaluated using receiver-operating-characteristic
(ROC) curves, accuracy and F1-scores that were computed at the patient level both by
internal cross-validation and external validation. Internal validation was performed using
a 3-fold random cross-validation, which randomly split the training set with ISUP ≥2
patients into three separate folds (fold 1 contained 39 patients, fold 2 contained 38 patients
and fold 3 contained 39 patients). In each iteration, the models were trained on two of the
three folds, and were evaluated on the third fold and an independent test set containing
155 patients with ISUP grades ≤ 1, more details can be found in [10]. These splits were
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kept the same for the training of both models. The average over these three iterations
is reported.

To compare the performance with clinical practice, the sensitivity and specificity of
the visual scoring by the experienced radiologist is indicated (when available).

3. Results
3.1. Internal Cross-Validation

In Figure 2, the ROC curve of the deep-learning model (blue line) and the radiomics
model (orange line) as computed by the internal cross-validation of the training set can be
seen. Table 2 depicts the accuracy, sensitivity, specificity and F1-score obtained from this
experiment. Overall, it can be seen that deep learning performed better on the training set
compared to the radiomics model.
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Table 2. Deep-learning- and radiomics-model performances on the training set (Active Surveillance)
and on the external sets (Prodrome, ProstateX and PCMM). DL: deep learning. AUC: Area under the
curve.

Active Surveillance Prodrome ProstateX PCMM

Metrics DL Radiomics DL Radiomics DL Radiomics DL Radiomics

AUC 0.89 0.83 0.70 0.88 0.73 0.91 0.44 0.65

Accuracy 0.76 0.63 0.58 0.78 0.71 0.85 0.52 0.55

Sensitivity 0.85 1.00 0.72 1.00 0.70 0.72 0.70 0.44

Specificity 0.52 0.54 0.51 0.68 0.71 0.94 0.18 0.71

F1-score 0.74 0.66 0.52 0.78 0.65 0.85 0.66 0.55

3.2. External-Validation

Figure 3a–c depict the ROC curves of the deep-learning and radiomics models in the
Prodrome, ProstateX and PCMM cohorts. Furthermore, the rest of the evaluation metrics
can be found in Table 2. In the Prodrome cohort, the deep-learning model obtained an
AUC of 0.70 versus 0.88 for the radiomics model, whereas in the ProstateX and PCMM
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cohorts the AUCs were 0.73 and 0.44 for the deep-learning model and 0.91 and 0.65 for the
radiomics model, respectively.
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Figure 3. ROC curves of the deep-learning (blue) and radiomics (orange) models when evaluated on
the test sets: (a) Prodrome, (b) ProstateX and (c) PCMM.

To illustrate the deep-learning-segmentation method, examples (true positive, false
negative and false positive) are shown in Figure 4. In the true-positive example (Figure 4A)
the network has successfully segmented both significant-PCa lesions as delineated by the
radiologist and proven by targeted biopsy. In some cases, PCa segmentation was unsuc-
cessful, leading to a false negative (Figure 4B). In the false-positive example (Figure 4C),
the deep-learning network segments a lesion in the anterior stroma zone; however, the
targeted biopsy found insignificant PCa (ISUP grade 1, GS 3 + 3 = 6).
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Figure 4. All images show the same axial slice as 2D view of mpMR images (a,e T2w images; b,f DWI
b800; c,g ADC map) of the prostate with the reference ground truth (d) and the segmented PCa
lesion by the deep-learning model (h) (A) Example of a true positive case (PSA = 17.6; prostate
volume = 46 cc; ISUP grade = 2 (up) and 3 (down)). The ground truth is shown in overlay (red) as
delineated by the radiologist and proven by targeted biopsy as significant PCa. The segmented
significant-PCa lesion by the deep-learning model is shown in overlay (pink). (B) Example of a
false negative case (ISUP grade = 2). The ground truth is shown in overlay (red) as delineated by
the radiologist and proven by targeted biopsy as significant PCa. The deep-learning model has not
segmented any PCa lesion. (C) Example of a false positive case (ISUP grade = 1). The images show
no delineation due to the absence of significant PCa, the region delineated by the radiologist (not
shown) proved by targeted biopsy as insignificant PCa. The lesion segmented incorrectly by the
deep-learning model is shown in overlay (pink).

