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ABSTRACT 

Nowadays, the bicycle is seen as a sustainable and healthy substitute for the car in urban 

environments. The Netherlands is the leading country in terms of bicycle use, especially in urban 

environments. Yet route choice models featuring inner-city travel that include cyclists are 

lacking. This paper estimates a cyclists’ route choice model for the inner-city of Amsterdam, 

based on 3,045 trips collected with GPS data. The main contribution of this paper is the 

construction of the choice set using an empirical approach which uses only the observed trips in 

the dataset to compose the choice alternatives. The findings suggest that cyclists are insensitive 

to separate cycle paths in Amsterdam, which is a city characterized by a dense cycle path 

network in which cycling is the most prominent mode of travel. In addition, cyclists are found to 

minimize travel distance and the number of intersections per kilometer. The impact of distance 

on route choice increases in the morning peak where schedule constraints are more prevalent. 

Furthermore, overlapping routes are more likely to be chosen by cyclists given everything else 

being the same.   
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1. INTRODUCTION 

Governments worldwide nowadays acknowledge the advantages of cycling as mode of transport. 

First, there are health benefits for individual cyclists. Second, the bicycle can help reduce 

emissions when substituting the car (1). Cycling is most attractive in urban areas without large 

changes in altitude (e.g. the Netherlands or Denmark), where distances covered are relatively 

small and car usage is often discouraged and associated with greater travel impedance. 

Furthermore, most European governments have set goals of increasing the modal share of 

cycling over the next years (2).  

The Netherlands is the leading country in terms of bicycle use, with 27% of all trips 

performed by bicycle (3). When focusing on the urban environment, the modal share for bicycles 

increases further, for example in Amsterdam this was 37% in 2011 (4). Other cities such as 

Groningen, Delft and Leiden have a comparable share of bicycle trips (3, 5). Despite the fact that 

so many people cycle in the Netherlands, models aiming at understanding and predicting cyclists’ 

choice behavior are lacking (6).  

This shift towards cycling, combined with a lack of models incorporating cycling, calls 

for the development of models to assess related policy implications. Many cities use forecasting 

models to estimate if, when and where changes to infrastructure or policy are needed. However, 

these models are still mainly focused on motorized traffic (7). The cycling component is either 

missing, walking and cycling are combined or the model assumes that cars and cyclists behave 

similarly. Ideally, in forecasting models mode specific activity and route choices are 

incorporated. Since both choice processes are currently underdetermined, this study starts out by 

estimating the route choice determinants for cyclists. Before choosing a route, the traveler has 

already decided to cycle and which activity to perform, therefore the implications of researching 

route choice first are expected to be minimal. 

Recently, a number of studies have estimated bicycle route choice models for locations 

where bicyce modal shares range between 1% and 6% (3). Arguably, the determinants of route 

choice behavior and their impact might be different from a city such as Amsterdam, where 

cycling is prominent. These studies used revealed preference (RP) data, more specifically GPS 

data for estimating the route choice model (7-10). Before, most of the data used for model 

estimation came from stated preference (SP) surveys where the respondents were asked what 

they would do in a hypothetical situation or route recall surveys where researchers relied on the 

respondents’ ability to recollect chosen routes (e.g. 11, 12).   

This study aims at estimating cyclists’ route choice determinants in a context where 

cycling is the primary mode of transport. Furthermore, the inner-city of Amsterdam is 

characterized by a densely built area with well-developed cycling infrastructure. This paper 

presents the findings from a cyclists’ route choice model estimated for the inner-city of 

Amsterdam, using GPS data to identify the determinants influencing route choice in a network 

dominantly used by cyclists.  

This study contributes to the previous cyclists’ RP route choice models by introducing a 

new approach for choice set identification. Previous RP studies have used choice set generation 

algorithms to identify the feasible choice set from which the cyclist chooses a route. This 

approach does not guarantee that the chosen route is generated and may include a large number 

of alternatives that are not selected by any cyclist. Conversely, an empirical approach is 

proposed which uses only the observed routes to identify the considered choice set. This implies 

that the chosen route is by definition included in the choice set. Because all routes in the choice 

set are chosen at least once, it is likely that the alternative routes are considered by the cyclists in 
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the sample. Furthermore, a behavioral comparison can be made with environments where 

cyclists make a small minority, because the data is collected in an environment dominantly used 

by cyclists.  

