
 
 

Delft University of Technology

SpectralGaussians
Semantic, spectral 3D Gaussian splatting for multi-spectral scene representation,
visualization and analysis
Sinha, Saptarshi Neil; Graf, Holger; Weinmann, Michael

DOI
10.1016/j.isprsjprs.2025.06.008
Publication date
2025
Document Version
Final published version
Published in
ISPRS Journal of Photogrammetry and Remote Sensing

Citation (APA)
Sinha, S. N., Graf, H., & Weinmann, M. (2025). SpectralGaussians: Semantic, spectral 3D Gaussian
splatting for multi-spectral scene representation, visualization and analysis. ISPRS Journal of
Photogrammetry and Remote Sensing, 227, 789-803. https://doi.org/10.1016/j.isprsjprs.2025.06.008

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.isprsjprs.2025.06.008
https://doi.org/10.1016/j.isprsjprs.2025.06.008


ISPRS Journal of Photogrammetry and Remote Sensing 227 (2025) 789–803 

A
0
o

 

Contents lists available at ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier.com/locate/isprsjprs  

SpectralGaussians: Semantic, spectral 3D Gaussian splatting for 
multi-spectral scene representation, visualization and analysis
Saptarshi Neil Sinha a ,∗, Holger Graf a , Michael Weinmann b
a Fraunhofer IGD, Fraunhoferstr. 5, Darmstadt, 64283, Germany
b Delft University of Technology, Van Mourik Broekmanweg 6, Delft, 2628 XE, Netherlands

A R T I C L E  I N F O

Keywords:
Computer graphics
Deep learning
Spectral imaging
3D reconstruction
3D gaussian splatting
Appearance modeling
Scene understanding and editing
Novel view synthesis

 A B S T R A C T

We propose a novel cross-spectral rendering framework based on 3D Gaussian Splatting (3DGS) that generates 
realistic and semantically meaningful splats from registered multi-view spectrum and segmentation maps. 
This extension enhances the representation of scenes with multiple spectra, providing insights into the 
underlying materials and segmentation. We introduce an improved physically-based rendering approach for 
Gaussian splats, estimating reflectance and lights per spectra, thereby enhancing accuracy and realism. In 
a comprehensive quantitative and qualitative evaluation, we demonstrate the superior performance of our 
approach with respect to other recent learning-based spectral scene representation approaches (i.e., XNeRF 
and SpectralNeRF) as well as other non-spectral state-of-the-art learning-based approaches. Our work also 
demonstrates the potential of spectral scene understanding for precise scene editing techniques like style 
transfer, inpainting, and removal. Thereby, our contributions address challenges in multi-spectral scene 
representation, rendering, and editing, offering new possibilities for diverse applications.
1. Introduction

Accurate scene representation is an essential prerequisite for numer-
ous applications. The way we perceive our surroundings in terms of a 
mixture of light gives us a particular scene understanding, thereby de-
termining how we interact with our environment. However, represent-
ing scenes in terms of red, green and blue color channels suffers from 
both a bad reproduction of the scene’s appearance due to metamerism 
effects and lacking characteristics only observable in certain of the spec-
tral bands. Therefore, multi-spectral scene capture and representation 
has become of high relevance, where light and reflectance spectra are 
given with a higher resolution thereby surpassing the limitations of the 
broad-band RGB color model.

In domains such as architecture, automotive industries, advertise-
ment, and design, accurate modeling of light transport and considering 
the full spectrum of light is crucial for virtual prototyping. Predic-
tive rendering, which involves simulating the spectral transport of 
light, is necessary to assess and evaluate the visual quality of prod-
ucts before physical production. This ensures reliable assessment and 
enables color-correct scene reproduction. Furthermore, spectral infor-
mation as captured by multi-spectral (MS) cameras (Micasense, 2024; 
Silios, 2024), infrared (IR) cameras (JENOPTIK, 2024), and UV sen-
sors (Lanteri and Pelosi, 2021) extends scene understanding in terms of 
insights on underlying material characteristics and behavior (including 
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anomalies, defects, etc.) revealed only in certain sub-ranges of the 
light spectrum which empowers experts and autonomous systems to 
gain valuable insights and make informed decisions in the respective 
scenarios. For precision farming applications, multispectral scene mon-
itoring enables early detection and monitoring of harmful algal bloom 
in bodies of water (Kwon et al., 2023), facilitates the detection and 
classification of plant diseases (Moghadam et al., 2017; Jung et al., 
2022) to allow farmers to maintain crop health, optimize agricultural 
practices, and conduct quantitative and qualitative analysis of agro 
products (Zhang et al., 2021c), and allows getting insights on precise 
and objective plant parameters through 3D vision and multi-spectral 
imaging via phenotyping sensors like PlantEye (Phenospex, 2024). In 
the context of cultural heritage, multi-spectral information is essential 
for gaining insights on production processes of artifacts or artworks 
and used materials, as e.g. relevant for the analysis of historical paint-
ings (Alfeld et al., 2018; Landi and Maino, 2011; Grillini et al., 2024) 
or for revealing hidden or altered features withing documents (Qureshi 
et al., 2019), thereby also providing crucial hints on restoration of 
eroded parts by utilizing information from individual spectral bands 
that may exceed the visible range. Among the many further application 
scenarios where multi-spectral scene monitoring and representation 
also allows for a more comprehensive understanding are facial recogni-
tion systems (Vetrekar et al., 2016), medical sciences, forensic sciences 
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and remote sensing (Zahra et al., 2024), where land cover and usage 
can be monitored more accurately.

Depending on the respective scenario, multi-spectral information 
can be either stored in terms of multi-channel image-like representa-
tions (Weinmann and Weinmann, 2017; Zhan et al., 2017; che, 2018; 
Chen et al., 2018; Palos Sánchez et al., 2019; Weinmann and Wein-
mann, 2019; Sun et al., 2020; Shang et al., 2020; Zhang and Chi, 2020; 
Du et al., 2021; Senchuri et al., 2021; Florath et al., 2022) (as typically 
used for airborne or satellite-based surveillance)  or – in case of a more 
detailed geometric scene representation – in terms of multi-spectral 
surface reflectance characteristics directly parameterized on 3D point 
clouds (wei, 2019; Mitschke et al., 2022; Afifi et al., 2023; Rizaldy 
et al., 2023, 2024a,b) or meshes (Merzbach et al., 2017; Koutsoudis 
et al., 2021).  Recently, learning-based scene representations such 
as neural radiance fields (NERFs) (Mildenhall et al., 2020) and 3D 
Gaussian Splatting (3DGS) (Kerbl et al., 2023) have gained a lot of 
attention due to their potential of capturing fine-scale details and 
allowing their reproduction for novel view synthesis. 

Implicit scene representation using NeRFs (Mildenhall et al., 2020) 
has been demonstrated to allow high-fidelity scene representation 
based on training a neural network to predict view-dependent color and 
view-independent density information for points in the scene volume 
and leveraging volume rendering to predict the scene’s appearance 
for particular viewpoints, while optimizing the network to produce 
images that match the original input images.  This means that scene 
geometry is not directly available but instead we rely on the infer-
ence of density information for densely-sampled points in the scene 
volume from which, in turn, scene geometry can be inferred. However, 
involving a neural network that way introduces a high computational 
burden. This has severe implications on scene editing applications 
like inpainting, style transfer, or object manipulation, preventing real-
time performance. When densely storing multi-spectral characteristics 
instead of RGB-only data, this problem gets further amplified.  This 
computational challenge has been addressed by the  more  recently 
introduced 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023)  which 
has been demonstrated to allow superior performance and quality 
compared to NERF-based scene representation and visualization  at 
less computational burden. This explicit scene representation replaces 
the neural network used in NeRF approaches with a set of Gaussians 
and the number and arrangement of Gaussians is optimized to best 
match the input data. Thereby, the representation results in improved 
rendering efficiency, while also offering interpretability in contrast to 
black-box neural network representations. 

