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Summary

Laymen’s summary
Many scientific problems, from predicting heat flow to simulating waves, are described by equations that
can’t be solved exactly. Instead, we approximate the solutions using a computer, which turns these problems
into systems of linear equations. Solving these systems quickly and accurately is essential in engineering,
science, and data analysis.

This thesis looked at how the setup of these equations affects the performance of the methods used to solve
them. The equations depend on the physical situation, like whether a material is insulated or fixed at the
ends. These choices change the structure of the resulting equations, sometimes making them easier or harder
to solve.

We studied two main types of solution methods:

• Direct methods, which try to solve the problem in one shot (like solving for x in a · x = b).

• Iterative methods, which guess the solution and improve the guess step-by-step.

We found that direct methods are reliable when the system is "well-behaved" (non-singular), but can fail or
become unstable when it is close to being unsolvable. Iterative methods are more flexible, and surprisingly,
they sometimes still work even when theory says they should not. However, their success depends on math-
ematical properties, like how dominant the diagonal values in the matrices are.

We also saw that if the system becomes "almost unsolvable" (for example, due to the size of the setup), both
types of methods can break down or become very slow. This shows that being careful in how we model and
discretize physical problems is just as important as choosing the right solver.

In short, the way we write the equations strongly influences how well computers can solve them, and under-
standing this link helps us design faster and more reliable simulations.
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vi Summary

Summary
This thesis investigated the influence of matrix structure, arising from various boundary conditions, on the
performance of both direct and iterative solvers for linear systems resulting from discretized partial differ-
ential equations (PDEs). Using the negative one-dimensional Poisson equation as a model problem, system
matrices were constructed for Dirichlet, Neumann, and mixed boundary conditions, including symmetrized
variants.

The study classified the resulting matrices in terms of singularity and positive definiteness. Direct solvers
such as LU decomposition and Cholesky factorization were tested for accuracy and applicability. Iterative
solvers (Jacobi, Gauss-Seidel, and Successive Over-Relaxation or SOR) were analysed using the spectral ra-
dius of their iteration matrices to predict convergence.

Key findings include:

• Matrices from Dirichlet and mixed boundary conditions were non-singular; Neumann matrices were
singular but still allowed convergence in iterative solvers under specific conditions.

• Cholesky factorization only applied to positive definite systems, while LU decomposition was more
generally applicable to non-singular systems.

• Gauss-Seidel converged faster than Jacobi, with twice the convergence speed in tridiagonal cases.

• SOR achieved the fastest convergence when using the optimal relaxation parameter, though this opti-
mal ω is generally not known a priori.

• Even when the spectral radius ρ(B) approached 1, as in Neumann systems, convergence was observed
due to the structure of the eigenvalue spectrum.

The thesis concludes that the structural properties of the matrix, such as singularity and diagonal dominance,
are critical in determining the suitability and efficiency of numerical solvers. It also highlights the fragility of
these methods when applied to nearly singular systems, motivating future research into more robust solution
techniques and convergence criteria.
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1
Introduction

Partial differential equations (PDEs) play a central role in the mathematical modelling of physical, biological,
and engineering systems. They describe a wide range of phenomena such as heat conduction, fluid dynam-
ics, electromagnetism, population dynamics, and structural mechanics. However, for most problems, PDEs
are too complex to solve analytically, especially when the domain geometry is irregular or the coefficients are
variable. In such cases, numerical methods are essential for obtaining approximate solutions [13].

Obtaining the numerical solution of PDEs involves several steps, beginning with the discretization of the
spatial and, if applicable, temporal domains. This process transforms the continuous PDE into a system of
algebraic equations. The result is often a large system of equations of the form

Au = f, (1.1)

where A ∈ Rn×n is the system matrix resulting from the discretization, f ∈ Rn is a known vector containing
source terms and boundary conditions, and u ∈ Rn is the unknown vector approximating the solution of the
original PDE. Depending on the discretization method, the matrix A may be sparse or dense. Furthermore,
if the original PDE is nonlinear, additional techniques such as Picard iteration or Newton’s method may be
required to solve the resulting system [15, ch. 6].

In order to obtain accurate approximations, the system size n is typically large. However, the matrix A often
has important structural properties such as sparsity, symmetry, and positive definiteness. For instance, the
Laplace operator discretized with finite differences yields, depending on the boundary conditions, symmet-
ric sparse matrices with a regular pattern. Despite such favourable properties, directly computing the inverse
of A is computationally infeasible for large-scale problems, due to both memory constraints and numerical
instability [11].

Consequently, the development of efficient numerical solvers for large linear systems is a key topic in sci-
entific computing. These solvers can be roughly divided into direct methods and iterative methods. Direct
solvers eliminate equations through a predetermined sequence of operations, typically producing a highly
accurate solution. However, their computational cost and memory requirements grow rapidly with problem
size. Iterative methods, on the other hand, generate a sequence of approximate solutions that (ideally) con-
verge to the true solution. Classical iterative solvers like Jacobi, Gauss-Seidel, and Successive Over-Relaxation
(SOR) require less computational effort per iteration compared to direct solvers, but their convergence de-
pends heavily on the properties of the matrix A [8, 17].

Over the decades, significant research has been done on improving the efficiency and robustness of solvers
for linear systems arising from PDE discretizations. For structured matrices like those resulting from 1D and
2D discretizations of the Laplacian, researchers have developed specialized techniques that exploit proper-
ties like symmetry and positive definiteness to improve performance. A well-known example is the use of
Cholesky factorization for symmetric positive definite systems [7, ch. 4]. Iterative methods have also ad-
vanced considerably, particularly through the development of preconditioners, which aim to accelerate con-
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2 1. Introduction

vergence by transforming the system into a more favourable form [3].

Despite these advances, the performance of a solver, both in terms of speed and accuracy, still depends heav-
ily on matrix properties such as symmetry, positive definiteness, and the presence of a non-trivial kernel. In
this context, we investigated how these specific structural features influence solver behaviour, and to what
extent assumptions like symmetry and positive definiteness are truly necessary for good performance. This
was done by systematically comparing different solvers under varying combinations of these properties.

Research Question
This thesis investigates the relationship between the structural properties of system matrices and the perfor-
mance of direct and iterative solvers. Specifically, we aim to answer the following question:

How does the structure of system matrices affect the behaviour of direct and iterative solvers in
terms of speed and accuracy?

The focus is on systems arising from the discretization of the negative one-dimensional Laplacian operator

−∆u = f, (1.2)

as this setting provides an environment to investigate solver behavior while maintaining relevance to a wide
class of PDEs.

Thesis Outline
This thesis is organized as follows:

Chapter 2: Preliminaries
Provides the essential mathematical background required for understanding the rest of the thesis.

Chapter 3: Matrix Structures from PDE Discretizations
Introduces the matrix structures that result from discretizing the Laplacian in one dimension using finite dif-
ferences with different types of boundary conditions.

Chapter 4: Direct Methods
Explores direct solution techniques, particularly LU and Cholesky decomposition.

Chapter 5: Iterative Methods
Presents classical iterative solvers including Jacobi, Gauss-Seidel, and Successive Over-Relaxation (SOR). Con-
vergence criteria are discussed, and the influence of matrix properties on convergence speed is analysed.

Chapter 6: Convergence of direct and indirect methods
Presents an analysis of the order of convergence for different solvers and explores the role of the spectral ra-
dius in the convergence behaviour of iteration matrices.

Chapter 7: Conclusion
Gives an overview of the observations and provides an answer to the research question.

Chapter 8: Discussion of results and Future Work
Reflects the findings and proposes directions for future research.



2
Preliminaries

This chapter provides the essential mathematical background required for the rest of this thesis. It includes
key concepts from linear algebra such as matrix structure, eigenvalues, positive definiteness, and spectral
properties.

2.1. Matrix Fundamentals
Definition 2.1 (Nullspace / kernel). The nullspace / kernel N (A) of a matrix A ∈Rm×n is given by [6, sec. 1.6]

N (A) = {x ∈Rn |Ax = 0}. (2.1)

Theorem 2.1. Let A ∈Rn×n be a square matrix such that the sum of the entries in each row of A is zero. Then A
is singular.

Proof. Let 1 = [
1 1 · · · 1

]T ∈Rn be the column vector of all ones.

For any row i ∈ {1, . . . ,n}, the i -th component of the product A1 is:

(A1)i =
n∑

j=1
ai j , (2.2)

which is zero by assumption. Therefore,
A1 = 0. (2.3)

This means that 1 is a nonzero vector in the null space of A, so the null space is nontrivial and A is not
invertible. Hence, A is singular.

2.2. Spectral Theory
Definition 2.2 (Eigenvalue and Eigenvector). Let A ∈Cn×n . A scalar λ ∈C is called an eigenvalue of A if there
exists a nonzero column vector v ∈Cn such that

Av =λv. (2.4)

The vector v is then called an eigenvector of A corresponding to λ [6, defn. 5.1].

Definition 2.3 (Spectrum). Let A ∈ Cn×n . The spectrum of A is the set of all its eigenvalues, denoted by σ(A)
[20, defn. 2.2.1b].

Definition 2.4 (Spectral Radius). The spectral radius ρ(A) of a matrix A ∈Rn×n is defined as [20, defn. 2.7.1]

ρ(A) = max{|λ| :λ ∈σ(A)} . (2.5)

Definition 2.5 (Similar Matrices). Matrices A,B ∈ Rn×n are said to be similar if there exists an invertible
matrix P ∈Rn×n such that [6, defn. 5.4]

A = P−1BP. (2.6)

3



4 2. Preliminaries

Proposition 2.1. If matrices A and B are similar, then σ(A) =σ(B) [16, lem. 1.11b].

Proof: See proof of Lemma 1.11b of [16].

Theorem 2.2 (Gershgorin circle theorem). Let A ∈Rn×n . The eigenvalues of A lie in the complex plane within
the union of the Gershgorin discs [21, thm. 7.3.1]

|z −ai i | ≤
n∑

j ̸=i
j=1

∣∣ai j
∣∣ , where z ∈C. (2.7)

Proof. See proof of Theorem 7.3.1 in [21].

Theorem 2.3 (Jordan normal form). For any matrix A ∈Cn×n , there exists a nonsingular matrix P ∈Cn×n and
a block-diagonal matrix J ∈Cn×n such that

J = P−1 AP, (2.8)

where J = diag(J1, . . . , Jq ), and each Ji ∈Cmi×mi is a Jordan block of the form

Ji =


λi 1

λi 1
. . .