In this paper, Section 2 details the data processing phase, going from GPS data to route 

alternatives and characteristics. In Section 3, the processed data is analyzed and the results of the 

estimated route choice models are reported and discussed. Finally, Section 4 provides the 

conclusions of the paper. 

2. DETERMINING ROUTE ALTERNATIVES AND CHARACTERISTICS 

This section describes the collection (2.1) and map matching (2.2) of GPS trajectory data. 

Furthermore, an empirical approach for identifying the route choice set is proposed (2.3), which 

requires clustering (2.4) and filtering (2.5) of the data. Finally, the potential determinants for 

cyclists’ route choice are discussed (2.6). 

2.1. Collection of GPS data 

GPS data was collected during a nationwide initiative called the ‘Bicycle Counting Week’ 

(BCW), which took place on 14-20 September 2015. The event was organized as a joint 

initiative of national agencies and companies with the goal of gaining a better insight into the 

cycling behavior of Dutch cyclists. Nationwide, a total of 38,000 cyclists participated in this 

initiative. Participants’ cycling patterns were tracked using an App. In addition, they once filled 

in a socio-demographic and travel habit survey to complement the GPS data. Several bicycles 

were put up for raffle under the participants (13).  

During the initiative, data of 377,321 cycling trips was collected nationwide. The 

respondents’ sample includes equal shares of male and female participants. The majority of the 

participants are in the age group 31-65 (80%), while young people (18-) and old people (65+) are 

underrepresented. This probably stems from the need for using a smartphone to work with the 

App and the requirement to have consent from ones’ parents if younger than 18 years. Most trips 

registered are work related (69%), explaining why the group of participants aged 31-65 is 

overrepresented. Participants could mention multiple reasons for cycling. The most dominant 

reasons mentioned are health (80%), speed (47%) and comfort (46%) (13). 

As mentioned before, this research focusses on the cycling trips within the city of 

Amsterdam, where a total of 12,413 trips performed by approximately 5,000 participants were 

recorded. The Amsterdam sample is similar in terms of gender and age composition to the 

national sample. However, the share of commuting is higher in Amsterdam (77%). The majority 

of the cyclists’ cycles between 25 and 100km a week (72%), while only 3% cycles less than 

10km a week, suggesting that most participants cycle at least to and from their work on a daily 

basis (13). All the cycling trips included in this research are superimposed on the map depicted 

in FIGURE 1a (Figure 1). 

 

2.2. Map matching the GPS trajectory data 

The map matching is executed by the organizers of the BCW, for a more detailed description on 

this procedure the reader is referred to Van de Coevering et al. (14). In the GPS trajectory data, 

most consecutive GPS data points are measured with an accuracy of 3-4 meters with respect to 

the infrastructure network. However, outliers up to 50 meters are observed, mainly in dense 

urban areas. To reduce the impact of these outliers on the analysis, the speed between each two 

consecutive GPS points is calculated and compared to the actual GPS speed determined by 
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means of Doppler techniques. If the discrepancy between the actual speed and the computed 

speed is too large, the GPS records are removed from the dataset (14).  

The remaining GPS trajectories are matched to the OpenStreetMap network. The map 

matching algorithm deployed by the BCW organizers generates all possible routes from origin to 

destination and selects the best match for the GPS records. If no match is found, it could be that 

links are missing (for example in case of desire lines). In that case the route is partitioned and the 

same procedure is repeated for the sub-routes (14).  

2.3. Identifying the considered route choice set 

In literature, several approaches for choice set identification have been used, with most studies 

focused on cycling applying a choice set generation algorithm (e.g. 7, 8). The aim of these 

algorithms is to obtain feasible choice sets (15), consisting of attractive alternatives. These 

algorithms however do not guarantee that the chosen route is generated and may include a large 

number of alternatives that are not chosen by any individual.  

