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of � corresponding tos = s1. It is straightforward to check, using (32),
thatPud(C4; �) � (24 � 1)=28 for this �. Therefore,C4 is good. Sub-
stitutings = 0:6 in (34) shows thatC4 is improper.

We complete the proof of Theorem 1. First, notice from Lemma 18
that for any(n; M)q codeC, C4 is bad ifn = M = q = 2 is not
true, andC5 is bad ifn = M = q = 2. It is easy to check that if
C is a (2; 2)2 code of distance one, thenC2 is bad, and therefore, by
Proposition 1,Cm is bad and improper form � 2. On the other hand,
Lemma 19 shows that ifC is a (2; 2)2 code of distance two, thenC3

is proper andC4 is good but improper. Such codes are the only codes
that are good if used four times. This confirms the results of Theorem
1 in caseq = 2.

Next, we assume thatq � 3. If M = qk, wherek is an integer such
that1 � k � n� 1, then Lemma 11 implies that for anym > m0

g(q),
as specified in Theorem 1, the tuple(n; M; q; m) is bad. In particular,
for suchm, Cm is bad, and therefore improper, for any(n; M)q code
C. On the other hand, Lemma 19 indicates that for the(2; q)q linear
repetition codeC, the codeCm is proper if3 � q � 5 andm = 2, or
if q � 6 andm = 1. From this, we conclude that indeed the values
of m0

g(q) andm0

p(q) given in Theorem 1 are correct. More generally,
if 2 � M � qn � 1, then Lemma 18 implies that for anym > 2,
the tuple(n; M; q; m) is bad. In particular, for suchm, Cm is bad,
and therefore improper, for any(n; M)q codeC. However, Lemma 19
shows that, forq � 3, there is aq-ary code,C, for whichC2 is proper
and good. We conclude that the values ofmg(q)andmp(q) in Theorem
1 are correct.
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New Extremal Self-Dual Codes of Length and Related
Extremal Self-Dual Codes

Radinka Dontcheva and Masaaki Harada

Abstract—In this correspondence, new extremal self-dual codes of length
62 are constructed with weight enumerators of three different types. Two
of these types were not represented by any known code up till now. All these
codes possess an automorphism of order15. Some of them are used to con-
struct extremal self-dual codes of length60 by the method of subtracting.
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By additional subtracting, an extremal self-dual [58 29 10] code was
obtained having a weight enumerator which does not correspond to any
code known so far.

Index Terms—Automorphism, extremal self-dual code, weight enumer-
ator.

I. INTRODUCTION

A binary [n; k] codeC is ak-dimensional vector subspace ofn2 ,
where 2 is the field of two elements. The weight of a vector is the
number of its nonzero coordinates. An[n; k; d] code is an[n; k] code
with minimum weightd. A codeC is self-dualif C = C?, where
C? is the dual code ofC under the standard inner product. A self-dual
codeC is doubly-evenif all codewords ofC have a weight divisible
by four, andsingly-evenif there is at least one codeword of weight
� 2 (mod 4). LetC be a singly-even self-dual code and letC0 be its
doubly-even subcode. ThenC?0 = C0 [ C1 [ C2 [ C3 whereCi are
cosets ofC0 andC = C0 [ C2. The codeS = C1 [ C3 is called
the shadow code ofC. Shadow codes were introduced by Conway and
Sloane [3]. Anautomorphismof C is a permutation of the coordinates
of the codewords ofC which preservesC. The set consisting of all
automorphisms ofC is called theautomorphism groupof C.

A self-dual code is calledextremalif it has the largest minimum
weight for that length. For doubly-even self-dual codes of lengthn it is
known thatn is a multiple of8 and the minimum weightd is bounded
byd � 4[n=24]+4 [10]. For singly-even self-dual codes, Conway and
Sloane [3] provided new upper bounds for the minimum weight, and
gave a list of the possible weight enumerators of singly-even self-dual
codes meeting the bounds for lengths up to64 and for length72. For
example, the largest minimum weights for length58; 60; and62 are
10; 12; and12; respectively. An obvious problem is to determine if
a self-dual code exists for a given possible weight enumerator. In this
correspondence, extremal self-dual codes of lengths58; 60; and62 are
constructed.

In Section II, we construct new extremal self-dual codes of length
62 with an automorphism of order15, using the results derived in
[8]. Some of them have a weight enumerator for which codes were
not known to exist. In Section III, new extremal self-dual[60; 30; 12]
codes are constructed by applying subtracting to extremal self-dual
codes of length62. By one more subtraction we also construct an ex-
tremal self-dual[58; 29; 10] code with a weight enumerator which was
not known to be attainable before.

