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ABSTRACT

Nowadays, the bicycle is seen as a sustainable and healthy substitute for the car in urban
environments. The Netherlands is the leading country in terms of bicycle use, especially in urban
environments. Yet route choice models featuring inner-city travel that include cyclists are
lacking. This paper estimates a cyclists’ route choice model for the inner-city of Amsterdam,
based on 3,045 trips collected with GPS data. The main contribution of this paper is the
construction of the choice set using an empirical approach which uses only the observed trips in
the dataset to compose the choice alternatives. The findings suggest that cyclists are insensitive
to separate cycle paths in Amsterdam, which is a city characterized by a dense cycle path
network in which cycling is the most prominent mode of travel. In addition, cyclists are found to
minimize travel distance and the number of intersections per kilometer. The impact of distance
on route choice increases in the morning peak where schedule constraints are more prevalent.
Furthermore, overlapping routes are more likely to be chosen by cyclists given everything else
being the same.
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1. INTRODUCTION

Governments worldwide nowadays acknowledge the advantages of cycling as mode of transport.
First, there are health benefits for individual cyclists. Second, the bicycle can help reduce
emissions when substituting the car (1). Cycling is most attractive in urban areas without large
changes in altitude (e.g. the Netherlands or Denmark), where distances covered are relatively
small and car usage is often discouraged and associated with greater travel impedance.
Furthermore, most European governments have set goals of increasing the modal share of
cycling over the next years (2).

The Netherlands is the leading country in terms of bicycle use, with 27% of all trips
performed by bicycle (3). When focusing on the urban environment, the modal share for bicycles
increases further, for example in Amsterdam this was 37% in 2011 (4). Other cities such as
Groningen, Delft and Leiden have a comparable share of bicycle trips (3, 5). Despite the fact that
so many people cycle in the Netherlands, models aiming at understanding and predicting cyclists’
choice behavior are lacking (6).

This shift towards cycling, combined with a lack of models incorporating cycling, calls
for the development of models to assess related policy implications. Many cities use forecasting
models to estimate if, when and where changes to infrastructure or policy are needed. However,
these models are still mainly focused on motorized traffic (7). The cycling component is either
missing, walking and cycling are combined or the model assumes that cars and cyclists behave
similarly. ldeally, in forecasting models mode specific activity and route choices are
incorporated. Since both choice processes are currently underdetermined, this study starts out by
estimating the route choice determinants for cyclists. Before choosing a route, the traveler has
already decided to cycle and which activity to perform, therefore the implications of researching
route choice first are expected to be minimal.

Recently, a number of studies have estimated bicycle route choice models for locations
where bicyce modal shares range between 1% and 6% (3). Arguably, the determinants of route
choice behavior and their impact might be different from a city such as Amsterdam, where
cycling is prominent. These studies used revealed preference (RP) data, more specifically GPS
data for estimating the route choice model (7-10). Before, most of the data used for model
estimation came from stated preference (SP) surveys where the respondents were asked what
they would do in a hypothetical situation or route recall surveys where researchers relied on the
respondents’ ability to recollect chosen routes (e.g. 11, 12).

This study aims at estimating cyclists’ route choice determinants in a context where
cycling is the primary mode of transport. Furthermore, the inner-city of Amsterdam is
characterized by a densely built area with well-developed cycling infrastructure. This paper
presents the findings from a cyclists’ route choice model estimated for the inner-city of
Amsterdam, using GPS data to identify the determinants influencing route choice in a network
dominantly used by cyclists.

This study contributes to the previous cyclists’ RP route choice models by introducing a
new approach for choice set identification. Previous RP studies have used choice set generation
algorithms to identify the feasible choice set from which the cyclist chooses a route. This
approach does not guarantee that the chosen route is generated and may include a large number
of alternatives that are not selected by any cyclist. Conversely, an empirical approach is
proposed which uses only the observed routes to identify the considered choice set. This implies
that the chosen route is by definition included in the choice set. Because all routes in the choice
set are chosen at least once, it is likely that the alternative routes are considered by the cyclists in
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the sample. Furthermore, a behavioral comparison can be made with environments where
cyclists make a small minority, because the data is collected in an environment dominantly used
by cyclists.

In this paper, Section 2 details the data processing phase, going from GPS data to route
alternatives and characteristics. In Section 3, the processed data is analyzed and the results of the
estimated route choice models are reported and discussed. Finally, Section 4 provides the
conclusions of the paper.

