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Performance of linear solvers in
tensor-train format on current multicore
architectures

Melven Rohrig-Zosliner' ©, Manuel Becklas', Jonas Thies*® and

Achim Basermann'

Abstract

Tensor networks are a class of algorithms aimed at reducing the computational complexity of high-dimensional problems.
They are used in an increasing number of applications, from quantum simulations to machine learning. Exploiting data
parallelism in these algorithms is key to using modern hardware. However, there are several ways to map required tensor
operations onto linear algebra routines (“building blocks”). Optimizing this mapping impacts the numerical behavior, so
computational and numerical aspects must be considered hand-in-hand. In this paper we discuss the performance of solvers
for low-rank linear systems in the tensor-train format (also known as matrix-product states). We consider three popular
algorithms: TT-GMRES, MALS, and AMEn. We illustrate their computational complexity based on the example of dis-
cretizing a simple high-dimensional PDE in, for example, 50'° grid points. This shows that the projection to smaller sub-
problems for MALS and AMEn reduces the number of floating-point operations by orders of magnitude. We suggest
optimizations regarding orthogonalization steps, singular value decompositions, and tensor contractions. In addition, we
propose a generic preconditioner based on a TT-rank-| approximation of the linear operator. Overall, we obtain roughly a
5% speedup over the reference algorithm for the fastest method (AMEn) on a current multicore CPU.

Keywords
Low-rank tensor algorithms, node-level performance, tensor-train format, matrix-product states, linear solvers

methods for finding eigenvalues are based on successive
linear solves. This paper addresses iterative methods for
solving linear systems (symmetric and non-symmetric) in
the tensor-train (TT) format for the case where the indi-
vidual dimensions are not tiny, that is, for systems of
dimension n x n? with n > 2. We employ the TT format
(called matrix-product states in physics) as it is a simple
and common low-rank tensor format. Most of the ideas
are transferable to other low-rank tensor formats (at least
to loop-free tensor networks). Our work considers the
TT-GMRES algorithm (Ballani and Grasedyck, 2012;

I. Introduction

Low-rank tensor methods provide a way to approximately
solve problems that would otherwise require huge amounts
of memory and computing time. Many ideas in this field
arise from quantum physics. For example, the global state
of a quantum system with N two-state particles can be
expressed as a tensor of dimension 2. In this setting,
interesting states are for example given by the eigenvectors
of the smallest eigenvalues of the Hamiltonian of the
system—a Hermitian linear operator that describes the
energy of the system. Therefore, most work focuses on
solving eigenvalue problems for Hermitian/symmetric
operators using the DMRG method (Schollwock, 2005;

'German Aerospace Center (DLR), Institute of Software Technology,

White, 1992; Wilson, 1983). However, linear systems in
low-rank tensor formats also arise in interesting applica-
tions for example for solving high-dimensional or pa-
rameterized partial differential equations, see, for example,
Kressner and Tobler (2011); Dahmen et al. (2015); Dolgov
and Pearson (2019). In addition, linear solvers and ei-
genvalue solvers are closely related and many successful
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Dolgov, 2013), the modified alternating least-squares
(MALS) algorithm (DMRG for linear systems) (Holtz
et al., 2012; Oseledets and Dolgov, 2012), and the Al-
ternating Minimal Energy (AMEn) algorithm (Dolgov and
Savostyanov, 2014). We show numerical improvements
and performance improvements of the underlying opera-
tions and focus on a single CPU node. These improve-
ments are orthogonal to the parallelization for distributed
memory systems presented in Daas et al. (2022), so the
suggestions from both Daas et al. (2022) and this paper
could be combined in the future. As the resulting complete
linear solver requires a tight interplay of different algo-
rithmic components, we discuss the behavior of the dif-
ferent numerical methods involved for the TT format. An
alternative class of methods to solve linear systems in TT
format consists of Riemannian optimization on the man-
ifold of fixed-rank tensor-trains, see Kressner et al. (2016).
This results in a nonlinear optimization problem and is
therefore not in the scope of this paper. However, it partly
requires similar underlying operations.

The paper is organized as follows: First, we start with
required numerical background in Section 2 and also introduce
relevant performance metrics for today’s multicore computers.
Then in Section 3, we discuss the involved high-level nu-
merical algorithms TT-GMRES, MALS, and AMEn. Based
on an example, we illustrate the numerical behavior of these
algorithms and compare their complexity in Section 4. Af-
terwards, in Section 5, we analyze and optimize the underlying
building blocks. We conclude in Section 6 with a short
summary and open points for future work.

2. Background and notation

In this section, we provide the required background con-
cerning numerics and performance.

2.1. Numerical background

We first introduce required matrix decompositions and a
notation for the considered algorithms.

2.1.1. Matrix decompositions. As matrix decompositions are
heavily used as steps in tensor-train algorithms, we repeat
some basic properties of QR and SVD decompositions from
the literature, see for example, Golub and Van Loan (2013);
Higham (2002).

A QR-decomposition is a factorization of a matrix
M e R"™ with column rank r into a matrix Q with or-

thonormal columns and an upper triangular part R:
M = OR, 0"0=1,0cR"" RER™,

(M

with

For (numerically) rank-deficient M, one can employ a
pivoted QR-decomposition

MP=QR, <  M=QRP, 2

where P is a permutation matrix. The pivoted QR-
decomposition can be computed in a numerically robust
way. However, it cannot (safely) be used to approximate M
with a lower rank matrix based on the size of the pivot
elements (diagonal entries of R) by Q. 1./R;.., ¥’ <r as the
worst case error grows with O (2"), see Higham (1990);
Kawamura and Suda (2021).

The singular value decomposition (SVD) in contrast
provides the best approximation of lower rank:

M= USVT = ||M_ U:,l:r’Sl:r’,lzr’VI;-,l;,-/HF

= min |M—M|,,

M, rank(M)=r'
)

where U € R", V€ R"" are the matrices of the ortho-
normal left/right singular vectors and S = diag (s1, 52, ..., 5,)
is composed of the singular values s; > s, >+ > 5, > 0.

2.1.2. Tensor-train decomposition. In higher dimensions,
there is no unique way to decompose a tensor into factors
and to define its rank(s) (variants are e.g., the Tucker and
the CANDECOMP/PARAFAC (CP) decompositions,
see the review Kolda and Bader, 2009). We focus on
the tensor-train format which decomposes a tensor
X e R "1 into d three-dimensional sub-tensors X,
. Xd:

X = XXX, - XX,
X ERrk’lxnerk,FO =r;=1.