. . .
λi 1

λi

 , (2.9)

with m1 +·· ·+mq = n [7, thm. 7.1.9].

Proof. See proof of Theorem 3.1.11 in [10].

2.3. Special Matrix Classes
Definition 2.6 (Strictly diagonal dominant). A matrix A ∈Rn×n is strictly diagonal dominant if [16, thm. 3.2]

|ai i | >
n∑

j=1
j ̸=i

∣∣ai j
∣∣ for all 1 ≤ i ≤ n. (2.10)

Definition 2.7 (Weakly diagonal dominant). A matrix A ∈Rn×n is weakly diagonal dominant if [1]

|ai i | ≥
n∑

j=1
j ̸=i

∣∣ai j
∣∣ for all 1 ≤ i ≤ n. (2.11)

Definition 2.8 (Positive definite). A matrix A ∈Rn×n is called positive definite if [7, sec. 4.2]

xT Ax > 0 for all x ̸= 0. (2.12)

Definition 2.9 (Positive semidefinite). A matrix A ∈Rn×n is called positive semidefinite if [19, defn. 2.4.1]

xT Ax ≥ 0 for all x ̸= 0. (2.13)

Theorem 2.4. A matrix A ∈Rn×n is positive definite if and only if the symmetric matrix

B = A+ AT

2
(2.14)

has positive eigenvalues [7, thm. 4.2.3].

Proof. See proof of Theorem 4.2.3 in [7].
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2.4. Permutations and Structured Matrices
Definition 2.10 (Permutation matrix). A permutation matrix is a square matrix obtained by permuting the
rows (or columns) of the identity matrix.
Equivalently, a matrix P ∈Rn×n is a permutation matrix if in every row and every column there is exactly one
entry equal to 1, and all other entries are 0 [7, sec. 1.2.8].

Theorem 2.5. Every permutation matrix P ∈Rn×n is invertible, with inverse P−1 = P T [17, sec. 3.3.1].

Lemma 2.1. The matrix P ∈Rn×n defined by

pi , j =


1 if 1 ≤ i ≤ k and j = 2i −1,

1 if k +1 ≤ i ≤ n and j = 2i −2k,

0 otherwise,

(2.15)

with k = ⌈ n
2

⌉
, is a permutation matrix.

Proof. First, we show that each row of P contains exactly one entry equal to 1:

• For 1 ≤ i ≤ k, the value 2i −1 is an odd number in {1,3,5, . . . }, which is within bounds because 2k−1 ≤ n.

• For k +1 ≤ i ≤ n, the value 2i −2k = 2(i −k) is even and in {2,4, . . . ,n}, again within bounds.

Therefore, in each row exactly one column is assigned a 1.

Now we show that each column contains exactly one entry equal to 1. Let 1 ≤ j ≤ n:

• If j is odd, then j = 2i −1 for i = j+1
2 ≤ k, and hence p j+1

2 , j
= 1.

• If j is even, then j = 2i −2k for i = k + j
2 ≤ n, and hence p

k+ j
2 , j

= 1.

As each row and each column has exactly one entry equal to 1, P is a permutation matrix.

Definition 2.11 (Property A). A matrix T is said to have property A if there exists a permutation matrix P such
that

PT P T =
[

T11 T12

T21 T22

]
, (2.16)

where T11 and T22 are diagonal matrices [5, defn. 6.12].

Lemma 2.2. If T ∈Rn×n is tridiagonal, then T has property A.

Proof. This proof is based on [5, ex. 6.8].

Let T be a tridiagonal matrix. That means that the nonzero entries are only on the main diagonal, subdiago-
nal, and superdiagonal.

We need to show that there exists a permutation matrix P such that PT P T =
[

T11 T12

T21 T22

]
, where T11 and T22

are diagonal matrices.

We now apply the permutation P from Lemma 2.1. This rearranges the rows and columns such that:

• The rows corresponding to odd-numbered indices (originally indexed as 1, 3, 5, ...) come first.

• The rows corresponding to even-numbered indices (originally indexed as 2, 4, 6, ...) come after.

Similarly, the columns are permuted in the same order, resulting in the matrix PT P T .

In the new matrix PT P T , the coupling between the even and odd rows in the tridiagonal structure gets sepa-
rated into off-diagonal blocks T12 and T21, while the diagonal blocks T11 and T22 correspond to rows/columns
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originally only connected to their immediate neighbours of the same parity.

However, since in the original matrix T , odd-numbered rows (and columns) are connected only to even-
numbered neighbours and vice versa, the submatrix formed from just odd or just even indices contains only
diagonal entries. Therefore, both T11 and T22 are diagonal matrices.

Hence, this proves that such a permutation exists and that tridiagonal matrices have property A.

Definition 2.12 (Consistently Ordered Matrix). Let A ∈ Rn×n , with decomposition A = L +D +U , where L is
strictly lower triangular, D is diagonal, and U is strictly upper triangular. Define

B(α) =−D−1
(
αL+ 1

α
U

)
, α ∈C\ {0}. (2.17)

If the eigenvalues of B(α) are independent of α, then A is called a consistently ordered matrix [5, defn. 6.14].

Theorem 2.6. If T ∈Rn×n is tridiagonal, then T is consistently ordered.

Proof. This proof is adapted from [5, sec. 6.5.5], [18, ch. 4] and [16, ex. 3.2].

Let T ∈Rn×n be tridiagonal. By Lemma 2.2, there exists a permutation matrix P such that

PT P T =
[

T11 T12

T21 T22

]
=C , (2.18)

where T11 and T22 are diagonal matrices.

Consider the standard splitting T = L +D +U , where L is strictly lower triangular, D is diagonal, and U is
strictly upper triangular. Define the iteration matrix

BC (α) =−D−1
(
αL+ 1

α
U

)
, (2.19)

for α ∈C\ {0}.

Given the block form of C , the splitting yields

D = diag(T11,T22), L =
[

0 0
T21 0

]
, U =

[
0 T12

0 0

]
. (2.20)

Substituting into the expression for BC (α), we obtain

BC (α) =−
[

0 1
αT −1

11 T12

αT −1
22 T21 0

]
. (2.21)

Consider the similarity transformation with

S =
[

I 0
0 αI

]
, S−1 =

[
I 0
0 α−1I

]
. (2.22)

Then

S−1BC (α)S =−
[

0 T −1
11 T12

T −1
22 T21 0

]
= BC (1). (2.23)

Hence, BC (α) is similar to BC (1) for all α ∈C\ {0}, and therefore, by Proposition 2.1,

σ(BC (α)) =σ(BC (1)) for all α ∈C\ {0}. (2.24)

Since C is a permutation of the original tridiagonal matrix T , it follows that C and T are similar and thus
have the same spectrum. Furthermore, the splitting C = L +D +U transforms correspondingly under the
permutation, so the associated iteration matrix BT (α) is similar to BC (α). Thus

σ(BT (α)) =σ(BC (α)) =σ(BC (1)) for all α ∈C\ {0}. (2.25)

Therefore, T is consistently ordered.
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2.5. Error and Accuracy
To assess the quality of a numerical method, we need an objective measure that quantifies how accurately it
approximates the exact solution.

One commonly used measure is the root mean square error (RMSE). The RMSE is defined as the square root
of the mean of the squared differences between the numerical approximation and the exact solution [2].

The formula for the RMSE is given by

RMSE(x, x̂) =
√

1

n

n∑
i=1

(x̂i −xi )2, (2.26)

where

n is the number of unknowns,

xi is the exact solution, and

x̂i is the numerical approximation.





3
Discretization Matrices

This chapter derives the general linear system
Au = f, (3.1)

which results from the discretization of the one-dimensional Poisson equation

−∆u = f. (3.2)

The construction of the matrix A is carried out for different types of boundary conditions, leading to systems
with varying structural properties.

The 1D-interval [a,b] is split into n +1 equidistant subintervals of length ∆x = b−a
n+1 (see also Figure 3.1). The

nodes are given by x j = a + j∆x, for j = 0, . . . ,n +1. The approximation of u j = u(x j ) is denoted by w j .

x0 x1 x2 x3 x4 x5 x6
a = x0 b = xn+1

∆x

Figure 3.1: Discretization of the interval [a,b] into n +1 subintervals and nodes x0, . . . , xn+1.

A finite difference method is used to approximate the second derivative using a central-difference O ((∆x)2)
formula [21, sec. 7.2]

w ′′
i ≈ wi−1 −2wi +wi+1

2∆x
. (3.3)

Using the equation −u′′ = f, the following formula is obtained

−w j−1 −2w j +w j+1

(∆x)2 = f j . (3.4)

9



10 3. Discretization Matrices

3.1. Case i: Homogeneous Dirichlet Boundary Conditions
Using u = 0 on ∂Ω, the values of u(a) = w0 and u(b) = wn+1 are both known to be zero. This implies that (3.4)
has only to be used for 1 ≤ j ≤ n.

For j = 1, (3.4) implies

−w0 −2w1 +w2

(∆x)2 = f1. (3.5)

Using the boundary condition w0 = 0, (3.4) simplifies to

−−2w1 +w2

(∆x)2 = f1. (3.6)

Similarly, using wn+1 = 0 for j = n, (3.4) simplifies to

−wn−1 −2wn

(∆x)2 = fn . (3.7)

Putting (3.4), (3.6), and (3.7) together, gives

f j =


−−2w1 +w2

(∆x)2 j = 1

−w j−1 −2w j +w j+1

(∆x)2 2 ≤ j ≤ n −1

−wn−1 −2wn

(∆x)2 j = n

, (3.8)

or in matrix form, this is

Aw = f, with

A = 1

(∆x)2


2 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1

−1 2

 ∈Rn×n ,

w = [
w1 w2 . . . wn

]T
, and

f = [
f1 f2 . . . fn

]T
.

(3.9)

This matrix is symmetric.

Proposition 3.1. We will show that matrix A is positive definite. From this fact, it follows that A is non-singular
and that (3.9) has a unique solution for every f.

Proof. We follow the proof from Slide 29 of [4].

