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of e corresponding te = s; . Itis straightforward to check, using (32), By additional subtracting, an extremal self-dual [58, 29, 10] code was
that P,q(C*, €) < (2* — 1)/2" for thise. ThereforeC* is good. Sub- obtained having a weight enumerator which does not correspond to any
stitutings = 0.6 in (34) shows thaf* is improper. O  code known so far.

. . Index Terms—Automorphism, extremal self-dual code, weight enumer-
We complete the proof of Theorem 1. First, notice from Lemma 18§, P 9

that for any(n, M), codeC, C* is bad ifn = M = ¢ = 2 is not

true, andC® is bad ifn = M = ¢ = 2. Itis easy to check that if

Cis a(2, 2)» code of distance one, th&l is bad, and therefore, by |. INTRODUCTION

Proposition 1™ is bad and improper for > 2. On the other hand, A binary [, k] codeC is ak-dimensional vector subspace

e _, . A
Lemma 19 ShSV_VS that & is a(2, 2). code of distance two, thelt' | hereF, s the field of two elements. The weight of a vector is the
is proper and”™ is good but improper. Such codes are the only codegmper of its nonzero coordinates. in %, d] code is arjr, k] code
that are good if used four times. This confirms the results of Theorefa, minimum weightd. A codeC is self-dualif C = C*, where

1in casey = 2. . S ¢+ is the dual code of under the standard inner product. A self-dual
Next, we assume that> 3. If M = ¢", wherek is an integer SUCh ¢, 46 s doubly-everif all codewords ofC' have a weight divisible
thatl < & < n —1, then Lemma 11 implies that for amy > m,(q),  py four, andsingly-everif there is at least one codeword of weight
as specified in Theorem 1, the tuple, M, ¢, m) is bad. In particular, _ (mod 4). LetC be a singly-even self-dual code anddt be its
for suchm, C™ is bad, and therefore improper, for afty, M), code doubly-even subcode. Thei- = C, U Cy U Cy U Cs whereC; are
C. On the other hand, Lemma 19 indicates that for(theq), linear cosets ofCy, andC' = Co U Cs. The codeS = C; U Cs is called
repetition code’, the code’™ is proper if3 < ¢ < 5 andm = 2,0 0 shadow code df . Shadow codes were introduced by Conway and
if ¢ > 6 andm = 1. From this, we conclude that indeed the valueg,,ne [3]. Arautomorphisnof €' is a permutation of the coordinates
of mj(q) andm;,(q) given in Theorem 1 are correct. More generallyyt 1o codewords of® which preserve€’. The set consisting of all
if 2 < M < q¢" - 1, then Lemma 18 implies that for any > 2, 5 ;1omorphisms o is called theautomorphism groupf C.
the tuple(n, A, ¢, m) is bad. In particular, for such:, C™ isbad, A self.dual code is callegxtremalif it has the largest minimum
and therefore improper, for aity., M), codeC. However, Lemma 19\ qignt for that length. For doubly-even self-dual codes of lengttis

shows that, foy; > 3, there is a-ary code(’, for whichC? is proper ynon thaw, is a multiple of8 and the minimum weight is bounded
and good. We conclude that the valuesf(¢) andm,,(¢) inTheorem 7 41;, /94] 4 4 [10]. For singly-even self-dual codes, Conway and
1 are correct. Sloane [3] provided new upper bounds for the minimum weight, and
gave a list of the possible weight enumerators of singly-even self-dual
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TABLE |
EXTREMAL SELF-DUAL CODES OFLENGTH 62