II. NEW EXTREMAL SELF-DUAL CODES OFLENGTH 62

The possible weight enumeratorsW62; i andS62; i, i = 1; 2, of
extremal self-dual codes of length62 and their shadow codes are as
follows:

W62; 1 =1 + (1860+ 32�)y12 + (28055� 160�)y14

+ (255533+ 96�)y16 + � � � (1)

S62; 1 =�y7+(1116�12�)y11+(171368+66�)y15+ � � � (2)

W62; 2 =1 + 2308y12 + 23767y14 + 279405y16 + � � � (3)

S62; 2 = y3 + 1039y11 + 171928y15 + � � � (4)

where� is an undetermined parameter with0 � � � 93. Only one
extremal singly-even self-dual code with weight enumeratorW62; 1 and
� = 10 is known [6]. Unfortunately, the coefficient ofy14 in W62; 1 of
(1) was reported incorrectly in both [3, p. 1326] and [6, p. 1232]. Using
the method from [3], we obtain the correct weight enumeratorW62; 1.
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TABLE I
EXTREMAL SELF-DUAL CODES OFLENGTH 62

In this section, we construct extremal self-dual codes of length62
by making use of the method developed in [8] under the assumption
that they possess an automorphism of order15. It will appear that such
codes have weight enumeratorsW62; 1 with � = 0; 10; and15, as de-
fined in (1). From [14, Theorem 1] it follows that an extremal self-dual
code of length62 cannot have an automorphism of odd prime order
greater than5. Since the investigation of the existence of codes having
automorphisms of order3 and5 appears to require a lot of calculations,
we restrict ourselves in this correspondence to automorphisms of order
15.

LetC be an extremal self-dual code of length62 with the following
automorphism of order15:

� =(1; . . . ; 15)(16; . . . ; 30)(31; . . . ; 45)(46; . . . ; 60)(61)(62):

(5)

We denote the four cycles of length15 by
1, 
2, 
3, 
4 and the two
fixed points by
5 and
6. Let

F�(C) = fx 2 C j�(x) = xg

and

E�(C) = fx 2 C jwt(xj
i) � 0(mod2);

for i = 1; 2; 3; 4 andxj
i = 0 for i = 5; 6g

wherexj
i is the restriction ofx on
i andwt(x) denotes the weight
of x. Consider the map�: F�(C) ! 6

2 defined by�(xj
i) = xj
for somej 2 
i, i = 1; 2; 3; 4. Note thatxj
i is either the all-one
vector1 or the zero vector0 of length15 for anyx 2 F�(C). The next
proposition follows from [8, Theorems 1–3].

Proposition 1: Let C be a self-dual code of length62 with auto-
morphism� as defined in (5). Then

1) C = F�(C)� E�(C).

2) F�(C) andE�(C) are�-invariant, that is, invariant under the
action of�.

3) The subcodesF�(C) andE�(C) have dimensions3 and 28,
respectively.

4) �(F�(C)) is a self-dual code of length6.

It is well known that there is a unique self-dual code of length6 up
to equivalence. Thus, without loss of generality, we may assume that
F�(C) has a generator matrix of the form

X =

1 1 0 0 0 0

0 0 1 0 1 0

0 0 0 1 0 1

(6)

sinceC has minimum weight12.
Let E�(C)� be the code obtained fromE�(C) by deleting the last

two coordinates. Denote byP the set of the even-weight polynomials
in 2[x]=(x

15 � 1). So, it is clear thatP is a cyclic code of length15
generated byx � 1. AlsoP is a ring with identity element

e(x) = x+ x2 + x3 + � � �+ x14:

We have

x15 � 1 = (x� 1)h1(x)h2(x)h3(x)h4(x)

where

h1(x) = 1 + x+ x2 + x3 + x4

h2(x) = 1 + x3 + x4

h3(x) = 1 + x+ x4

and

h4(x) = 1 + x+ x2

are irreducible polynomials inP . LetIj be the ideal ofP generated by
the polynomialx �1

h (x)
. It is well known thatIj is a cyclic code, which

is isomorphic to the field 4
2 for j = 1; 2; 3 and to the field 2

2 for
j = 4, and thatP is the direct sumP = I1 � I2 � I3 � I4.
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Since the codeC has an automorphism� containing four cycles of
length15, a generator matrix ofE�(C)� consists of elements ofI1, I2,
I3, andI4. Hence, one possibility for a generator matrix of the subcode
E�(C)� is

Y =

r1 r2 r3 r4

r5 r6 r7 r8

s1 s2 s3 s4

s5 s6 s7 s8

u1 u2 u3 u4

u5 u6 u7 u8

v1 v2 v3 v4

v5 v6 v7 v8

(7)

where all theri, sj ,ut are4�15 matrices and all thevk are2�15 ma-
trices(1 � i; j; t; k � 8). The first rows of the circulant matricesri,
sj , ut, andvk are elements ofI1, I2, I3, andI4, respectively. There-
fore, we have the following characterization about the form of some
generator matrices.