An alternative approach for constructing the route choice set is to compile it based on the 

trips and routes observed in the data. This empirical approach assures that the chosen route is per 

definition part of the choice set. While the choice set from which each individual cyclist 

eventually chooses his route (considered choice set (15)) cannot be observed directly, it is 

assumed that the observed alternative routes in the data for a given OD pair are included in this 

set. Unlike the algorithm approach, the empirical approach implies that not all feasible routes are 

included in the choice set, but rather only routes that are all actually used by the cyclists in the 

collected dataset. Consequently, the choice set depends on the observed choices and might thus 

vary for different samples.  

A discrete choice model estimated using the realized routes (empirical approach) is 

expected to have lower explanatory power than a model estimated based on possible routes 

(algorithm approach). The first approach identifies alternatives that are chosen by at least one 

cyclist in the data, whereas the second approach also identifies alternatives that are not chosen. 

As a result, the offset between the chosen route and the alternatives is smaller when estimating a 

model using only the realized routes. 

Two prerequisites exist for applying the empirical approach: each OD pair considered in 

the analysis should contain multiple trips and at least two distinct routes. For this study a 

maximum of 19 realized routes for one OD pair is identified. 

2.4. Clustering of the origin and destination GPS data  

Since trip origin and destinations are not likely to be recorded at the exact same geographical 

location when using high-resolution GPS data (approximately 50% in the BCW database), the 

GPS origin and destination data points are clustered into larger OD pairs, resulting in more trips 

and possibly more routes per OD pair.  

The k-means clustering method is applied, based on the distance between GPS locations 

of the origins and destinations (16). The algorithm minimizes the intra-cluster distances and 

maximizes the inter-cluster distances. Two downsides of this method are that the solution can get 

stuck in a local minimum (16), which results in a suboptimal distribution of GPS locations over 

the clusters. Furthermore, in case the number of clusters is set too low, the routes in one OD pair 

cannot be compared, because the origin or destination points are too far apart. The first downside 

can be (partially) mitigated by setting multiple starting points for the algorithm. This way it is 

less likely to converge into a local minimum.  

This method was applied for different k-values; 150, 200, 250 and 300 clusters. If the 

number of clusters is set too high, the number of trips per cluster becomes too low and the 
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advantages of clustering the trips diminish. As mentioned before, if the number of clusters is set 

too low, routes in one OD pair cannot be compared. We find that defining 200 clusters provides 

the best balance between intra-cluster distance and number of trips per OD pair for the BCW 

dataset. The number of random starting points is set to 20. FIGURE 1b shows the geographical 

distribution of the cluster-centers over the inner-city of Amsterdam.  

The 200 clusters result in a maximum intra-cluster distance (i.e. diameter) of 444 meters, 

while the average is 168 meters. The cluster with the largest diameter is located around a park, 

however the routes chosen are still comparable. Therefore, this is an acceptable diameter for a 

rather dense network. After clustering, only 30% of the OD pairs consists of one trip, instead of 

50% before clustering.  

2.5. Data filtering process 

Not all trips in the dataset can be used, mostly because of how the choice set is composed. 

Therefore, several filtering steps are necessary (see FIGURE 2). In the BCW dataset many 

cycling trips are made in the inner-city, whereas the density of cycling trips in the suburbs is 

very low. Therefore, only the trips (partially) traversing the inner-city are used, which limits the 

available trips to 7,984. Not all trips are included completely, because the boundaries of the 

inner-city are specified on GPS coordinate level and not on trip level. It is, for example, possible 

that one trip crosses the inner-city more than once. In this case the trip is split into multiple trips. 

This demarcation means that some cyclists are observed during the entire trip, whereas others are 

only observed during part of the trip. We assume that the route choice for a section of the route is 

not fundamentally different from choosing the complete route.  

Due to splitting trips some very short routes are created, for which it is unlikely that route 

choice is possible. Therefore, a filter is applied on the possibility for route choice, which is 

defined here as crossing at least two intersections during the trip, resulting in 8,847 trips. When 

applying the empirical approach to identify the choice set, it is necessary to filter out all OD 

pairs with only one trip, resulting in 6,208 trips. Also, more than one route needs to be chosen 

per OD pair. The result is a final dataset of 3,045 trips (see FIGURE 1a). Since other GPS based 

route choice models have been estimated using less trips (7-10), the filtered data set seems large 

enough to estimate a route choice model for cyclists in inner-city areas. Furthermore, the initial 

dataset and the final dataset show similar patterns with respect to time of departure and day of 

travel. The distances covered are slightly larger in the initial sample, due to the geographical 

demarcation of the inner-city. However, no structural behavioral issues are expected due to the 

filtering process (Figure 2). 