2. DETERMINING ROUTE ALTERNATIVES AND CHARACTERISTICS

This section describes the collection (2.1) and map matching (2.2) of GPS trajectory data.
Furthermore, an empirical approach for identifying the route choice set is proposed (2.3), which
requires clustering (2.4) and filtering (2.5) of the data. Finally, the potential determinants for
cyclists’ route choice are discussed (2.6).

2.1. Collection of GPS data

GPS data was collected during a nationwide initiative called the ‘Bicycle Counting Week’
(BCW), which took place on 14-20 September 2015. The event was organized as a joint
initiative of national agencies and companies with the goal of gaining a better insight into the
cycling behavior of Dutch cyclists. Nationwide, a total of 38,000 cyclists participated in this
initiative. Participants’ cycling patterns were tracked using an App. In addition, they once filled
in a socio-demographic and travel habit survey to complement the GPS data. Several bicycles
were put up for raffle under the participants (13).

During the initiative, data of 377,321 cycling trips was collected nationwide. The
respondents’ sample includes equal shares of male and female participants. The majority of the
participants are in the age group 31-65 (80%), while young people (18-) and old people (65+) are
underrepresented. This probably stems from the need for using a smartphone to work with the
App and the requirement to have consent from ones’ parents if younger than 18 years. Most trips
registered are work related (69%), explaining why the group of participants aged 31-65 is
overrepresented. Participants could mention multiple reasons for cycling. The most dominant
reasons mentioned are health (80%), speed (47%) and comfort (46%) (13).

As mentioned before, this research focusses on the cycling trips within the city of
Amsterdam, where a total of 12,413 trips performed by approximately 5,000 participants were
recorded. The Amsterdam sample is similar in terms of gender and age composition to the
national sample. However, the share of commuting is higher in Amsterdam (77%). The majority
of the cyclists’ cycles between 25 and 100km a week (72%), while only 3% cycles less than
10km a week, suggesting that most participants cycle at least to and from their work on a daily
basis (13). All the cycling trips included in this research are superimposed on the map depicted
in FIGURE 1a (Figure 1).

2.2. Map matching the GPS trajectory data

The map matching is executed by the organizers of the BCW, for a more detailed description on
this procedure the reader is referred to Van de Coevering et al. (14). In the GPS trajectory data,
most consecutive GPS data points are measured with an accuracy of 3-4 meters with respect to
the infrastructure network. However, outliers up to 50 meters are observed, mainly in dense
urban areas. To reduce the impact of these outliers on the analysis, the speed between each two
consecutive GPS points is calculated and compared to the actual GPS speed determined by
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means of Doppler techniques. If the discrepancy between the actual speed and the computed
speed is too large, the GPS records are removed from the dataset (14).

The remaining GPS trajectories are matched to the OpenStreetMap network. The map
matching algorithm deployed by the BCW organizers generates all possible routes from origin to
destination and selects the best match for the GPS records. If no match is found, it could be that
links are missing (for example in case of desire lines). In that case the route is partitioned and the
same procedure is repeated for the sub-routes (14).

2.3. ldentifying the considered route choice set

In literature, several approaches for choice set identification have been used, with most studies
focused on cycling applying a choice set generation algorithm (e.g. 7, 8). The aim of these
algorithms is to obtain feasible choice sets (15), consisting of attractive alternatives. These
algorithms however do not guarantee that the chosen route is generated and may include a large
number of alternatives that are not chosen by any individual.

An alternative approach for constructing the route choice set is to compile it based on the
trips and routes observed in the data. This empirical approach assures that the chosen route is per
definition part of the choice set. While the choice set from which each individual cyclist
eventually chooses his route (considered choice set (15)) cannot be observed directly, it is
assumed that the observed alternative routes in the data for a given OD pair are included in this
set. Unlike the algorithm approach, the empirical approach implies that not all feasible routes are
included in the choice set, but rather only routes that are all actually used by the cyclists in the
collected dataset. Consequently, the choice set depends on the observed choices and might thus
vary for different samples.

A discrete choice model estimated using the realized routes (empirical approach) is
expected to have lower explanatory power than a model estimated based on possible routes
(algorithm approach). The first approach identifies alternatives that are chosen by at least one
cyclist in the data, whereas the second approach also identifies alternatives that are not chosen.
As a result, the offset between the chosen route and the alternatives is smaller when estimating a
model using only the realized routes.

Two prerequisites exist for applying the empirical approach: each OD pair considered in
the analysis should contain multiple trips and at least two distinct routes. For this study a
maximum of 19 realized routes for one OD pair is identified.