Among the many extensions of NeRFs, only a few have explored 
extensions towards spectral scene representations. XNeRF (Poggi et al., 
2022) and SpectralNeRF (Li et al., 2024b), despite their advancements 
in handling spectral scene representations, do not include reflectance 
and lighting estimation, segmentation of the spectral scene, and explicit 
geometry. These limitations can impact the accuracy, relightability, 
and comprehensive understanding of spectral scenes. Furthermore, the 
extension of 3DGS towards spectral scene representation and visual-
ization has not been investigated so far, despite their potential for 
impactful extensions. Advanced 3DGS methods (Ye et al., 2023; Qin 
et al., 2023) go beyond appearance and geometry modeling by support-
ing  complex and fine-grained scene understanding. They exceed the 
capabilities of NeRF-based approaches, like Semantic-NeRF (Zhi et al., 
2021), which incorporate semantic information into radiance fields for 
3D scene modeling. However, these methods struggle to generalize to 
complex scenarios. Distilled Feature Fields (Kobayashi et al., 2022) and 
LERF (Liu et al., 2023b) explore distilling 2D features to aid in  real-
world 3D semantics, but they have limitations in accurate segmentation 
and cannot match the segmentation quality and efficiency of Gaussian-
based methods (Ye et al., 2023; Qin et al., 2023). We extend the 
semantic scene understanding per spectrum which has not been lever-
aged so far in learning-based multi-view scene representation methods 
allowing us to have enhanced per spectrum scene understanding. 
790 
In this paper, we present a novel concept of sparse spectral scene 
representation based on Gaussian Splatting that allows efficient multi-
spectral scene representation and visualization. To provide a trade-off 
between computational demands and more accurate scene representa-
tion, we extend Gaussian Splatting in terms of a material-wise scene 
segmentation based on the captured multi-spectral information as well 
as the segmentwise spectral appearance representation based on a 
reflectance model, thereby allowing the separate representation of ma-
terialwise reflectance behavior in contrast to a view-dependent scene 
representation with baked-in lighting conditions as in the original 
spherical-harmonics-based Gaussian Splatting approach.  The segment-
wise storage and processing present the potential for constructing a 
scene graph that enables conditional loading of various primitives 
based on semantic information. This capability allows for selective 
loading of scene graph nodes and facilitates out-of-core rendering. By 
rendering only the enabled segments and nodes of the scene graph, 
this offers significant potential for improved performance which is 
not addressed in this paper. The cross-spectral scene understanding 
using Gaussian Splatting offers potential for scene analysis tasks such 
as depicting disease areas in plants, restoring statues or paintings, or 
the visualization of tissues for better diagnosis, etc.. Furthermore, due 
to the rather low number of spectra considered in the datasets used 
for benchmarking (Li et al., 2024b; Poggi et al., 2022) we consider 
the representation of all spectra in this work. However, concepts for 
reducing the data redundancy as especially contained in hyper-spectral 
data could be combined with our approach due to the orthogonality 
of such tasks, e.g. by combining feature selection strategies with the 
local clustering into segments of similar attributes. Due to the lacking 
availability of respective datasets, we leave this for future work.

In summary, the key contributions offered in this work are: 

• We present a novel cross-spectral rendering framework that ex-
tends the scene representation based on 3D Gaussian Splatting 
(3DGS) to generate realistic and semantically meaningful splats 
from registered multi-view spectrum and segmentation maps.

• We present an improved physically-based rendering approach for 
Gaussian splats, estimating reflectance and lights per spectra, 
which enhances the accuracy and realism of the rendered output 
by considering the unique characteristics of different spectra, 
resulting in visually convincing and physically accurate scene 
representations.

• We generated two synthetic spectral datasets by extending the 
shiny Blender dataset (Verbin et al., 2022) and the synthetic 
NERF dataset (Mildenhall et al., 2020) in terms of their spectral 
properties. The datasets were created through simulations using 
Mitsuba (Jakob et al., 2022), where scenes were rendered at 
various wavelengths across the visible spectrum. These datasets 
are expected to serve as valuable resources for researchers and 
practitioners, offering a diverse range of spectral scenes for exper-
imentation, evaluation, and advancements in the field of image-
based/multi-view spectral rendering. We plan to release both the 
dataset and the code in our website to generate similar datasets 
using Mitsuba (Jakob et al., 2022), promoting reproducibility and 
further contributions to the field.

• In the scope of a detailed evaluation on our datasets, as well as the 
spectral NeRF dataset (Li et al., 2024b), we showcase the potential 
of our approach in spectral scene understanding. Through our 
evaluation, we demonstrate that spectral scene understanding 
enables efficient and accurate scene editing techniques, including 
style transfer, in-painting, and removal. These techniques lever-
age the specific spectral characteristics of objects in the scene, 
facilitating more precise and context-aware modifications.
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2. Related work

2.1. Learning-based scene representation

In recent years, significant advancements have been made in gen-
erating photo-realistic novel views through the use of novel learning-
based scene representations combined with volume rendering tech-
niques. Neural Radiance Fields (NeRF) (Mildenhall et al., 2020; Tewari 
et al., 2022) represent the scene based on a neural network that 
predicts local density and view-dependent color for points in the scene 
volume. This information can then be used to synthesize images of the 
scene using volume rendering techniques. The network representing 
the scene is trained by minimizing the deviation of the predicted 
images to their respective given input images under the respective view 
conditions, thereby exploiting the observation that an accurate scene 
representation by the network leads to an accurate image synthesis. 
The remarkable potential of the NeRF approach for novel view syn-
thesis has given rise to several notable extensions. Researchers have 
focused on improving rendering quality by addressing issues such as 
aliasing (Barron et al., 2021; Wang et al., 2022; Barron et al., 2022, 
2023), as well as accelerating network training (Reiser et al., 2021; 
Fridovich-Keil et al., 2022; Müller et al., 2022; Chen et al., 2022b; 
Yariv et al., 2023). Furthermore, there have been efforts to handle more 
complex inputs, including unconstrained image collections (Martin-
Brualla et al., 2021; Chen et al., 2022c; Jun-Seong et al., 2022), 
image collections requiring the refinement or complete estimation of 
camera pose parameters (Wang et al., 2021b; Yen-Chen et al., 2021; 
Lin et al., 2021; Jeong et al., 2021), deformable scenes (Park et al., 
2021; Pumarola et al., 2021) and large-scale scenarios (Tancik et al., 
2022; Turki et al., 2022; Mi and Xu, 2023). Further works aimed at 
guiding the training and handling textureless regions by incorporating 
depth cues (Wei et al., 2021; Deng et al., 2022; Roessle et al., 2022; 
Rematas et al., 2022; Attal et al., 2021).

Despite the great success of NeRFs for novel view synthesis ap-
plications, the neural network lacks interpretability and the extrac-
tion of surface information requires network evaluations on a dense 
grid and a subsequent derivation of surface information from the 
volumetric density information based on techniques like Marching 
Cubes (Lorensen and Cline, 1998), which limits real-time applications. 
Therefore, further works focused on representing scenes in terms of 
implicit surfaces (Wang et al., 2021a, 2023a; Ge et al., 2023), ex-
plicit representations using points (Xu et al., 2022), meshes (Munkberg 
et al., 2022), and 3D Gaussians (Kerbl et al., 2023). Point-based neural 
rendering techniques, such as Point-NeRF (Xu et al., 2022), merge 
precise view synthesis from NeRF with the fast scene reconstruction 
abilities of deep multi-view stereo methods. These techniques employ 
neural 3D point clouds to enable efficient rendering, thereby facilitating 
accelerated training processes. Furthermore, a recent approach (Zhang 
et al., 2023) has shown that point-based methods are well-suited for 
scene editing purposes. Recently, 3D Gaussian Splatting (Kerbl et al., 
2023) has been introduced as the state-of-the-art, learning-based scene 
representation based on optimized Gaussians for novel view synthesis, 
surpassing existing implicit neural representation methods such as 
NeRFs in terms of both quality and efficiency. This approach utilizes 
anisotropic 3D Gaussians as an explicit scene representation and em-
ploys a fast tile-based differentiable rasterizer for image rendering. 
Similar to the developments for NeRF approaches (Li et al., 2024d), 
Gaussian Splatting has been extended in terms of speeding up rendering 
and training time (Zhang et al., 2025a; LI et al., 2025; Park et al., 2025; 
Peng et al., 2025; Bouzidi et al., 2025; Zheng et al., 2025; Zhang et al., 
2025b; Li et al., 2024a; Yang et al., 2024b), geometry-aware scene 
representation  (Deng et al., 2025a; Zhang et al., 2025c; Wu et al., 
2025a; Zheng et al., 2025; Zhang et al., 2025b; Huang et al., 2024), 
allowing the handling of dynamic scenes (Song et al., 2025; Yuan et al., 
2025; Gao et al., 2025; Zheng et al., 2025; Zhang et al., 2025b; Li 
et al., 2024c) and large-scale scenes (Deng et al., 2025b; Ong et al., 
2025; Yang et al., 2024a; Wu et al., 2025b), model  compression (Chen 
791 
et al., 2025; Yuan et al., 2025; Deng et al., 2025b; Zheng et al., 2025; 
Gao et al., 2025), decoupling reflectance and illumination effects (Sko-
rokhodov et al., 2025; Han and Wu, 2025; Yong et al., 2025; Park 
et al., 2025), adding semantic information (Li et al., 2025; Maggio and 
Carlone, 2025; Zhang et al., 2025b; Park et al., 2025) and estimating 
or refining camera parameters (Li et al., 2024a; Bortolon et al., 2024; 
Sun et al., 2024). 