 

2.6. Potential determinants of cyclists’ route choice  

Previous research has identified a wide range of attributes that might influence the route choice 

behavior of cyclists, where the attributes selected for research mainly depend on the type of data 

used (RP or SP) and the availability of the data (in case of RP). Both Hunt & Abraham (12) and 

Sener et al. (17) have reviewed many (mostly SP) studies to find attributes that potentially 

influence bicycle route choice. Based on these reviews (12, 17) and previous RP studies (7-10) 

three categories of explanatory variables are identified: individual, network and contextual 

attributes. TABLE 1 shows an overview of all attributes, including how they influence route 

choice for cyclists (Table 1). 

Individual attributes are commonly incorporated in SP studies, mainly as interaction 

terms, to identify differences in attitude between individuals with respect to network attributes. 

Looking at RP studies, this means that next to observing actual behavior, a questionnaire for 
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socio-demographics is necessary. Although, the privacy of the respondent needs to be preserved. 

In the RP studies, Hood et al. (7) have included gender and cycling experience in their model, 

but for example Menghini et al. (8) did not have these personal attributes at the individual level.   

The network attributes that were found to be most influential on route choice behavior 

are distance, gradient and cycle path percentage (e.g. 8, 9). Regarding gradient different 

approaches are applied in literature. For example, Broach et al. (9) divided sections of the route 

into different categories of up-slope, whereas Menghini et al. (8) adopted the maximum gradient 

of the route. With respect to cycle paths, Furth (18) identifies four categories: shared streets and 

lanes, cycling lanes, separate cycle paths and standalone paths. Menghini et al. (8) only take into 

account the third category, whereas Hood et al. (7) take the first, second and fourth category into 

account. 

Contextual attributes are mostly found in SP studies, however also in RP studies trip 

purpose is found to be influential (e.g. 7, 9). Commuting cyclists tend to value distance more 

negative compared to other purposes.  

Based on the literature and the constraints on the availability of information, the 

following attributes are selected for this study: distance, percentage of separate cycle paths (third 

category (18)), number of intersections, rain, sunset and sunrise times and trip purpose. Due to 

privacy issues, the BCW dataset does not contain any personal information at the individual level. 

3. ESTIMATING A CYCLISTS’ ROUTE CHOICE MODEL  

This section provides the analysis of the data collected for the inner-city of Amsterdam. First the 

descriptive statistics for the trips collected in the inner-city are presented (3.1). Then, the 

specification of the estimated models is described (3.2) and the results of the model estimations 

are discussed (3.3).  

3.1. Analysis of the trips cycled in Amsterdam 

For this study the selected network attributes are distance, percentage of separate cycle path and 

number of intersections per km. TABLE 2 shows the range, mean and standard deviation of 

these attributes for all alternatives. As can be expected from the restriction of the case study area 

to the inner-city, the average route distance is relatively small. However, the longest route is 

relatively long as it exceeds 6km. Separate cycle paths are only encountered on roads with a 

speed limit of 50 km/h or higher. In the inner-city cyclists share roads with motorized traffic and 

large volumes of pedestrians (18). Therefore, a low percentage of cycle paths is found along the 

routes of the participants (36%). The number of intersections crossed per km also varies largely 

and is, as can be expected in a dense urban area, fairly high (Table 2).  

The selected contextual attributes are translated into dummy variables. Even though the 

trip purpose is unknown, two proxy variables can be derived. Firstly, the time of day at which 

the trip has started is an indicator for commuting to or from work or school (peak hours) versus 

recreational or social trips (off-peak hours). Secondly, the trip type can be an indicator for 

cycling only trips or access and egress as part of a multimodal trip. Two train stations are 

situated within the inner-city boundaries; Amsterdam Centraal and Amsterdam Muiderpoort. 