Here, (- X -) is the contraction of the last dim. of the left
operand with the first dim. of the right operand:

with @

XWX = Z(Xk) 5 :,i(Xk‘H)i, . € RIF-V MR M1 X0k 1 (5)

1

The TT decomposition of a given tensor is not unique: it
is invariant with respect to multiplying one sub-tensor by a
matrix and the next with its inverse. More precisely, for

M,NT e R with MN = [:

XXX i1 = X M Xp

= i 6)
for szszNM, Xk+1:=NNXk+1‘ (

The smallest possible dimensions (ry, ...r;_1) that allow
to represent X denote the TT ranks of X with the maximal
rank 7:=rank (X) = max (ry, ..., ¥4_1). If X has rank-1 in the
TT format, we can also write it as a generalized dyadic
product of a set of vectors:
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X =X), . X)), @ ®Xs) . - AX =Y =YX, X--- XY, with
Y, :=reshape
2.1.3. Tensor unfolding and orthogondlities. We define a
general reshape operation to reinterpret the entries of a Z(Ak):, i (X)L (r/]j—lr RN 4 k) :
tensor as a tensor of different dimensions: l (12)

reshape (X, (7
(X)

n7))=X €R""" with
= (X)

IR i,y

i +bny + Ay + -

== i] +i2n1 +i3n1n2 + -

for

With this, we define the left-unfolding that combines two
dimensions of a 3d tensor X}, to obtain a matrix:

(X ) :=reshape(Xy, (re1me 1y )) ER™TE(7)

Similarly, we define the right-unfolding:

(Xi) g =Teshape(Xi, (ri_y mryc ) ERVWE(8)
We denote a 3d tensor X; as left-orthogonal if the col-
umns of the left-unfolding are orthonormal ((Xk)lTeft

(Xi)iene = I) and right-orthogonal if the rows of the right-
unfolding are orthonormal ((Xk)right(Xk>rTight = I). From the
TT format, we can build an SVD of an unfolding of
X e RN into a set of left and right dimensions

usr’ = (X)unfoldj’zreShape(X, (myemy mygyeong )
)

by left-orthogonalizing (Xj, ..., X)) and right-orthogonalizing

(AX}Jrla ceey Xd):

X =X XXX XSXX 4 X XXy (10)
————— | —

U yT

2.1.4. Tensor-train vectors and operators. A tensor-train
operator is a tensor in TT format where we combine

pairs of dimensions (n; X m;) with the form
A € Rmxm)x(naxmy)x--x(ngxmq)
./4 = A1 NAzm Ad
(11

with Ay € Rt pd — pd —
which defines a linear mapping: A:R™™"2* M
R4 For the scope of this paper, we only consider
quadratic regular operators (m; = n;). Again, the sub-
tensor dimensions (74, ...74_,) denote the TT ranks of the
operator with a maximal rank of r*:=rank(A) = max
(r4,...r4_,). This definition allows an efficient application
of a TT operator on a TT “vector” directly in the TT
format:

The resulting TT decomposition has ranks (rfrl, e
r4_rq-1) and thus rank (Y) < “r.

With all these definitions at hand, we can specify the
main problem considered in this paper: Given a low-rank
linear operator in TT format Art:= (44, ...44), a low-rank
right-hand side (RHS) Brr == (B4, ..., By), and a desired
residual tolerance €, find an approximate low-rank so-
lution Xtr == (X, ..., Xy with

| ArrXTr — Brr|| 2 < €101

(13)

2.2. Performance characteristics on today’s
multicore CPU systems

Today’s hardware features multiple levels of parallelism and
memory that we need to exploit to efficiently use the available
compute capacity: A supercomputer is composed of a number
of nodes connected by a network (distributed memory paral-
lelism). Each node contains one or more multicore CPUs with
access to a main memory (shared memory parallelism).
However, the different CPUs access different memory domains
with different speed (NUMA architecture): Usually the access to
the memory banks directly connected to one CPU is faster. Each
CPU “socket” consists of multiple cores (< 100 in 2023) with a
hierarchy of caches. Inside one core, SIMD units perform
identical calculations on a small vector of floating-point
numbers. We focus on the performance on a single multicore
CPU, but the algorithms considered can also run in parallel on a
cluster (see Daas et al., 2022). Many supercomputers nowadays
use GPUs which is not discussed further in this paper.

2.2.1. Roofline performance model. To obtain a simpler ab-
straction of the hardware, we employ the Roofline (Williams
et al., 2009) performance model. The Roofline model
distinguishes between computations (floating-point opera-
tions) and data transfers: The maximal performance one can
achieve on a given hardware is Py [GFlop/s]. The
bandwidth of data transfers from main memory is by
[GByte/s]. If all data fits into some cache level, the ap-
propriate cache bandwidth is used instead. These are the
required hardware characteristics. The considered charac-
teristics of one building block of an algorithm (e.g., one
nested loop) are the number of required floating-point
operations ng.ps and the volume of the data transfers
Viead/write-  Their ratio is called computational intensity



4 The International Journal of High Performance Computing Applications 0(0)

1.3 =na0ps/ Vreadiwrite [Flop/Byte]. Assuming that the data
transfers and operations overlap perfectly, this results in the
following performance:

Pmoﬂine = min(Ppeak: chs) . (14)

If the compute intensity is low ([, < Ppea/bs), the
building block is memory bound. If in contrast the compute
intensity is high (I, > Ppca/b;), the building block is
compute bound. We specifically split the algorithms con-
sidered in this paper into smaller parts (“building blocks”)
because they feature not one dominating operation but are
composed of multiple different blocks with different per-
formance characteristics.

2.2.2. Memory and cache performance. In addition to the
model above, some details of the memory hierarchy play a
crucial role for the algorithms at hand (see Hager and
Wellein (2010) for more details): First, modifying mem-
ory is often slower than reading it. In order to write to main
memory, the memory region is usually first transferred to the
cache, modified there and written back (write-allocate). A
special CPU instruction allows to avoid this and directly
stream to memory (non-temporal store). A common tech-
nique to improve the performance of data transfers is to
avoid writing large (temporary) data when the algorithm can
be reformulated accordingly (write-avoiding), see Carson
etal. (2016). Second, the CPU caches are organized in cache
lines: This means that, e.g., 8 double precision values are
transferred together, always starting from a memory address
divisible by the cache line size. So the data locality—e.g.,
which index is stored contiguously—is important.

In addition, today’s CPUs use set-associative caches that
allow the mapping of one memory address to a fixed set of
cache lines. Due to this, memory addresses with a specific
distance (e.g., 1024 double numbers) are mapped to the same
cache set and the cache effectiveness is dramatically reduced
when data is accessed with specific “bad” strides (cache
thrashing). This easily occurs for tensor operations if the product
of some dimensions is close to a power of two. A common
solution for operations on 2d arrays is padding: adding a few
ignored zero rows in a matrix such that the stride is at least a few
cache lines bigger than some power of two. This becomes more
complicated in higher dimensions as one either obtains a
complex indexing scheme or one needs to perform calculations
with zeros. This is discussed in more detail in Section 5.3.

3. Numerical algorithms

In this section, we discuss three different methods to ap-
proximately solve a linear system in TT format as in equation
(13). We start with a general purpose (“global”) approach
based on Krylov subspace methods, TT-GMRES (Dolgov,
2013), and present some improvements for the TT format.

Then, we consider the more specialized (“local”) MALS
(Holtz et al., 2012; Oseledets and Dolgov, 2012), which op-
timizes pairs of sub-tensors similar to DMRG. Afterwards, we
discuss the (“more local”) AMEn (Dolgov and Savostyanov,
2014) method, which iterates on one sub-tensor after another.
Finally, we present a simple yet effective preconditioner in TT
format to accelerate convergence of TT-GMRES.

3.1. Krylov methods: TT-GMRES

All methods that apply the linear operator Art on linear
combinations of previously calculated directions produce
solutions from the Krylov subspace Ky(Arr; Vrr):=
span{VTT,ATTVTT,...,AI{}IVTT} where Vrpr is usually
the initial residual of the problem. Different Krylov sub-
space methods then select the “best” solution from the
subspace K according to different definitions of “best,”
see van der Vorst (2003) and Saad (2003) for a detailed
discussion. As we usually only approximate intermediate
steps in TT arithmetic, we effectively employ inexact
Krylov methods which are discussed thoroughly in
Simoncini and Szyld (2003); van den Eshof and Sleijpen
(2004). In this paper, we consider the TT-GMRES method
(Dolgov, 2013) for non-symmetric problems. For sym-
metric operators Arr, we simply omit unneeded steps to
obtain a MINRES variant. However, all considerations here
effectively hold for other Krylov subspace methods as well.