2.4. Clustering of the origin and destination GPS data

Since trip origin and destinations are not likely to be recorded at the exact same geographical
location when using high-resolution GPS data (approximately 50% in the BCW database), the
GPS origin and destination data points are clustered into larger OD pairs, resulting in more trips
and possibly more routes per OD pair.

The k-means clustering method is applied, based on the distance between GPS locations
of the origins and destinations (16). The algorithm minimizes the intra-cluster distances and
maximizes the inter-cluster distances. Two downsides of this method are that the solution can get
stuck in a local minimum (16), which results in a suboptimal distribution of GPS locations over
the clusters. Furthermore, in case the number of clusters is set too low, the routes in one OD pair
cannot be compared, because the origin or destination points are too far apart. The first downside
can be (partially) mitigated by setting multiple starting points for the algorithm. This way it is
less likely to converge into a local minimum.

This method was applied for different k-values; 150, 200, 250 and 300 clusters. If the
number of clusters is set too high, the number of trips per cluster becomes too low and the
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advantages of clustering the trips diminish. As mentioned before, if the number of clusters is set
too low, routes in one OD pair cannot be compared. We find that defining 200 clusters provides
the best balance between intra-cluster distance and number of trips per OD pair for the BCW
dataset. The number of random starting points is set to 20. FIGURE 1b shows the geographical
distribution of the cluster-centers over the inner-city of Amsterdam.

The 200 clusters result in a maximum intra-cluster distance (i.e. diameter) of 444 meters,
while the average is 168 meters. The cluster with the largest diameter is located around a park,
however the routes chosen are still comparable. Therefore, this is an acceptable diameter for a
rather dense network. After clustering, only 30% of the OD pairs consists of one trip, instead of
50% before clustering.

2.5. Data filtering process

Not all trips in the dataset can be used, mostly because of how the choice set is composed.
Therefore, several filtering steps are necessary (see FIGURE 2). In the BCW dataset many
cycling trips are made in the inner-city, whereas the density of cycling trips in the suburbs is
very low. Therefore, only the trips (partially) traversing the inner-city are used, which limits the
available trips to 7,984. Not all trips are included completely, because the boundaries of the
inner-city are specified on GPS coordinate level and not on trip level. It is, for example, possible
that one trip crosses the inner-city more than once. In this case the trip is split into multiple trips.
This demarcation means that some cyclists are observed during the entire trip, whereas others are
only observed during part of the trip. We assume that the route choice for a section of the route is
not fundamentally different from choosing the complete route.

Due to splitting trips some very short routes are created, for which it is unlikely that route
choice is possible. Therefore, a filter is applied on the possibility for route choice, which is
defined here as crossing at least two intersections during the trip, resulting in 8,847 trips. When
applying the empirical approach to identify the choice set, it is necessary to filter out all OD
pairs with only one trip, resulting in 6,208 trips. Also, more than one route needs to be chosen
per OD pair. The result is a final dataset of 3,045 trips (see FIGURE 1a). Since other GPS based
route choice models have been estimated using less trips (7-10), the filtered data set seems large
enough to estimate a route choice model for cyclists in inner-city areas. Furthermore, the initial
dataset and the final dataset show similar patterns with respect to time of departure and day of
travel. The distances covered are slightly larger in the initial sample, due to the geographical
demarcation of the inner-city. However, no structural behavioral issues are expected due to the
filtering process (Figure 2).

2.6. Potential determinants of cyclists’ route choice
Previous research has identified a wide range of attributes that might influence the route choice
behavior of cyclists, where the attributes selected for research mainly depend on the type of data
used (RP or SP) and the availability of the data (in case of RP). Both Hunt & Abraham (12) and
Sener et al. (17) have reviewed many (mostly SP) studies to find attributes that potentially
influence bicycle route choice. Based on these reviews (12, 17) and previous RP studies (7-10)
three categories of explanatory variables are identified: individual, network and contextual
attributes. TABLE 1 shows an overview of all attributes, including how they influence route
choice for cyclists (Table 1).

Individual attributes are commonly incorporated in SP studies, mainly as interaction
terms, to identify differences in attitude between individuals with respect to network attributes.
Looking at RP studies, this means that next to observing actual behavior, a questionnaire for
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socio-demographics is necessary. Although, the privacy of the respondent needs to be preserved.
In the RP studies, Hood et al. (7) have included gender and cycling experience in their model,
but for example Menghini et al. (8) did not have these personal attributes at the individual level.

