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A Wideband Two-Way Digital Doherty Transmitter in 40nm CMOS

Abstract — A 40nm CMOS wideband digital Cartesian
push-pull inverted Doherty operating in class-E is presented.
Wideband Doherty operation is achieved over a 1.9-to-3GHz
frequency band, using an off-chip power combining network. The
fully digital transmitter (DTX) provides 25.3dBm peak power
with a drain/DTX line-up efficiency (DE/SE) of 58.7%/44.9%,
respectively, at 2.4GHz. When operated with a 160MHz 256-QAM
OFDM signal, it achieves 46.1%/32.7% average DE/SE, with an
ACLR and EVM better than -40.6dBc and -33.9dB, respectively,
using a simple memory-less digital pre-distortion (DPD).

Keywords — Cartesian, class-E, Doherty, efficient, wideband,
digital power amplifier, RF-DAC, DPD, DTX, Balun, CMOS.

I. INTRODUCTION

To fully benefit from the progress in nanoscale CMOS

technology, digital transmitters (DTXs) receive high interest

due to their potential to achieve excellent TX-system

efficiencies while handling modern wideband modulated

signals with high peak-to-average power ratios (PAPR). The

most promising DTX architectures use arrays of controlled

digital PA (DPA) cells in a polar or Cartesian configuration.

In a polar DPA realization [1], [2], the nonlinear Cartesian

to polar data conversion yields a notorious bandwidth

expansion. This drawback, combined with the requirement

that the phase and amplitude paths must perfectly recombine

without any delay mismatch at the output stage to replicate

the original signal at RF, limits the maximum achievable

modulation bandwidth for practical polar-TX implementations.

In contrast, Cartesian DTXs do not suffer from these

drawbacks due to their linear I and Q summation, making

them attractive for wideband applications [3]. The high

PAPR of modern communication signals compel a DTX

to operate in deep power back-off (PBO), degrading its

average efficiency if no efficiency enhancement technique

is applied. A Doherty topology can provide this efficiency

enhancement at low complexity while handling wideband

complex modulated signals [2]–[5]. In this regard, utilizing

a low-loss off-chip Doherty power combiner increases

the overall system efficiency, especially in PBO [4], [6].

This paper presents a wideband energy-efficient Cartesian

inverted push-pull two-way Doherty DTX employing a

reactance compensated parallel-circuit class-E DPA. The

off-chip Marchand balun-based Doherty power combiner uses

re-entrant coupled lines with independent second-harmonic

control.

II. DESIGN OF A WIDEBAND DOHERTY CARTESIAN DTX

The proposed wideband Doherty Cartesian DTX comprises

two Cartesian DTX chips and an off-chip power combiner
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Fig. 1. (a) Detailed block diagram of the DPAs. (b) Single-ended
representation of the push–pull class-E Doherty DPA.

operating over a 1.9-to-3GHz frequency band.

A. CMOS Digital Cartesian Class-E DPA

Fig. 1(a) exhibits the implemented chip’s block diagram

[7]. The baseband I/Q signals are upsampled by a factor

of 4 using four parallel time-multiplexed SRAMs. The 50%

quadrature clocks at fC, needed for the I/Q upconversion

and the implementation of the Doherty phase relations, are

generated using a (single-ended) external reference clock at

2×fC, which is fed to an on-chip transformer followed by a

divider. A 4-bit phase aligner is optionally utilized to fine-tune

the clock phases, followed by an I/Q sign-bit mapper that

utilizes 50% quadrature clocks [3]. A data-aware clock-gating

circuitry is employed to reduce power consumption at

PBO. An additional sampling clock generated from another

off-chip clock source can be optionally employed to set

the baseband modulation bandwidth independently. At the

DTX chip frontend, there are two RF digital-to-analog

converters (RF-DAC), comprising 4-bit binary (LSB) and

7-bit unary (MSB) segmented sub-cells, each consisting of

a bit-wise NAND upconverter. This chip is combined with
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Fig. 2. (a) Doherty combining network structure (b) side view of the shunt
and series resonators bondwiring connections (c) realization of the Doherty
combining network.