However, extending these novel scene representations to the spec-
tral domain beyond RGB channels remains an open challenge, with only 
a few seminal works addressing this so far. Spectral variants of NERF, 
such as xNERF (Poggi et al., 2022) for cross-spectral spectrum-maps 
and SpectralNeRF (Li et al., 2024b) for multi-spectral spectrum-maps, 
have shown effectiveness in generating novel views across different 
spectral domains. The cross-spectral splats generated by our approach 
can be visualized via an interactive spectral viewer (Sinha et al., 2024) 
based on Viser (Tancik et al., 2023). Besides view synthesis, the viewer 
allows to visualize splats, even with spectral characteristics, as well 
as visualizing residuals between different versions of splats such as 
splats from different iterations during training or comparing differences 
between splats in different spectral ranges. Furthermore, the user study 
conducted in their work (Sinha et al., 2024) validates the effective-
ness and practicality of the reconstructed 3D splats derived from the 
spectrum maps, confirming their utility in spectral visualization and 
analysis. However, the framework of reconstructing a spectral Gaussian 
Splatting scene representation is a novel contribution in this paper and 
has not been considered in their work (Sinha et al., 2024).

2.2. Radiance based appearance capture

Instead of focusing on the pure reproduction of a scene accord-
ing to the original NeRF formulation without explicitly modeling re-
flectance and illumination characteristics, several NeRF extensions fo-
cused on modeling reflectance by separating visual appearance into 
lighting and material properties. Respective approaches have the ca-
pability to jointly predict environmental illumination and surface re-
flectance properties even in the presence of unknown or varying light-
ing conditions (Bi et al., 2020; Zhang et al., 2021a; Boss et al., 2021a;
Srinivasan et al., 2021; Boss et al., 2021b; Yariv et al., 2021; Zhang 
et al., 2021b).

One notable contribution is Ref-NeRF (Verbin et al., 2022), which 
introduces a novel parameterization and structuring of view-dependent 
outgoing radiance, along with a regularizer on normal vectors. This en-
hances the accuracy in predicting reflectance properties. To address the 
challenge of learning geometry from highly specular surfaces, recent 
works (Liu et al., 2023a; Liang et al., 2023, 2022) have utilized SDF-
based representations. This enables more precise estimation of surface 
normals for physically based rendering. Further work (Van Holland 
et al., 2025) achieved the detection of mirroring surfaces based on 
photometric inconsistencies observed in the result of a NeRF approach 
with additional reprojection loss, which, in turn, were then used to 
jointly optimize the radiance field and mirror geometry in a second 
refinement step. However, these methods suffer from time-consuming 
optimization and slow rendering speed, limiting their practical ap-
plication in real-world scenarios. Furthermore, NVDiffRec (Hasselgren 
et al., 2022) is an explicit representation method that directly optimizes 
triangle meshes with materials and environment map lighting, enabling 
real-time interactive applications, unlike MLP-based methods that tend 
to be slower.

Relightable Gaussians (Gao et al., 2023) presents a differentiable 
point-based rendering framework for material and lighting decomposi-
tion from multi-view images, enabling real-time relighting and editing 
of 3D point clouds. It surpasses existing material estimation approaches 
and offers improved results. GaussianShader (Jiang et al., 2023) is an-
other method that enhances neural rendering in scenes with reflective 
surfaces by applying a simplified shading function on 3D Gaussians. 
It addresses the challenge of accurate normal estimation on discrete 
3D Gaussians, achieving a balance between efficiency and rendering 
quality. Our shading model is inspired by this method where we use 
the model without the residual color in the reflectance estimation.
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2.3. Sparse spectral scene understanding

Gaussian splatting based semantic segmentation frameworks, such 
as Gaussian Grouping (Ye et al., 2023) and LangSplat (Qin et al., 
2023), have successfully utilized foundation models like Segment Any-
thing (Kirillov et al., 2023) to segment scenes. LangSplat is a 3D lan-
guage field that enables precise and efficient open-vocabulary querying 
within 3D spaces by representing language features using a collection 
of 3D Gaussians distilled from CLIP (Radford et al., 2021). Gaus-
sian Grouping extends Gaussian Splatting by incorporating object-level 
scene understanding and introducing Identity Encodings to reconstruct 
and segment objects in  real-world 3D scenes. We utilized this method 
for accurate semantic segmentation of spectral scenes. Segmenting the 
scene per spectra provides valuable information about regions that are 
visible in specific spectral ranges, enabling us to obtain finer details that 
can be leveraged in various domains such as cultural heritage (Alfeld 
et al., 2018; Landi and Maino, 2011; Grillini et al., 2024), smart 
farming (Kwon et al., 2023; Zhang et al., 2021c; Jung et al., 2022), 
document analysis (Qureshi et al., 2019), face recognition (Vetrekar 
et al., 2016), and other fields. This spectral segmentation approach 
offers insights and solutions for diverse applications in these domains. 
In the scope of the evaluation, we demonstrate that spectral scene 
understanding enables efficient and accurate scene editing techniques, 
including style transfer, in-painting, and removal.

2.4. Spectral renderers

Spectral rendering engines such as ART (The ART development 
team, 2018), PBRT v3 (Pharr et al., 2016), and Mitsuba (Jakob, 2010) 
are commonly utilized by the scientific community. While CPU-based 
renderers are more prevalent, there is a growing trend of GPU-based 
spectral renderers that leverage GPU acceleration. Some examples of 
GPU-based spectral renderers include Mitsuba 2 (Nimier-David et al., 
2019), PBRT v4 (Pharr, 2020), and Malia (Dufay et al., 2019). These 
renderers play a crucial role in simulating real-world spectral data 
and are gaining recognition in the field. To achieve computational 
efficiency in deep learning and focus on relevant spectral information, 
we adopt a sparse spectral rendering approach using multi-view spec-
trum maps. This technique enables faster computations by reducing 
unimportant spectral data while preserving the necessary information 
for realistic rendering of spectral scenes. By leveraging spectrum maps 
from multiple viewpoints, high-quality spectral renderings are gener-
ated with a reduced computational cost compared to full-resolution 
spectral rendering methods.

3. Background

The human eye is sensitive to only a certain range in the elec-
tromagnetic spectrum (for wavelengths between about 380 nm and 
780 nm) which varies between subjects. The response curve of the 
human eye is to the red, green and blue wavelengths were determined 
using color matching functions which has been standardized by CIE 
in 1932 (Wyszecki and Stiles, 2000). Given a spectral power distri-
bution 𝐿(𝜆), its corresponding CIE tristimulus values X, Y and Z can 
be computed by convolution of the 𝐿(𝜆) with the appropriate color 
matching functions 𝑓𝑋 (𝜆), 𝑓𝑌 (𝜆), 𝑓𝑍 (𝜆) as represented in the following 
equations (Devlin et al., 2002): 
⎧

⎪

⎨

⎪

⎩

𝑋 = ∫ 780
380 𝑓𝑋 (𝜆)𝐿(𝜆)𝑑𝜆

𝑌 = ∫ 780
380 𝑓𝑌 (𝜆)𝐿(𝜆)𝑑𝜆

𝑍 = ∫ 780
380 𝑓𝑍 (𝜆)𝐿(𝜆)𝑑𝜆

(1)

The spectral power distribution 𝐿(𝜆) at a point 𝑥 for incoming 
wavelength 𝜆𝑖 and outgoing wavelength 𝜆𝑜 can be computed as follows: 

𝐿(𝑥, 𝜔𝑖, 𝜔𝑜, 𝜆𝑖, 𝜆𝑜) = 𝑓𝑟(𝑥, 𝜔𝑖, 𝜔𝑜, 𝜆𝑖, 𝜆𝑜)𝐿𝑖(𝑥, 𝜔𝑖, 𝜔𝑜, 𝜆𝑖) cos 𝜃 𝑑𝜔𝑖 (2)
∫𝛺
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where 𝛺 represents the hemisphere above a surface point 𝑥, 𝑓𝑟 is the 
bidirectional reflectance function, 𝐿𝑖 is the incoming radiance coming 
from incident direction 𝜔𝑖 and 𝜔𝑜 is the direction of the outgoing 
radiance.

The final RGB image is obtained based on the conversion from the 
XYZ color space to the sRGB space which involves the following steps.

• Conversion to linear RGB: This step involves using a matrix 
multiplication to convert XYZ values to linear RGB values. 
⎛

⎜

⎜

⎝

𝑅
𝐺
𝐵

⎞

⎟

⎟

⎠

=
(

𝑀 𝑙)
⎛

⎜

⎜

⎝

𝑋
𝑌
𝑍

⎞

⎟

⎟

⎠

(3)

There are many methods (Smits, 2000) to convert XYZ to linear 
RGB and the value of the matrix 𝑀 𝑙 depends on it.