The network attributes that were found to be most influential on route choice behavior
are distance, gradient and cycle path percentage (e.g. 8, 9). Regarding gradient different
approaches are applied in literature. For example, Broach et al. (9) divided sections of the route
into different categories of up-slope, whereas Menghini et al. (8) adopted the maximum gradient
of the route. With respect to cycle paths, Furth (18) identifies four categories: shared streets and
lanes, cycling lanes, separate cycle paths and standalone paths. Menghini et al. (8) only take into
account the third category, whereas Hood et al. (7) take the first, second and fourth category into
account.

Contextual attributes are mostly found in SP studies, however also in RP studies trip
purpose is found to be influential (e.g. 7, 9). Commuting cyclists tend to value distance more
negative compared to other purposes.

Based on the literature and the constraints on the availability of information, the
following attributes are selected for this study: distance, percentage of separate cycle paths (third
category (18)), number of intersections, rain, sunset and sunrise times and trip purpose. Due to
privacy issues, the BCW dataset does not contain any personal information at the individual level.

3. ESTIMATING A CYCLISTS’ ROUTE CHOICE MODEL

This section provides the analysis of the data collected for the inner-city of Amsterdam. First the
descriptive statistics for the trips collected in the inner-city are presented (3.1). Then, the
specification of the estimated models is described (3.2) and the results of the model estimations
are discussed (3.3).

3.1. Analysis of the trips cycled in Amsterdam

For this study the selected network attributes are distance, percentage of separate cycle path and
number of intersections per km. TABLE 2 shows the range, mean and standard deviation of
these attributes for all alternatives. As can be expected from the restriction of the case study area
to the inner-city, the average route distance is relatively small. However, the longest route is
relatively long as it exceeds 6km. Separate cycle paths are only encountered on roads with a
speed limit of 50 km/h or higher. In the inner-city cyclists share roads with motorized traffic and
large volumes of pedestrians (18). Therefore, a low percentage of cycle paths is found along the
routes of the participants (36%). The number of intersections crossed per km also varies largely
and is, as can be expected in a dense urban area, fairly high (Table 2).

The selected contextual attributes are translated into dummy variables. Even though the
trip purpose is unknown, two proxy variables can be derived. Firstly, the time of day at which
the trip has started is an indicator for commuting to or from work or school (peak hours) versus
recreational or social trips (off-peak hours). Secondly, the trip type can be an indicator for
cycling only trips or access and egress as part of a multimodal trip. Two train stations are
situated within the inner-city boundaries; Amsterdam Centraal and Amsterdam Muiderpoort.
Trips starting at one of these stations are considered egress and the trips ending at these stations
are considered access, relative to the multimodal trip.

Only 14% of the trips are undertaken in darkness. Most trips are cycled (28%) during the
morning peak hours from 7AM to 10AM, followed by trips during daytime from 10AM to 5PM
(27%). Almost half of the trips experienced rain showers (46%). Access and egress are equally
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represented in the dataset (each 9%), implying that most trips in the dataset are cycling only (not
directed to or from a train station).

3.2. Specification of the route choice models
The most commonly used model to estimate cyclists’ route choice, like estimated by Casello &
Usyukov (10), is the MNL model. This model assumes that cyclists interpret each route as a
distinct alternative (independence of irrelevant alternatives), while in reality the perception of
routes that share common links might be correlated, implying that the MNL model will
inadequately assign high probabilities to overlapping routes. The routes included in this study
exercise some degree of overlap, therefore violating this assumption.

To account for overlapping routes, multiple solutions have been proposed in literature.
The model structure applied in other cyclists’ route choice studies is the PSL model (e.g. 7-9),
which introduces a similarity measure in the utility function to account for the overlap. This
approach maintains the MNL structure, making it easy to compute. For the calculation of the
path size (PS) factor, different approaches have been put forward, however no straightforward
answer can be provided to the question which performs best. For example, the PS factors
developed in a later stage can have illogical route probabilities (19), whereas the earlier versions
of the PS factor do not take large differences in route length into account (20). In this study the
path size factor put forward by Ben-Akiva & Bierlaire (20) is adopted, because no large
deviations in route lengths are present in our study:

Psn= > (&) 5—
me y Li/ ¥jec,aj 1)

Where I is the set of links in route i, [, is the length of link a, L; is the length of route i and
8,4 the link-route incidence variable which equals one if link a is on route j and zero otherwise.
The probability of choosing route i given choice set C,, is specified the following way (20):
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Where Bpg equals 0 when estimating a MNL model and PS is the path size factor calculated in
Equation 1. PS lies between 0 and 1, where 1 means no overlap and O full overlap. The natural
logarithm of PS is then negative. In this study both the MNL and PSL modeling structure are
adopted in order to determine the effect of overlap on the route choice of cyclists. The models
are estimated using the BIOGEME package (21).