Trips starting at one of these stations are considered egress and the trips ending at these stations 

are considered access, relative to the multimodal trip.  

Only 14% of the trips are undertaken in darkness. Most trips are cycled (28%) during the 

morning peak hours from 7AM to 10AM, followed by trips during daytime from 10AM to 5PM 

(27%). Almost half of the trips experienced rain showers (46%). Access and egress are equally 
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represented in the dataset (each 9%), implying that most trips in the dataset are cycling only (not 

directed to or from a train station).  

3.2. Specification of the route choice models 

The most commonly used model to estimate cyclists’ route choice, like estimated by Casello & 

Usyukov (10), is the MNL model. This model assumes that cyclists interpret each route as a 

distinct alternative (independence of irrelevant alternatives), while in reality the perception of 

routes that share common links might be correlated, implying that the MNL model will 

inadequately assign high probabilities to overlapping routes. The routes included in this study 

exercise some degree of overlap, therefore violating this assumption.  

To account for overlapping routes, multiple solutions have been proposed in literature. 

The model structure applied in other cyclists’ route choice studies is the PSL model (e.g. 7-9), 

which introduces a similarity measure in the utility function to account for the overlap. This 

approach maintains the MNL structure, making it easy to compute. For the calculation of the 

path size (PS) factor, different approaches have been put forward, however no straightforward 

answer can be provided to the question which performs best. For example, the PS factors 

developed in a later stage can have illogical route probabilities (19), whereas the earlier versions 

of the PS factor do not take large differences in route length into account (20). In this study the 

path size factor put forward by Ben-Akiva & Bierlaire (20) is adopted, because no large 

deviations in route lengths are present in our study: 

𝑃𝑆𝑖𝑛 =  ∑ (
𝑙𝑎

𝐿𝑖
) 

1

∑ 𝛿𝑎𝑗𝑗 ∈ 𝐶𝑛𝑎 ∈ Γ𝑖

 
 

(1) 

Where Γ𝑖 is the set of links in route 𝑖, 𝑙𝑎 is the length of link 𝑎, 𝐿𝑖 is the length of route 𝑖 and 

𝛿𝑎𝑗  the link-route incidence variable which equals one if link 𝑎 is on route 𝑗 and zero otherwise. 

The probability of choosing route 𝑖 given choice set 𝐶𝑛 is specified the following way (20): 

𝑃(𝑖|𝐶𝑛) =  
𝑒

(𝛽𝑑∗𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑛+ 𝛽𝑖𝑛𝑡∗
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑘𝑚 𝑖𝑛
+ 𝛽𝑃𝑆∗ln 𝑃𝑆𝑖𝑛)

∑ 𝑒
(𝛽𝑑∗𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑗𝑛+ 𝛽𝑖𝑛𝑡∗

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠
𝑘𝑚 𝑗𝑛

+ 𝛽𝑃𝑆∗ln 𝑃𝑆𝑗𝑛)

𝑗 ∈ 𝐶𝑛

 

 

(2) 

Where  𝛽𝑃𝑆 equals 0 when estimating a MNL model and 𝑃𝑆 is the path size factor calculated in 

Equation 1. 𝑃𝑆 lies between 0 and 1, where 1 means no overlap and 0 full overlap. The natural 

logarithm of 𝑃𝑆 is then negative. In this study both the MNL and PSL modeling structure are 

adopted in order to determine the effect of overlap on the route choice of cyclists. The models 

are estimated using the BIOGEME package (21). 

3.3. Estimated cyclists’ route choice models 

Both a MNL and PSL model are estimated, in order to test for the effect of overlap in the model. 

To come to these models, all network attributes have been included in the model estimation, and 

insignificant attributes have been removed to find the most efficient model. For the third model, 

a stepwise approach is used to add context attributes to the model as interaction terms when a 

significant and interpretable result is found, resulting in the extended PSL model. 

3.3.1.  Discussion of the modeling results 

The results of three model estimations are summarized in TABLE 3. In the MNL model both 

distance and the number of intersections per km have a significant influence on route choice. 