3.1.1. Arithmetic operations in tensor-train format. Krylov
methods require the following operations which can be
performed directly in the TT format (all introduced in
Oseledets, 2011): Applying the operator to a vector
(Yrr<—ArrXrr), dot products (o < (Xrr, Yrr)) and scaled
additions (Yt <« oXtr + Yrr) of two tensor-trains. To
reduce the computational complexity, TT truncation

(Xtretruncs(Xrr)) approximates a tensor-train with an-
other tensor-train with lower rank (see TT-rounding algo-
rithm in Oseledets, 2011):

[ Xrr — trunc,;(Xpr) || o <0.

With these operations, we can perform a variant of the
GMRES algorithm with additional truncation operations, see
Alg. 1. This idea was first discussed in Ballani and Grasedyck
(2012) for the more general H-Tucker format with a slightly
different projection. We employ a variant based on Dolgov
(2013). The numerical stability of TT-GMRES is analyzed in
more detail in Coulaud et al. (2022). We remark that we use a
more strict truncation tolerance than suggested in Dolgov
(2013) based on the analysis of inexact Krylov methods in
Simoncini and Szyld (2003). However, in Simoncini and
Szyld (2003) only inaccurate applications of the linear opera-
tor are considered (as in line 5 of Alg. 1). We also truncate in
each step of the orthogonalization (line 8) and once afterwards
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Algorithm 1 TT-GMRES with modified Gram-Schmidt

Input: Linear operator App : R™ % %" — R™ X" X"d and RHS Brp € R™ % *"d,
desired tolerance ¢, max. number of iterations m, estimated condition number ¢
Output: Approximate solution Xtr with || Brr — ArrXrr||p S €| Brrl| g

I: Y0 < || Brr|lp

2. Vrra < 1/7Brr

3: fori=1,...,mdo

4 Choose tolerance §; = T
5: Wrr ¢ truncg ss, /(i+1) (Atr Vo)
6: forj=1,...,ido
7 hij < (Vrrj, Wrr)

8 Wrr <= truncg ss, /(i+1) (Wrr — hijVir,j)
9:  end for

10: Wrr < truncg.ss, (WTT)

11: hi+1,7', — ||WTT F

122 Verip1 < 1/hig1 i Wrr

130y <« argminy, [|[Hy — yoe1||2 for H = (hiy), k=1,.

14 vy = [[Hy — yoe|l2
15:  if v; /v < 0.5¢ then

16: Xtr <+ 0

17: forj=1,...,ido

18: Xrr < truncg se/(ei) (Xtr + 5 Vrr )
19: end for

20: return

21:  end if

22: end for

23: Abort: not converged in m steps!

(In Dolgov (2013): 6; = E%)

(MINRES: h; ; = 0,j <i—1)

il =10

(line 10). We can still express the error as an error in the operator
of the form (see eq. (2.2) in Simoncini and Szyld, 2003):

(A +Ei)vi: I/H»ll—lia = l,...,m.

We denote the errors of all truncation operations in one
Aroldi iteration with Aw® (line 5), Aw? (line 8) and
AW, Then, we obtain for the error:

Ep; = Awl) Z (1 B Z v;ﬂ’l?) e
=0

k=j+1

For orthogonal basis vectors v, of the Krylov subspace,
the error of the Arnoldi iteration is bounded by:

IE||<I AW ™D + Z | AWD||, <0.58; WV,
=0

1.0.56;

i+1

+ w1 <1141l

=0

Of course, due to the truncations, one easily looses the
orthogonality of the basis vectors v, see discussion in Section

3.1.2 below. Suitable tolerances ¢J; require the condition
number ¢ = x (H,,) that we estimate using the parameter ¢ = k
(A) as suggested in Simoncini and Szyld (2003). So we obtain
the following bound for the difference between the true re-
sidual vector r, and the inexact residual vector 7, (see equation
(5.8) in Simoncini and Szyld (2003)):

7. — 7]l <0.5€.

The factor 0.5 ensures that the true residual norm is
smaller than the desired tolerance:

lrell = llre =7 F 7l <l =7l + |7 [<e.

In our experiments, we use an optimized variant (see
Section 5.1) of the standard TT truncation algorithm. An al-
ternative randomized truncation algorithm is presented in Daas
et al. (2022) for truncating sums of multiple tensor-trains (e.g.,
only truncating in line 10 of Alg. 1 and not in line 8).

3.1.2. Improved Gram-Schmidt orthogonalization. Above, we
assumed that the resulting Krylov basis vectors are orthogonal.
However, as the modified Gram-Schmidt orthogonalization is
only applied approximately (truncations in line 8 and 10), this
assumption is usually violated. As a result, the true residual
norm might not be smaller than the prescribed tolerance € even
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though the approximate residuals converge. To compensate for
the inaccurate orthogonalization, one can prescribe a more
strict truncation tolerance as discussed in Section 6 of
Simoncini and Szyld (2003). Another common approach
consists in re-orthogonalization: We employ the following
specialized variant of a modified Gram-Schmidt iteration.

In the TT format calculating a scalar product is much
faster than a truncated scaled addition (axpby) as discussed
in more detail in Section 5. So we can perform additional
scalar products to reorder Gram-Schmidt iterations and
perform selective re-orthogonalization as shown in Alg. 2 to
increase the robustness. This omits subtracting directions that
are already almost orthogonal in order to avoid growing the

(AX )unfoldj = A 1efiXuntold; + XunfoldAjrights J=1,...,d —1.
For those operators, the rank of the solution is bounded if
the right-hand side also has small rank as discussed for several
tensor formats in Shi and Townsend (2021). We obtain the
following expression for applying the operator & times:

k
k k—i
E : < A] 1eerunfold 7 rlght

i=0

(-AkX )unfold,- =

Similarly, for any matrix polynomial p; of degree £,
we get

Algorithm 2 Selective iterated modified Gram-Schmidt (SIMGS) in TT format

Input: Orthonormal previous directions Vrr 5, j = 1,...,
tolerance 9;, max. re-orthogonlization iterations K,y

1, new direction Wrr,

Output: New normalized direction Vi i1 with Wt =~ Z;le hiVrr,j,
and ‘(VTT1+1a VTT]>‘ < 57,_] = 1
: Wrr = truncg s, /(2i41) (Wrr)
2: hje(),jzl,...z
3: fork=1,..., knx do
4: Calculate g <VTT,j-, WTT>/||WTT||Fs 7=1,...1
5. if [|g]|eo < J; break
6. for j = argmax; |g;| and |g;| > 0; do
7: B < (Vrr,j, Wrr)
8: Wit = truncg ss, /(2i41) (Wrr — BVrr 5)
9: hj < h; + B, g;j <0
10:  end for
11: end for
12: Wrp < trunco.ss, (WTT)
13: hip1 < ||WrrllF, Virit1 < Wrr/hiva
TT-ranks. See Leon et al. (2012) and the references therein for .
a detailed discussion on different Gram-Schmidt orthogo- (pe(A) X)unfold, _ Zﬁk—i (A1) Xonto, Bs( . i)

nalization schemes. Here, we again need to use sufficiently
small truncation tolerances to fulfill the requirements of the
outer inexact GMRES method. The factor 2i is an estimate for
the number of inner iterations (line 9) as usually orthogo-
nalizing “twice is enough” (Giraud et al., 2005; Parlett, 1998).
And we choose k;.x = 4 in all our experiments as this was
sufficient for the cases we investigated.