Codes | B | M12(3) mi2(3) Mip(2) mi2(2) Mip(l) mip(l) | |Aut|
Ce21 | O 20 2 82 30 360 360 15
Ce22 | O 20 3 84 52 360 360 15
Ce23 | O 21 4 88 30 360 360 15
Ce24 | O 21 3 90 46 360 360 15
Cezs | O 24 0 84 28 360 360 30
Cez6 | O 21 0 96 0 360 360 30
Ce27 | O 24 0 84 0 360 360 15
Ce28 | O 21 0 86 0 360 360 30
Ce29 | O 20 2 86 30 360 360 15
Ce2,10 | 15 25 3 112 52 480 416 15
Cean1 | 10 24 0 96 0 424 360 15
Ce2,12 | 10 24 0 100 0 424 360 30
Ce2,13 | 10 24 0 102 0 424 360 30
Ce2,14 | 10 25 0 104 0 424 360 15
Ce2,15 | 10 24 0 104 0 424 360 15
Ce2,6 | 10 24 0 106 0 424 360 15
Cez,17 | 10 25 0 106 0 424 360 15
Ce2,18 | 10 23 0 108 0 424 360 30
Ce2,10 | 10 25 0 112 0 424 360 30
Cea20 | 10 25 0 114 0 424 360 30

In this section, we construct extremal self-dual codes of lefigth 3) The subcode$,(C') and E,(C) have dimension8 and 28,
by making use of the method developed in [8] under the assumption  respectively.
that they possess an automorphism of oidert will appear thatsuch 4y (. () is a self-dual code of length
codes have weight enumeratd#s., ; with 5 = 0, 10, and13, as de-
fined in (1). From [14, Theorem 1] it follows that an extremal self-dual It is well known that there is a unique self-dual code of lergtip
code of length52 cannot have an automorphism of odd prime orddp equivalence. Thus, without loss of generality, we may assume that
greater thars. Since the investigation of the existence of codes having-(C') has a generator matrix of the form
automorphisms of ord&rand5 appears to require a lot of calculations,

we restrict ourselves in this correspondence to automorphisms of order 110000
15. X=[0 010 ]| 10 (6)
Let C' be an extremal self-dual code of lengthwith the following 0 0 01 0 1

automorphism of ordet5:
sinceC' has minimum weight 2.

_ Ny . . Let E,(C')* be the code obtained frofi, (C') by deleting the last
o =(1...,15)16, ..., 30)(31L, ..., 45)(46, ..., 60)(61)(62). two coordinates. Denote by the set of the even-weight polynomials

(5) inFy[x]/(«'® — 1). So, itis clear thaf” is a cyclic code of length5
generated by: — 1. Also P is a ring with identity element

We denote the four cycles of length by 24, 25, Q3, {24 and the two ) R
fixed points by<2; and(. Let e(r)=r+a" +a2"+-+ux

14

F(C)={r € Clo(x) =z} We have

and 2 1= (2 - Dhi(z)ho(x)hs(x)ha(z)
E,(C)={x € C|wt(x|Q) = 0(mod2),
fori =1, 2, 3, 4 andx|Q; = 0 fori =5, 6} where

/1,1(50):1—i—:lc—|—;n2—1—;‘173—1—;(74

wherez|€); is the restriction of: on$2; andwt(z) denotes the weight R .
of . Consider the map: F,(C) — FS defined byé(z|Q;) = =, hao(z)=1+2z"+=z
for somej € Q;,i = 1, 2, 3, 4. Note thatz|{2; is either the all-one ha(z) =142+ 2

vectorl or the zero vectdd of length15 for anyx € F,(C'). The next

" d
proposition follows from [8, Theorems 1-3]. an ha(e) = 1 9
w(r)=14+x 4+
Proposition 1: Let C' be a self-dual code of lengi2 with auto-
morphismo as defined in (5). Then are irreducible polynomials if?. LetI; be the ideal of” generated by
15 . . B .
1) C = F,(C) D Es(C). the polynomialz—=1. It is well known thatl, is a cyclic code, which

h;(z)
2) F,(C) and E,(C) arec-invariant, that is, invariant under the is isomorphic tojthe field=3 for j = 1, 2, 3 and to the fieldF3 for
action ofo. j =4,and thatP isthe directsunP = I, © I, © Iz © I4.
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TABLE 1l

Since the cod€’ has an automorphism containing four cycles of
MATRICES Y

lengthl5, a generator matrix of, (C')* consists of elements &t , I,
I5, andl,. Hence, one possibility for a generator matrix of the subcode:

E.(C) is Matrices | (r1,72,73,74,75,76,77,73) (51, 52,53, 54, 85, 56, 57, 38)
o\t (11, U2, ug, g, Us, U, U7, Ug) (U1, V2, V3, V4, Us, U, U7, Vs)
S ] b ¢! (e1,a2,0,a1,0,a10,€1,014) (€2, 51,0,0,0, b1, €2, B1)
o2 T3 T (0,0,71, €3, 71, €3,71,0) (e4,0,0,82,0,081,€4,0)
rs  re 7 T8 Y2 (e1,as,0,a1,0,0113,€1,014) (€2, 01,0,0,0, B3, €2, B1)
$1 Su S35 84 (0,0,71.€3,711,€3,73,0) (€4,0,0,91,0,83,e4,0)
55 se st s Y3 (e1,05,0,01,0,003,€1,014)  (€2,51,0,0,0, B4, €2, 1)
y=|" " (7) (0,0,71,€3,71,€3,74,0) (€4,0,0,01,0,€4,€4,0)
wr o U2 Uz Ug Yy (e1,0,a2,04,0,€1,07,014)  (€2,0,0,01,0,€3,51,P1)
U5 Ug UT U (07'7176370171;7170; 63) (64»0,’5%0’0’6470»61)
vl ve Uz s Ys (e1,0,a1,05,0,€1, 05, 014) (e2,0,0,01,0,€2, 01, 02)
vs v Ur s (0,1,€3,0,71,72,0, €3) (€4,0,0,85,0,€4,€4,0)
R ! Ys (e1,011,0,7,0,013,€1,014) (€2, 61,0, B1,0, P11, €2, B3)
where allthe;, s;, u; are4 x 15 matrices and all the,, are2 x 15 ma- 7 221’2*72’23"21’;3’“21’2) ; EZ«; 0;)52 0»052[;64,:) o
. P . . . 4 1 ) »
trices(1 < i, j. t, k < 8). The first rows of the circulant matrices, T DS S TS 1 4 2P &L B P 52 P
) (11,0,74, €3, M, €3, M11,0) (€4,0,0,82,0,61,€4,0)
sj, ut, andvy, are elements aof, I», I3, and Iy, respectively. There- s (e1,08,0,a1,0,a1,€1,014)  (€2,B1,0, 51,0, 814, €2, 55)
fore, we have the following characterization about the form of some (71,0, 75, €3,71, €3, 714, 0) (€4,0,0,81,0,61,€4,0)
generator matrices. Yo (e1,011,0,04,0,01,81,014) (€2, 51,0, B1,0, B5, €2, Bs)
N i i _ (71,0, 76, €35 71, €3, 75, 0) (€4,0,0,81,0,61, e4,0)
Proposition 2: Let X andY be matrices of the form (6) and (7), Y10 (€1, a8,0,a7,0,010,€1,0114) (€2, 51,0, 51,0, B9, €2, 83)
respectively. Then thgl x 62 matrix (11,0,73, €3, 71, €3,70, 0} (€4,0,0,61,0,01,€4,0)
i (0,03, €1,0,09,0,0,€1) (B2, B1, 2,0, 01, Bz, 0,€2)
(€3, 0,72, 71,0, €3,711,77) (61,0,€4,0,0,02,0,€4)
. Yio (0,03,€1,0,€1,0,0,€1) (B2, B, €2,0, 1, 35, 0, €2)
G= (€3,0,72, 71,0, €3, 71, 75) (0,61, €4,0,81,0,0,€4)
Yis (0,03, €1,0,012,0,0,¢€1) (81, Bs, €2, 0, B14, Bs, 0, €2)
(e3,0,71, 14,0, 3,78, ¥6) (0,02,€4,0,82,0,0,e4)
is a possible generator matrix of a self-dual code of lerégtiwith Yie | (0,a5,€1,0,05,0,0,e1) (Br, Bs. €2,0, f14, 13, 0, €2)
automorphisms (e3,0, 71,714, 0, €3, 718, 13) (82,0,€4,0,0,82,0,e4)
: Yis (0,a3,e1,0,03,0,0,€1) (B1,Bs, 2,0, P14, B9, 0, €2)
Using matrices of the form in Proposition 2 we found extremal — 583’0’71’714’0’63’78’)79) Egl,(gez;,o,o,ﬂéz,;, €4) )
0,03,€1,0,123,0,0,€ 3 y€2,0, 3 y0, €
self-dual codes of length2. We present 20 example&s,. 1, Ces, 2, 16 (es o e o s 176) (0251 oo 0664) 2
Cs2,20 Of such codes. The ch&u, i=1,..., 20: have Vir (0,03, €1,0,09,0,0, €1) (Bt Bar €2, 0, B1a, B1, 0, €2)
weight enumerators of typB/s2, 1 with 3 = 0, 10, or 15. This was (es,0,71,714, 0, €3, 78, 77) (0,81, e4,0,82,0,0, €4)
established by calculating the number of codewords of minimun Y8 (0,a3,€1,0,03,0,0,€1) (b1, Bo, €2, 0, €2, B3, 0, €2)
weight. We list the values in Table I. The orders of the automorphism (€3,0,71, 3,0, €3,79,73) (0,61,€4,0,81,0,0,€4)
groups Aut| were calculated by kema, and are also listed in Table | Yie | {0,03,€1,0,05,0,0,€1) (B2, B, €2,0, B, B, 0, €2)
{€3,0,72, 71,05 €3, 71, 78) (0,02, €4,0,02,0,0,e4)
Proposition 3: There are extremal self-dusR, 31, 12] codes with Yao (0,03, €1,0,012,0,0,€1) (B1,Bs, €2,0, P14, 1, 0, €2)
weight enumeratoWs | for 3 = 0, 15. (es,00mm0,0,398m)  (0,61,€4,0,81,0,0,€4)