4. Discussion

The detection of significant PCa utilizing CAD systems that were based either on
deep learning or radiomics has generated many papers in the scientific literature [29–31].
Both approaches offer different capabilities, challenges and difficulties [16]. Whereas both
approaches have been compared based on the same data set [19], the direct comparison of
these approaches when tested on the same unseen data is lacking in the current scientific
literature. To our knowledge, this is the first study comparing a fully automated deep-
learning model for significant-PCa segmentation with a radiomics approach based on
segmentations that were performed by a radiologist. This study used a large patient
cohort compared to the average sizes used in similar studies [29] (avg = 127 patients), and
takes into account data from various patient risk groups, various MRI scanners in various
hospitals, and ground truths obtained from both biopsies and prostatectomies.

The deep-learning and radiomics models obtained similar ROC curves when validated
by internal cross-validation on the training set. However, when validated by external
sets, the comparison showed that the radiomics model had higher AUC values than the
automated deep-learning model in all data sets.
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Nevertheless, when comparing, some considerations should be mentioned. First,
there was a tissue-volume difference; the deep-learning model was trained to perform the
segmentation of significant prostate cancer in the whole prostate, whereas the radiomics
model classified the ROIs that were delineated by the radiologist. For the delineated ROIs,
the ground truth was known, but when the deep-learning model segmented a lesion where
no biopsy was taken, this lesion was considered to be a false positive, while in fact we did
not know the ground truth.

Second, the better performance of the radiomics model could also be attributed to
the set of features used by the model, which was a generic set of features that have been
used for other applications [15,32]. Furthermore, the deep-learning model automatically
designed features specific to the training data and it is possible that this set of features was
too specific, causing the generalization issues across the testing sets. Third, the radiomics
model used an ensemble of many machine-learning models. Utilizing ensembles might
have granted the radiomics model a generalization ability that the deep-learning model
lacked by being a model based on a single CNN [33]. This difficulty to generalize was
evident in the test sets that used a different ground truth, different scanners and older
acquisition protocols. Fourth, the deep-learning approach required a larger number of
training examples than the radiomics approach [34]. Therefore, the limited number of
patients available for training could have reduced the performance of the deep-learning
model compared to the radiomics performance.

An interesting aspect of the better performance of the radiomics model is revealed
when comparing it to the performance of a radiologist. For the Prodrome and PCMM
cohorts, the combination of the radiologist’s delineations with the radiomics model allowed
for the preservation of the radiologist’s high sensitivity while increasing the specificity for
clinically significant PCa lesions. Adding a radiomics model to the workflow could mean a
more accurate patient selection for the biopsy procedures and a reduction in overdiagnoses.

In the ProstateX challenge, several methods were compared for clinically significant-
PCa classification [19]. However, the details regarding the training setup and methods were
not described, thereby prohibiting a comparison with our results. The results obtained
from other tumors [35–37] that were all evaluated on their own single internal validation
set show that deep-learning methods outperformed radiomics, which corresponds to our
findings. One study [38] that performed external validation found that radiomics obtained
better results than deep learning, which also corresponds to our results.

There are some limitations to this study. For instance, the clinical variables such as
age, race, and PSA level were not available for some of the patient cohorts and therefore
could not be included in the models. This information is frequently taken into account by
clinicians as risks factors for aggressive prostate cancer [39]. Secondly, co-existing benign
prostatic diseases that can mimic PCa were not taken into account in our experiments, since
no ground truth was available for these diseases. Furthermore, part of our data is related
to biopsy results, which reflect the diagnostic outcome. However, biopsy results can be
downgraded or upgraded in radical prostatectomy specimens, which may hamper the
interpretation of the results.

Another limitation was that the delineations in this study were carried out by a single
clinician; therefore, we were not able to study the effect on the feature computation or
the performance with multiple evaluators. Lastly, this was a retrospective study, which
precluded the comparison of the models while they were being used by a clinician.