Increasing the average distance with one percent results in a 0.50% decrease of being chosen 

(ceteris paribus) and increasing the average number of intersections per km with one percent 
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results in a decrease of 0.53%. Cyclists prefer fewer intersections per km, our hypothesis is that 

either they want to reduce interaction with other road users and avoid delays or they want to 

reduce the cognitive effort during the trip. Translating this to the network of Amsterdam, cyclists 

avoid the historical city center and dense residential areas due to the presence of many 

intersections per km and they prefer the ring streets because of fewer intersections per km. 

Cyclists in Amsterdam are willing to cross 7.73 more intersections for a one kilometer shorter 

route, which is fairly high but reasonable for an urban environment (Table 3).  

In the PSL model, the path size term is added. As this term is calculated based on overlap 

in terms of distance, this factor decreases the impact of distance on the total utility, which is now 

only significant on a 90% confidence level. Increasing the number of intersections by one 

percent reduces the probability of being chosen by 0.43%, while one percent increase in distance 

reduces this probability by 0.36%. The impact of the path size factor depends on the degree of 

overlap. One percent increase for nearly unique routes increases the probability of being chosen 

by approximately 0.3%, whereas for routes that are almost identical to other routes this is 2.7%. 

For a route that is one kilometer shorter, cyclists are willing to cross 6.28 intersections, which is 

slightly lower than in the MNL model. 

The PSL model has been extended to include context attributes as interaction terms. The 

time of day, in particular the morning peak, was found the only significant explanatory variable. 

The other contextual attributes (rain, sunset and sunrise times and access/egress) did not yield 

any interpretable significant influence on the network attributes. Morning peak hours (7AM-

10AM) are characterized by commuters heading to work, where schedule constraints are more 

likely. Model estimates show that morning trips are characterized by a significantly greater 

repelling effect for distance compared to other times of the day. One percent increase in the 

average distance results in a decrease in the choice probability of 3.4% for cyclists travelling in 

morning peak and only 0.1% for other times. In this model, cyclists travelling during morning 

peak are willing to cross 20.07 more intersections for a one kilometer shorter route, whereas 

during other times this is only 1.97 intersections. The differences in the tradeoff clearly show the 

aversion towards distance of cyclists during morning peak hours.  

The path size parameter for the PSL models is significant and negative, indicating that 

paths that have a high degree of overlap are more likely to be chosen than others (ceteris paribus). 

Previous studies estimating cyclists’ route choice models found a significant positive path size 

parameter (e.g. 7, 9). Therefore, this finding may seem counterintuitive at first, as it does not 

penalize the routes that overlap but rather increases their choice probability. However, there is 

evidence that overlapping routes are sometimes valued higher than non-overlapping routes. This 

because overlap can reduce the uncertainty of the route followed, as was for example found by 

Lam and Xie (22) in the context of public transport. Cyclists might prefer routes that offer more 

downstream decision points to improve route choice robustness. In addition, this might be a 

result of the characteristics of this case study. In Amsterdam the radial routes provide the 

backbone of many attractive routes, causing overlapping routes to be valued positively. More 

behavioral research is needed in order to draw more general conclusions.  

3.3.2. Comparison of model structures 

The PSL model performs significantly better than the MNL model on a 95% confidence level 

based on the log-likelihood ratio test (12.64 > 𝜒2). Furthermore, the model fit for the PSL model 

is higher. This indicates that including the path size factor to incorporate overlap in the model is 

beneficial for the interpretation of the results and the prediction of route choice for cyclists. The 

PSL modeling structure is therefore considered more suitable for estimating route choice models 
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than the MNL structure. Furthermore, the extended PSL model performs significantly better than 

the PSL model at a 95% confidence level (4.88 > 𝜒2), meaning that interaction term increases 

the model fit. The extended PSL model is therefore the best of the three models. 

3.3.3. Model fit 

The model fit for all models is very low. In previous studies, where choice set generation 

algorithms were applied, model fit varied between 23 to 28 percent, significantly better than in 

this study (7-9). As mentioned before, our hypothesis is that estimating discrete choice models 

using the empirical approach for composing the choice set, results in a low model fit. 