an off-chip class-E matching network. Since in class-E, the

drain voltage can go up to 2-to-3 times the supply voltage,

a cascode power cell topology is exploited in this design

to prevent reliability issues. The single-ended representation

of the push-pull class-E DPA matching network topology

with finite DC-feed inductance is shown in Fig. 1(b). This

structure, known as parallel-circuit load insensitive class-E,

has a higher maximum operating frequency and higher load

resistance [8]. To perform a wideband RF operation, the load

reflection coefficient angle seen by the intrinsic drain should

remain constant over the required bandwidth. This feature

accomplishes through reactance compensation [9]. By properly

choosing the parameters of the series resonator (L0, C0), a

constant load reflection coefficient angle over a wide frequency

band can be achieved, resulting in a wideband RF operation.

B. Wideband Doherty Power Combining Network

1) Compensated Impedance Inverter

To widen the bandwidth of the conventional Doherty

amplifier, an inverted Doherty topology is used in a push-pull

configuration [4], as shown in Fig. 2(a). In the inverted Doherty

approach, the additional λ/2 transmission line (TL) in the

output of the peak amplifier compensates for the considerable

variation of the magnitude and phase of the impedance seen

by the main amplifier over frequency.

2) Compensated Marchand Balun With Re-entrant Coupled
Lines and Second-Harmonic Control

The push-pull inverted Doherty DPA is connected to a

Marchand balun to form the wideband balanced-to-unbalanced

(a)

(b)
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Fig. 3. (a) Fabricated PCB (b) Die micrograph.

operation of the power combiner. The layout of the Marchand

balun adopted from [4] is shown in Fig. 2(b). Tight

differential coupling with a high even-mode impedance is

required to realize the wideband Doherty load network

with sufficiently low impedance. This feature is realized

by employing re-entrant type coupled lines with a proper

dielectric constant and dielectric layer thickness between

and underneath the conductors, yielding a low-loss wideband

balun. A well-controlled wideband 2nd harmonic termination

for class-E operation can be achieved by utilizing the

orthogonality between the fundamental (differential) signal and

the in-phase (common-mode) behavior of the 2nd harmonic

signals. Consequently, the required open 2nd harmonic for

a digital class-E DPA can be realized by providing an

even-mode short-circuited condition at λ/8 distance of the

DPAs. Something that can be practically achieved by placing

a simple via to ground in the center of the floating center

plate conductor. Due to the tight coupling between the three

conductors, the top metals are inherently forced to ground

for their even-mode signals, thus seen as open-circuit by the

DPA at the 2nd harmonic. In the odd-mode, the center of

the floating metal is virtually ground, barely affecting the

odd-mode impedance levels.

III. FABRICATION AND MEASUREMENT RESULTS

A prototype of the DPA is fabricated in 40nm bulk CMOS

(Fig. 3(b)), occupying 2.23×0.96mm2, including pads and

SRAMs. The realized chip is wire-bonded to the off-chip

two-way Doherty power combiner (Fig. 2(b)). L0 indicates

bondwires from the drain of the transistors to the off-chip

passive combiner. Chip capacitors (C0) are used to complete

the implementation of the series resonator. The DC-feed

976

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2023 at 09:00:07 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 4. Measured (a) output power, and (b) drain/system efficiencies at full power and power back-off vs. frequency, (c) drain, (d) system efficiency vs. output
power at different frequencies.

* A 9dB external loss (Attenuator + Cable loss) at 2.4GHz is de-embeded.