3.1.3. Tensor-train ranks for problems with a displacement
structure. Even with truncations after each tensor-train addition,
the tensor-train ranks can grow exponentially in the worst case:

rank(Vrr, ;41) <rank(Arr)rank(Vrr ;) + Z rank(Vrr ;).

=0

We observe only a much smaller growth for some special
linear operators Arr. In particular, we consider linear op-
erators with a displacement/Laplace structure:

with appropriate sets of polynomials p; and p,. As the jth TT
rank is just the rank of the jth unfolding, this results in at most
a linear growth of ranks of Krylov subspace basis vectors:

rank (Vrr,;) < (i + 1)rank(V7r1,0). (15)

However, we will see in Section 4.1 that this only holds in
exact arithmetic. If we do not calculate the Krylov basis ac-
curately enough, the TT ranks might again grow exponentially.

3.2. Modified alternating least-squares (MALS)

Krylov methods like TT-GMRES consider the linear op-
erator as a black box. However, we can also exploit the
tensor-train structure of the problem and project it onto the
subspace of one or several sub-tensors. This is the idea of
the ALS and MALS methods discussed in Holtz et al.
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(2012). In principle, MALS is identical to the famous
DMRG method (Schollwdck, 2005; White, 1992) for ei-
genvalue problems from quantum physics. Here, we de-
scribe it from the point of view of numerical linear algebra.
Using all but two sub-tensors of the current approximate
solution, we define the operator:

Vj 2 s RV T R"lx“‘x’ld’
VoV =X, M- MX_ XY XX,
X - XX

with

(16)

If sub-tensors (X, ...X;_;) are left-orthogonal and sub-
tensors (X2, ...Xy) are right-orthogonal, the operator V; ; has
orthonormal columns: VIZVJ-,Q =1. Using V;,, we can
project the problem onto the subspace of the sub-tensors {X;,
k<j\/ k>j+1}. This results in a smaller problem of the form:

VI, AmV;Y = VI, Brr. (17)

For s.p.d. operators Arr, this much smaller problem
typically has a better condition number (K(V}: ) ArtVi2) <
x(A1t)), and its solution minimizes the error in the induced
operator norm:

Y = argm)/in||V;,2Y - X%‘TH;TT

-1
for Y = (V/-T:ZATTV/‘J) V_I?:ZBTT’

where X'fi. denotes the true solution. For non-symmetric
operators Arr, this projection (Ritz-Galerkin) is often still
successful (Dolgov and Savostyanov, 2014), but one might
also consider a different projection for the left and the right-
hand side of the operator (Petrov-Galerkin):

]_}]-TATT%,Z Y == ]_}]»TBTT.

Here, V; should have the same dimensions as V; » to ensure
that projected problem is square (and thus usually easier to
solve). A possible non-symmetric approach is
]_}jZ ~ ATTVj,z with VITVJ =1

This is only possible approximately if Vj should have
low rank in the TT format again. The solution of the
projected problem then approximately minimizes the re-
sidual in the Frobenius norm (similar to GMRES). In this
paper, we will not further discuss this approach as we focus
on the performance of the operations involved, but other
variants of projections are possible.

Algorithm 3 TT-MALS

Input: Linear operator App : Rt *nd — RM > X"d gnd RHS Byr € R >nd,
initial guess Xtr € R™ > *"4_desired tolerance ¢, max. number of sweeps m
Output: Approximate solution Xrr with || Brr — ArrXrr||p S €| Brrl| g

1: Right-orthogonalize X, ... X3

2: for igyeep = 1,...,m do
3: Jstart < 1 ifdgyeep = 1 else 2
4 for j = jyut,...,d—1do
5 Left-orthogonalize X;_; if j > 1
6: Setup projection operator V; » using (16)
7 Solve local problem V], ArrV; oY = V' Brr with initial guess X; ] X4,
8 Update X; W X, <Y
9:  end for
10: if HBTT — ATTXTT”F < EHBTTH then
11: return
12:  endif
13: forj=d—-2,...,1do
14: Right-orthogonalize X ;o
15: Setup projection operator V; o using Equation 16
16: Solve local problem V], ArrV; oY = VT Brr with initial guess X; M X1,
17: Update XJ X Xj+]_ ~—Y
18:  end for
19: if HBTT — ATTXTT”F < EHBTTH then
20: return
21:  end if
22: end for

23: Abort: not converged in m sweeps!
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To solve the global problem, the MALS algorithm
sweeps from the first two to the last two dimensions and
back, see Alg. 3. This can be interpreted as a moving
subspace correction as discussed in Oseledets et al. (2018).
In contrast, the ALS algorithm only projects the problem
onto the subspace of all but one sub-tensor. This yields
smaller local problems but provides no mechanism to in-
crease the TT-rank of the approximate solution. So in the
simplest form, it can only converge for special initial
guesses that already have the same TT-rank as the desired
approximate solution. In Section 3.3, we discuss a possible
way to avoid this problem.

3.2.1. Inner solver: TT-GMRES. The projected problem (17)
again has a structure similar to (13) but with just two di-
mensions. More specifically, after some contractions, the
projected operator has the form

VLAV = Aj e XA XA XA 4 righe

. — . Xp. X A - X Xp.
with Ai 1 e € RV and Aj 1 right € er+1 T T
And the initial guess as well as the required solution is in the
form:

Y = X}NX;-H € RI-VW M1 X041

Using tensor contractions, we can also express the
projected right-hand side as:

T — —
V/', ZBTT = Bj, left DQBjﬁ»l,right-

As long as the rank of Y during the iteration is much
smaller than r;_n;, respectively 1,751, it is usually beneficial
to use the factorized form for Y. This results in an inner-outer
scheme with an outer MALS and an inner TT-GMRES al-
gorithm. From our observation, this also yields slightly smaller
ranks in the outer MALS than using standard GMRES with the
dense form of Y and a subsequent factorization.

RemarKk 1. In the first MALS sweeps, it is not necessary
to solve the inner problem very accurately. So one can
use a larger relative tolerance for the inner iteration than
for the outer iteration. The same yields in the last MALS
sweeps (close to the solution). Combining both aspects,
we employ a relative tolerance of:

Cinmer = max(e- - eﬁ)
mner mner» HATTXTT _ BTT” b

€inner = \/E

Remark 2. One might wonder if an inner-outer iter-
ation scheme with outer (flexible) TT-GMRES and inner
MALS (as preconditioner) might also work. In our
experiments, this results in super-linear (up to expo-
nential) growth of the TT-ranks in the Arnoldi iteration.

with

This can be explained by the fact that the displacement

structure of the linear operator is not retained through

this form of a varying preconditioner.

For symmetric problems, our implementation switches
to TT-MINRES and for positive definite problems, one can
also employ a tensor-train variant of the CG algorithm.