We show that the matrix T = (∆x)2 A is positive definite. Let z ∈Rn \ {0}.
Then,

zT T z =
n∑

i=1
2z2

i −
n−1∑
i=1

zi zi+1 −
n−1∑
i=1

zi+1zi ,

=
n∑

i=1
2z2

i −
n−1∑
i=1

2zi zi+1,

= z2
1 + (z2

1 −2z1z2 + z2
2)+ (z2

2 −2z2z3 + z2
3)

+·· ·+ (z2
n−1 −2zn−1zn + z2

n)+ z2
n ,

= z2
1 + (z1 − z2)2 + (z2 − z3)2 +·· ·+ (zn−1 − zn)2 + z2

n ,

= z2
1 +

n−1∑
i=1

(zi − zi+1)2 + z2
n

> 0,

(3.10)
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since the sum consists of non-negative terms, and at least one must be strictly positive when z ̸= 0.
Thus A is positive definite.

3.2. Case ii: Homogeneous Neumann Boundary Conditions
Assuming homogeneous Neumann boundary conditions, i.e.,

∂n u = 0 on ∂Ω, (3.11)

this implies that the derivatives at the boundaries vanish: w ′
0 = w ′

n+1 = 0.

In this case, all values w0, w1, . . . , wn , wn+1 are treated as unknowns.

Two different approaches to incorporate these boundary conditions are considered, each leading to a system
matrix with distinct structural properties [11, ch. 3].

3.2.1. Default version
The standard procedure to use a central difference for the first derivative for this, two (virtual) points outside
the domain are needed. Therefore the x−1 = a −∆x and xn+2 = b +∆x are considered.

A central difference scheme for the first derivate for w ′
0 is given by

w ′
0 =

w1 −w−1

2∆x
. (3.12)

Using w ′
0 = 0, we obtain

w−1 = w1. (3.13)

Similarly, applying w ′
n+1 = 0 with the central difference approximation

w ′
n+1 =

wn+2 −wn

2∆x
, (3.14)

leads to the result
wn+2 = wn . (3.15)

Since w0 and wn+1 are unknown, (3.4) is also applied at these points. Consequently, the boundary condition
cannot be enforced at w1 and wn , and the central difference approximation (3.4) must also be used for these
values.

For w0, using (3.4) and (3.13) gives

−w−1 −2w0 +w1

(∆x)2 =−−2w0 +2w1

(∆x)2 = f0. (3.16)

In the same way, for j = n +1, combining (3.4) and (3.15) gives the following scheme

−2wn −2wn+1

(∆x)2 = fn+1. (3.17)

Combining (3.4), (3.16) and (3.17) together gives

f j =


−−2w0 +2w1

(∆x)2 j = 0

−w j−1 −2w j +w j+1

(∆x)2 1 ≤ j ≤ n

−2wn −2wn+1

(∆x)2 j = n +1

, (3.18)

which is written in matrix notation as
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Aw = f, with

A = 1

(∆x)2



2 −2
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−2 2


∈R(n+2)×(n+2),

w = [
w0 w1 . . . wn+1

]T
, and

f = [
f0 f1 . . . fn+1

]T
.

(3.19)

It is readily seen that this matrix is non-symmetric. Moreover, since all rows sum to zero, Theorem 2.1 implies
that A is singular.

By the diagonal dominance of the matrix, it can be shown that the eigenvalues of A are in the non-negative
part of the complex plane.

3.2.2. Symmetric version
Instead of applying a central difference scheme for the first derivative, a forward difference is used for w ′

0,
and a backward difference is used for w ′

n+1.

As in the non-symmetric formulation, all values w0, w1, . . . , wn , wn+1 are considered unknown.

The forward difference approximation for w ′
0 gives

w ′
0 =

w1 −w0

∆x
= 0, (3.20)

from which it follows that

w0 = w1. (3.21)

Thus (3.4) for j = 1 is given by

−w1 −2w1 +w2

(∆x)2 = f1, (3.22)

which simplifies to

−−w1 +w2

(∆x)2 = f1. (3.23)

Similarly, using w ′
n+1 = 0, and a backward difference scheme

wn+1 = wn (3.24)

is obtained, from which the finite difference scheme for j = n is

−−wn−1 +wn

(∆x)2 = fn . (3.25)

Combining (3.4), (3.23) and (3.25) gives

f j =


−−w1 +w2

(∆x)2 j = 1

−w j−1 −2w j +w j+1

(∆x)2 2 ≤ j ≤ n −1

−wn−1 −wn

(∆x)2 j = n

, (3.26)
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or in matrix form is this

Aw = f, with

A = 1

(∆x)2



1 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 1


∈Rn×n ,

w = [
w1 w2 . . . wn

]T
, and

f = [
f1 f2 . . . fn

]T
.

(3.27)

Unlike the matrix obtained using central differences in (3.19), the matrix in (3.27) is symmetric. However,
since the elements of each row sum to zero, the matrix A remains singular.

By applying the Gershgorin circle theorem (Theorem 2.2), it can be shown that all eigenvalues of A are non-
negative, due to its weakly diagonal dominance and symmetry.

3.3. Case iii: Mixed Boundary Conditions
In this case, there is a homogeneous Dirichlet boundary condition on x = a and a homogeneous Neumann
boundary condition on x = b. In other words u(a) = u′(b) = 0.

Therfore, the value for w0 is known, and the value for wn+1 has to be determined.

3.3.1. Default version
For j = 1, the equation as given in (3.6) is used. For j = n +1, difference scheme (3.17) is chosen as it arises
from approximating w ′

n+1 by central differences.

Combining these results and using (3.4) for 2 ≤ j ≤ n, the following formula is obtained:

f j =


−−2w1 +w2

(∆x)2 j = 1

−w j−1 −2w j +w j+1

(∆x)2 2 ≤ j ≤ n

−2wn −2wn−1

(∆x)2 j = n +1

. (3.28)

In matrix form is this

Aw = f, with

A = 1

(∆x)2


2 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1

−2 2

 ∈R(n+1)×(n+1),

w = [
w1 w2 . . . wn+1

]T
, and

f = [
f1 f2 . . . fn+1

]T
.

(3.29)

Note that this matrix is non-symmetric.
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Proposition 3.2. We show that the matrix A from (3.29) is non-singular.

Proof. We will prove the non-singularity by showing that the zero-vector is the only vector in the null space
of A.

Let v ∈ N (A). Then Av = 0. Applying this condition on the first row of the matrix gives

2v1 − v2 = 0 =⇒ v2 = 2v1. (3.30)

The second row gives

−v1 +2v2 − v3 = 0 =⇒ 3v1 − v3 = 0 =⇒ v3 = 3v1. (3.31)

Let us show using induction that

vk = kv1 ∀1 ≤ k ≤ n. (3.32)

Assume that (3.32) holds for all i < k. Using the k −1-th row of A and the induction hypothesis, we derive

−vk−2 +2vk−1 − vk = 0 =⇒ −(k −2)v1 +2(k −1)v1 − vk = 0 =⇒ vk = kv1. (3.33)

Hence (3.32) holds for all k.

From the last row of the matrix, we have

−2vn−1 +2vn = 0 =⇒ vn−1 = vn . (3.34)

Combining (3.32) and (3.34) gives:

nv1 = vn = vn−1 = (n −1)v1 =⇒ v1 = 0. (3.35)

Using (3.32) and (3.35), we conclude that v j = 0 for all 1 ≤ j ≤ n, and hence that v = 0.

We have shown that the only vector in the kernel of A is the zero vector, which implies that A is non-singular.

Proposition 3.3. Furthermore, A has only eigenvalues in the positive real part of the complex plane.

Proof. Applying Theorem 2.2, for each row i , the eigenvalues z satisfy

|z −ai i | ≤ Ri , (3.36)

where

Ri =
n+1∑
j=1
j ̸=i

∣∣ai j
∣∣ . (3.37)

We compute the radii Ri and centers ai i as follows:

• For i = 1:

a11 = 2

(∆x)2 , R1 =
∣∣∣∣− 1

(∆x)2

∣∣∣∣= 1

(∆x)2 . (3.38)

• For 2 ≤ i ≤ n:

ai i = 2

(∆x)2 , Ri =
∣∣∣∣− 1

(∆x)2

∣∣∣∣+ ∣∣∣∣− 1

(∆x)2

∣∣∣∣= 2

(∆x)2 . (3.39)

• For i = n +1:

an+1,n+1 = 2

(∆x)2 , Rn+1 =
∣∣∣∣− 2

(∆x)2

∣∣∣∣= 2

(∆x)2 . (3.40)
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Therefore, all eigenvalues lie in the union of disks centered at
2

(∆x)2 with radii at most
2

(∆x)2 :

∣∣∣∣z − 2

(∆x)2

∣∣∣∣≤ 2

(∆x)2 .

Since the leftmost point of these disks is at

2

(∆x)2 − 2

(∆x)2 = 0, (3.41)

the disks lie entirely in the closed right half of the complex plane (including zero).

However, since the matrix A is non-singular, it follows that

λi ̸= 0 for all λi ,1 ≤ i ≤ n +1. (3.42)

Therefore, all eigenvalues of A satisfy
Re(λi ) > 0. (3.43)

3.3.2. Symmetric version
A symmetric formulation of the finite difference scheme with one Dirichlet and one Neumann boundary con-
dition can also be derived, similar to the case with two Neumann conditions.

In Section 3.3.1, the Neumann condition at wn+1 was satisfied using central differences. Here, we instead
apply a backward difference at the Neumann boundary, as in (3.25), while keeping the same expressions as
before for the interior points and the Dirichlet condition at w1 (i.e. (3.4) and (3.6), respectively). This leads to
the following finite difference system:

f j =


−−2w1 +w2

(∆x)2 j = 1

−w j−1 −2w j +w j+1

(∆x)2 2 ≤ j ≤ n −1

−wn−1 −wn

(∆x)2 j = n

. (3.44)

In matrix form, this is

Aw = f, with

A = 1

(∆x)2


2 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1

−1 1

 ∈Rn×n ,

w = [
w1 w2 . . . wn

]T
, and

f = [
f1 f2 . . . fn

]T
.

(3.45)

This formulation yields a symmetric and non-singular system matrix A. The symmetry follows directly from
the structure of the matrix, and the non-singularity can be proven using the same argument as for the non-
symmetric case.
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Proposition 3.4. The matrix A from (3.45) is also positive definite.

Proof. We follow the proof from Slide 29 of [4].