PCa diagnosis can be improved using CAD systems that are based on radiomics or
deep learning. However, there is no evidence of these methods being used in clinics in
prospective studies [29]. Hence, future research should focus on studying the impact
of the radiologist’s decision to incorporate either deep-learning or radiomics models in
the workflow.
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5. Conclusions

Both deep-learning and radiomics methods provide capabilities to support PCa diag-
noses. In this study, a radiomics model that was trained on segmentations provided by a
radiologist resulted in a more accurate and generalizable tool for significant-PCa classifica-
tion compared to a fully automated deep-learning model for significant-PCa segmentation.
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Appendix A Radiomics Features Extraction

This Appendix A is similar to [32,40], but details relevant for the current study are high-
lighted. A total of 540 radiomics features were used in this study. All features were extracted
using Workflow for Optimal Radiomics Classification (WORC) [41], which internally uses
the PREDICT [42] feature extraction toolboxes. For details on the mathematical formulation
of the features, we refer the reader to [43]. More details on the extracted features can be
found in the documentation of the respective toolboxes, mainly the WORC documentation.

For CT scans, the images are not normalized by default as the scans already have a
fixed unit and scale (i.e., Hounsfield), contrary to MRI. The images were not resampled,
as this would result in interpolation errors. The code to extract the features has been
open-source published.

The features can be divided into several groups. Thirteen intensity features were
extracted using the histogram of all intensity values within the ROIs and included several
first-order statistics such as the mean, standard deviation and kurtosis. Thirty-five shape
features were extracted based only on the ROI, i.e., not using the image, and included shape
descriptions such as the volume, compactness and circular variance. These describe the
morphological properties of the lesion. Nine orientation features were used, describing the
orientation of the ROI, i.e., not using the image. Lastly, 483 texture features were extracted
using Gabor filters (144 features), Laplacian of Gaussian filters (36 features), vessel (i.e.,
tubular structures) filters (36 features) [44], the Gray Level Co-occurrence Matrix (144
features) [43], the Gray Level Size Zone Matrix (16 features) [43], the Gray Level Run
Length Matrix (16 features) [43], the Gray Level Dependence Matrix (14 features) [43],
the Neighborhood Grey Tone Difference Matrix (5 features) [43] Local Binary Patterns
(18 features) [45], and local phase filters (36 features) [46]. These features describe more
complex patterns within the lesion, such as heterogeneity, occurrence of blob-like structures,
and presence of line patterns.

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=23691656
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Most of the texture features include the parameters to be set for the extraction. Before-
hand the values of the parameters that will result in features with the highest discriminative
power for the classification at hand (e.g., high grade vs. low grade) are not known. In-
cluding these parameters in the workflow optimization, see Appendix B, would lead to
repeated computation of the features, resulting in a redundant decrease in computation
time. Therefore, alternatively, these features are extracted at a range of parameters as is
default in WORC. The hypothesis is that the features with high discriminative power will
be selected by the feature-selection methods and/or the machine learning methods as
described in Appendix B.

The data set used in this study is heterogeneous in terms of acquisition protocols.
Especially the variations in slice may cause feature values to be dependent on the acquisition
protocol. Hence, extracting robust 3D features may be hampered by these variations,
especially for low resolutions. To overcome this issue, all features were extracted per 2D
axial slice and aggregated over all slices, which is default in WORC. Afterwards, several
first-order statistics over the feature distributions were evaluated and used in the machine
learning approach.

Appendix B Adaptive Workflow Optimization for Automatic Decision-
Model Creation

This appendix is similar [18], but details relevant to the current study are highlighted.
The Workflow for Optimal Radiomics Classification (WORC) toolbox [41] makes use of
adaptive algorithm optimization to create the optimal performing workflow from a variety
of methods. WORC defines a workflow as a sequential combination of algorithms and their
respective parameters. To create a workflow, WORC includes algorithms to perform feature
scaling, feature imputation, feature selection, oversampling, and machine learning. If used,
as some of these steps are optional as described below, these methods are performed in
the same order as described in this appendix. More details can be found in the WORC
documentation. The code to use WORC for creating the differential diagnosis and molecular
analysis decision models in this specific study has been published open-source.