• Gamma correction: Linear RGB values are gamma-corrected to 
get sRGB values. This involves applying a power function with a 
specific gamma value (≈ 2.2).

• Clipping: All RGB values are clipped within the range [0, 1].
The above steps can be combined to get the final transformation 

matrix (𝑀𝑐) directly get the sRGB values: 
⎛

⎜

⎜

⎝

𝑅
𝐺
𝐵
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⎟

⎟
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⎜
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⎝

𝑋
𝑌
𝑍

⎞

⎟

⎟

⎠

(4)

Based on Eqs. (1), (2), and (4), the RGB values per spectra maps (Li 
et al., 2024b) can be computed according to 
⎛

⎜

⎜

⎝

𝑅𝜆
𝐺𝜆
𝐵𝜆

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝑀𝑐
11𝑓𝑋 (𝜆) +𝑀𝑐

12𝑓𝑌 (𝜆) +𝑀𝑐
13𝑓𝑍 (𝜆)

𝑀𝑐
21𝑓𝑋 (𝜆) +𝑀𝑐

22𝑓𝑌 (𝜆) +𝑀𝑐
23𝑓𝑍 (𝜆)

𝑀𝑐
31𝑓𝑋 (𝜆) +𝑀𝑐

32𝑓𝑌 (𝜆) +𝑀𝑐
33𝑓𝑍 (𝜆)

⎞

⎟

⎟

⎠

𝐿(𝜆)𝛥𝜆 (5)

4. Methodology

In this section, we first provide an overview on our Spectral Gaus-
sian splatting approach for addressing efficient and accurate multi-
spectral scene representation from input images depicting the scene 
characteristics in multiple wavelengths based on dedicated extensions. 
This is followed by a brief description of the involved appearance 
modeling from the multi-spectral input data as well as the involved 
scene segmentation based on the spectral characteristics that we use 
to allow a more compact per-spectrum grouping of similar Gaussians, 
thereby enabling a reasonable representation of multi-spectral scene 
characteristics. Finally, we discuss the combination of these parts into 
the proposed Spectral Gaussian splatting framework.

4.1. Spectral Gaussian splatting

We propose an end-to-end spectral Gaussian splatting approach that 
enables physically-based rendering, relighting, and semantic segmenta-
tion of a scene. Our method is built upon the Gaussian splatting archi-
tecture (Kerbl et al., 2023) and leverages the Gaussian shader (Jiang 
et al., 2023) for the accurate estimation of BRDF parameters and 
illumination. By employing Gaussian grouping (Ye et al., 2023), we 
effectively group 3D Gaussian splats with similar semantic information. 
Our framework excels in generating full spectra rendering and con-
veniently initializes common features from other spectra trained to a 
specific iteration, ensuring improved reconstruction of splats. In Fig. 
1, we showcase our proposed spectral Gaussian splatting framework, 
which uses a Spectral Gaussian model to predict BRDF parameters, dis-
tilled feature fields, and light per spectrum from multi-view spectrum-
maps. Our method combines segmentation, appearance modeling, and 
sparse spectral scene representation in an end-to-end manner. Thereby 
it enhances BRDF estimation by incorporating spectral information. 
The framework has applications in material recognition, spectral anal-
ysis, reflectance estimation, segmentation, illumination correction, and 
inpainting.
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Fig. 1. The proposed spectral Gaussian splatting framework: Spectral Gaussian model predicting BRDF parameters, distilled feature fields, and light per spectrum from multi-view 
spectrum-maps. The full-spectra maps and learnable parameters are introduced later in the training process by initializing them with priors from all other spectra.
In the following subsections, we provide further details regard-
ing the spectral model, covering topics such as appearance modeling, 
spectral semantic scene representation, spectral scene editing, and the 
seamless integration of these aspects into the 3DGS framework.

4.2. Spectral appearance modeling

In order to support material editing and re-lighting, we use an 
enhanced representation of appearance by replacing the spherical har-
monic co-efficients by a shading function, which incorporates diffuse 
color, roughness, specular tint and normal information and a differen-
tiable environment light map to model direct lighting similar to the 
Gaussian shader (Jiang et al., 2023).

Thereby, the rendered color per spectrum of a  3D Gaussian can be 
computed by considering its diffuse color, specular tint, direct specular 
light, normal vector and roughness according to 

𝑐(𝜔𝑜)𝜆 = 𝛾
(

𝑐𝑑𝜆 + 𝑠𝜆 ⊙ 𝐿𝑠𝜆 (𝜔𝑜, 𝑛, 𝜌𝜆)
)

(6)

where 𝑐(𝜔𝑜)𝜆 represents the rendered color per spectrum for the view-
ing direction 𝜔𝑜. The function 𝛾 is a gamma tone mapping function that 
adjusts the color values for display purposes  in terms of converting 
the wide range of brightness levels of the perceived light to a lower 
dynamic range representation that fits within the display’s capabilities.. 
𝑐𝑑𝜆 ∈ [0, 1]3 denotes the diffuse color of the  3D Gaussian, specifying 
the color appearance under diffuse lighting per spectrum. 𝑠𝜆 ∈ [0, 1]3

is the specular tint on the sphere, indicating the color of the specular 
highlights per spectrum. 𝐿𝑠𝜆 (𝜔𝑜, 𝑛, 𝜌𝜆) describes the direct specular 
light for the  3D Gaussian in the viewing direction 𝜔𝑜 per spectrum, 
considering the surface normal 𝑛 and roughness 𝜌𝜆. 𝑛 is the normal 
vector indicating the surface orientation, and 𝜌𝜆 ∈ [0, 1] represents the 
surface smoothness or roughness per spectrum.

To allow representing a wide range of appearance characteristics, 
we consider a grouping of similar scene characteristics and the fitting 
of per-segment di-chromatic shading models consisting of the following 
components:

• We use a diffuse reflectance component (𝑐𝑑𝜆 ) to represent the 
view-independent appearance of Gaussians.

• To account for most of the view-dependent reflections in ren-
dering, we use a specular reflectance term 𝑠𝜆 ⊙ 𝐿𝑠𝜆 (𝜔𝑜,𝐧, 𝜌𝜆)to 
describe the interaction between the intrinsic surface color 𝑠𝜆
(specular tint) and the direct specular light 𝐿𝑠𝜆 .

To compute the contribution of the specular light perceived at a surface 
point with surface normal 𝐧 from the direction 𝜔𝑜 and roughness 𝜌𝜆, we 
have to combine the incoming light from different directions weighted 
793 
by the respective shading model 𝐷(𝐫) for the specular component 
(where we use the specular GGX Normal Distribution Function 𝐷
 (Walter et al., 2007) in this work) according to the integration 

𝐿𝑠𝜆 (𝜔𝑜,𝐧, 𝜌𝜆) = ∫𝛺
𝐿(𝜔𝑖)𝐷(𝐫, 𝜌𝜆)(𝜔𝑖 ⋅ 𝐧)𝑑𝜔𝑖 (7)

Here, 𝛺 represents the whole upper hemi-sphere, 𝜔𝑖 is the direction 
for the input radiance, and 𝐷 characterizes the specular lobe (effective 
integral range). The reflective direction 𝐫 is calculated using the view 
direction 𝜔𝑜 and the surface normal 𝐧 as 𝐫 = 2(𝜔𝑜 ⋅ 𝐧) 𝐧 − 𝜔𝑜. 𝐿𝑠𝜆
represents the direct specular light per spectral band 𝜆.  The appearance 
model employed for training our network can be seamlessly substituted 
with alternative parametric shading models that incorporate differ-
ent scene reflectance parameters. Consequently, the model parameters 
within the training pipeline must be appropriately updated to reflect 
these changes. Although, applying various parametric appearance mod-
els for different scenes is possible, rendering different objects/segments 
within a scene with different shading models is an avenue for future 
research.  Instead, we only consider increasing the compactness of 
the Gaussian splatting representation by fitting a shading model as 
described before to groups of Gaussians with similar characteristics. 
The respective segmentation will be discussed in the following section.