Let z ∈Rn \ {0}, and define T = (∆x)2 A. Then,

zT T z =
n−1∑
i=1

2z2
i + z2

n −
n−1∑
i=1

zi zi+1 −
n−1∑
i=1

zi+1zi ,

=
n−1∑
i=1

2z2
i + z2

n −
n−1∑
i=1

2zi zi+1,

= z2
1 + (z2

1 −2z1z2 + z2
2)+ (z2

2 −2z2z3 + z2
3)

+·· ·+ (z2
n−1 −2zn−1zn + z2

n),

= z2
1 + (z1 − z2)2 + (z2 − z3)2 +·· ·+ (zn−1 − zn)2,

= z2
1 +

n−1∑
i=1

(zi − zi+1)2,

> 0,

(3.46)

since all terms are non-negative, and z ̸= 0 implies that at least one term is strictly positive.

Hence, A is positive definite.



4
Direct Methods

In this chapter, two direct methods: LU decomposition and Cholesky decomposition to solve a linear system
of equations Aw = f are discussed.

4.1. General Idea
Solving a linear system of equations of the form Aw = f can be done using Gaussian elimination, but this
approach typically involves a large number of arithmetic operations, especially for large systems. Therefore,
more structured direct methods have been developed to improve computational efficiency.

The general idea of direct methods is to transform the original system into an equivalent one that is easier
to solve. This is often achieved through matrix factorizations, where the matrix A is decomposed into the
product of matrices with special structure. Once such a factorization is available, the system can be solved
using for example forward and backward substitution, which are significantly computationally cheaper than
solving the original system directly [8, sec. 5.1].

Direct methods are deterministic and aim to provide an accurate solution in a finite number of steps, assum-
ing exact arithmetic.

4.2. Methods
4.2.1. LU Decomposition
The goal of LU decomposition is to express a matrix A ∈Rn×n as the product of two easily invertible matrices:
a lower triangular matrix L and an upper triangular matrix U , such that A = LU . This factorization allows for
efficient solution of linear systems, as triangular systems can be solved in O (n2) operations using forward and
backward substitution.

The matrix U is obtained by applying Gaussian elimination to reduce A to row-echelon form, while the ma-
trix L records the operations performed during this process. This procedure is outlined in Algorithm 1 [6,
sec. 10.2].

Once the LU decomposition is obtained, the original system Aw = f can be solved in two steps:

Aw = f ⇐⇒
LU w = f ⇐⇒

U w = L−1f︸︷︷︸
y

⇐⇒

w =U−1y.

(4.1)

In practice, the inverses L−1 and U−1 are not computed explicitly. Instead, we solve the two triangular sys-
tems:

Ly = f (forward substitution), U w = y (backward substitution).

17
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Algorithm 1 LU Decomposition

1: Initialize L as the n ×n identity matrix.
2: Initialize U ← A
3: for i = 1 to n do
4: pivot ←U [i ][i ]
5: for j = i +1 to n do

6: c ← U [ j ][i ]

pivot
7: L[ j ][i ] ← c
8: for k = 1 to n do
9: U [ j ][k] ←U [ j ][k]− c ·U [i ][k]

10: end for
11: end for
12: L[i ][i ] ← 1
13: end for
14: return L,U

This process is shown in Algorithm 2.

Algorithm 2 Solve Aw = f using LU decomposition

Require: Lower triangular matrix L, upper triangular matrix U , right-hand side vector f
1: Forward substitution: solve Ly = f
2: for i = 1 to n do

3: c[i ] ← f [i ]−
i−1∑
j=1

L[i ][ j ] · c[ j ]

4: end for
5: Back substitution: solve U w = c
6: for i = n down to 1 do

7: w[i ] ← 1

U [i ][i ]

(
y[i ]−

n∑
j=i+1

U [i ][ j ] ·w[ j ]

)
8: end for
9: return w

For a solution to exist, both L and U must be invertible. Since L is constructed with ones on its diagonal, it is
always invertible. The invertibility of U depends on the matrix A. In particular, U will contain a zero on the
diagonal if A is singular, making the decomposition invalid for solving the system.

In general, LU decomposition without any modifications may fail or become numerically unstable if A has
small or zero pivot elements. To improve numerical stability and ensure the decomposition is always possi-
ble when A is nonsingular, pivoting (typically partial pivoting) is introduced. LU decomposition with pivoting
produces a factorization of the form PA = LU , where P is a permutation matrix. The algorithms for LU de-
composition with pivoting are included in Appendix A.

However, in the special case of structured matrices such as tridiagonal matrices, pivoting is often unneces-
sary. For well-conditioned tridiagonal systems, LU decomposition without pivoting is both sufficient and
computationally efficient, with complexity reduced from O (n3) to O (n2) [6, sec. 10.2].
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4.2.2. Cholesky Decomposition
Cholesky decomposition is a direct method for solving linear systems when the coefficient matrix A ∈Rn×n is
symmetric and positive definite. In this case, A can be uniquely factored as

A = LLT , (4.2)

where L is a lower triangular matrix with positive diagonal entries, and LT is its transpose.

This factorization offers both computational efficiency and numerical stability. Compared to LU decomposi-
tion, Cholesky decomposition requires roughly half the number of operations, making it especially advanta-
geous for large systems where the symmetric positive definite condition holds.

The matrix L is constructed entry-by-entry. Similar to Gaussian elimination, the algorithm incrementally
eliminates the influence of previously computed entries. For each entry Li j , the corresponding value of Ai j

is corrected by subtracting the dot product of the i -th and j -th rows (up to index j−1). The diagonal elements
(i = j ) require taking a square root after subtraction, while off-diagonal entries are divided by the appropriate
diagonal element L j j . The complete procedure is outlined in Algorithm 3 [9].

Algorithm 3 Cholesky Decomposition

1: for i = 1 to n do
2: for j = 1 to i do
3: sum ← A[i ][ j ]
4: for k = 1 to j −1 do
5: sum ← sum−L[i ][k] ·L[ j ][k]
6: end for
7: if i = j then
8: L[i ][ j ] ←p

sum
9: else

10: L[i ][ j ] ← sum

L[ j ][ j ]
11: end if
12: end for
13: end for
14: return L

Once the Cholesky factor L is known, the system Aw = f can be solved efficiently by exploiting the identity
A = LLT . The solution process is structured as:

Aw = f ⇐⇒
LLT w = f ⇐⇒

LT w = L−1f︸︷︷︸
y

⇐⇒

w = (
LT )−1

y

(4.3)

As with LU decomposition, explicit matrix inversion is avoided. Instead, the solution proceeds in two stages
using substitution methods:

1. Forward substitution: Solve Ly = f.

2. Backward substitution: Solve LT w = y.

The complete algorithm for solving the system using the Cholesky decomposition is presented in Algorithm 4
[9].

Unlike general LU decomposition, Cholesky decomposition does not require pivoting, since the positive def-
initeness of the matrix guarantees that all pivots are strictly positive [7, thm. 4.2.7]. Additionally, it is more
storage-efficient, as only a single lower triangular matrix needs to be stored.
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Algorithm 4 Solve Aw = f using Cholesky decomposition

Require: Lower triangular matrix L, right-hand side vector f
1: Forward substitution: solve Ly = f
2: for i = 1 to n do

3: y[i ] ← 1

L[i ][i ]

(
f [i ]−

i−1∑
j=1

L[i ][ j ] · y[ j ]

)
4: end for
5: Backward substitution: solve LT w = y
6: for i = n down to 1 do

7: w[i ] ← 1

L[i ][i ]

(
y[i ]−

n∑
j=i+1

L[ j ][i ] ·w[ j ]

)
8: end for
9: return w

4.3. Comparison
To assess the effectiveness of LU and Cholesky decompositions under different boundary conditions, Ta-
ble 4.1 summarizes whether each method succeeds or fails for several representative cases. The outcome
depends heavily on matrix properties such as symmetry, invertibility, and positive definiteness.

Case LU Decomposition Result Cholesky Decomposition Result
i: Dirichlet boundary
conditions

LU decomposition gives a correct out-
come. The resulting matrix is invert-
ible and positive definite.

Cholesky decomposition also gives a
correct result, as the matrix is sym-
metric and positive definite.

iia: Neumann bound-
ary conditions

LU decomposition fails. The matrix
is singular, resulting in a zero pivot in
U , leading to division by zero during
back substitution.

Cholesky decomposition also fails be-
cause the matrix is neither symmetric
nor positive definite.

iib: Symmetric ver-
sion of iia

LU decomposition fails due to the ma-
trix being singular.

Cholesky decomposition fails as the
matrix remains singular and thus not
positive definite.

iiia: Mixed boundary
conditions

LU decomposition succeeds. The ma-
trix is non-singular, and both L and U
have non-zero diagonal entries.

Cholesky decomposition fails, as the
matrix is not positive definite despite
being solvable via LU.

iiib: Symmetric ver-
sion of iiia

LU decomposition gives a correct re-
sult, as invertibility is preserved.

Cholesky decomposition also suc-
ceeds, since the matrix is symmetric
and positive definite.

Table 4.1: Comparison of LU and Cholesky decomposition outcomes under different boundary conditions.

From Table 4.1, we conclude the following:

• LU decomposition can solve systems as long as the matrix is invertible, even if the matrix is not sym-
metric or positive definite.

• Cholesky decomposition is more restrictive: it requires the matrix to be symmetric and positive definite.
This condition is not always satisfied, especially under Neumann or non-symmetrized mixed boundary
conditions.

• In practice, Cholesky is computationally more efficient and numerically stable when applicable, but LU
offers broader applicability.
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Iterative Methods

In this section, several iterative methods for solving a linear system of equations Aw = f are discussed.

5.1. General Idea
The idea behind an iterative method is to obtain approximations w(k) (iterate) of the solution, starting from
an initial guess w(0), such that one generates a sequence

{
w(k)

}
with w(k) → w as k →∞, where w is the exact

solution of the system.

The distance between each iterate and the exact solution is called the error, defined as

e(k) = w−w(k), (5.1)

and we want e(k) → 0 as k →∞.