160MHz
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*

Fig. 5. Measured results of a single-channel 160MHz 256-QAM OFDM signal
at 2.4GHz.

inductance LD, is also implemented using bondwires and

connected to the bias lines. The baseband data of each DPA

is independently applied to the DTX using four parallel

on-chip 1-K SRAMs running at 600MHz. The measured

peak and back-off output power over a 1.9-to-3.2GHz range

are shown in Fig. 4(a), ranging from 21.6-to-25.3dBm,

and 10.9-to-20.4dBm, respectively, operating from a 1.1V

supply. The measured peak and back-off drain and system

(bits-in-RF-out) efficiency (DE/SE) over the 1.9-to-3.2GHz

range are shown in Fig. 4(b). As can be seen, DE at peak power

is more than 50% within the 1.9-to-3GHz frequency range. The

DE at back-off power is more than 40% over a 1.1GHz span,

equivalent to 43% relative bandwidth. The DE and SE are

plotted versus output power in Fig. 4(c) and (d), respectively,

illustrating a significant efficiency enhancement over the PBO

range. Utilizing a simple 2×one-dimensional memory-less

DPD, a 160MHz single-channel 256-QAM OFDM signal at

2.4GHz is generated. The average delivered output power

is 17.15dBm (8.15dBm plus 9dB loss of attenuator/cable),

while the ACLR and EVM are better than -40.6dBc and

-33.9dB, respectively. The performance of the proposed

two-way DTX is summarized in Table 1. Compared to the

DTXs with efficiency enhancement techniques, the proposed

architecture exhibits the highest data rate, high average

efficiency, and reasonable peak output power, suitable for

wireless communication systems.

Table 1. Performance Summary and Comparison with State-of-the-Art Works.

Specifications This Work
Technology CMOS 40nm

DPA Architecture Cartesian
Class-E

Matching Network Off-Chip
Die Area (mm2) 2.1 (0.72 ‡)
Supply (V) 1.1
3dB RF Bandwidth 1.25GHz
Relative RF BW 52.08%
Frequency (GHz) 2.4
Peak Pout (dBm) 25.3

DE/SE (%) Peak 58.7 / 44.9
6dB PBO 48.6 / 35.2

Modulation scheme 256-QAM OFDM
Bandwidth (MHz) 160
PAPR (dB) 7.91
Avg. Pout (dBm) 17.15
Avg. DE/SE (%) 46.1 / 32.7
EVM (dB) -33.92
ACLR (dBc) -40.6/-41.2
Linearization Memory-less DPD

** Estimated from reported figures and plots. ‡ Core area. ¥ Area including Digital front end, DPLL, and LB/HB DTX.

[4]
CMOS 40nm

Polar
Class-E
Off-Chip

0.45
0.7

900MHz
36%
2.5
17.5

54 / 34
52 / 25

64-QAM OFDM
32

N/A
N/A
N/A
-48

-48.5/-48.3
ILC DPD

[5]
CMOS 65nm

Analog Doherty

On-Chip
6

5.5
800MHz
13.7%

5.8
27.2

N/A  / 24.5
N/A / 13**
256-QAM

80
6.3
17

N/A / 5.3%
-34.8

-36.6/-36.3
MGTR+2nd Harmonic

[6]
CMOS 65nm
Voltage Mode

Doherty
Off-chip

1.62
1.2/2.4

400MHz
44.4%

0.9
24

N/A / 45
N/A / 34

256-QAM 802.11ac
40
9

14.7
N/A / 22

-34.8
-40 / -40**

Memory-less LUT

[3]
CMOS 40nm

Cartesian
CMCD

On-Chip
3.55 (1.5 ‡)

1
1.3GHz

24%
5.4
27.4

47.4 / 30.6
43.4 / 26.3

256-QAM OFDM
240
9.6
17.8

41.2 / 22.1
-32.2

-39/-39
Static DPD

[2]
CMOS 28nm

Polar

On-Chip
4 ¥

1.4
N/A
N/A
2.5
27

53  / N/A
33  / N/A
MCS11

40
6.9
20.1

N/A / 28.9
-35
N/A

Memory-effect DPD

IV. CONCLUSION

A wideband Cartesian push-pull inverted Doherty DTX

has been presented. The off-chip power combiner provides

wideband Doherty operation over the 1.9-to-3GHz frequency

band with 25.3dBm peak output power while maintaining more

than 50%/37% drain/system efficiency. Delivering 17.15dBm

average output power with 46.1%/32.7% average drain/system

efficiency for a 160MHz 256-QAM OFDM signal, the EVM

and ACLR performance are better than -40dB and -33dB,

respectively, employing a simple DPD.
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