3.3. Estimated cyclists’ route choice models

Both a MNL and PSL model are estimated, in order to test for the effect of overlap in the model.
To come to these models, all network attributes have been included in the model estimation, and
insignificant attributes have been removed to find the most efficient model. For the third model,
a stepwise approach is used to add context attributes to the model as interaction terms when a
significant and interpretable result is found, resulting in the extended PSL model.

3.3.1. Discussion of the modeling results

The results of three model estimations are summarized in TABLE 3. In the MNL model both
distance and the number of intersections per km have a significant influence on route choice.
Increasing the average distance with one percent results in a 0.50% decrease of being chosen
(ceteris paribus) and increasing the average number of intersections per km with one percent
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results in a decrease of 0.53%. Cyclists prefer fewer intersections per km, our hypothesis is that
either they want to reduce interaction with other road users and avoid delays or they want to
reduce the cognitive effort during the trip. Translating this to the network of Amsterdam, cyclists
avoid the historical city center and dense residential areas due to the presence of many
intersections per km and they prefer the ring streets because of fewer intersections per km.
Cyclists in Amsterdam are willing to cross 7.73 more intersections for a one kilometer shorter
route, which is fairly high but reasonable for an urban environment (Table 3).

In the PSL model, the path size term is added. As this term is calculated based on overlap
in terms of distance, this factor decreases the impact of distance on the total utility, which is now
only significant on a 90% confidence level. Increasing the number of intersections by one
percent reduces the probability of being chosen by 0.43%, while one percent increase in distance
reduces this probability by 0.36%. The impact of the path size factor depends on the degree of
overlap. One percent increase for nearly unique routes increases the probability of being chosen
by approximately 0.3%, whereas for routes that are almost identical to other routes this is 2.7%.
For a route that is one kilometer shorter, cyclists are willing to cross 6.28 intersections, which is
slightly lower than in the MNL model.

The PSL model has been extended to include context attributes as interaction terms. The
time of day, in particular the morning peak, was found the only significant explanatory variable.
The other contextual attributes (rain, sunset and sunrise times and access/egress) did not yield
any interpretable significant influence on the network attributes. Morning peak hours (7AM-
10AM) are characterized by commuters heading to work, where schedule constraints are more
likely. Model estimates show that morning trips are characterized by a significantly greater
repelling effect for distance compared to other times of the day. One percent increase in the
average distance results in a decrease in the choice probability of 3.4% for cyclists travelling in
morning peak and only 0.1% for other times. In this model, cyclists travelling during morning
peak are willing to cross 20.07 more intersections for a one kilometer shorter route, whereas
during other times this is only 1.97 intersections. The differences in the tradeoff clearly show the
aversion towards distance of cyclists during morning peak hours.

The path size parameter for the PSL models is significant and negative, indicating that
paths that have a high degree of overlap are more likely to be chosen than others (ceteris paribus).
Previous studies estimating cyclists’ route choice models found a significant positive path size
parameter (e.g. 7, 9). Therefore, this finding may seem counterintuitive at first, as it does not
penalize the routes that overlap but rather increases their choice probability. However, there is
evidence that overlapping routes are sometimes valued higher than non-overlapping routes. This
because overlap can reduce the uncertainty of the route followed, as was for example found by
Lam and Xie (22) in the context of public transport. Cyclists might prefer routes that offer more
downstream decision points to improve route choice robustness. In addition, this might be a
result of the characteristics of this case study. In Amsterdam the radial routes provide the
backbone of many attractive routes, causing overlapping routes to be valued positively. More
behavioral research is needed in order to draw more general conclusions.

3.3.2. Comparison of model structures

The PSL model performs significantly better than the MNL model on a 95% confidence level
based on the log-likelihood ratio test (12.64 > x2). Furthermore, the model fit for the PSL model
is higher. This indicates that including the path size factor to incorporate overlap in the model is
beneficial for the interpretation of the results and the prediction of route choice for cyclists. The
PSL modeling structure is therefore considered more suitable for estimating route choice models
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than the MNL structure. Furthermore, the extended PSL model performs significantly better than
the PSL model at a 95% confidence level (4.88 > x2), meaning that interaction term increases
the model fit. The extended PSL model is therefore the best of the three models.