3.3. AMEn method

For the MALS method above, always two sub-tensors are
considered at once in the inner problem. One can also
consider only one sub-tensor (ALS) at a time using the
projection operator

V_/,l s RV _)R”lx"'X"d’ with

V/’IY:XIN“'N)(/_1NYNAX}+1
XXX

(18)

This results in a smaller local operator. By contracting
sub-tensors of V; 1 and Arr, one obtains:

Arpi= V;, AtV = Aj11ea XA XA ight- (19)
However, one needs a way to adapt the rank of the ap-
proximate solution and to ensure convergence. An early
approach from physics was just to increase the rank through
adding random directions. A more sophisticated method is
introduced in Dolgov and Savostyanov (2014) named AMEn
(alternating minimal energy). The main idea is to enrich the
subspace after each inner iteration with directions obtained
from the current residual tensor. For this, the current residual
tensor is projected onto the subspace of the left sub-tensors of
the current approximation when sweeping left-to-right, re-
spectively the right sub-tensors when sweeping right-to-left.
The corresponding projection operators are given by:

Vi ROVW 0 RI ith
ViasiY =X XXX, XY,
ey (20)
Py R R with

V]’.]'Y == YM)(H—I NNXd

For s.p.d. operators, this results in a steepest descent step for
which global convergence is shown in Dolgov and
Savostyanov (2014). In practice, it is often sufficient to
approximate a few directions of the residual tensor and add
them to the current subspace to obtain fast convergence.
The standard form of the AMEn algorithm is depicted in Alg.
4 (based on the SVD variant in Dolgov and Savostyanov,
2014). The step to update the residual Rtr = ArrXtr — X171
(line 9) requires saving all intermediate matrices from left-
respectively right-orthogonalization of the sub-tensors Rj,
..., R; of Ryr. To calculate k suitable directions to enrich the
subspace in the left-to-right sweep (line 15), we left-
orthogonalize Z; w.r.t. X;, such that:
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Algorithm 4 TT-AMEn

Input: Linear operator Arp, RHS Brr and initial guess X, desired tolerance e,
max. number of sweeps m, number of enrichment directions &
Output: Approximate solution Xrr with || Brr — ArrXrr|| S €| Brrll »

1: Right-orthogonalize X, ... X5

2. Calculate residual Rt < Arr X1t — Brr

3: Right-orthogonalize R ... R2 and let Ztp <— Rypr
4: for isyeep = 1,...,m do

5 forj=1,...,d—1do

6: Setup projection operators V; 1, V; q—; using (18) and (20)

7: Solve local problem V}jl.ATTV-,lY = VJT 1 Brr with initial guess X;
8 Update X; <Y

9: Update Rj s.t. Rrtr = Arr Xtr — Brr

10: if ||RTT||F < F—”BTT” then

11: return

12: end if

13: Update Z;, s.t. Zj Moo X 2y = ij:dijTT

14: Left-orthogonalize X; (updating X ;1 s.t. X; X X4 remains the same)
15: Left-orthogonalize Z; w.rt. X;

16: Append Z. . 1., XM 0to X; M X, 14

17:  end for

18:  Similarly sweep from d to 2.

19: end for

20: Abort: not converged in m sweeps!

T
USVT = (I - ()(j)unfold, ()(j)unfold,)<Rf)unfoldl’ (Z/)unfold, =U.

This results in the method AMEn + SVD from Dolgov
and Savostyanov (2014). To append the directions (line 16),
we concatenate the tensors, such that 7 =r;+k and
(X/) Lotk =
The same is done in the right-to-left sweep with mirrored
dimensions.

As can be seen from Alg. 4, calculating the required di-
rections from the residual mostly involves updating the sub-
tensors of the residual in every step of the sweep. This is not
significantly more work than calculating the residual in the first
place. Still, the complete algorithm is so cheap that the residual
calculation accounts for a significant part of the overall runtime.
That is why Dolgov and Savostyanov (2014) discusses several
more heuristic ways to determine suitable enrichment directions.

Z:,:,l:k and (Xi+1)r,-+1:}f,-+k,:,::0'

3.3.1. TT-AMEn + ALS. The most promising variant from
Dolgov and Savostyanov (2014) is based on an ALS-like
approximation of the residual. As the resulting complete al-
gorithm is not explicitly shown there, we illustrate the required
steps Alg. 5 and discuss important implementation details.
First, to really decrease the work, one needs a way to
check the error without using the global residual norm. In
Dolgov and Savostyanov (2014), this is not further

discussed but in the code used for the numerical experi-
ments of Dolgov and Savostyanov (2014), the global re-
sidual error is estimated using the projected residuals
(before solving the local problem), assuming that

————max; (

syt (et 8] ))

<||ArrXrr — Brr||-

The factor 1/2 is just a heuristic way to ensure that the
global residual norm is smaller than the tolerance.

Second, one needs a cheap way to enrich the subspace. For
this, a rough approximation of the residual is usually sufficient
which can be obtained by a fixed-rank ALS iteration (ALS (7).
This results in the following update of the jth subtensor of the
current approximation of the residual Rit:

~/
Rj = Wzl (ATTXTT - BTT)

=W AprXer — W! B h @l
- ', 1/ATTATT G, 1PTT> where

Wi RV R Wi

L 2 ~ 22)
Y =R/ X-R_ MYXR M- MR,

Here, kl, ...,kj,l must be left-orthogonal and kj+1, ...,Ed
right-orthogonal. We remark that the approximation Rt
cannot be used to check convergence as ||Rrr|| s <||Rrr| -
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Algorithm 5 TT-AMEn+ALS

Input: Linear operator Arp, RHS Brr, initial guess X, desired tolerance e,
max. number of sweeps m, enrichment rank £, inner tolerance €jy,er, approx. residual rank [
Output: Approximate solution Xtr with ||Brr — ArrXrrl| » < €| Brrl »
1: Right-orthogonalize X ... X»

2: Initialize approx. residual Ry, .. ., Ry with rank [
3: Right-orthogonalize R, ... Ry and let Ztp <— Rrr
4: for igyeep = 1,...,m do

5 forj=1,...,ddo

6 Setup projection operators V; 1, V; q—; using (18) and (20)

7: if isweep = 1V j # 1 then

8: Calculate local residual norm: §; <— HV%(ATTXTT — Bry)l||r

9 Adapt tolerance: Ennerabs — Max(d; €imer; |V Brrllre/(2v/d — 1))

10: Approximately solve local problem V]T 1AVY = V7T1 Brr
with initial guess X; up to abs. tolerance €nper,abs
11: Update X; <Y
12: Setup residual projection operator WV; 1 using (22)
13: Update Rj — W}:l (-ATTXTT — BTT)
14: end if
15: if j < d then
16: Update Z:, st Zj X X Zd = Vfd_jRTT
17: Left-orthogonalize Rj (updating ]:Zj_H s.t. Rj X Rj_H remains the same)
18: Left-orthogonalize X; (updating X ;1 s.t. X; X X remains the same)
19: Left-orthogonalize Z; w.r.t. X;
20 Append Z:Ml:k MOtoX; XX, 4
21: end if

22:  end for
23: if max; ((57) S 2\/% then

24: return

25:  end if

26:  Similarly sweep from d to 1 and check convergence.
27: end for

28: Abort: not converged in m sweeps!

As for the projected local problem, the required additional can employ Jocal preconditioners for the projected opera-
terms can be updated successively in each step of the sweep.  tors VJ.TATTVJ» with V; = V;, or V; = V; 1. In this case,
In our implementation, we use Brr as initial guess for the
approximate residual Rty and truncate it, respectively ex-
tend it by random directions to obtain the desired rank /. In
Section 5.5, we show numerical experiments with both the
full AMEn and the AMEn + ALS algorithm.

® one needs to calculate a different preconditioner in
every step of the sweep,

® often only a few local iterations are performed,

® one may need to contract, for example,

o VI ATV = Aj e XA XA rigne (costly).