Proposition 2: Let X andY be matrices of the form (6) and (7),
respectively. Then the31 � 62 matrix

G =

X

Y

00
...
00

is a possible generator matrix of a self-dual code of length62 with
automorphism�.

Using matrices of the form in Proposition 2 we found extremal
self-dual codes of length62. We present 20 examplesC62; 1; C62; 2;

. . . ; C62;20 of such codes. The codesC62; i, i = 1; . . . ; 20, have
weight enumerators of typeW62; 1 with � = 0; 10; or 15. This was
established by calculating the number of codewords of minimum
weight. We list the values� in Table I. The orders of the automorphism
groupsjAutjwere calculated by MAGMA, and are also listed in Table I.

Proposition 3: There are extremal self-dual[62; 31; 12] codes with
weight enumeratorW62; 1 for � = 0; 15.

Remark: By this method we found more extremal self-dual codes
with weight enumeratorW62; 1 and� = 0; 10. However, an exten-
sive computer search failed to discover an extremal self-dual code with
W62; 2 or W62; 1 for other values of�.

We now present generator matrices of the codesC62; i, i =
1; . . . ; 20. It is sufficient to give the submatricesY of G (see Propo-
sition 2). Denote the submatrices byYi for C62; i. The 20 circulant
matrices inYi are listed in Table II, whereo is the zero matrix and the
first rows of the circulant matricesei, �j , �s, 
r , and�t are given in
Table III.

To show that all presented codes are inequivalent, we use the fol-
lowing invariant. LetC be a self-dual code of lengthn. LetM = (mij)
be the matrix of allAt codewords of weightt in C, 1 � i � At and
1 � j � n. For any integerk, 1 � k � n and for any set of columns
j1; j2; . . . ; jk let nt(j1; . . . ; jk) be the number of rowsr such that
mrj � � �mrj 6= 0. We consider the set

St(k) = fnt(j1; . . . ; jk)j1 � j1 < � � � < jk � ng:

LetMt(k) andmt(k)denote the maximum and the minimum ofSt(k),
respectively. For the 20 codesC62; i, i = 1; . . . ; 20, the values of
M12(k) andm12(k),k = 1; 2; 3, were computed and listed in Table I.
We verified that the codeC62 as defined in [6] andC62;19 have iden-
tical values forM12(k) andm12(k), k = 1; 2; 3. Moreover, using

TABLE II
MATRICESY

MAGMA, it was shown that the two codes are equivalent. Hence, the
other codes are new. From the table it appears that the codewords of
minimum weight inC62; i, i = 1; . . . ; 9, form a1-(62; 12; 360) de-
sign which cannot be explained by the Assmus–Mattson theorem.

III. RELATED EXTREMAL SELF-DUAL CODES OFLENGTHS58 AND 60

In this section, extremal self-dual codes of lengths58 and60 are
constructed from some of the extremal self-dual codes of length62
which were discussed in the previous section.

A. Extremal Self-Dual Codes of Length60

New extremal self-dual codes of length60 are constructed from
some extremal self-dual codes of length62 by the process of subtrac-
tion.

First we give the possible weight enumerators of extremal self-dual
[60; 30; 12] codes, which were derived in [3] and [5]

W60; 1 =1+ (2555+ 64�)y12 + (33600� 384�)y14 + � � �

W60; 2 =1+ 3451y12 + 24128y14 + � � �

where� is an undetermined parameter with0 � � � 10. An extremal
self-dual code with weight enumeratorW60; 2 was constructed in [3].
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TABLE III
FIRST ROWS OF THECIRCULANT MATRICES e , � , � , 
 , AND �

As for weight enumerators of typeW60; 1, some extremal double cir-
culant self-dual codes with� = 10 were constructed in [5]. These
codes are equivalent to the codeP60 defined in [7]. Furthermore, two
codes with� = 0 and with� = 10, respectively, were constructed in
[13], and a code with� = 7 in [4]. Let C be one of the codesC62; l,
l = 6; 7; 8; 11; . . . ; 20. SinceC has the property thatm12(2) = 0,
there are two coordinatesi; j with n12(i; j) = 0, that is, there is no
codeword(x1; . . . ; x62) of weight 12 such that(xi; xj) = (1; 1).
More precisely,f61; 62g is the unique pair of two coordinatesfi; jg
with n12(i; j) = 0 for every codeC62; l, l = 6; 7; 8; 11; . . . ; 20.