3.3.3. Model fit

The model fit for all models is very low. In previous studies, where choice set generation
algorithms were applied, model fit varied between 23 to 28 percent, significantly better than in
this study (7-9). As mentioned before, our hypothesis is that estimating discrete choice models
using the empirical approach for composing the choice set, results in a low model fit.
Experiments with adding fictional route alternatives that are inferior to the one most commonly
selected confirm that model goodness-of-fit improves substantially by artificially enlarging the
choice set. This indicates that the application of a generation algorithm leads to over fitting of the
data. Furthermore, variance over the alternatives is low in the dataset, most likely due to the fact
that cycling costs effort. For example, the shortest route is chosen in 32.6% of the cases, and in
41.4% of the cases the distance of the chosen route is only 10% more than the shortest route,
which means on average only 0.2km difference. This implies that it is more difficult to estimate
a distance coefficient in the model estimation when constructing the choice set using the
empirical approach compared to the algorithm approach.

4. CONCLUSIONS
This paper presented the findings of a cyclists’ route choice model estimated for the inner-city of
Amsterdam, aimed at identifying the determinants influencing route choice in a network where
cycling is the primary travel mode. Choice models were estimated based on detailed GPS data
comprising more than 3,000 trips performed over the course of one week in September 2015.

It is possible to estimate a route choice model for cyclists based on only GPS trajectory
data. The results of the estimated route choice models are mostly in line with literature (7-10).
However, previous cyclists’ route choice studies that have used GPS data found that the
percentage of separate cycle paths is a very important factor for route choice (7-10), whereas this
study finds no such significant relation. This is presumably due to guidelines for Dutch
infrastructure, where cyclists are specifically taken care of. For example, cyclists and motorized
traffic are only mixed on streets where the speed limit is 30 km/h and the traffic volume is under
4000 vehicles/day, mitigating the safety risks (18). This finding suggests that when cycling is
indeed well-established, separate cycle paths do not necessarily attract cyclists. This might
however be due to the location of the cycle paths in the network, which is on the ring streets and
not in the center of the city. More research is necessary for studying how an increasingly dense
network of bike paths might lead to a reduction in their importance as route choice determinant.
Our results for distance are overall in line with previous studies, although the impact of distance
is less pronounced than in other studies (7-10). Previous studies calculated more specific
attributes related to the number of intersections per km, like number of turns per km, number of
signalised intersections per km and number of stop signs per km (e.g. 7, 9), they were all found
to influence the route choice behaviour of cyclists negatively, however a proper comparison
cannot be made. Distance and the number of intersections per km are evidently important
regardless of the level of penetration of the cycling. During the morning peak, when people cycle
to work or school, distance looms more negatively than during other times of the day, which is
consistent with the findings reported by Broach et al. (9).

In this study both the MNL and PSL modeling structure are adopted in order to determine
the effect of overlap on the route choice of cyclists. The effect of taking overlap into account in
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the model estimation is large as it increases the explanatory value of the model. Routes that are
overlapping are valued higher than non-overlapping routes, several explanations can be found for
this phenomenon. First of all, an empirical approach for choice set identification is adopted in
this study instead of the often used path generation algorithms. This approach allows us to
overcome the common shortcomings of not generating the chosen route and having a large
number of non-chosen alternatives, by using only the observed routes per OD pair in the dataset
in constructing the choice set. Some links are attractive to all cyclists, probably because they
form the most direct path to the destination (23) or they could have some non-observed
advantage. Consequently, it is likely that cyclists choose routes that include these links and
because the observed routes form the basis of our choice set, routes with a higher degree of
overlap are common and preferred. Another explanation is that the uncertainty of the chosen
route is lower when routes overlap and alternatives are present, this can be especially helpful
when for example road works are encountered. This explanation also relates to the physical
effort needed for cycling. The alternatives available near overlapping routes are usually similar
in terms of physical effort, whereas a non-overlapping route might require more physical effort
(e.g. longer distance).

The use of the empirical approach for identifying the choice set has its limitations. In
particular, the choice set depends on the observed choices and might thus vary for different
samples. In addition, the low model fit of the estimated models is attributed to the use of the
empirical approach as confirmed by experimenting with the addition of fictive routes. Finally,
the positive value found for overlapping routes might be the result of adopting this approach,
however this approach should be tested on other datasets in order to draw a more definitive
conclusion.

This study was the first to include data from a city where cycling is a well-established
and prominent travel mode. Our findings suggest that there are noticeable differences between
this case study area which has few comparable cases, and cities where cycling is almost absent.