Feature scaling was performed to make all features have the same scale, as otherwise
the machine learning methods may focus only on those features with large values. This
was done through z-scoring, i.e., subtracting the mean value followed by division by the
standard deviation, for each individual feature. In this way, all features had a mean of zero
and a variance of one. A robust version of z-scoring was used, in which outliers, i.e., values
below the 5th percentile or above the 95th percentile, were excluded from computing the
mean and variance.

When a feature could be computed, e.g., a lesion is too small for specific feature to be
extracted or a division by zero occurs, feature imputation was used to estimate replacement
values for the missing values. Strategies for imputation included (1) the mean; (2) the
median; (3) the most frequent value; and (4) a nearest neighbor approach.

Feature selection was performed to eliminate features which were not useful to dis-
tinguish between the classes. These included; (1) a variance threshold, in which features
with a low variance (<0.01) are removed. This method was always used, as this serves as
a feature sanity check with almost zero risk of removing relevant features; (2) optionally,
a group-wise search, in which specific groups of features (i.e., intensity, shape, and the
subgroups of texture features as defined in Appendix B are selected or deleted. To this
end, each feature group had an on/off variable which is randomly activated or deactivated,
which were all included as hyperparameters in the optimization; (3) optionally, individual
feature selection through univariate testing. To this end, for each feature, a Mann-Whitney
U test was performed to test for significant differences in distribution between the labels.
Afterwards, only features with a p-value above a certain threshold were selected. A Mann-
Whitney U test was chosen as features may not be normally distributed and the samples
(i.e., patients) were independent; and (4) optionally, principal component analysis (PCA),
in which either only those linear combinations of features were kept which explained 95%
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of the variance in the features or a limited number of components (between 10–50). These
feature-selection methods may be combined by WORC, but only in the mentioned order.

Various resampling strategies can optionally be used, which can be used to overcome
class imbalances and reduce overfitting on specific training samples. These included
various methods from the imbalanced-learn toolbox [47]; random over-sampling, random
under-sampling, near-miss resampling, the neighborhood cleaning rule, ADASYN, and
SMOTE (regular, borderline, Tomek and the edited nearest neighbors).

Lastly, machine learning methods were used to determine a decision rule to distinguish
the classes. These included: (1) logistic regression; (2) support vector machines; (3) random
forests; (4) naive Bayes; and (5) linear and quadratic discriminant analysis.

Most of the included methods require specific settings or parameters to be set, which
may have a large impact on the performance. As these parameters have to be determined
before executing the workflow, these are so-called “hyperparameters”. In WORC, all
parameters of all mentioned methods are treated as hyperparameters, since they may all
influence the decision-model creation. WORC simultaneously estimates which combination
of algorithms and hyperparameters performs best. A comprehensive overview of all
parameters is provided in the WORC documentation.

By default, in WORC, the performance is evaluated in a 100x random-split train-test
cross-validation. In the training phase, a total of 100,000 pseudo-randomly generated
workflows is created. These workflows are evaluated in a 5x random-split cross-validation
on the training data set, using 80% of the data for actual training and 20% for validation of
the performance. All described methods are fit on the training data sets, and only tested
on the validation data sets. The workflows are ranked from best to worst based on their
mean performance on the validation sets using the F1-score, which is the harmonic average
of precision and recall. Due to the large number of workflows that is executed, there is a
chance that the best-performing workflow is overfitting, i.e., looking at too much detail
or even noise in the training data set. Hence, to create a more robust model and boost
performance, WORC combines the 100 best-performing workflows into a single decision
model, which is known as ensembling. These 100 best-performing workflows are re-trained
using the entire training data set, and only tested on the test data sets. The ensemble is
created through averaging of the probabilities, i.e., the chance of a lesion with a high grade
or low grade, of these 100 workflows. A full experiment consists of executing 50 million
workflows (100,000 pseudo-randomly generated workflows, times a 5x train-validation
cross-validation times 100x train-test cross-validation), which can be parallelized.
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