3.4. Preconditioning ‘

For iterative solvers of linear systems, it is a common On the other hand, we could employ a global pre-
approach to employ a preconditioner to obtain much faster ~ conditioner which is

convergence. Of course, we can precondition all previously

discussed algorithms. However, some additional aspects e cither applied to tensor-train “vectors” (TT-GMRES),
should be considered when preconditioning linear solvers in e or directly to the tensor-train operator Arp (TT-
the TT format. On the one hand, for MALS and AMEn, we GMRES, MALS, AMEn),
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® butis not tailored to the local problems for MALS/AMEn.

Furthermore, a global preconditioner (and also local
preconditioners for MALS) should retain the low-rank of
the solution and right-hand side. To emphasize this: just the
fact that x(PArr) < x(Arr) does not imply that
rankry (PBrr) <rankrrp(Brr) for left-preconditioning with
P. And similarly the same problem occurs for the ap-
proximate solution Xt for right-preconditioning.

3.4.1. TT-rank-1 preconditioner. Considering the desired
properties, we suggest a simple, global rank-1 precondi-
tioner that usually is cheap to calculate (for operators of
sufficiently low rank). The two-sided variant can be con-
structed as follows: First, approximate the operator with a

tensor-train of rank 1 wusing TT-truncation: Arp =
A1RA4,®--®A4 = trunc,—; (Arr). Then, perform an SVD

for each sub-matrix (U;S; V/T =4;,j=1, ..., d) to construct
the TT operators for the left and the right:

Prrjes = (SII/ZUIT)®--'®(S;1/2U5),
Prrsight = (VIS;1/2)®"'®(VCJS;1/2).

This yields the preconditioned system:

(PrrjenArr Prisigh) Yrr = PrrjenBrr
with X1t = Prrsight Y11+

For a symmetric operator At where for each sub-tensor
(4)). k... = (4j). ;4. ., the preconditioned operator is still
symmetric. And as the preconditioner has rank one, it does not
lead to higher ranks for the right-hand side or the exact solution
Xrr. However, if the operator has a displacement structure, this
is not preserved for the preconditioned operator.

4. Comparison of algorithms

In the following we present numerical experiments for linear
systems in TT format. We use the pitts library (Rohrig-
Zollner and Becklas, 2024) which also contains the setup
and output for all results shown in this paper. For illustrating
the numerical behavior, we consider a simple multidimen-
sional convection-diffusion equation. It is discretized using a
finite difference stencil, for example, in 1d the operator is

tridiag(—1,2, — 1) ¢ tridiag(0,1, — 1)
iy vd By ’

forh; = ——.
J I’Zj + 1

Here, ¢ denotes a convection constant and the convection
direction is diagonal through all dimensions. As right-hand
side, we use a vector of all ones (rank 1) or just a tensor-train

with chosen rank and random sub-tensors. All cases use
double-precision calculations and a desired residual toler-
ance of € = 1075,

4.1. Behavior of tensor-train ranks in the calculation

First, to understand the computational complexity of the
different methods, we show the behavior of the TT ranks
during the calculation. As shown in Figure 1(a), the im-
proved orthogonalization in the TT-GMRES algorithms
(SIMGS, Alg. 2) results in slightly slower rank growth in the
Krylov basis than standard MGS; Both show the expected
linear growth (for operators with a displacement structure).
A naive MGS implementation (all truncations performed
with tolerance J; in Alg. 1) results in exploding ranks after a
few iterations. Furthermore, the calculated solutions of the
MGS variants are not within the desired residual tolerance
(with || ArrXtr — Brr||p = 10€). With the TT-rank-1 pre-
conditioner, the algorithm converges after less than half the
number of iterations, but higher ranks occur (as the pre-
conditioned operator does not have a displacement struc-
ture). Similarly, a GMRES restart also results in higher TT
ranks. Overall, the TT-GMRES has a computational com-
plexity that is cubic in the maximal TT rank (7,,,,) Of the
Krylov basis: O(dnr? + dn®r%_ (*)*). For the MALS
method, we observe a (linearly) growing rank of the ap-
proximation solution in the iteration up to the rank (r) of the
resulting approximate solution, see Figure 1(b). However, in
the inner TT-GMRES iterations, the Krylov basis ranks
behave like after a GMRES restart after the first sweep. So
significantly higher ranks occur in the inner iteration. The
effect on the computational complexity is only quadratic for
MALS (only two sub-tensors in the inner problem):

O(dnrr?, + dn’rrm (')?). The behavior of the rank of
the approximate solution for AMEn is similar to MALS. But
as the local problem consists only of one sub-tensor, no
higher intermediate ranks can occur in the inner iteration. So
only O(dnr® + dn*r*(r*)?) operations are needed assuming

that the enrichment rank k& is chosen appropriately.

4.2. Computational complexity of the
different methods

The TT ranks explain the results in Figure 2: TT-GMRES
needs 10-100x more operations than MALS. MALS needs
10—-100x% more operations than AMEn. For larger individual
dimensions (n;), MALS with inner TT-GMRES needs fewer
operations than with inner MALS. In addition, applying the
operator becomes more costly, and it is beneficial to use a
sparse matrix format for the sub-tensors of the operator (sparse
TT-Op variant in Figure 2(a)). We also measured the behavior
using the quantics TT format (QTT, Khoromskij, 2011) where
we just convert the operator to a 2¢ tensor. For our test case
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Figure I. Tensor-train ranks for the Krylov basis, respectively the approximate solution for a 20'® convection-diffusion problem (c =
10) and RHS B of ones. For TT-GMRES (left), both MGS variants lead to inaccurate solutions that are not within the desired residual
tolerance in contrast to all cases with SIMGS. Overall, more accurate orthogonalization (SIMGS) without restart and preconditioning
features the lowest maximal ranks during the calculation. For MALS (right), the solution ranks only increase slowly with each sweep (as
intended), but the Krylov basis vectors of the inner iteration again yield higher ranks. (a) Krylov basis ranks for TT-GMRES. (b) Ranks
for precond. MALS with inner TT-GMRES.
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Figure 2. Number of floating-point operations measured using likwid (Treibig et al., 2010) for a convection-diffusion problem (c = 10).
Dashed lines use the TT-rank-| preconditioner. Dotted lines first transform the problem to the QTT format (Khoromskij, 201 I). In all
cases, AMEn requires orders of magnitude fewer operations than MALS and TT-GMRES. (a) Varying dimensions (RHS B of ones) (b)
Random RHS Byt with varying ranks (dimension 20'°).
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here, QTT-MALS needs fewer operations than TT-MALS
(ranks in inner iteration can grow at most by a factor of 2).
However, QTT-AMEn needs more operations than TT-AMEn
here. Looking at the approximate solution, it has TT ranks (...,
r, 2r, 3r, 4r, ..., 4r, 3r, 2r, 1, ...) where r is the rank of the
approximate solution without transformation to QTT format.
So the QTT format is not beneficial here as the solution is not
well approximable with small QTT ranks.

5. Performance of algorithmic
building blocks

In the following, we discuss the required basic tensor-train
operations (“building blocks”) for the algorithms from
Section 3. We focus on the node-level performance on a
single multicore CPU with some remarks for a distributed
parallel implementation. We only consider those operations
where we see a significant improvement over the standard
implementation as introduced in Oseledets (2011). These
are in particular left-/right-orthogonalization with/without
truncation, TT addition with subsequent truncation (TT-
axpby + trunc), and faster contractions.