4.3. Spectral semantic scene representation

Per-spectrum segmentation maps serve multiple purposes in various 
applications. They enable sparse scene representation, allowing for 
detailed identification of specific regions of interest and the detection 
of attributes like material composition or texture under a more compact 
scene representation. These maps are beneficial for tasks like inpaint-
ing and statue restoration, where spectral information is crucial for 
accurate and realistic results. Additionally, per-spectrum segmentation 
maps aid in anomaly detection by analyzing the spectral properties 
of different regions and identifying deviations from expected patterns. 
This approach of segmenting different spectra enables the identification 
of specific regions of interest, such as the detection of gray mould 
disease in strawberry plants (Jung et al., 2022). Overall, these maps 
provide valuable insights into the scene, allowing for more robust 
and precise image processing and analysis. Our framework utilizes the 
Gaussian grouping method (Ye et al., 2023) to generate per-spectrum 
segmentation of the splats. This ensures consistent mask identities 
across different views of the scene and groups 3D Gaussian splats 
with the same semantic information. To create ground truth multi-
view segmentation maps for each spectrum, we employ the Segment 
Anything Model (SAM) (Kirillov et al., 2023) along with a zero-shot 
tracker (Cheng et al., 2023). This combination automatically generates 
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masks for each image in the multi-view collection per spectrum, en-
suring that each 2D mask corresponds to a unique identity in the 3D 
scene. By associating masks of the same identity across different views, 
we can determine the total number of objects present in the 3D scene.

In addition to the existing appearance and lighting properties,  we 
assign a novel attribute that we denote as Identity Encoding to each 
spectral Gaussian, similar to Gaussian grouping (Ye et al., 2023). The 
Identity Encoding is a compact and learnable vector (of length 16) 
that effectively distinguishes different objects or parts within the scene. 
During training, similar to using Spherical Harmonic coefficients to 
represent color, the method optimizes the Identity Encoding vector 
to represent the instance ID of the scene. Unlike view-dependent ap-
pearance modeling, the instance ID remains consistent across different 
rendering views, as only the direct-current component of the Identity 
Encoding is generated by setting the Spherical Harmonic degree to 0.

The final rendered 2D mask identity feature, denoted as 𝐸𝑖𝑑𝜆 , for 
each pixel per spectrum 𝜆 is calculated by taking a weighted sum over 
the Identity Encoding (𝑒𝑖𝜆 ) of each Gaussian per spectrum. The weights 
are determined by the influence factor 𝛼′𝑖𝜆  of the respective Gaussian 
on that pixel per spectrum. Mathematically, this can be expressed as 

𝐸𝑖𝑑𝜆 =
∑

𝑖∈𝑁
𝑒𝑖𝜆𝛼

′
𝑖𝜆

𝑖−1
∏

𝑗=1
(1 − 𝛼′𝑗𝜆 ) (8)

where 𝑁 represents the total number of Gaussians.
To group the 3D Gaussians based on their object mask identi-

ties, a grouping loss 𝐿𝑖𝑑𝜆  is computed per spectra. This loss has two 
components , i.e. it can be formulated as 

𝐿𝑖𝑑𝜆 = 𝐿2𝑑𝜆 + 𝐿3𝑑𝜆 (9)

where the first component 𝐿2𝑑𝜆  denotes the 2D Identity Loss, which 
involves a softmax function to classify the rendered 2D features 𝐸𝑖𝑑 (see 
Eq. (8)) into 𝐾𝑠 + 1 categories, representing the total number of masks 
per spectrum in the 3D scene. The standard cross-entropy loss 2𝑑𝜆  for 
the classification of 𝐾𝑠 + 1 categories is applied  to allow indirect 2D 
classification. So given the rendered 2D features 𝐸𝑖𝑑𝜆  as input, a linear 
layer is first applied 𝑓 to restore its feature dimension back to 𝐾: 

𝑓 (𝐸𝑖𝑑𝜆 ) = 𝑊 ⋅ 𝐸𝑖𝑑𝜆 + 𝑏, (10)

where 𝑊  represents the learnable weight matrix and 𝑏 is the bias term.
To obtain the probabilities for each category, we apply the softmax 

function: 

softmax(𝑓 (𝐸𝑖𝑑𝜆 )) =
exp(𝑓 (𝐸𝑖𝑑𝜆 ))

∑𝐾
𝑖=1 exp(𝑓 (𝐸𝑖𝑑𝜆 ))

, (11)

For the identity classification task with 𝐾 categories per spectrum 𝜆, 
we utilize the standard cross-entropy loss: 

𝐿2𝑑𝜆 = −
𝐾
∑

𝑖=1
𝑦𝑖𝜆 log(softmax(𝑓 (𝐸𝑖𝑑𝜆 ))), (12)

where 𝑦 is the ground truth label for each category.
The second component is the 3D Regularization Loss 3𝑑𝑠 , which 

capitalizes on the 3D spatial consistency to regulate the learning pro-
cess of the Identity Encoding 𝑒𝑖𝜆  per spectrum 𝜆. This loss ensures that 
the Identity Encodings of the top 𝑘-nearest 3D Gaussians are similar in 
terms of their feature distance, thereby promoting spatially consistent 
grouping. The 3D grouping loss per spectrum 𝜆 and sampled 𝑚 points 
is computed as: 

3𝑑𝜆 = 1
𝑚

𝑚
∑

𝑗=1
𝐷𝑘𝑙(𝑃 ∥ 𝑄) = 1

𝑚𝑘

𝑚
∑

𝑗=1

𝑘
∑

𝑖=1
𝐹 (𝑒𝑗𝜆 ) log

(

𝐹 (𝑒𝑗𝜆 )

𝐹 (𝑒′𝑖𝜆 )

)

(13)

Here, 𝑃  contains the sampled Identity Encoding 𝑒𝜆 of a 3D Gaussian, 
and 𝑄 = 𝑒′1𝜆 , 𝑒

′
2𝜆
,… , 𝑒′𝑘𝜆  represents its 𝑘 nearest neighbors in 3D 

Euclidean space.
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Fig. 2. Spectral scene editing: The segmented scene at 450 nm (middle) is used to 
perform a semantic style-transfer on the full spectra (left). The semantic stylized scene 
(right) has been generated using by applying a style transfer on the multi-view maps 
(full-spectra) and then in-painting the splats using the semantic object-ID in spectrum 
450 nm.

4.4. Combined  spectral model  (involving semantics and appearance)

Combined with the original 3D Gaussian loss (Kerbl et al., 2023) (we 
use 𝛾 instead of 𝜆 as we use 𝜆 to denote the spectral bands) on image 
rendering (we use the appearance model as explained in the Section 4.2 
instead of spherical harmonics), the total loss per spectra 𝑟𝑒𝑛𝑑𝑒𝑟𝑠  for 
fully end-to-end training is given by 
render𝜆 = (1 − 𝛾)𝐿1𝜆 + 𝛾 ⋅ D-SSIM𝜆

+ 𝛾2𝑑𝜆2𝑑𝜆 + 𝛾3𝑑3𝑑𝜆 (14)

The total loss is given by 

render𝑡𝑜𝑡𝑎𝑙 =
𝑛𝜆
∑

𝜆=1
render𝜆 (15)

where 𝑛𝜆 is the total number of spectral bands.
To enhance the optimization process and improve robustness, the 

model is initially trained for a specific warm-up iteration (1000 itera-
tions) without incorporating the full-spectra spectrum maps. Following 
this, the  estimated BRDF parameters and normals  per 3D Gaussian 
for the full-spectra are initialized (see Fig.  1) using the average values 
from all other spectra, and this initialization step is integrated into the 
training process. By including these adequate priors, the optimization 
of parameters is guided more effectively, leading to better outcomes as 
demonstrated in the quantitative and qualitative analysis.

4.5. Spectral scene editing

Our framework extends scene editing techniques, such as Gaussian 
Grouping (Ye et al., 2023), into the spectral domain, unlocking a wide 
range of possibilities. By leveraging the semantic information present in 
any of the spectrum maps, we can achieve object deletion, in-painting, 
and style-transfer. Fig.  2 illustrates the utilization of segmentation 
maps obtained from the 450 nm spectrum for the stylization of the 
splats across the full spectra. To accomplish this, we transfer the style 
to the multi-view full spectra maps and perform object in-painting 
through a fine-tuning of the splats, similar to Gaussian grouping (Ye 
et al., 2023), using the new ground truth (multi-view semantic stylized 
maps). The significance of this capability is particularly evident in fields 
like cultural heritage, where the retrieval of color information from 
a specific spectral band enables the accurate restoration of missing 
color details throughout the full-spectrum. By leveraging these ad-
vancements, we can enhance various applications and open up new 
avenues for exploration.  To demonstrate scene editing capabilities in 
real-world settings, we apply style transfer to the scene considered in 
the Freiburg forest dataset (Valada et al., 2016). Specifically,  we use 
a marble stone material as material to replace the style of a gravel 
road, thereby achieving a semantic stylization effect (see Fig.  3). The 
segments generated in a multi-spectral setup  more accurately will 
be able to delineate the road in comparison to the purely RGB-based 
segmentation in challenging lighting conditions, thereby enabling more 
precise scene editing.
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Table 1
Quantitative comparisons (PSNR/SSIM/LPIPS) on spectral NeRF synthetic dataset (Li et al., 2024b).