Remark: By this method we found more extremal self-dual codes

with weight enumeratof¥s»,; and3 = 0, 10. However, an exten- MAGMA, it was shown that the two codes are equivalent. Hence, the
sive computer search failed to discover an extremal self-dual code witther codes are new. From the table it appears that the codewords of
Wiea,» or Wso, 1 for other values ofs. minimum weight inCsz,;,¢ = 1, ..., 9, form al-(62, 12, 360) de-

We now present generator matrices of the codgs.;, i sign which cannot be explained by the Assmus—Mattson theorem.

1, ..., 20. Itis sufficient to give the submatricés of G (see Propo-
sition 2). Denote the submatrices by for Cs, ;. The 20 circulant
matrices inY; are listed in Table Il, where is the zero matrix and the  |n this section, extremal self-dual codes of lengisand 60 are
first rows of the circulant matrices, «;, 3s, v», andé; are given in  constructed from some of the extremal self-dual codes of leégjth
Table 11l which were discussed in the previous section.

To show that all presented codes are inequivalent, we use the fol-
lowing invariant. Le” be a self-dual code oflength Let Al = (m.;) A. Extremal Self-Dual Codes of Lengih

be the matrix of alld. codewords of weightin €', 1 < i < 4, and New extremal self-dual codes of lengly are constructed from

1. S.J sn Eor any 'ntegek‘ 1 < k < n and for any set of columns some extremal self-dual codes of lengthby the process of subtrac-
J1s J2s -es Ji l€tne(j1, ..., jx) be the number of rows such that tion

My M, # 0. We consider the set First we give the possible weight enumerators of extremal self-dual

Ill. RELATED EXTREMAL SELF-DUAL CODES OFLENGTHS58 AND 60

Si(k) = {ni(r, oo )L < ji < -+ < jr <nl}. [60, 30, 12] codes, which were derived in [3] and [5]
Let M, (k) andm, (k) denote the maximum and the minimumsf k), Weo,1 =1+ (25554 643)y"” + (33600 — 3843)y"" + -+
respectively. For the 20 codé€ss»,;, i = 1, ..., 20, the values of Weo o =1+ 34512 + 24128y 4 - .-

M2 (k)andmi2(k), k =1, 2, 3, were computed and listed in Table I.
We verified that the codé€’s, as defined in [6] ands2, 19 have iden- wherej is an undetermined parameter withk< 3 < 10. An extremal
tical values forMi2(k) andmq2(k), & = 1, 2, 3. Moreover, using self-dual code with weight enumeratdfs,, - was constructed in [3].
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TABLE Il
FIRST Rows OF THECIRCULANT MATRICES ¢;, ¢, 35, 7+, AND &4