We recommend also including socio-demographic variables, such as gender, age and
cultural background into future data collection and analysis in order to allow identifying their
importance. Furthermore, we expect that including more network attributes will help improve
interpretation, practical applicability and model fit. Also, for future research we would like to
explore more modeling structures, as they might be better suitable for modeling cyclists’ route
choice. Possible interesting structures are latent class, nested logit and mixed logit. Next to that,
we want to explore the sensitivity of the estimation results to the generated choice sets using the
empirical approach. Furthermore, we are interested in testing how individual knowledge and
familiarity with the network influences route choice when cycling, we expect that this will help
understanding the relationship with overlapping routes. Moreover, nowadays more and more
people use mobile devices to plan activities and routes, potentially influencing how they travel.
Finally, cycling route choice models can be integrated into an activity scheduling and mode
choice model, in order to assess their inter-relation with other modes in transport demand
forecasting.

ACKNOWLEDGEMENTS

This research was supported by the Allegro (Unravelling slow mode travelling and traffic: with
innovative data to create a new transportation and traffic theory for pedestrians and bicycles)
project which is financed by the European Research Council and Amsterdam Institute for



Ton, Cats, Duives and Hoogendoorn 12

Advanced Metropolitan Solutions. The data for this research was provided by the initiatiors of
the ‘Fiets Telweek’.

REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

Pan-European Programme. (2014). Fourth high-level meeting on transport, health and
environment. Paris: World Health Organisation & United Nations.
http://www.unece.org/fileadmin/DAM/thepep/documents/ Déclaration_de_Paris_EN.pdf.
Accessed May 18, 2016.

Kuester, F. (2015). National cycling policies. Retrieved from European Cyclists'
Federation: https://ecf.com/what-we-do/cycling-all-policies/national-cycling-policies.
Accessed May 20, 2016.

Pucher, J. and Buehler, R. (2008). Making cycling irresistible: Lessons from The
Netherlands, Denmark and Germany. Transport Reviews, 495-528.

OVIN. (2011). Onderzoek Verplaatsingsgedrag Nederland 1986-2012. Den Haag: CBS,
[in Dutch].

Harms, L., Bertolini, L., & Te Brommelstroet, M. (2016). Performance of municipal
cycling policies in medium-sized cities in the Netherlands since 2000. Transport Reviews,
134-162.

Verkeersnet. (2015, December 29). Onderzoek naar betere fietsmodellen. Verkeersnet:
http://www.verkeersnet.nl/17820/onderzoek-naar-betere-fietsmodellen/. Accessed April
12, 2016. [in Dutch]

Hood, J., Sall, E. and Charlton, B. (2011). A GPS-based bicycle route choice model for
San Francisco, California. Transportation Letters, 63-75.

Menghini, G., Carrasco, N., Schussler, N., & Axhausen, K. (2010). Route choice of
cyclists in Zurich. Transportation Research Part A, 754-765.

Broach, J., Dill, J. and Gliebe, J. (2012). Where do cyclists ride? A route choice model
developed with revealed preference GPS data. Transportation Research Part A, 1730-
1740.

Casello, J. M. and Usyukov, V. (2014). Modeling cyclists' route chocie based on GPS
data. Transportation Research Record: Journal of the Transportation Research Board,
155-161.

Howard, C. and Burns, E. K. (2001). Cycling to work in Phoenix: Route choice, travel
behavior, and commuter characteristics. Transportation Research Record: Journal of the
Transportation Research Board, 39-46.

Hunt, J. D. and Abraham, J. E. (2007). Influences on bicycle use. Transportation, 453-
470.

Fiets Telweek. (2015). Regiobrochure Nationale Fiets Telweek 2015. Breda:
Fietstelweek, [in Dutch].

van de Coevering, P., de Kruijf, J. and Bussche, D. (2014). Bikeprint: Policy renewal and
innovation by means of tracking technology. Eindhoven: Colloquium
Vervoersplanologisch Speurwerk, [in Dutch].

Hoogendoorn-Lanser, S. (2005). Modelling travel behaviour in multi-modal networks.
PhD Thesis. Delft University of Technology.

Harrington, P. (2012). Clustering unlabeled items using k-means clustering. In P.
Harrington, Machine learnign in Action (pp. 207-223). Shelter Island: Manning.



17.

18.

19.

20.

21.

22.

23.

Ton, Cats, Duives and Hoogendoorn 13

Sener, I. N., Eluru, N. and Bhat, C. R. (2009). An analysis of bicycle route choice
preferences in Texas, US. Transporation, 511-539.