5.1. Replacing costly SVDs and pivoted QR
decompositions with faster but less
accurate alternatives

In Rohrig-Zollner et al. (2022), the authors present a sig-
nificantly faster implementation for decomposing a large
dense tensor in the TT format (TT-SVD) using a Q-less tall-
skinny QR (TSQR) algorithm. For the TT-SVD, one starts
with a decomposition of the form:

with o'o=1

min
8,07

(X)unfoldd,l - BQT F

(X) unfola, , 1s @ tall-skinny matrix, and the standard algo-
rithm uses a truncated SVD to build B and Q:

X )unfoldd,l = usv’ and

Q: V:,l:r1~

B = U:,l:rlSlzrl,lzrla

The optimized algorithm uses the following steps instead
(grayed-out matrices are not calculated):

(X)unfoldl,,l - @R, R= USVT,

B:(X) V:,l:rp

and

Q: V:,l:r1~

unfold,_;

As V has orthonormal columns, the matrix B can be
calculated accurately this way.

For the left-/right-orthogonalization (see first loop in TT-
rounding in Oseledets, 2011), we unfortunately need
slightly different operations, for example, in the left-to-right
QR sweep:

(X)ien = OB,
X =BXX.
And very similarly for a left-to-right SVD sweep:
rgilng(X;')leﬁ — OB|; (Xj/')left =0,
X

j+l

and  (X}) i = O

and
= BNAXYH_] .

The only difference is that the pure orthogonalization is
exact up to the numerical rank whereas the truncation in-
tentionally cuts off with a given tolerance. We can use the same
trick as for the TT-SVD in a slightly different way here. For the
orthogonalization, one obtains with pivoting matrix P:

~/
(X)) = OR and X, =XX (PR, 3
X;-H = (RP") XX
And again similarly for the truncation:
(X)) =OR, R=USV"  and
(24)

~/
X, =XV, X, = (SVT)XX;,.
There is a difference to the TT-SVD here: in both cases, the
faster formulation might introduce a significant numerical error

(||)~(j/ — X||)- For x(R) > 1, respectively x(S) > 1, applying
R, respectively VS™', can be numerically unstable. For the
SVD-sweep, one can see that the error is only large in “un-
important” directions and should not affect the accuracy of the
complete tensor-train: Assuming X, ..., X;_; are left-
orthogonal and X}, 4, ..., X, right-orthogonal, then:

~ ~/
[X 11 — Xroll - = [|[(X; = X)) XX, -

~ )
= [1(X; = X7) XS]
This is not ensured for the orthogonalization

step. However, this shows that the error should be
weighted by the singular values of the corresponding
unfolding of the approximated tensor. So for the trunca-
tion, the left-to-right QR sweep is followed by a right-to-
left SVD sweep with:

X/ =X}(US), for TSV = (X1)ge

We suggest checking the error a posteriori using the
orthogonalization error weighted by the singular values of
the jth unfolding:

§2 _ )?// r )?// 2
( j)lcﬁ( j)left ~E€.

0

In our numerical tests this was always the case even if
~nT = . . .
11 = (X}),.s X7)iestllo > €. If this a posteriori check fails,

one can still recalculate the orthogonalization with the
standard algorithm.
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5.2. Exploiting orthogonadlities in TT-axpby + trunc

To add tensors in TT format (Zrr = oXtr + fYrr=2; ™M -
X Z;), one combines their sub-tensors:

(Zl)l,:,: :((Xl)l,i,i (Yl 1 i)’

(/Y]'):,i,: 0
Z).,. = , for i=1,...,n,,j=2,...,d—1
0 (%),

5Ll

B

s
,e

This operation is needed in the TT-GMRES algorithm as
well as in MALS and the standard AMEn. For AMEn, the
operation is performed step-by-step in each step of a
sweep. In all cases, the sub-tensors of Xrr and Ypr are
already left- or right-orthogonal. And after the addition, one
performs a left- or right-orthogonalization of the Zt for a
subsequent truncation step. We can exploit the block non-
zero structure and pre-existing orthogonalities. In the fol-
lowing, we assume rankrr (X7r) > rankrr (Y1) and that X7,
..., Xy_1 are left-orthogonal. Then, we can compute left-
orthogonal sub-tensors for Zi, ..., Z; 1 with smaller QR-
decompositions Q1R;, ..., Qy_1R;_; than for the standard
algorithm. For the first sub-tensor, we obtain:

L= (&) On) ((I) A}i‘)with

(zl)l,:,:

M, = ()(l)lTeft(Yl)left’
OR) = (1 - (Xl)left(Xl)lTeft)(Yl)left'

(Zl)l,:

(25)

For the next sub-tensors j = 2, ..., d — 1, we obtain:

(6 ("

N
I

where we simplified the notation by introducing:

v.—( (1 v _ (M
Xj'_ <<0>NAX}>leﬂ’ in ((le >MY;)left'

((Xj)o:,l’“ (Qj):,f’:> (

The last sub-tensor simply results in:

= I My, a(Xd>..1)

Zy). ., = A 27

(Za). (0 Rdl)(ﬂ(yd);,:,l @7
5.2.1. Stable residual calculation  with inaccurate

orthogonalization. For (standard) AMEn and MALS, we
update a left- respectively right-orthogonal representation of
ArrXtr = Y17 in €ach step and calculate the residual By —
Yrr from it reusing the orthogonality. This is susceptible to
numerical errors as for the solution all directions should
cancel out. More specifically, we observed relative errors of
up to € = ~107> when the residual norm was close to the
machine precision.

In general, when combining inaccurate orthogonaliza-
tion with the optimized TT-axpby + trunc algorithm, we
need to adjust the formulas in (25) and (26) to compensate
for the loss of orthogonality. Assuming X, X;~1, we
suggest to employ a Cholesky decomposition to correct the
projection in (26) (and similarly in (25)) by using:

OR = (1 —YJ(LI‘L,-T)AXT) Y,

j with L,LT =X, X,. (28)

This emulates re-orthogonalization but is faster if ¥; has
fewer columns than X; as re-orthogonalization would re-

quire to update the matrix )_(j/ =X;(L;)"" instead.

5.3. Faster contractions: inner iteration of AMEn

In AMEn, one needs to apply the projected TT operator
from (19) to a dense tensor:
Z= zTTi ]'Y with

A _ A a i1 Xn¥r;
Arrj =Aj 1166 XA XA righ, Y, ZERTT

I —r— 26
0 Rf) with M, =X7, (26)
. ir
’ OR; = (I - X;X;)Y,,
We can calculate this with the following

contractions assuming that the ordering of dimensions
denoted by : is equal on the left- and right-hand sides of
the equations:
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I5

(Y,):, Lt (_Z(‘Z/+1Jight):, :,iYi, s

(YH):,:, B HZ(A]), :,il,iz(Y/)iz, 5oL

1,02
Zi, A HZ(AI*I»IC&):,il,iz(Y”)iz, NN
i1,

If we reorder the array dimensions of the sub-tensors of

Arr appropriately and let (2 | ,22,23) denote the reordered
tensors, we can use the following steps instead:

fork =1,..., ’E

The benefit of this reordering is that we can combine the
contracted and “free” dimensions ((i;, i) and (:, :)) to obtain
fewer large dimensions which reduces overhead in the

implementation. In addition, we employ a column-major
storage with a padding to obtain array strides that are
multiples of the cache line length but not high powers of 2 to
avoid cache thrashing. Another approach consists in using
optimized tensor contractions as discussed in detail in
Springer and Bientinesi (2018) which may reduce the
overhead due to several small dimensions.

5.4. Resulting building block performance

Here, we show experiments on a single CPU socket of an
AMD EPYC 7773X (“Zen 3 V-Cache”) with 64 cores and
the Intel oneMKL (Intel, 2023) as underlying BLAS/LA-
PACK library." We use the Q-less TSQR implementation
discussed in Rohrig-Zollner et al. (2022).