First rows First rows First rows

e; | 011110111101111 | e2 | 000100110101111 | e3 | 011110101100100
es | 011011011011011 | «; | 110001100011000 | 2 | 101001010010100
a3 | 111101111011110 | a4 { 100011000110001 | as | 010010100101001
ag | 111011110111101 | «7 | 000110001100011 | ag | 100101001010010
g | 110111101111011 | a10 | 001100011000110 | w17 | 001010010100101
oy | 101111011110111 | 73 | 011000110001100 | 14 | 010100101001010
£1 | 110001001101011 | B2 | 111100010011010 | B3 | 101111000100110
Bs | 101011110001001 | Bs | 011010111100010 | Bg | 100110101111000
(7 | 001001101011110 | Bs | 100010011010111 | B¢ | 111000100110101
B1p | 011110001001101 | 817 | 010111100010011 | 812 | 110101111000100
G153 | 001101011110001 | 814 | 010011010111100 | 47 | 111010110010001
2 | 101011001000111 | 3 | 101100100011110 | 4 | 110010001111010
s | 001000111101011 | «¢ | 100011110101100 | ~7 | 001111010110010
~vg | 111101011001000 | g | 110101100100011 | 710 | 010110010001111
~11 | 011001000111101 | 12 | 100100011110101 | 15 | 010001111010110
~14 | 000111101011001 | 6; | 110110110110110 | 6 | 101101101101101

As for weight enumerators of typ&’so, 1, some extremal double cir- before, the results are also listed. Note that the codewords of minimum
culant self-dual codes with = 10 were constructed in [5]. These weight in every code of Table IV form &design. This property is not
codes are equivalent to the cofle, defined in [7]. Furthermore, two explained by the Assmus—Mattson theorem.

codes with3 = 0 and with3 = 10, respectively, were constructed in From Table IV, it appears thafs. 4 and C¢,, 5 have identical

[13], and a code with? = 7 in [4]. Let C be one of the codeSs.,;, valuesMiz(k)andmi2(k),fork = 1, 2, 3. Moreover, using MGMA,
l=6,7,8,11, ..., 20. SinceC has the property that12(2) = 0, we verified that these two codes are equivalent. It was also verified by
there are two coordinatés j with n12(i, j) = 0, that is, there is no MAGMA that the extremal self-dual codes wijth= 0 and3 = 10 in
codeword(z1, ..., ze2) of weight12 such that(z;, =;) = (1, 1). [13] are equivalent t&’s, ¢ and g 1o, respectively. Therefore, the
More precisely{61, 62} is the unique pair of two coordinatds, j} codesCs, , fori =7, 8, 11, 12, 13, 14, 16, 17, 18, 20 are new ex-
with n12(7, j) = 0 for every code’s»,(,1 =6, 7, 8, 11, ..., 20. tremal self-dual codes of lengdt.
LetC’ denote the code of lengéi®, obtained fronC' by subtracting
the last two coordinates, that is, B. Extremal Self-Dual Codes of Lendi
C'={(x1,.... z60) | (x1, ..., ze2) € C, w61 +262=0 (mod2)}. Extremal self-dud)8, 29, 10] codes have possible weight enumer-
ThenC" is self-dual. In addition,”’ has minimum weight2. Note that ators
C" is an extremal self-du@0, 30, 12] code with an automorphisai Wis.1 =14 (165 — 29)y"® + (5078 + 29)y' + - - -
of order15 o
Vis,2 =1+ (319 — 2473 — 2);
o' =(1,...,15)(16, ..., 30)(31, ..., 45)(46, ..., 60). Wes.2 =1+ (310 - 24/ &

. + (313241528 + 27)y' > + - -
For the 13 code§?, ;,i = 6, 7. 8, 11, ..., 20, the value of} in the (3 B+27)y

weight enumeratoWso, 1, Mi2(k) andmi2(k), k = 1, 2, 3 and the where3 and~ are undetermined parameters [3]. As for the weight
order|Aut| of the automorphism group are also listed in Table IV. Foenumeratof¥ss, 1, an extremal self-dual code with= 55 is known
the three codes withh = 0, 10 in [5] and [13], which were mentioned [12]. As for the weight enumeratdi’ss, -, we refer to [1] and [9],