Method Spectral NeRF Synthetic Dataset (Li et al., 2024b) Averagekitchen Living room Digger Spaceship Vintage car Cartoon knight
PSNR ↑

NeRF (Mildenhall et al., 2020) 34.583 33.172 30.658 30.126 33.478 34.485 32.400
Mip-NeRF (Barron et al., 2021) - - 33.301 31.495 33.883 35.102 33.945
Aug-NeRF (Chen et al., 2022a) 34.480 32.540 31.538 30.929 33.639 33.908 32.677
SpectralNeRF (Li et al., 2024b) 35.115 33.665 33.378 31.951 34.480 34.915 33.610

Ours 37.035 37.989 40.218 41.233 42.636 36.723 38.456
SSIM ↑

NeRF (Mildenhall et al., 2020) 0.8943 0.9929 0.9187 0.9358 0.7958 0.9273 0.9123
Mip-NeRF (Barron et al., 2021) - - 0.9290 0.9475 0.8166 0.9572 0.9126
Aug-NeRF (Chen et al., 2022a) 0.9026 0.9649 0.9248 0.9402 0.8002 0.9287 0.9163
SpectralNeRF (Li et al., 2024b) 0.9117 0.9931 0.9357 0.9482 0.8169 0.9573 0.9349

Ours 0.9747 0.9733 0.9923 0.9951 0.9893 0.9572 0.9801
LPIPS ↓

NeRF (Mildenhall et al., 2020) 0.1650 0.0578 0.0413 0.0275 0.1319 0.1545 0.0722
Mip-NeRF (Barron et al., 2021) - - 0.0435 0.0535 0.1747 0.1526 0.1061
Aug-NeRF (Chen et al., 2022a) 0.1603 0.0706 0.0341 0.0389 0.1536 0.1705 0.0973
SpectralNeRF (Li et al., 2024b) 0.1637 0.0479 0.0259 0.0250 0.1499 0.1510 0.0733

Ours 0.0739 0.0525 0.0109 0.0084 0.0527 0.0741 0.0438
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ig. 3.  Scene editing on the Freiburg forest dataset (Valada et al., 2016) by adding 
arble style to the gravel road using segments generated in a multi-spectral manner.

. Experiments

To demonstrate the potential of our approach, we provide both 
uantitative and qualitative evaluations with comparisons to baseline 
echniques.

.1. Baseline techniques used for comparison

The techniques used as a reference in the scope of the evaluation in-
lude several state-of-the-art variants of Neural Radiance Fields (NeRF) 
i.e., NeRF (Mildenhall et al., 2020), MIP-NeRF (Barron et al., 2021), 
ug-NeRF (Chen et al., 2022a), Ref-NeRF (Verbin et al., 2022)) (which 
onsiders appearance parameters) and Gaussian splatting (i.e., Gaussian 
platting without special reflectance modeling (Kerbl et al., 2023) 
nd Gaussian Shader that specifically models reflectance (Jiang et al., 
023)) as well as the respective extensions of such modern scene rep-
esentation approaches to the spectral domain (i.e., SpectralNeRF (Li 
t al., 2024b) and Cross-spectral NeRF (Poggi et al., 2022)).

.2. Datasets

For the comparison with SpectralNeRF, we use both synthetic 
nd real-world multi-spectral videos (Li et al., 2024b). The poses 
or the digger, spaceship, and vintage car models were estimated 
sing DUSt3R (Wang et al., 2023b) since reconstruction failed with 
OLMAP (Schönberger and Frahm, 2016). For the remaining scene 
ideos (kitchen, living room, projector, and dragon doll), COLMAP was 
sed to generate the poses.
To demonstrate the adaptability of our method in handling cross-

pectral data (infrared and multi-spectral), we conducted a comparative 
795 
ig. 4. Snapshot of the different scenes in the Spectral NeRF synthetic and Spectral 
hiny Blender datasets.

able 2
ataset overview.
Dataset Scenes Number of 

multi-view images Number of 
iterations

Number of 
spectral bands

SpectralNeRF 6 synthetic and 2 
real-world (MS)a 20 (Digger, 

Spaceship, 
Vintage car), 40 
(cartoon knight) 
and 120 (all 
other scenes)

40,000 (Digger, 
Spaceship, 
Vintage car), 
30,000 (all other 
scenes)

5 (Synthetic) and 
8 (Real)  

CrossSpectralNeRF 16 real-world (MS 
+ IR)a 30 – 32 30,000 10 (MS) and 

1(IR)
 

Spectral 
ShinyBlender

5 synthetic (MS)a 120 30,000 5  
Spectral 
SyntheticNeRF

4 Synthetic (MS)a 120 30,000 5  

 MS = Multispectral, IR = Infrared.

nalysis using the cross-spectral NeRF dataset (Poggi et al., 2022). 
e created the ground truth full spectrum image from the cross-
pectral spectrum-maps. For this, we averaged the images from all 
pectra and applied the colormaps viridis and magma for the multi-
pectral and infrared dataset respectively, similar to the approach used 
n cross-spectral NeRF (Poggi et al., 2022). To further validate that the 
pectral appearance estimation produces plausible results for different 
ypes of scenes (having also highly-reflective objects in the scene), 
e created a synthetic multi-spectral dataset from the shiny blender 
ataset (Verbin et al., 2022) and synthetic NeRF dataset (Mildenhall 
t al., 2020) (see Fig.  4). We generated this multi-spectral dataset using 
itsuba (Jakob et al., 2022) for 5 bands from 460 nm to 620 nm 
imilar to SpectralNeRF (Li et al., 2024b). We generated the data for the 
cenes where the shading model supported in Mitsuba corresponded to 
he shading model in Blender in order to get representative data. We 
tilized this dataset to conduct a comparative analysis of our method 
gainst state-of-the-art NeRF and Gaussian splatting techniques. The 
esults are presented in Table  7 and Table  6.
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Fig. 5. Qualitative comparison of CrossSpectralNerf (Poggi et al., 2022) with our method with the dino dataset.
 

 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3
Quantitative comparisons (PSNR/SSIM/LPIPS) on 
spectral NeRF real dataset (Li et al., 2024b).

Method Spectral NeRF real Dataset
Projector Dog doll

PSNR ↑
NeRF 28.9670 22.5040

Aug-NeRF 30.0795 21.2073
SpectralNeRF 31.2535 25.1257

Ours 34.2659 32.5517
SSIM ↑

NeRF 0.9429 0.8740
Aug-NeRF 0.9573 0.8915

SpectralNeRF 0.9449 0.8932
Ours 0.9746 0.97245

LPIPS ↓
NeRF 0.0472 0.1319

Aug-NeRF 0.0354 0.1168
SpectralNeRF 0.0605 0.14501

Ours 0.0709 0.07650

5.3. Implementation details

The evaluations were conducted on an Nvidia RTX 3090 graphics 
card. In most scenes, we used a total of 30,000 iterations, except for 
the digger, spaceship, and vintage car scenes where we used 40,000 
iterations. For the comparison to other methods, we used the results re-
ported in their original publications.  In addition, we set the weights for 
the different terms in the loss formulation in Eq.  (14) to 𝛾 = 0.2, 𝛾2𝑑𝜆 =
1.0 and 𝛾3𝑑𝜆 = 2.0 respectively.. These values were chosen heuristi-
cally, also taking into account their suitability for different scenarios. 
The computational costs depend on the resolution of the images. In 
case of hardware limitations or to improve the processing speed, the 
input images could be downsampled. With high-end consumer GPUs, 
it should however already be possible to infer the respective scene 
representation from high-resolution images. Furthermore, we already 
improved the efficiency by training a specific spectra in an iteration 
rather than setting the gradient of all the spectra to true.

5.4. Quantitative analysis

Quantitative analysis was performed on all datasets mentioned in 
Section 5.2 and overview of the number of scenes, multi-view images 
and number of iterations for which each scene was trained is presented 
in Table  2. We compute the PSNR (Fardo et al., 2016), SSIM (Nilsson 
and Akenine-Möller, 2020) and LPIPS (Zhang et al., 2018) for all 
camera-views and report average the average result. The orange in the 
tables represents the best result and yellow represents the second best 
results.

5.4.1. Evaluation on challenging real-world dataset
To demonstrate that our method effectively supports handling chal-

lenging real-world datasets, we also trained our model and conducted 
quantitative analyses on the Freiburg Forest dataset (Valada et al., 
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Table 4
Quantitative comparison (PSNR/SSIM) with the cross-spectral NeRF 
dataset (Poggi et al., 2022).