Experiments with adding fictional route alternatives that are inferior to the one most commonly 

selected confirm that model goodness-of-fit improves substantially by artificially enlarging the 

choice set. This indicates that the application of a generation algorithm leads to over fitting of the 

data. Furthermore, variance over the alternatives is low in the dataset, most likely due to the fact 

that cycling costs effort. For example, the shortest route is chosen in 32.6% of the cases, and in 

41.4% of the cases the distance of the chosen route is only 10% more than the shortest route, 

which means on average only 0.2km difference. This implies that it is more difficult to estimate 

a distance coefficient in the model estimation when constructing the choice set using the 

empirical approach compared to the algorithm approach.  

4. CONCLUSIONS  

This paper presented the findings of a cyclists’ route choice model estimated for the inner-city of 

Amsterdam, aimed at identifying the determinants influencing route choice in a network where 

cycling is the primary travel mode. Choice models were estimated based on detailed GPS data 

comprising more than 3,000 trips performed over the course of one week in September 2015. 

It is possible to estimate a route choice model for cyclists based on only GPS trajectory 

data. The results of the estimated route choice models are mostly in line with literature (7-10). 

However, previous cyclists’ route choice studies that have used GPS data found that the 

percentage of separate cycle paths is a very important factor for route choice (7-10), whereas this 

study finds no such significant relation. This is presumably due to guidelines for Dutch 

infrastructure, where cyclists are specifically taken care of. For example, cyclists and motorized 

traffic are only mixed on streets where the speed limit is 30 km/h and the traffic volume is under 

4000 vehicles/day, mitigating the safety risks (18). This finding suggests that when cycling is 

indeed well-established, separate cycle paths do not necessarily attract cyclists. This might 

however be due to the location of the cycle paths in the network, which is on the ring streets and 

not in the center of the city. More research is necessary for studying how an increasingly dense 

network of bike paths might lead to a reduction in their importance as route choice determinant. 

Our results for distance are overall in line with previous studies, although the impact of distance 

is less pronounced than in other studies (7-10). Previous studies calculated more specific 

attributes related to the number of intersections per km, like number of turns per km, number of 

signalised intersections per km and number of stop signs per km (e.g. 7, 9), they were all found 

to influence the route choice behaviour of cyclists negatively, however a proper comparison 

cannot be made. Distance and the number of intersections per km are evidently important 

regardless of the level of penetration of the cycling. During the morning peak, when people cycle 

to work or school, distance looms more negatively than during other times of the day, which is 

consistent with the findings reported by Broach et al. (9).  

In this study both the MNL and PSL modeling structure are adopted in order to determine 

the effect of overlap on the route choice of cyclists. The effect of taking overlap into account in 
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the model estimation is large as it increases the explanatory value of the model. Routes that are 

overlapping are valued higher than non-overlapping routes, several explanations can be found for 

this phenomenon. First of all, an empirical approach for choice set identification is adopted in 

this study instead of the often used path generation algorithms. This approach allows us to 

overcome the common shortcomings of not generating the chosen route and having a large 

number of non-chosen alternatives, by using only the observed routes per OD pair in the dataset 

in constructing the choice set. Some links are attractive to all cyclists, probably because they 

form the most direct path to the destination (23) or they could have some non-observed 

advantage. Consequently, it is likely that cyclists choose routes that include these links and 

because the observed routes form the basis of our choice set, routes with a higher degree of 

overlap are common and preferred. Another explanation is that the uncertainty of the chosen 

route is lower when routes overlap and alternatives are present, this can be especially helpful 

when for example road works are encountered. This explanation also relates to the physical 

effort needed for cycling. The alternatives available near overlapping routes are usually similar 

in terms of physical effort, whereas a non-overlapping route might require more physical effort 

(e.g. longer distance).  

The use of the empirical approach for identifying the choice set has its limitations. In 

particular, the choice set depends on the observed choices and might thus vary for different 

samples. In addition, the low model fit of the estimated models is attributed to the use of the 

empirical approach as confirmed by experimenting with the addition of fictive routes. Finally, 

the positive value found for overlapping routes might be the result of adopting this approach, 

however this approach should be tested on other datasets in order to draw a more definitive 

conclusion.  