In most cases, the error e(k) cannot be computed directly, since it requires knowledge of the exact solution w,
which would make the iteration process unnecessary. Instead, the residual vector at iteration k is defined as

r(k) = f− Aw(k), (5.2)

which is always computable. Note that since Aw = f, we can rewrite (5.2) as

σ(k) = A(w−w(k)) = Ae(k). (5.3)

The residual vector serves as a practical and accessible indicator of convergence in iterative methods, as it
provides a measure of how accurately the approximate solution satisfies the linear system. Nonetheless, it
is important to recognize that a small residual does not necessarily imply a small error in the solution. In
particular, for ill-conditioned matrices, the residual may significantly underestimate the true error. Conse-
quently, while the residual is a useful tool, its interpretation should be made with care, and, where possible,
complemented with additional estimates or bounds relating the residual to the actual error.

In an iterative method, the matrix A is decomposed into two parts M and N , such that A = M +N . The matrix
M is chosen to be a non-singular matrix and such that solving systems of the form My = c is straightforward.

Solving Aw = f then gives rise to an iterating scheme as follows

Aw = f ⇐⇒
Mw+N w = f ⇐⇒

Mw = f−N w.

(5.4)

21
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In this formulation, the left-hand side uses the new iterate w(k+1), while the right-hand side uses the previous
iterate w(k):

Mw(k+1) = f−N w(k) ⇐⇒
w(k+1) = M−1(f−N w(k))

= M−1f−M−1(A−M)w(k)

= w(k) +M−1(f− Aw(k))

= w(k) +M−1r(k).

(5.5)

From this, we see that
w(k+1) −w(k) = M−1r(k). (5.6)

From iterative formula (5.5) and using (5.3), the recursion for the error vector becomes:

e(k+1) =
(5.5)

w−w(k+1)

=
(5.3)

w−w(k) −M−1r(k)

= e(k) −M−1 Ae(k)

= (I −M−1 A)e(k),

(5.7)

and for the residual vector, iterative formula (5.5) gives

r(k+1) =
(5.5)

f− Aw(k+1)

= f− Aw(k) − AM−1r(k)

= (I − AM−1)r(k).

(5.8)

Note that the matrices I −M−1 A and I − AM−1 are related in the following way:

I −M−1 A = A−1 A− A−1 AM−1 A

= A−1 (
I − AM−1) A.

(5.9)

This implies that the matrices in the error and residual recursions have the same spectrum (Proposition 2.1).

Based on this formula, we define the iteration matrix as

B = I −M−1 A = I −M−1(M +N ) = I − I −M−1N =−M−1N , (5.10)

which can be used to define stopping criteria [20, sec. 5.2].

There are several criteria to determine whether an iterative method has converged. In this context, we con-
sider the following two commonly used convergence criteria:

1. Relative change criterion:
The iteration is considered to have converged if the relative change between two successive iterates is
sufficiently small: ∥∥w(k+1) −w(k)

∥∥∥∥w(k+1)
∥∥ < ϵ. (5.11)

This condition ensures that the iterates are no longer changing significantly, indicating stabilization of
the solution [21, sec. 4.2].

2. Relative residual norm criterion:
The iteration is also considered to have converged if the norm of the residual vector is small relative to
the norm of the right-hand side: ∥∥r(k)

∥∥
∥f∥ < ϵ. (5.12)

This condition measures how well the current iterate satisfies the original system of equations [12,
sec. 2.3].
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Note that the denominator of both criterium are connected by (5.6).

To achieve convergence in an iterative method, we require e(k) → 0 as k →∞. Using the recurrence relation
for the error vector from (5.7), we obtain:

e(k) = (I −M−1 A)
B

e(k−1)

= B 2e(k−2)

= . . .

= B k e(0).

(5.13)

Proposition 5.1. A necessary and sufficient condition for convergence of the iterative method is that the spectral
radius of the iteration matrix satisfies

ρ(B) = ρ(I −M−1 A) < 1 ⇐⇒ {
w(k)}∞

k=0 converges to w. (5.14)

Proof. We follow the proof of Section 7.10 of [14].

Let B be an iteration matrix of an iterative method. Assume B k → 0 when k →∞. We will show ρ(B) < 1.

Let λ be an eigenvalue of B and let v be an eigenvector corresponding to λ. We have Bv = λv , which implies
B k v =λk v. Then:

0 =
(

lim
k→∞

B k
)

v

= lim
k→∞

(B k v)

= lim
k→∞

λk v

= v lim
k→∞

λk .

Since v ̸= 0, we have λk → 0, which implies |λ| < 1. As λ was arbitrary, in particular ρ(B) < 1.

Conversely, assume ρ(B) < 1. Let P, J ∈Cn×n such that J = P−1BP , with P non-singular and J block diagonal,
according to Theorem 2.3.

Then B k = P J k P−1, and

J k =


J k

m1
(λ1)

J k
m2

(λ2)
. . .

J k
ms

(λs )

 , (5.15)

with

J k
mi

(λi ) =



λk
i

(k
1

)
λk−1

i

(k
2

)
λk−2

i . . .
( k

mi−1

)
λ

k−mi+1
i

λk
i

(k
1

)
λk−1

i . . .
( k

mi−2

)
λ

k−mi+2
i

. . .
. . .

...

λk
i

(k
1

)
λk−1

i

λk
i


∈Cmi×mi . (5.16)

Using the assumption ρ(B) < 1 gives |λi | < 1 for all i , thus

λk
i → 0 as k →∞, (5.17)
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and ∣∣∣∣∣
(

k

j

)
λk

i

∣∣∣∣∣=
∣∣∣∣k(k −1) . . . (k − j +1)

j !
λk

i

∣∣∣∣≤ ∣∣∣∣k j

j !
λk

i

∣∣∣∣≤ k j

j !
|λi |k− j → 0 as k →∞. (5.18)

This implies
lim

k→∞
J k

mi
(λi ) = 0 ∈Rn×n ,and hence lim

k→∞
J k = 0 ∈Rn×n . (5.19)

Finally,

lim
k→∞

B k = lim
k→∞

P J k P−1 = P

(
lim

k→∞
J k

)
P−1 = 0 ∈Rn×n . (5.20)

Which finishes the proof.

This condition not only determines whether the iteration method converges but also provides insight into the
rate of convergence. If M is a good approximation of A, then the spectral radius ρ(I −M−1 A) is significantly
less than 1, and we expect a fast convergence of the method. Conversely, if ρ(I − M−1 A) is close to 1, the
convergence is slow, indicating that M is a bad approximation of A [20, sec. 5.4.1].

5.2. Methods
5.2.1. Jacobi
In the Jacobi method, the matrix A is split into A = D + (L+U ), where:

• D is the diagonal part of A,

• L is the strictly lower triangular part, and

• U is the strictly upper triangular part.

See also Figure 5.1.

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann



A =

a11

a22

a33

a44

a21

a31 a32

a41 a42 a43

a12 a13 a14

a23 a24

a34

= D + (L + U )

Figure 5.1: Visualization of the Jacobi decomposition A = D+(L+U ), where D is the diagonal, L is the strictly lower triangular, and U the
strictly upper triangular part of A.

Using this decomposition, the iteration matrices are defined as

M = D, N = L+U . (5.21)

This yields the iterative scheme

w(k+1) = D−1
(
f− (L+U )w(k)

)
, (5.22)

and the iteration matrix BJac is defined as

BJac =−D−1(L+U ). (5.23)

Let w(k) denote the approximation of the solution at iteration k, and let w (k)
i denote its i th component. Then,

the Jacobi update rule for each component is given by

w (k+1)
i = 1

ai i

 fi −
n∑

j=1
j ̸=i

ai j w (k)
j

 , (5.24)
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for i = 1,2, . . . ,n.

This formula computes the new value wk+1
i using only values from the previous iterate w(k), making the Ja-

cobi method a fully decoupled iteration. This independence allows the Jacobi method to be parallelizable.

For the Jacobi method to be applicable, it is required that ai i ̸= 0 for all i , i.e. the diagonal entries of A must
be non-zero so that the division in Equation (5.24) is defined.

Proposition 5.2. The convergence of the Jacobi method is not guaranteed for all matrices A. However, it is
guaranteed to converge if the matrix A is strictly diagonally dominant.

Proof. We follow the proof of Theorem 2.1 of [19].

ρ(M−1N ) ≤ ∥∥M−1N
∥∥∞ = ∥∥D−1(L+U )

∥∥∞
= max

1≤i≤n

n∑
j=1

(D−1(L+U ))i j

= max
1≤i≤n

n∑
j=1
j ̸=i

∣∣ai j
∣∣

|ai i |

< |ai i |
|ai i |

= 1.

(5.25)

The spectral radius of the iteration matrix is thus strictly less than 1, which implies the method is convergent.
Thus solving Aw = f give a solution w, independent of the initial guess w(0).

The method is summarized in Algorithm 5 [17, sec. 4.1].

Algorithm 5 Solve Aw = f using Jacobi iteration

Require: Square matrix A ∈Rn×n , right-hand side vector f ∈Rn ,
initial guess w(0) ∈Rn , maximum number of iterations nmax,
convergence tolerance ϵ> 0

1: k ← 0
2: while k < nmax do
3: Initialize new iterate: w(k+1) ← 0
4: for i = 1 to n do

5: w (k+1)[i ] ← 1

a[i ][i ]

(
f [i ]−

n∑
j=1
j ̸=i

a[i ][ j ] ·w (k)[ j ]

)
6: end for
7: if converged then
8: break
9: end if

10: k ← k +1
11: end while
12: return w(k+1)
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5.2.2. Gauss-Seidel
The Gauss-Seidel method is another iterative method for solving a linear system of equations. It improves
upon the Jacobi method by taking into account the most recent updates for w during each iteration step.

The matrix A is split into two parts:
A = (L+D)+U . (5.26)

This decomposition results into the following iteration formula:

w(k+1) = (L+D)−1
(
f−U w(k)

)
, (5.27)

with corresponding iteration matrix
BGS = (L+D)−1U . (5.28)

Because M = L +D is a lower triangular matrix, solving systems of the form My = c is straightforward using
forward substitution (assuming non-zero diagonal entries).

In component-wise form, the Gauss-Seidel iteration updates each component w (k+1)
i as

w (k+1)
i = 1

ai i

(
fi −

i−1∑
j=1

ai j w (k+1)
j −

n∑
j=i+1

ai j w (k)
j

)
(5.29)

for i = 1,2, . . .n.

It can be observed that in this formula, the key difference compared to the Jacobi method, is that the updated
values w (k+1)

j are used for indices j < i , instead of relying only of the values of the previous iteration w (k)
j , as in

the Jacobi method. While this change leads to faster convergence (show later), it also introduces a drawback:
the iteration becomes sequential. Since each update depends on the latest computed values within the same
iteration step, the method is much more difficult to parallelize efficiently.