Figure 3(a) shows timings for different variants of the
TT-axpby + trunc operation. We observe significant
speedup through replacing SVDs and pivoted QR de-
compositions by a fast Q-less TSQR implementation: For
the QR orthogonalization sweep alone, the runtime im-
proves by a factor of ~4.5 for the largest case (difference
between colored an black lines). For the subsequent SVD

16 | | I
standard
14 - with TSQR
TSQR-+reusing orthog.
19 L SVD-sweep (no TSQR) — — |
SVD-sweep (with TSQR) --------
10
)
g 8
3
6
4
2 L
0
0
TT-rank (ry)
(@)

I I [ [
4000 — optimized (MKL only) -
optimized (Eigen+MKL)
3500 standard (MKL only) _
standard (torch.einsum) - - -
= 3000 standard (Eigen+MKL) |
_8" Ppeak
£ 2500 =
- 3 GEMMs
3 B IR
g 2000 “N‘”,tqnwn,l'c '11 l_
-
< 1500
5
¥
1000
500
0
0 100 200 300 400 500 600 700
First/last Op. dimension (r)
(b)

Figure 3. Effect of building block optimizations: For adding two tensors in the tensor-train format (left), we obtain a speedup of ~3.5 by
mapping the calculation onto faster linear algebra operations as explained in Section 5.1 and Section 5.2. For applying the linear
operator of the inner problem in AMEn (right), we obtain a speedup of ~3 through directly calling optimized BLAS routines and through
reordering array dimensions. (a) Timings for the truncated addition of two tensor-trains (dim. 5010, ranks rx =50and ry = I, ..., 700). (b)
Performance of the contractions for multiplying a 3d TT-operator with a dense tensor (dim.: r X 50 x r).
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sweep, the runtime improves by a factor of ~2.5. Overall
speedup is about ~3.5. We only see a small effect through
reusing the orthogonality in the example here. It uses
random tensor-trains as inputs, so the rank of the result is the
sum of the individual ranks. In practice, for example, for the
Arnoldi iteration or for calculating the residual in AMEn,
the rank of the resulting tensor-train is often smaller which
leads to less work in the SVD sweep and thus a bigger effect
through reusing orthogonalities in the preceding QR sweep.

For the contraction in the inner iteration of AMEn, we
illustrate the performance of different variants in
Figure 3(b). The operation consists of 3 tensor contractions,
one of them is memory-bound and the other two are
compute-bound for the chosen dimensions (for » > 100).
The dotted line shows the performance of 3 equivalent
matrix-matrix multiplications (GEMM). In particular for
small dimension r, there is a significant improvement
through reordering and combining the dimensions as dis-
cussed in Section 5.3. Without appropriate padding, there
are performance drops whenever the r is close to a number
dividable by, for example, 128 (not shown here). Overall,
there is also a significant difference between using Eigen
(Guennebaud and Jacob, 2010) with MKL as backend and
directly calling MKL through the cblas interface, possibly
because Eigen explicitly initializes the result to zero. The
standard implementation used here loops over a lot of

possibly small GEMM operations. We also show results
using the function torch.einsum in pytorch (Paszke
et al., 2019, version 2.4.0) with opt einsum (Smith and
Gray, 2018) for the unoptimized ordering of dimensions
with MKL 2022.1 as backend. The function torch.-
einsum results in similar performance to the unoptimized
variant with Eigen and MKL. This underlines that we
choose the optimal contraction order and that the suggested
optimization of the data layout speeds up the computation
further compared to common tensor libraries such as
pytorch.

5.5. Complete TT-AMEn algorithm

For the complete algorithm for solving a linear system, we
focus on the AMEn method as it needs at least an order of
magnitude fewer operations than the other methods. As
shown in Figure 4, the full AMEn variant needs approxi-
mately twice the time of the ALS variant. This is due to
calculating the global residual ArrXtr — Brr which is al-
most as costly as calculating Xyt itself. We also show
timings obtained with the ttpy implementation (ALS vari-
ant) from Dolgov and Savostyanov (2014) for which we
linked with Intel MKL for the underlying operations.
Through using optimized building blocks and the suggested
TT-rank-1 preconditioner, we speed up the calculation by a

approx. solution rank

70 140 210 280 350 420 490 560 630 700

700 T T T T T T 1
standard —— |
600 - opt. axpby.
opt. axpby/QB ——
500 | _opt. axpby/QB/apply —#— B

RHS rank

(a)

approx. solution rank

70 140 210 280 350 420 490 560 630 700
350 T T T T T T 1
ttpy (ALS(k)) ——
300 standard (ALS(k)) _
standard (ALS(k+5)) —+—
9250 opt. QB (ALS(k+5)) —»— a
opt. QB/apply (ALS(k+5)) —%— -

RHS rank
(b)

Figure 4. Timings for TT-AMEn for solving a linear system from a 50'° convection-diffusion problem (c = 10) and random RHS Bt with
varying ranks. Dashed lines use the TT-rank-1 preconditioner. Dotted black lines illustrate the asymptotic complexity using the
formula c (0.35 (r/700) + 0.65 (r/700)%). The heuristic ALS variant (right) is about twice as fast as the full variant (left). For both variants,
the time-to-solution is reduced by a factor of ~5 by combining all suggested optimizations. (a) Full variant (AMEn + SVD) (b) ALS variant

(AMEn + ALS).
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factor of ~5 for both the full and the ALS variants. In our
tests with the ALS variant, we obtain better convergence
and time-to-solution by using a slightly better approxima-
tion of the residual (cases with ALS (k + 5) where k denotes
the AMEn enrichment rank and & = rank (Brr)). The TT-
rank-1 preconditioner reduces the required number of inner
GMRES iterations by about a factor of two here: from
~1530 to ~750 for the SVD variant and from ~1580 to
~850 for the ALS variant for the largest case. However, the
number of outer iterations (sweeps) stays the same and a
significant part of the runtime is spent in the outer iteration.
Therefore, the preconditioner only speeds up the total
runtime by about a factor of 1.2-1.5.

6. Conclusion and future work

In this paper, we discussed the complexity and the per-
formance of linear solvers in tensor-train format. In par-
ticular, we considered three different common methods,
namely TT-GMRES, MALS (DMRG approach for linear
systems) and AMEn, and tested their behavior for a simple,
non-symmetric discretization of a convection-diffusion
equation. Concerning the complexity in terms of floating-
point operations, we illustrated that AMEn can be about
100x faster than MALS, which in turn can be about 100x
faster than TT-GMRES. These results already include an
optimized orthogonalization scheme for the Arnoldi itera-
tion in the TT-GMRES method which is also used as inner
iteration of the MALS method.

Concerning the performance, we focussed on the required
building blocks on a many-core CPU. We suggested three
improvements over the standard implementation: (a) exploiting
orthogonalities in the TT-addition with subsequent truncation,
(b) using a Q-less tall-skinny QR (TSQR) implementation to
speed up costly singular value and QR decompositions, and (c)
optimizing the memory layout/ordering of required tensor-
contraction sequences for applying the tensor-train operator
in the inner iteration. As improvements (a) and (b) lead to less
robust underlying linear algebra operations, we discussed their
accuracy in the context of the required tensor-train operations.
In addition, we presented a simple generic preconditioner based
on a tensor-train rank-1 approximation of the operator. Overall,
we obtained a speedup of about 5x over the reference im-
plementation on a 64-core CPU.

For future work, we want to investigate building block
improvements for other tensor-network algorithms which
are often based on very similar underlying operations.
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