00111110111010000011101000011,10110000111010011111011111101,
11110111111010010001000100010,11010100011010110110001001101,
11000101101010000101101111010,11001101010010111100011100001,
11001001001110000000100101100,11001011000000111110111001010,
11001010000111100001110111001,11111111100001100101011101000
01001010110101111001100011100,10111111111000001001010111010,
01011111111100000100101011101,00101111111110100010010101110,
10001011101010101000011111111,01000101110101110100001111111,
10010001011101111101000011111,01111101101011010101101100111,
10100100010111111111010000111,01100111001110010100100101011,
10011100000000010100111001001,11100001100111010100110111000,
11101010010001011111111101000,01000000001101100100110011100,
10111010100100000111111111010,01011101010010000011111111101,
00101110101001100001111111110,00100010010001111011110010111,
00110101000101101011001101000.
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TABLE IV
EXTREMAL SELF-DUAL CODES OFLENGTH 60

Codes ﬂ M12(3) m12(3) M12(2) m12(2) Mlg(l) mlg(l) |Aut|
Coog 0 28 5 135 71 511 511 60
Cé” 0 25 7 115 71 511 511 30
G0 0 24 7 111 71 511 511 60
C’éz11 10 39 9 175 95 639 639 15
Cég,n 10 35 9 183 95 639 639 60
Cg2’13 10 34 10 155 103 639 639 60
Cé2,14 10 36 10 171 95 639 639 15
{52,15 10 36 10 171 95 639 639 15
062116 10 35 9 167 99 639 639 30
Cé2’17 10 35 8 175 91 639 639 30
Cé2,18 10 38 9 191 95 639 639 60
Cgm 10 36 10 147 95 639 639 60
Cea.20 10 33 10 163 95 639 639 60
Pso in [7] | 10 36 9 175 95 639 639 60
[13) 0 28 5 135 71 511 511 60
(13] 10 36 10 147 95 639 639 60

where the existence is established of extremal self-dual codes for the REFERENCES

following parameter values:

B=0 and € {0, 32,36} U {2m |40 < 2m < 122}

#=1 and v € {2m]42 < 2m < 100}
=2 and ~ve€ {32, 36, 40, 44}

U {2m |48 < 2m < 88} U {92}.

We remark that the code with = 0 and~y = 44 does not occur in [1]

and [9], but is mentioned in [2, Table VIII].

An extremal self-dual code of length) yields extremal self-dual

[58, 29, 10] codes by subtracting. In fact, in [13], extremal self-dual
[58, 29, 10] codes for various types of weight enumerators are con-
structed from known codes. Here, we investigate extremal self-duaI[G]
codes constructed from the new extremal self-dual codes, discussed iﬁ]

Section IlI-A.

Let Css be a[58, 29] code with generator matrigd, M) where M
is written asm., ..., mag with theith rowm;as shown at the bottom

of the previous page. The codgs is an extremal self-dual code which

is constructed from the new extremal self-digél 30, 12] codeCs. - I
by subtracting the first and 18th coordinates. This code has the weigh[ IEEE Trans. Inform. Theotyol. 47, pp. 386-393, Jan. 2001.

[10] C.L.Mallowsand N.J.A. Sloane, “An upper bound for self-dual codes,”
Inform. Contr, vol. 22, pp. 188-200, 1973.

enumerator

14 71y'% +3380y"'% +38772y"* + 297309y "¢ + 1672840y " + - - -.

Thus, the code&’ss has weight enumeratdi’ss, - with 3 = 0 and

7 = 124. Itwas also verified that'ss has an automorphism group of 5,

order2.

Proposition 4: There is an extremal self-du§g, 29, 10] code
with weight enumeratoiVss, », with 5 = 0 and~ = 124.

When applying the subtraction method to the other codes of length

60, they all yield extremal self-dual codes of lengt® with weight

enumerators belonging to codes already known.
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