Furth, P. G. (2012). Bicycling infrastructure for mass cycling: A transatlantic
comparison. In: J. Pucher, & R. Buehler, City Cycling (pp. 105-140). Cambridge, USA:
MIT Press.

Freijinger, E. and Bierlaire, M. (2007). Capturing correlation with subnetworks in route
choice models. Transportation Research Part B, 363-378.

Ben-Akiva, M. and Bierlaire, M. (1999). Discrete choice methods and their applications
to short term travel decisions. In: W. Hall, Handbook of Transportation Science (pp. 5-
34). Dordrecht, The Netherlands: Kluwer.

Bierlaire, M. (2003). BIOGEME: A free package for the estimation of discrete choice
models. Proceedings of the 3rd Swiss Transportation Research Conference. Ascona,
Switzerland.

Lam, S.-H. and Xie, F. (2002). Transit path-choice models that use revealed preference
and stated preference data. Transportation Research Record: Journal of the
Transportation Research Board, 58-65.

Bovy, P. H. and Stern, E. (1990). Route choice: Wayfinding in transport networks.
Dordrecht, The Netherlands: Kluwer.



Ton, Cats, Duives and Hoogendoorn 14

LIST OF TABLES

TABLE 1 Attributes and their Influence on Cyclists’ Route Choice, based on findings in
(7-10, 12, 17)

TABLE 2 Descriptive Statistics of Cycling Trips in Amsterdam

TABLE 3 Estimated Cyclists’ Route Choice Models

LIST OF FIGURES

FIGURE 1 (a) The Network of Amsterdam used for Cycling Trips. In the center lies the
Historical City, surrounded by the Ring Canal streets and the Radial Roads heading to and
from the City. To the North lies the river 1J, with two Ferries connecting its Shores. (b) All
Origin and Destination Cluster Centers resulting from the K-Means Clustering Algorithm.
FIGURE 2 Data Filtering Process



Ton, Cats, Duives and Hoogendoorn

TABLE 1: Attributes and their Influence on Cyclists’ Route Choice, based on

15

findings in

(7-10, 12, 17)

Individual attributes Network attributes Contextual attributes
Gender - | Distance Negative Sunset & Sunrise times -
Age - | % of cycle path Positive Weather (rain) -
Cycling experience | - | Gradient Negative Crime rate / Safety -
Income - | Travel time Negative Aesthetics (Canal / Park) -
Household size - | Travel speed Positive Sweepl_ng/ Snow -

ploughing

Maximum speed (cars) Negative Cycling season -
# Stop signs Negative Trip purpose -
# Intersections Negative
# Bridges Positive
# (Left) turns Negative
% Wrong way Negative
Pavement surface -

. Positive
quality
Continuity of cycle Positive
paths
Traffic volume (cars) Negative
On-street parking Negative

Positive (8),

# Traffic lights Negative (9)

- Not estimated as a separate attribute
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TABLE 2: Descriptive Statistics of Cycling Trips in Amsterdam

Attribute Description Range Mean Standard
Deviation

Distance (km) Route length 0.13-6.69 1.96 1.02

Percentage of separate Percentage of the route with a cycle path 0% —100% | 36.2% | 25.5%

cycle path which is separated from motorized traffic

Number of intersections Average number of intersections crossed 1.75-50.8 16.8 5.8

per km

per km (straight and turn)
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TABLE 3: Estimated Cyclists’ Route Choice Models

MNL model PSL model Extended PSL
model

Coef, t-stat | Coef. t-stat | Coef. t-stat

Distance (km) -0.255 -2.36** | -0.182 -1.65* | -0.057 -0.48
Morning peak - - - - -0525 -1.77*

# Intersections/km -0.033  -4.84** | -0.029 -4.00** | -0.029 -4.09**
Ln (Path Size) - - -0.252 -2.13** | -0.248 -2.11**
Adjusted rho-square 0.003 0.005 0.005
Likelihood ratio 31.165 43.809 48.694
Initial Log-likelihood -4,167.376 -4,167.376 -4,167.376
Final Log-likelihood -4,151.794 -4,145.472 -4,143.030
# Observations 3045 3045 3045
Number of parameters 2 3 4

*Significant on 90% confidence level **Significant on 95% confidence level

17
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FIGURE 1: (a) The Network of Amsterdam used for Cycling Trips. In the center lies the
Historical City, surrounded by the Ring Canal streets and the Radial Roads heading to and
from the City. To the North lies the river 1J, with two Ferries connecting its Shores. (b) All
Origin and Destination Cluster Centers resulting from the K-Means Clustering Algorithm.
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