Configuration Avg.
Model Train NXDC Test PSNR SSIM
NeRF MS - MS 33.53 0.917
X-NeRF RGB+MS × MS 31.96 0.897
X-NeRF RGB+MS ✓ MS 33.87 0.918
NeRF MS - MS 33.53 0.917
X-NeRF RGB+MS+IR × MS 30.87 0.870
X-NeRF RGB+MS+IR ✓ MS 33.53 0.914
Ours RGB+MS - MS 35.17 0.962
NeRF IR - IR 33.26 0.897
X-NeRF RGB+MS+IR × IR 31.60 0.869
X-NeRF RGB+MS+IR ✓ IR 32.44 0.879
Ours RGB+IR - IR 33.19 0.952

Table 5
Quantitative comparisons (PSNR/SSIM/LPIPS) on the real-world Freiburg forest 
dataset (Valada et al., 2016). (a) without initialization from other spectra (b) 
with initialization from other spectra (with warm-up iteration of 1000).

Method PSNR ↑ SSIM ↑ LPIPS ↓
Gaussian Splatting (Kerbl et al., 2023) 38.07 0.977 0.090

Ours (a)  40.17 0.974 0.086
Ours (b) 39.33 0.981 0.075

2016). This dataset, collected using the Viona autonomous mobile
robot, features multi-spectral and multi-modal images, along with man-
ually annotated pixel-wise ground truth segmentation masks for six
classes, recorded under varying lighting conditions to enhance data
variability. Table  5 demonstrates that our model achieves superior
results under challenging lighting conditions when incorporating priors
from other spectra during training. The LPIPS metric shows signifi-
cant improvement, indicating enhanced perceptual reconstruction in
difficult real-world static scenes. 

5.4.2. Comparison with radiance-field-based spectral methods
The quantitative analysis shows that our method overall outper-

forms the existing spectral methods (Poggi et al., 2022; Li et al., 2024b)
for both multi-spectral and cross-spectral data. The results presented in
Table  1 indicate that our method outperforms SpectralNeRF in most
scenes and on average for the synthetic dataset. Additionally, our
analysis, as shown in Table  3, reveals that our method also surpasses
SpectralNeRF when applied to the real-world dataset. It is important to
note that due to the unavailability of all datasets and test views from
the original paper, our evaluation was limited to only one real-world
dataset (see Table  3) for the SpectralNeRF method. However, we also
compare our method based on the Cross-spectral NeRF dataset which
contains only real-world scenes. Here, our method clearly performs
better for all scenes (multi-spectral and infrared datasets) as presented
in Table  4. This shows that our method produces plausible results with
real-world scenes and outperforms state-of-the-art spectral methods.
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Fig. 6.  Qualitative comparison of CrossSpectralNerf (Poggi et al., 2022) with our method with the Penguin dataset. The comparison shows the average of the 10 spectra colored 
with colormap viridis (left) and one such spectra (right). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 6
Quantitative comparisons (PSNR/SSIM/LPIPS) on spectral shiny blender dataset.

Method Spectral Shiny Blender Dataset
Car Helmet Teapot Toaster Coffee Avg.

PSNR ↑
NVDiffRec (Munkberg et al., 2022) 27.98 26.97 40.44 24.31 30.74 28.70
NVDiffMC (Hasselgren et al., 2022) 25.93 26.27 38.44 22.18 29.60 28.88
Ref-NeRF (Verbin et al., 2022) 30.41 29.92 45.19 25.29 33.99 32.32
NeRO (Liu et al., 2023a) 25.53 29.20 38.70 26.46 28.89 29.84

ENVIDR (Liang et al., 2023) 28.46 32.73 41.59 26.11 29.48 32.88
Guassian Splatting (Kerbl et al., 2023) 27.24 28.32 45.68 20.99 32.32 30.37
Gaussian shader (Jiang et al., 2023) 27.90 28.32 45.86 26.21 32.39 31.94

Ours 30.37 36.39 44.42 24.82 36.62 34.524
SSIM ↑

NVDiffRec (Munkberg et al., 2022) 0.963 0.951 0.996 0.928 0.973 0.945
NVDiffMC (Hasselgren et al., 2022) 0.940 0.940 0.995 0.886 0.965 0.944
Ref-NeRF (Verbin et al., 2022) 0.949 0.955 0.995 0.910 0.972 0.956
NeRO (Liu et al., 2023a) 0.949 0.971 0.995 0.929 0.956 0.962

ENVIDR (Liang et al., 2023) 0.961 0.980 0.996 0.939 0.949 0.969
Guassian Splatting (Kerbl et al., 2023) 0.930 0.951 0.996 0.895 0.971 0.947
Gaussian shader (Jiang et al., 2023) 0.931 0.950 0.996 0.929 0.971 0.957

Ours 0.970 0.970 0.992 0.942 0.973 0.969
LPIPS ↓

NVDiffRec (Munkberg et al., 2022) 0.045 0.118 0.011 0.169 0.076 0.119
NVDiffMC (Hasselgren et al., 2022) 0.077 0.157 0.014 0.225 0.097 0.147
Ref-NeRF (Verbin et al., 2022) 0.051 0.087 0.013 0.118 0.082 0.109
NeRO (Liu et al., 2023a) 0.074 0.050 0.012 0.089 0.110 0.072

ENVIDR (Liang et al., 2023) 0.049 0.051 0.011 0.116 0.139 0.072
Guassian Splatting (Kerbl et al., 2023) 0.047 0.079 0.007 0.126 0.078 0.083
Gaussian Shader (Jiang et al., 2023) 0.045 0.076 0.007 0.079 0.078 0.068

Ours 0.049 0.043 0.026 0.079 0.068 0.053
Fig. 7. Qualitative comparison of results (difference map of the renderings with the 
ground-truth images) on the Freiburg forest dataset (Valada et al., 2016), using priors 
from other spectra, with a warm-up iteration of 1000 and without adding priors.

5.4.3. Comparison with non-spectral radiance-based methods
To demonstrate that our method produces plausible results com-

pared to existing state-of-the-art Gaussian splatting methods (Jiang 
et al., 2023; Kerbl et al., 2023), we conducted a comparison using 
spectral datasets created from both the NeRF synthetic dataset and the 
shiny Blender dataset, as described in Section 5.2. The analysis reveals 
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that our method consistently outperforms existing methods on average 
for the Shiny Blender dataset, as shown in Table  6. This indicates 
that extending Gaussian splatting to the spectral domain improves 
the accuracy of reflectance estimation, particularly for shiny objects. 
Additionally, our method performs quite well on the synthetic NeRF 
dataset, as evidenced by the average PSNR and SSIM values in Table  7.

5.5. Qualitative analysis

We conducted a qualitative comparison between our method and 
the Cross-spectral NeRF (Poggi et al., 2022) using the dino and penguin 
datasets. The results, shown in Fig.  5 for the dino dataset and Fig.  6 for 
the penguin dataset, highlight the superior performance of our method 
in reconstructing scene appearance. In particular, Fig.  6 demonstrates 
the accurate rendering of specular effects in the eyes of the penguin, 
showcasing the effectiveness of our approach. Additionally, Fig.  5 
reveals that our method produces better reflectance reconstruction, as 
evidenced by the shading effects on the surface of the dino. We also 
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Fig. 8.  Qualitative comparison of results (difference map of the renderings with the ground-truth images) on the Freiburg forest dataset (Valada et al., 2016)  : In comparison 
to the original Gaussian splatting (Kerbl et al., 2023) our approach allows a significant reduction of the deviations from the ground truth.
Table 7
Quantitative comparisons (PSNR/SSIM/LPIPS) on spectral synthetic NeRF dataset.

Method Spectral Synthetic NeRF Dataset
Chair Lego Mic Ficus Avg.