LetC0 denote the code of length60, obtained fromC by subtracting
the last two coordinates, that is,

C
0=f(x1; . . . ; x60) j (x1; . . . ; x62) 2 C; x61+x62�0 (mod2)g:

ThenC 0 is self-dual. In addition,C 0 has minimum weight12. Note that
C 0 is an extremal self-dual[60; 30; 12] code with an automorphism�0

of order15

�
0 = (1; . . . ; 15)(16; . . . ; 30)(31; . . . ; 45)(46; . . . ; 60):

For the 13 codesC 0

62; i, i = 6; 7; 8; 11; . . . ; 20, the value of� in the
weight enumeratorW60; 1, M12(k) andm12(k), k = 1; 2; 3 and the
orderjAutj of the automorphism group are also listed in Table IV. For
the three codes with� = 0; 10 in [5] and [13], which were mentioned

before, the results are also listed. Note that the codewords of minimum
weight in every code of Table IV form a1-design. This property is not
explained by the Assmus–Mattson theorem.

From Table IV, it appears thatC 0

62; 14 andC 0

62; 15 have identical
valuesM12(k) andm12(k), fork = 1; 2; 3. Moreover, using MAGMA,
we verified that these two codes are equivalent. It was also verified by
MAGMA that the extremal self-dual codes with� = 0 and� = 10 in
[13] are equivalent toC 0

62; 6 andC 0

62; 19, respectively. Therefore, the
codesC 0

62; i for i = 7; 8; 11; 12; 13; 14; 16; 17; 18; 20 are new ex-
tremal self-dual codes of length60.

B. Extremal Self-Dual Codes of Length58

Extremal self-dual[58; 29; 10] codes have possible weight enumer-
ators

W58; 1 =1 + (165� 2
)y10 + (5078+ 2
)y12 + � � �

W58; 2 =1 + (319� 24� � 2
)y10

+ (3132+ 152� + 2
)y12 + � � �

where� and
 are undetermined parameters [3]. As for the weight
enumeratorW58; 1, an extremal self-dual code with
 = 55 is known
[12]. As for the weight enumeratorW58; 2, we refer to [1] and [9],

00111110111010000011101000011; 10110000111010011111011111101;

11110111111010010001000100010; 11010100011010110110001001101;

11000101101010000101101111010; 11001101010010111100011100001;

11001001001110000000100101100; 11001011000000111110111001010;

11001010000111100001110111001; 11111111100001100101011101000;

01001010110101111001100011100; 10111111111000001001010111010;

01011111111100000100101011101; 00101111111110100010010101110;

10001011101010101000011111111; 01000101110101110100001111111;

10010001011101111101000011111; 01111101101011010101101100111;

10100100010111111111010000111; 01100111001110010100100101011;

10011100000000010100111001001; 11100001100111010100110111000;

11101010010001011111111101000; 01000000001101100100110011100;

10111010100100000111111111010; 01011101010010000011111111101;

00101110101001100001111111110; 00100010010001111011110010111;

00110101000101101011001101000:
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TABLE IV
EXTREMAL SELF-DUAL CODES OFLENGTH 60

where the existence is established of extremal self-dual codes for the
following parameter values:

� =0 and 
 2 f0; 32; 36g [ f2m j 40 � 2m � 122g

� =1 and 
 2 f2m j 42 � 2m � 100g

� =2 and 
 2 f32; 36; 40; 44g

[ f2m j 48 � 2m � 88g [ f92g:

We remark that the code with� = 0 and
 = 44 does not occur in [1]
and [9], but is mentioned in [2, Table VIII].

An extremal self-dual code of length60 yields extremal self-dual
[58; 29; 10] codes by subtracting. In fact, in [13], extremal self-dual
[58; 29; 10] codes for various types of weight enumerators are con-
structed from known codes. Here, we investigate extremal self-dual
codes constructed from the new extremal self-dual codes, discussed in
Section III-A.

LetC58 be a[58; 29] code with generator matrix(I; M) whereM
is written asm1; . . . ; m29 with theith rowmias shown at the bottom
of the previous page. The codeC58 is an extremal self-dual code which
is constructed from the new extremal self-dual[60; 30; 12] codeC0

62; 7

by subtracting the first and 18th coordinates. This code has the weight
enumerator

1+71y10+3380y12+38772y14+297309y16+1672840y18+ � � �:

Thus, the codeC58 has weight enumeratorW58; 2 with � = 0 and

 = 124. It was also verified thatC58 has an automorphism group of
order2.

Proposition 4: There is an extremal self-dual[58; 29; 10] code
with weight enumeratorW58; 2, with � = 0 and
 = 124.

When applying the subtraction method to the other codes of length
60, they all yield extremal self-dual codes of length58 with weight
enumerators belonging to codes already known.
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