The method is summarized in Algorithm 6 [12, sec. 1.4].

A variant of the Gauss-Seidel method uses the decomposition

A = (U +D)+L, (5.30)

where M =U +D and N = L.

This leads to the backward Gauss-Seidel iteration, where the updated values w (k+1)
j for indices j > i are used

within the same iteration step. The component-wise update formula becomes

w (k+1)
i = 1

ai i

(
fi −

i−1∑
j=1

ai j w (k)
j −

n∑
j=i+1

ai j w (k+1)
j

)
, (5.31)

for i = n,n −1, . . . ,1.

In this scheme, the iteration proceeds backward through the components, updating w (k+1)
n first and w (k+1)

1
last. Similar to the forward Gauss-Seidel method, this approach also introduces sequential dependency,
which affects parallelizability.

The next section shows that the convergence rate of Gauss-Seidel is twice that of Jacobi when A is tridiagonal
(more generally, when A is consistently ordered).
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Algorithm 6 Solve Aw = f using Gauss-Seidel iteration

Require: Square matrix A ∈Rn×n , right-hand side vector f ∈Rn ,
initial guess w(0) ∈Rn , maximum number of iterations nmax,
convergence tolerance ϵ> 0

1: k ← 0
2: while k < nmax do
3: Initialize new iterate: w(k+1) ← 0
4: for i = 1 to n do

5: w (k+1)[i ] ← 1

a[i ][i ]

(
f [i ]−

i−1∑
j=1

a[i ][ j ] ·w (k+1)[ j ]−
n∑

j=i+1
a[i ][ j ] ·w (k)[ j ]

)
6: end for
7: if converged then
8: break
9: end if

10: k ← k +1
11: end while
12: return w(k+1)

5.2.3. Successive Over-Relaxation
The Successive Over-Relaxation (SOR) method is an extension of the Gauss-Seidel method that introduces a
relaxation parameter ω with the goal of accelerating convergence. As in the Gauss-Seidel method, each com-
ponent of the solution vector w is updated sequentially using the most recent values. The key difference is
that in SOR, each update is a weighted combination of the newly computed value and previous value, poten-
tially leading to faster convergence. In this section, we use the lower-triangular variant of SOR.

Mathematically, the SOR update rule modifies the Gauss-Seidel formula as follows:

w (k+1)
i = (1−ω)w (k)

i + ω

ai i

(
fi −

i−1∑
j=1

ai j w (k+1)
j −

n∑
j=i+1

ai j w (k)
j

)
, (5.32)

where ω is the relaxation parameter. Comparing this with the Gauss-Seidel update rule (Equation (5.29)), we
observe that the SOR method applies a weight ω to the Gauss-Seidel update term, and combines it with the
previous iterate w (k)

i scaled by 1−ω.

Proposition 5.3. ρ(BSOR) ≥ |ω−1|. Therefore, a necessary condition for convergence is 0 <ω< 2 [5, thm. 6.4].

Proof. We follow the proof of Theorem 6.4 of [5].

Let λ1, . . . ,λn be the eigenvalues of the SOR iteration matrix BSOR. Consider the characteristic polynomial:

φ(λ) = det(λI −BSOR)

= det
(
(I −ωL)(λI −BSOR)

)
= det

(
(λ+ω−1)I −ωλL−ωU

)
,

(5.33)

where L and U are the strict lower and upper triangular parts of the system matrix A, respectively.

Evaluating the characteristic polynomial at λ= 0, we obtain

φ(0) =±
n∏

i=1
λi

=±det((ω−1)I )

=±(ω−1)n .

(5.34)

It follows that ∣∣∣∣∣ n∏
i=1

λi

∣∣∣∣∣= |ω−1|n , (5.35)
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which implies that at least one eigenvalue λi must satisfy

|λi | ≥ |ω−1| . (5.36)

Therefore,
ρ(BSOR) = max

i
|λi | ≥ |ω−1| . (5.37)

For the method to converge, we require ρ(BSOR) < 1, which implies

|ω−1| < 1 ⇐⇒ ω ∈ (0,2). (5.38)

When ω = 1, the method reduces to Gauss-Seidel iteration. For 0 < ω < 1, the method is said to be under-
relaxed, which may improve stability in some cases. For 1 < ω < 2, the method is over-relaxed, and if ω is
chosen well, convergence can be much faster.

The iteration matrix for SOR is given by

BSOR = (D −ωL)−1 ((1−ω)D +ωU ) . (5.39)

The algorithm is detailedly described in Algorithm 7 [22].

Algorithm 7 Solve Aw = f using Successive Over-Relaxation

Require: Square matrix A ∈Rn×n , right-hand side vector f ∈Rn ,
relaxation factor ω ∈R, initial guess w(0) ∈Rn ,
maximum number of iterations nmax, convergence tolerance ϵ> 0

1: k ← 0
2: while k < nmax do
3: Initialize new iterate: w(k+1) ← 0
4: for i = 1 to n do

5: c ← 1

a[i ][i ]

(
f [i ]−

i−1∑
j=1

a[i ][ j ] ·w (k+1)[ j ]−
n∑

j=i+1
a[i ][ j ] ·w (k)[ j ]

)
6: w (k+1)[i ] ←ω · c + (1−ω) ·w (k)[i ]
7: end for
8: if converged then
9: break

10: end if
11: k ← k +1
12: end while
13: return w(k+1)

The same convergence criteria as for the Jacobi and Gauss-Seidel methods, given by Equations (5.11) and
(5.12), are also used for SOR.

To determine the optimal value of the relaxation parameter ω, we analyze the spectral radius of the iteration
matrix.

Theorem 5.1. Let BJac be the iteration matrix corresponding to the Jacobi method. For a matrix A ∈Rn×n that is
consistently ordered, and assuming BJac has real eigenvalues with ρ(BJac) < 1, the optimal relaxation parameter
ωopt for the SOR method, according to [20, thm. 5.5.5], is given by:

ωopt = 2

1+√
1− (ρ(BJac))2

. (5.40)

Proof: See the proof of Theorem 5.5.5 of [20].
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An example of applying this Theorem is for the matrix A from (3.9) with Dirichlet boundary conditions, we
have:

D = 2I , L+U = matrix with (−1) on the sub- and super-diagonals. (5.41)

which leads to the Jacobi iteration matrix

BJac = 1

2
(L+U ). (5.42)

According to [20, sec. 5.5], the spectral radius of this matrix satisfies

ρ(BJac) = 1− π2

2
(∆x)2 +O ((∆x)4). (5.43)

Substituting this expression into Equation (5.40) yields

ωopt = 2

1+
√

1−
(
1− π2

2 (∆x)2 +O ((∆x)4)
)2

≈ 2

1+O ((∆x)2)
. (5.44)

As ∆x → 0, it can easily be seen that ωopt → 2. Therefore, since the domain for ω is (0,2), ω= 1.99 is used.

Theorem 5.2. For a consistently ordered matrix A and a relaxation parameter ω in (0,2), the eigenvalues λ of
the Jacobi iteration matrix BJac and µ of the SOR iteration matrix BSOR are related by the identity [16, thm. 3.5]

p
µωλ=µ+ω−1. (5.45)

Proof. We follow the proof of Theorem 3.5 of [16].
Let λ and µ be eigenvalues of the Jacobi and SOR iteration matrix BJac and BSOR, respectively. Suppose v is an
eigenvector such that:

BSORv =µv. (5.46)

Using definition (5.39) of the SOR iteration matrix, this can be rewritten as:(
(1−ω)I −ωD−1U

)
v =µ(

I +ωD−1L
)

v. (5.47)

Rearranging terms gives:

(µ+ω−1)v =−pµω
(p

µD−1L+ 1p
µ

D−1U

)
=p

µωB(
p
µ)v, (5.48)

where B(α) is according to the definition of consistently ordered (2.17).
Thus v is an eigenvector of B(

p
µ) with eigenvalue

λ= µ+ω−1p
µω

. (5.49)

Since A is consistently ordered, it follows that λ is also an eigenvalue of BJac.

A similar argument can be made in the reverse direction, showing that each eigenvalue λ of BJac corresponds
to an eigenvalue µ of BSOR.

Relation (5.45) allows to connect the spectral radii of the iteration matrices. In particular, setting ω= 1 (cor-
responding to the Gauss-Seidel method), we obtain

λ= µp
µ

=⇒ ρ(BGS) = ρ(BJac)2, (5.50)

which implies that the Gauss-Seidel method converges approximately twice as fast as the Jacobi method in
terms of the spectral radius [20, sec.5.5].

Note that, by Theorem 2.6, all matrices derived in Chapter 3 are consistently ordered. Therefore, relation (5.45)
holds for these matrices.
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5.3. Comparison Iterative Methods
In this section, we compare the results of the three iterative methods: Jacobi, Gauss-Seidel (GS), and Succes-
sive Over-Relaxation (SOR).

We aim to approximate the function
f (x) = sin(πx), (5.51)

on an interval [a,b], which we determine depending on the boundary condition whose second derivative is

f ′′(x) =π2 sin(πx). (5.52)

This function satisfies Dirichlet boundary conditions at points x = m, where m ∈Z, In this setup, we use a = 0,
b = 1 for the Dirichlet case.

For Neumann boundary conditions, which occur at x = 0.5+m, we choose a = 0.5, and b = 1.5. For mixed
boundary conditions, we use a = 0 and b = 0.5.

For all iterative methods we run until stopping criteria from Section 5.1 are met with tolerance of 10−6, or
when the maximum number of iterations has been reached. We chose this to be 500 ·n iterations, where n is
the dimension of the matrix.