PSNR ↑
NeRF (Mildenhall et al., 2020) 33.00 32.54 32.91 30.13 32.64
VolSDF (Yariv et al., 2021) 30.57 29.46 30.53 22.91 28.87

Ref-NeRF (Verbin et al., 2022) 33.98 35.10 33.65 28.74 32.11
ENVIDR (Liang et al., 2023) 31.22 29.55 32.17 26.60 29.88

Gaussian Splatting (Kerbl et al., 2023) 35.82 35.69 35.34 34.83 35.17
Gaussian Shader (Jiang et al., 2023) 35.83 35.87 35.23 34.97 35.22

Ours 38.93 34.26 36.80 36.57 36.39
SSIM ↑

NeRF (Mildenhall et al., 2020) 0.967 0.961 0.980 0.964 0.968
VolSDF (Yariv et al., 2021) 0.949 0.951 0.969 0.929 0.949

Ref-NeRF (Verbin et al., 2022) 0.974 0.975 0.983 0.954 0.971
ENVIDR (Liang et al., 2023) 0.976 0.961 0.984 0.987 0.977

Gaussian Splatting (Kerbl et al., 2023) 0.987 0.983 0.991 0.987 0.987
Gaussian Shader (Jiang et al., 2023) 0.987 0.983 0.991 0.985 0.986

Ours 0.990 0.977 0.990 0.994 0.987
LPIPS ↓

NeRF (Mildenhall et al., 2020) 0.046 0.050 0.028 0.044 0.042
VolSDF (Yariv et al., 2021) 0.056 0.054 0.191 0.068 0.092

Ref-NeRF (Verbin et al., 2022) 0.029 0.025 0.018 0.056 0.032
ENVIDR (Liang et al., 2023) 0.031 0.054 0.021 0.010 0.029

Gaussian Splatting (Kerbl et al., 2023) 0.012 0.016 0.006 0.012 0.012
Gaussian Shader (Jiang et al., 2023) 0.012 0.014 0.006 0.013 0.011

Ours 0.017 0.031 0.014 0.006 0.017
Fig. 9.  Spectral renderings and rendered segments of the Freiburg forest dataset (Val-
ada et al., 2016) with enhanced vegetation index (EVI) and near-infrared (NIR) 
components for a specific camera viewpoint.

analyze our method qualitatively using a real-world spectral dataset in 
the wild (Freiburg forest dataset (Valada et al., 2016)). Our results, as 
shown in Fig.  8, outperform the original Gaussian splatting (Kerbl et al., 
2023), as indicated by the difference maps compared to the ground 
truth. Additionally, Fig.  7 demonstrates that integrating priors from 
other spectra significantly improves the final renderings, as reflected 
in the difference maps across various camera views. We also present 
spectral renderings of this dataset, along with rendered segments from 
a specific camera viewpoint, using segment-anything (Kirillov et al., 
2023) predictions on the multi-view images as ground truth, as shown 
in Fig.  9.

As depicted in Fig.  10, our framework successfully estimates the 
lighting and BRDF parameters within the individual spectra, while also 
providing segmented object IDs. This showcases the effectiveness and 
798 
accuracy of our framework in capturing and analyzing the desired 
parameters for the given scene.

5.6. Ablation study

In this section, we conduct ablations by eliminating the warm-up 
iterations that we introduced to enhance reflectance and light estima-
tions in the scene through the inclusion of appropriate priors from other 
spectra. For this, we use three real-world scenes: dragon doll (from the 
SpectralNeRF dataset (Li et al., 2024b)), orange, and tech scenes (from 
the Cross-SpectralNeRF dataset (Poggi et al., 2022)). The dragon doll 
scene has 8 bands, while the orange and tech scenes have 10 bands (see 
Table  8)

The ablation studies in Tables  9 and 10 evaluate the influence of 
integrating spectral information with material estimation. The results 
suggest that incorporating spectral priors positively affects the final 
appearance, as evidenced by improvements in PSNR and SSIM metrics, 
while LPIPS values indicate varying performance across the datasets.

To evaluate the impact of including priors from different spectra, 
we  also conducted a qualitative analysis (see Fig.  11), after initializing 
the common model parameters with the average of all other spectra 
following a warm-up phase of 1000 iterations.
Qualitative analysis. We conducted a qualitative assessment by compar-
ing the rendered outputs with the ground truth for the aforementioned 
scenes. The results reveal noticeable improvements in capturing finer 
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Fig. 10. Qualitative analysis (Rendering of the toaster scene using our framework from multi-spectral data).
Table 8
Ablation studies comparing full-spectra reconstructions with (a) 
no prior initialization from other spectra and (b) learnable pa-
rameters in full spectra initialized with priors from other spectra 
after a warm-up iteration show that the latter approach yields 
better results.

Dragon doll Orange Tech hall4 Avg.
PSNR ↑

(a) 36.55 42.98 40.17 40.99 40.17
(b) 38.52 44.13 40.73 42.14 41.63

SSIM ↑
(a) 0.972 0.992 0.986 0.989 0.985
(b) 0.980 0.994 0.987 0.991 0.988

LPIPS ↓
(a) 0.047 0.017 0.045 0.018 0.031
(b) 0.029 0.013 0.051 0.017 0.027

details, such as the edges of the shuttlecock in the Dragon doll scene, as 
well as enhanced reconstruction of objects like the speaker in the tech 
scene (see Fig.  11) . These findings further reinforce the effectiveness 
of incorporating information from other spectra in achieving more 
accurate and detailed rendering results.

5.7. Limitations

While the presented framework offers promising capabilities, it is 
important to acknowledge its limitations. One such limitation is the 
requirement for spectrum-maps to be co-registered, which can be a 
complex and time-intensive process. Moreover, as the resolution of 
images increases and more spectra are incorporated, the training time 
escalates significantly. To overcome these challenges, future research 
can explore the integration of alternative deep learning algorithms that 
support end-to-end training specifically for co-registering maps. Addi-
tionally, improving the encoding methods to efficiently accommodate a 
larger number of spectra would enhance the framework’s capabilities.

Another limitation to consider is that the shading model currently 
used in the framework is fixed. However, the framework can be mod-
ified to have a flexible number of learnable parameters based on the 
shading model. This would allow users to configure the framework 
to their specific needs and enable more customized and adaptable 
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shading models. By addressing these limitations, the framework can be 
made more practical and effective, enabling seamless co-registration, 
support for an expanded range of spectra, reduced training time for 
high-resolution images, and user-configurable shading models.

6. Conclusion

We presented 3D Spectral Gaussian Splatting, a cross-spectral ren-
dering framework that utilizes 3D Gaussian Splatting to generate re-
alistic and semantically meaningful splats from registered multi-view 
spectrum and segmentation maps. This framework enhances scene 
representation by incorporating multiple spectra, providing valuable 
insights into material properties and segmentation. Additionally, the 
paper introduces an improved physically-based rendering approach 
for Gaussian splats, enabling accurate estimation of reflectance and 
lights per spectra, resulting in enhanced realism. Furthermore, the 
paper showcases the potential of spectral scene understanding for 
precise scene editing techniques such as style transfer, in-painting, and 
removal. The contributions of this work address challenges in multi-
spectral scene representation, rendering, and editing, opening up new 
possibilities for diverse applications.

Future work can focus on improving the accuracy of lighting and 
reflectance estimation in the proposed framework. While we demon-
strated our approach to outperform other recent, spectral learning-
based scene representations (Poggi et al., 2022; Li et al., 2024b) for 
different scenes, the evaluation of its potential for high-precision scan-
ning with costly devices like the TAC7 (Merzbach et al., 2017), that 
allow capturing lots of photographs under controlled light-view con-
ditions, might be interesting as well. There might be a chance that 
our learning-based spectral scene representation offers advantages over 
the parametric models used as a default option for the TAC7 due to 
the flexibility of the learnable models. Additionally, the utilization 
of spectral data, which has not been used in learning-based scene 
representation techniques like NeRFs or 3D Gaussian Splatting with a 
careful reflectance modeling so far, can open up new possibilities for 
achieving better results in this field. Additionally, integrating a regis-
tration process into the pipeline would allow for end-to-end training of 
non-co-registered spectrum maps, which is common with many spectral 
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Table 9
Ablation studies on the Shiny Blender Dataset to evaluate the impact of integrating spectral information 
with material information. Metrics are averages across all scenes in the dataset.

Method Material
Estimation

Spectral
Priors

PSNR ↑ SSIM ↑ LPIPS ↓

Guassian Splatting (Kerbl et al., 2023) × × 30.37 0.947 0.083
Gaussian shader (Jiang et al., 2023) ✓ × 31.94 0.957 0.068

Ours ✓ ✓ 34.524 0.969 0.053
Table 10
Ablation studies on the Synthetic NeRF Dataset to evaluate the impact of integrating spectral information 
with material information. Metrics are averages across all scenes in the dataset.

Method Material
Estimation

Spectral
Priors

PSNR ↑ SSIM ↑ LPIPS ↓
Guassian Splatting (Kerbl et al., 2023) × × 35.17 0.987 0.012
Gaussian shader (Jiang et al., 2023) ✓ × 35.22 0.986 0.011

Ours ✓ ✓ 36.39 0.987 0.017
Fig. 11. Ablation studies were conducted to assess the differences with ground truth for scenes dragon-doll (Li et al., 2024b), hall4, orange, and tech (Poggi et al., 2022). The 
models were trained under two conditions: (a) without initialization of full-spectra model parameters from other spectra, and (b) with initialization of full-spectra model parameters 
using the average of common model parameters from other spectra. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.)
cameras. Exploring these areas can lead to better results and expand 
the possibilities of research in this field and open new opportunities 
for several applications where spectral characteristics are of great 
importance.
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