This study was the first to include data from a city where cycling is a well-established 

and prominent travel mode. Our findings suggest that there are noticeable differences between 

this case study area which has few comparable cases, and cities where cycling is almost absent.  

We recommend also including socio-demographic variables, such as gender, age and 

cultural background into future data collection and analysis in order to allow identifying their 

importance. Furthermore, we expect that including more network attributes will help improve 

interpretation, practical applicability and model fit. Also, for future research we would like to 

explore more modeling structures, as they might be better suitable for modeling cyclists’ route 

choice. Possible interesting structures are latent class, nested logit and mixed logit. Next to that, 

we want to explore the sensitivity of the estimation results to the generated choice sets using the 

empirical approach. Furthermore, we are interested in testing how individual knowledge and 

familiarity with the network influences route choice when cycling, we expect that this will help 

understanding the relationship with overlapping routes. Moreover, nowadays more and more 

people use mobile devices to plan activities and routes, potentially influencing how they travel. 

Finally, cycling route choice models can be integrated into an activity scheduling and mode 

choice model, in order to assess their inter-relation with other modes in transport demand 

forecasting.  
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TABLE 1: Attributes and their Influence on Cyclists’ Route Choice, based on findings in 

(7-10, 12, 17) 

 
Individual attributes Network attributes Contextual attributes 

Gender - Distance Negative Sunset & Sunrise times - 

Age - % of cycle path Positive Weather (rain) - 

Cycling experience - Gradient Negative Crime rate / Safety - 

Income - Travel time Negative Aesthetics (Canal / Park) - 

Household size - Travel speed Positive 
Sweeping / Snow 

ploughing 
- 

    Maximum speed (cars) Negative Cycling season - 

    # Stop signs Negative Trip purpose - 

    # Intersections Negative     

    # Bridges Positive     

    # (Left) turns Negative     

    % Wrong way Negative     

    
Pavement surface 

quality 
Positive     

    
Continuity of cycle 

paths 
Positive     

    Traffic volume (cars) Negative     

    On-street parking Negative     

    # Traffic lights 
Positive (8), 

Negative (9) 
  

- Not estimated as a separate attribute 
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TABLE 2: Descriptive Statistics of Cycling Trips in Amsterdam 

 
Attribute Description Range Mean Standard 

Deviation 

Distance (km) Route length 0.13 – 6.69 1.96 1.02 

Percentage of separate 

cycle path 

Percentage of the route with a cycle path 

which is separated from motorized traffic 

0% – 100%  36.2% 25.5% 

Number of intersections 

per km 

Average number of intersections crossed 

per km (straight and turn) 

1.75 – 50.8  16.8 5.8 
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TABLE 3: Estimated Cyclists’ Route Choice Models 

 
 MNL model 

 

 

Coef.           t-stat 

PSL model 

 

 

Coef.         t-stat 

Extended PSL 

model 

 

Coef.          t-stat 

Distance (km) 

        Morning peak 

# Intersections/km 

Ln (Path Size) 

-0.255      -2.36** 

     -               - 

-0.033      -4.84** 

     -               -  

-0.182     -1.65* 

     -              - 

-0.029    -4.00** 

-0.252    -2.13** 

-0.057     -0.48 

-0.525      -1.77* 

-0.029     -4.09** 

-0.248     -2.11** 

Adjusted rho-square 

Likelihood ratio 

Initial Log-likelihood 

Final Log-likelihood 

# Observations 

Number of parameters 

0.003 

31.165 

-4,167.376 

-4,151.794 

3045 

2 

0.005 

43.809 

-4,167.376 

-4,145.472 

3045 

3 

0.005 

48.694 

-4,167.376 

-4,143.030 

3045 

4 

     *Significant on 90% confidence level   **Significant on 95% confidence level 
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FIGURE 1: (a) The Network of Amsterdam used for Cycling Trips. In the center lies the 

Historical City, surrounded by the Ring Canal streets and the Radial Roads heading to and 

from the City. To the North lies the river IJ, with two Ferries connecting its Shores. (b) All 

Origin and Destination Cluster Centers resulting from the K-Means Clustering Algorithm.  
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FIGURE 2: Data Filtering Process 
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