Table 5.1: Number of iterations required using relative difference and relative residual as stopping criteria for various boundary condi-
tions and solution methods. If the relative difference or residual was not small enough to meet the stopping criterion, the final value is
shown in parentheses. Text colours indicate RMSE (see Section 2.5) quality: green = low (good), orange = moderate, red = high (poor).

n = 100 n = 500 n = 1000

Boundary
Condition

Method
Relative

difference
Relative
residual

Relative
difference

Relative
residual

Relative
difference

Relative
residual

Dirichlet boundary conditions, Interval: [0,1]
Jacobi 12782 28555 154026 (7.34 ·10−3) 361258 (8.52 ·10−2)
GS (L) 7107 14279 94019 (5.38 ·10−5) 242050 (7.26 ·10−3)
GS (U ) 7107 14279 94019 (5.38 ·10−5) 242050 (7.26 ·10−3)
SOR 1062 1515 966 1643 3584 6498

Neumann boundary conditions, Interval: [0.5,1.5]
Jacobi 12782 28555 154026 (7.34 ·10−3) 361258 (8.52 ·10−2)
GS (L) 7107 14300 94019 (5.40 ·10−5) 242050 (7.28 ·10−3)
GS (U ) 7107 14300 94019 (5.40 ·10−5) 242050 (7.28 ·10−3)
SOR 890 1461 953 1795 3644 7694

Neumann boundary conditions (symmetrized), Interval: [0.5,1.5]
Jacobi (7.08 ·10−6) (1.43 ·10−2) 153258 (7.60 ·10−3) 360492 (8.44 ·10−2)
GS (L) 6868 13729 94367 (4.98 ·10−5) 241451 (7.13 ·10−3)
GS (U ) 6868 13729 94367 (4.98 ·10−5) 241451 (7.13 ·10−3)
SOR 876 1435 948 1762 3631 7350

Mixed boundary conditions, Interval: [0,0.5]
Jacobi 39718 (2.36 ·10−3) (2.03 ·10−6) (2.93 ·10−1) (1.44 ·10−6) (5.40 ·10−1)
GS (L) 22708 (5.59 ·10−6) 242349 (8.56 ·10−2) (1.02 ·10−6) (2.92 ·10−1)
GS (U ) 22709 (5.70 ·10−6) 242349 (8.60 ·10−2) (1.02 ·10−6) (2.93 ·10−1)
SOR 958 1657 3573 7486 12440 31803

Mixed boundary conditions (symmetrized), Interval: [0,0.5]
Jacobi 39096 (2.01 ·10−3) (2.03 ·10−6) (2.91 ·10−1) (1.45 ·10−6) (5.40 ·10−1)
GS (L) 22341 (4.43 ·10−6) 241750 (8.50 ·10−2) (1.01 ·10−6) (2.92 ·10−1)
GS (U ) 22341 (4.39 ·10−6) 241750 (8.48 ·10−2) (1.01 ·10−6) (2.91 ·10−1)
SOR 951 1601 3560 7152 12419 30426
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Note: In the case of a singular matrix (e.g., when two Neumann boundary conditions are applied), the linear
system Aw = f may still be solvable. However, the resulting solution is not necessarily the true solution of the
original differential problem. It is one of potentially infinitely many solutions to the consistent system.

For n = 100, all iterative solvers converge successfully across all boundary conditions and associated matrix
structures. The relative residuals and relative differences achieved are consistently small, indicating reliable
approximations of the solution. Notably, the SOR method converges with significantly fewer iterations than
both the Jacobi and Gauss-Seidel (GS) methods, demonstrating superior efficiency even for small system
sizes. However, for the symmetrized versions of the Neumann and mixed boundary condition matrices, the
performance of the iterative solvers is somewhat diminished, requiring more iterations to reach acceptable
error thresholds. An example of the final result for Dirichlet boundary conditions for n = 100 is illustrated in
Figure 5.2.

As the problem size increases to n = 500, notable differences in the performance of the methods emerge. The
Jacobi method fails to meet the prescribed stopping criterion across all boundary condition types, with rela-
tive residuals stagnating around 10−2, which exceeds typical tolerances for numerical accuracy. In contrast,
the GS method continues to converge for Dirichlet and Neumann boundary conditions; however, it fails for
cases involving mixed boundary conditions, where the relative residuals plateau between 0.08 and 0.09. Even
in successful cases, the GS method produces residuals close to the tolerance threshold of 10−5. Notably, the
SOR method maintains consistently strong performance at n = 500, converging in all tested scenarios with
significantly fewer iterations. The visualisation of the final result of the behaviour for mixed boundary condi-
tions is shown in Figure 5.3.

For n = 1000, the differences in method performance become even more pronounced. Both the Jacobi and
GS methods fail to meet the stopping criterion for all boundary conditions. In these cases, the relative residu-
als increase substantially, reaching values as high as 0.54. The GS method, in particular, stagnates at residuals
in the range of 0.07 to 0.09, indicating an inability to reduce the error through iterative refinement within the
maximum number of iterations. In contrast, the SOR method continues to converge reliably in all problem
instances. While the number of iterations naturally increases with n, SOR consistently shows efficient con-
vergence behaviour.



32 5. Iterative Methods

Figure 5.2: Convergence for Dirichlet boundary condition with n = 100. All iterative methods converge to satisfy the stopping criteria.

Figure 5.3: Convergence for mixed boundary conditions with n = 500. Jacobi and GS methods stagnate before meeting the stopping
criterion; final residuals remain above tolerance.
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Convergence Properties

6.1. Order of Convergence
We evaluate the accuracy of the obtained approximated solution and measure the order of convergence of
the different discretization matrices and numerical methods. For this, we approximate the function sin(πx),
and solve the related systems as defined in Chapter 5.

We perform simulations using grids with n = 20,40,80,160 and 320 interior points. On each grid, we solve the
discretized problem and compare the computed solution uh to the exact solution u(x) = sin(πx). A quantitive
number for the correctness of the solution is given using the root mean square error (see Section 2.5). This
time again, the maximum number of iterations is 500 ·n.

To determine the empirical order of convergence p, we consider two consecutive grids with n1 and n2 interior
points. Let d x1 and d x2 be their corresponding grid sizes, i.e.

d xi = b −a

n +1
, i = 1,2. (6.1)

Then we compute, using Richardson extrapolation [23, sec. 1.3],

p ≈ log(RMSE(d x1)/RMSE(d x2))

log(d x1/d x2)
. (6.2)

Table 6.1 summarizes the observed orders of convergence ρ for various discretization methods under differ-
ent boundary conditions.

As shown in Table 6.1, most methods exhibit a consistent second-order convergence rate, particularly for
Dirichlet boundary conditions. In contrast, for some combinations of methods and boundary conditions,
most notably the Jacobi method under Neumann, mixed, and symmetrized mixed boundary conditions, the
order becomes negative. These negative values are because the iterative solver did not converge within the
maximum allowed number of iterations, set at 500 ·n. Therefore, the stopping criteria did not guarantee a
reasonable good approximation.

LU and Cholesky methods (where applicable) have reliable and consistent convergence rates, while SOR and
Gauss-Seidel (both lower and upper variants) generally perform well. The Jacobi method performs well for
small problem sizes.

33
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Table 6.1: Empirical order of convergence for various boundary conditions and solution methods. Each column labeled a → b shows the
observed order of convergence when refining the mesh from a to b internal grid points. Missing values correspond to methods that are
not applicable for the specified boundary condition.

Boundary condition Method 20 → 40 40 → 80 80 → 160 160 → 320 Expected

Dirichlet

LU 2.0 2.0 2.0 2.0

2.0

Cholesky 2.0 2.0 2.0 2.0

Jacobi 2.0 2.0 2.0 -3.9

GS_L 2.0 2.0 2.0 2.1

GS_U 2.0 2.0 2.0 2.1

SOR 2.0 2.0 2.0 2.0

Neumann

LU - - - -

2.0

Cholesky - - - -

Jacobi 2.0 2.0 2.0 -3.9

GS_L 2.0 2.0 2.0 2.1

GS_U 2.0 2.0 2.0 2.1

SOR 2.0 2.0 2.0 2.0

Neumann symmetric

LU - - - -

1.0

Cholesky - - - -

Jacobi 1.0 1.0 1.0 0.9

GS_L 1.0 1.0 1.0 1.0

GS_U 1.0 1.0 1.0 1.0

SOR 1.0 1.0 1.0 1.0

Mixed

LU 2.0 2.0 2.0 2.0

2.0

Cholesky - - - -

Jacobi 2.0 -2.1 -5.5 -2.7

GS_L 2.0 2.0 -4.0 -5.5

GS_U 2.0 2.0 -4.0 -5.5

SOR 1.9 2.0 2.0 2.0

Mixed symmetric

LU 1.0 1.0 1.0 1.0

1.0

Cholesky 1.0 1.0 1.0 1.0

Jacobi 1.0 0.9 -1.1 -2.5

GS_L 1.0 1.0 0.9 -1.9

GS_U 1.0 1.0 0.9 -1.9

SOR 1.0 1.0 1.0 1.0
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6.2. Spectral Radius
As established in Equation (5.14), an iterative method converges for all initial guesses and right-hand sides if
and only if the spectral radius ρ(B) < 1, where B is the iteration matrix. To assess convergence behaviour for
different boundary condition types and iteration methods, we numerically compute ρ(B) as the maximum
absolute value of the eigenvalues of B .

Figures 6.1a to 6.3b show the value of 1−ρ(B) for systems with Dirichlet, Neumann, symmetrized Neumann,
mixed, and symmetrized mixed boundary conditions, respectively. This quantity emphasizes how close the
spectral radius is to the critical value of 1.

Convergent Cases (ρ(B) < 1): For the Dirichlet and both mixed boundary condition cases (standard and
symmetrized), 1−ρ(B) is consistently positive. At high resolutions (e.g., n = 1000), this difference lies be-
tween 10−5 and 10−6, indicating convergence at a moderate rate.

Among all methods:

• The Jacobi method consistently exhibits the largest spectral radius (i.e., slowest convergence).

• Gauss-Seidel (GS) improves upon Jacobi, as expected from the inequality in Equation (5.50).

• Successive Over-Relaxation (SOR) with optimalω achieves the smallest spectral radius (i.e., fastest con-
vergence). However, for small systems, SOR with fixed (suboptimal) ω = 1.99 may perform slightly
worse than GS. This is expected since the optimal ω depends on the problem size and matrix charac-
teristics.

• A clear intersection between the curves for ω= 1.99 and optimal ω is visible, indicating that ωopt = 1.99
for that specific problem size.

Non-Convergent Cases (ρ(B) ≈ 1): For both Neumann cases (standard and symmetrized), the computed
spectral radius differs from 1 only by 10−14 to 10−16, which lies within floating-point precision. This suggests
ρ(B) = 1, and thus, no convergence is expected according to Equation (5.14).

In these cases, ρJac ≈ 1, making the standard formula for computing the optimal relaxation parameter ω in
SOR (Equation (5.40)) inapplicable, as it leads to a division by zero.

Despite this, the convergence behaviour for the Neumann cases appears similar to the Dirichlet case. This
can be explained by the eigenvalue spectrum: only two eigenvalues are very close to zero, while the remainder
closely resembles the Dirichlet spectrum. Figure 6.4 illustrates this by comparing the full spectrum and its
deviation from 1 for n = 200.
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(a) 1−ρ(B) for Dirichlet boundary conditions.

Figure 6.1: Spectral radius of iteration matrix for system with Dirichlet boundary conditions.

(a) 1−ρ(B) for Neumann boundary conditions. (b) 1−ρ(B) for symmetrized Neumann boundary conditions.

Figure 6.2: Spectral radius of iteration matrix for systems with Neumann boundary conditions.
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(a) 1−ρ(B) for mixed boundary conditions. (b) 1−ρ(B) for symmetrized mixed boundary conditions.

Figure 6.3: Spectral radius of iteration matrix for systems with mixed boundary conditions.

(a) 1−|λ| of spectrum for Neumann case, n = 200. (b) |λ| of spectrum for Neumann case, n = 200.

Figure 6.4: Spectral distribution of the iteration matrix for Neumann boundary conditions. Only a few eigenvalues deviate significantly.





7
Conclusion

The central aim of this research was to investigate: How does the structure of system matrices affect the be-
haviour of direct and iterative solvers in terms of speed and accuracy?

Throughout this study, we examined several boundary condition scenarios, namely Dirichlet, Neumann, and
mixed, in both their standard and symmetrized forms, and analysed the properties of the resulting system
matrices. These structural properties directly influenced the performance and applicability of both direct
and iterative solution methods.

From a theoretical perspective, we found that:

• Matrices resulting from Dirichlet and Mixed boundary conditions are non-singular.

• Matrices from the Dirichlet and Mixed (symmetrized) cases are positive definite.

• The symmetrized Neumann matrix is positive semi-definite, and the standard Neumann case results in
a singular matrix.

These properties determine the feasibility of using specific solvers.

For direct solvers, LU decomposition consistently succeeded on all non-singular matrices. Cholesky decom-
position, however, was only applicable when the matrix was symmetric and positive definite. This confirms
theoretical expectations and highlights that Cholesky, while more efficient when applicable, has stricter re-
quirements than LU. Both methods delivered highly accurate solutions.

For iterative solvers, convergence was largely determined by the spectral radius ρ(B) of the iteration matrix.
As predicted by theory, convergence is guaranteed when ρ(B) < 1. For systems with Dirichlet and mixed (in-
cluding the symmetrized versions), this condition was met, and convergence was observed, especially for
Gauss-Seidel and SOR methods.

Although Neumann systems resulted in matrices with spectral radius very close to 1, suggesting theoretical
non-convergence, iterative solvers still showed convergence in practice. This apparent contradiction can be
explained by the eigenvalue spectrum: only a small number of eigenvalues were near zero, while the rest
closely resembled the spectra of well-conditioned systems. These eigenvalues controlled the convergence
behaviour, enabling the solver to converge effectively despite theoretical limitations.

Furthermore, the spectral radius analysis confirmed several theoretical relationships:

• Gauss-Seidel consistently outperformed Jacobi in terms of convergence speed. In the case of tridiago-
nal systems, the relation ρ(BGS) = ρ(BJac)2 was clearly observed.

• Among the tested iterative methods, SOR yielded the fastest convergence when the optimal relaxation
parameter ωopt was used. In practical applications, however, this optimal value is generally unknown,
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as its computation requires prior knowledge of the spectral radius of the Jacobi iteration matrix, pre-
cisely the quantity one aims to avoid computing.

• For large systems, the Jacobi method, and eventually also Gauss-Seidel, exhibited noticeably slow con-
vergence. Their performance diminished significantly compared to SOR, particularly when a high level
of accuracy was desired within a limited number of iterations.

In summary, the structure of the system matrix, particularly its singularity, symmetry, and definiteness, plays
a crucial role in determining the viability and efficiency of both direct and iterative solvers. While direct
methods offer robustness and accuracy, iterative methods provide speed and scalability, provided that spec-
tral properties are favourable.



8
Discussion

This thesis has investigated the impact of matrix structure, induced by different boundary conditions, on
the performance of both direct and iterative solvers for linear systems. The results confirmed theoretical ex-
pectations regarding convergence criteria, spectral radius behavior, and method applicability. Nevertheless,
several limitations and open questions remain.

Limitations and Scope
The analysis was restricted to one-dimensional Laplacian problems with specific boundary conditions. While
this setting is sufficient for illustrating key concepts and validating theoretical predictions, it does not fully
capture the complexity of real-world systems, especially in higher dimensions or in the presence of more
complex physics.

Furthermore, the study focused on classical solvers such as LU decomposition, Cholesky factorization, Ja-
cobi, Gauss-Seidel, and SOR. While these are foundational, more advanced methods (e.g., multigrid, precon-
ditioned Krylov methods) were outside the scope of this work.

Additionally, although the spectral radius served as a useful convergence indicator in most cases, it proved
insufficient for explaining convergence behavior in singular systems, such as those with Neumann boundary
conditions. There, the spectral radius was effectively equal to 1, yet the iterative methods still exhibited con-
vergence due to the structure of the remaining spectrum. This calls for a more refined theoretical treatment
of such cases.

More Singular Systems
An important observation is that even small perturbations toward singularity, such as a nearly-zero diagonal
element caused by discretization or modeling assumptions, can severely degrade the performance of both
direct and iterative methods. In such cases:

• Direct solvers may become numerically unstable, especially LU decomposition without pivoting, as
small pivots lead to large rounding errors.

• Iterative solvers become unreliable since the near-zero diagonal values impair diagonal dominance, a
key condition for convergence of Jacobi and Gauss-Seidel methods.

• SOR methods with fixed relaxation parameters may completely fail or even diverge, as optimal ω be-
comes highly sensitive or undefined.

This sensitivity highlights the importance of matrix conditioning. While theoretical convergence criteria of-
ten assume ideal properties (e.g., strict diagonal dominance or positive definiteness), practical discretizations
may violate these assumptions, resulting in degraded solver behaviour or even complete failure.
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Suggestions for Future Work
To build on this study, several research directions are proposed:

• Higher-dimensional problems: Extending the analysis to two- or three-dimensional Laplacians would
reveal how structural complexity and sparsity patterns affect solver performance at scale.

• General PDEs: Analyzing more diverse equations, such as time-dependent, nonlinear, or convection-
diffusion problems, would improve understanding of solver behavior in broader applications.

• Sharper theoretical estimates: Numerical results suggest that existing bounds (e.g., for spectral radii)
may be overly conservative. Tighter estimates could enhance predictive power and guide solver selec-
tion.

• Convergence in singular systems: As shown, ρ(B) < 1 does not always capture convergence for singular
systems. Alternative metrics may yield more comprehensive convergence criteria.

• Robustness to near-singularity: Further study of how discretization artifacts affect system conditioning
could inform regularization techniques or adaptive solver strategies to mitigate instability.

These avenues offer opportunities to strengthen both the theoretical foundations and practical reliability of
numerical solvers in increasingly realistic settings.
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A
LU Decomposition with Pivoting

In practice, straightforward LU decomposition as described in Section 4.2.1 may fail or become numerically
unstable when the matrix A has small or zero pivot elements. To address this, pivoting strategies are em-
ployed to improve stability and guarantee the existence of the factorization for any nonsingular matrix.

Pivoting involves rearranging the rows of A via a permutation matrix P , so that the factorization takes the
form

PA = LU , (A.1)

where L is lower triangular with unit diagonal entries, U is upper triangular, and P encodes the row swaps.

The most common approach is partial pivoting, which selects the largest pivot element by absolute value in
each column to minimize rounding errors during elimination.

Algorithm 8 details the PLU decomposition with partial pivoting. At each step i , the algorithm searches for
the pivot row p ≥ i with the largest absolute value in column i , then swaps rows i and p in U and the permu-
tation matrix P . If any elimination has been done in previous columns, the corresponding rows of L are also
swapped to maintain consistency.
After pivoting, Gaussian elimination proceeds to zero out entries below the pivot, storing multipliers in L.

Once the factorization PA = LU is obtained, the linear system

Aw = f (A.2)

can be solved by first applying the permutation,

P f = f̃, (A.3)

then performing forward substitution to solve
Ly = f̃, (A.4)

and finally backward substitution to solve
U w = y. (A.5)

This procedure is detailed in Algorithm 9 [6, sec. 10.3].
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Algorithm 8 PLU Decomposition (with Partial Pivoting)

1: Initialize P as identity matrix of size n ×n
2: Initialize L as identity matrix of size n ×n
3: Initialize U as the same matrix as A (of size n ×n)
4: for i = 1 to n do
5: Find index p ≥ i such that

∣∣U [p][i ]
∣∣ is maximal

6: if p ̸= i then
7: Swap rows i and p in U
8: Swap rows i and p in P
9: if i > 1 then

10: Swap rows i and p in the first i −1 columns of L
11: end if
12: end if
13: pivot ←U [i ][i ]
14: for j = i +1 to n do

15: c ← U [ j ][i ]

pivot
16: L[ j ][i ] ← c
17: for k = 1 to n do
18: U [ j ][k] ←U [ j ][k]− c ·U [i ][k]
19: end for
20: end for
21: L[i ][i ] ← 1
22: end for
23: return L,P,U

Algorithm 9 Solve Aw = f using PLU decomposition

Require: Lower triangular matrix L, upper triangular matrix U ,
Permutation matrix P , right-hand side vector b

1: Apply permutation: f̃ ← P f
2: Forward substitution: solve Ly = f̃
3: for i = 1 to n do

4: y[i ] ← f̃ [i ]−
i−1∑
j=1

L[i ][ j ] · y[ j ]

5: end for
6: Back substitution: solve U w = y
7: for i = n down to 1 do

8: w[i ] ← 1

U [i ][i ]

(
y[i ]−

n∑
j=i+1

U [i ][ j ] ·w[ j ]

)
9: end for

10: return x



B
Source Code

The Python source code for matrix construction, RMSE computation, and both direct and iterative solvers is
available on GitHub:
https://github.com/jtdenhertog/Solution-Methods-in-Numerical-Linear-Algebra.
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