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Abstract

Enhanced greenhouse gas emisions in the past century contributed to the global average
temperature rise. The emission of greenhouse gases, therefore, should be limited in the coming
decades. One way to do so is by capturing the greenhouse gasses (like CO2) from industrial
flue gases (post-combustion capture). This can be achieved in a chemical absorption process
using monoethanolamine as a solvent.

In this report, the development of a method has been developed for the real-time liquid
analysis of the solvent and absorbed acid gas concentrations in a post-combustion capture
process using monoethanolamine as a solvent, capturing CO2. Online monitoring of the
dynamic behaviour of these process properties is of major importance from a process control
and a scientific perspective. Currently this is only achieved using fourier transfrom infrared
spectroscopy, combined with a multivariate calibration method called chemometrics. This
is, however, an expensive method and there are limitations with respect to robustness and
actual process installation. The developed method is based on cheap and easy measurable
properties of the solvent. Inverse Least-Squares models were built at two temperature levels,
based on a set of 29 lab-prepared samples with different MEA and CO2 concentrations.
Density, conductivity, refractive index and sonic speed measurements were used as input data
in model development since this combination of quantities showed the best performance with
respect to predictive accuracy and apparatus costs of all assessed analytical techniques.

The developed model has been validated during continuous operation of a mini CO2 capture
plant. The concentrations of MEA and CO2 were predicted with a mean error of 0.53 and
0.31 [wt%] for MEA and CO2 respectively. Process dynamics, like step-changes in the CO2
flue gas concentration, were covered accurately as well. The model showed good robustness
to changes in solvent temperature.

Robustness of the model against solvent degradation was assessed using samples from the
TNO pilot plant at the Maasvlakte and during a three week experiment at a microplant.
First some degraded samples were added to the model calibration set for improved robustness
purposes. Both the polluted model and the unpolluted model were able to monitor the MEA
and CO2 concentrations of the pilot plant samples and in the microplant accurately. The
addition of degraded samples to the calibration set did improve the predictive accuracy of the
model if the degradation products in the monitored process were of the same nature as the
degradation products that were added to the calibration set. The combination of the model
with process data has shortly been assessed, but further study in this direction is required.

Combining density, conductivity, refractive index and sonic speed measurements with a mul-
tivariate chemometric method enables the real-time and accurate monitoring of the acid gas
and monoethanolamine concentrations in CO2 absorption processes, even under degrading
process conditions.
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Chapter 1

Introduction

1-1 Carbon capture

The earth’s mean temperature has risen gradually over the last 50 years and there is a
growing consensus amongst climate researchers about the contribution of human activities to
this temperature rise[1]. Industrialization has led to enhanced emissions of greenhouse gases
into the earth’s atmosphere, contributing to global warming. Many greenhouse gases have
been identified and water vapour and carbon dioxide are considered to be the most important
ones, the latter of which is mainly emitted from industries using fossil fuels as a primary
energy source[2].
Although fossil fuels will eventually be replaced by renewables, for the coming decades they
will remain as the major energy source for society and industry. One way to reduce the carbon
footprint of men during the transition to renewables is Carbon Capture and Storage (CCS).
CCS is the process of capturing CO2 from large point sources, such as fossil fuel power
plants, and subsequent transportation and storage at dedicated storage sites. A schematic
representation of the CCS chain is given in Figure 1-1.
Since the power and industry sector account for more than 60% of the world’s CO2 emissions[4],
capturing CO2 from industrial flue gases has a great potential to reduce the emission of this
major greenhouse gas into the atmosphere[5]. The International Energy Agency (IEA) esti-
mated that 17% of the total CO2 emission reductions in 2050 will be achieved by CCS as is
depicted in Figure 1-2. Furthermore, the costs per tonne mitigated CO2 emission by CCS is
less compared to e.g. offshore wind and photovoltaic technologies[6].
Different CCS technologies are currently being studied and the most well-known amongst
these technologies are pre-combustion capture, post-combustion capture and oxy-fuel com-

Figure 1-1: Schematic representation of the CCS chain [3]
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Figure 1-2: Potential energy-related CO2 emission reductions by technology [6]. Percentages rep-
resent the share of the cumulative emission reduction through 2050, bracketed values represent the
share of reductions in the year 2050.

bustion. In pre-combustion capture, the fossil fuel is partially oxidized and the CO2 is cap-
tured from the resulting syngas, before it is combusted. The CO2 concentration and partial
pressure in the syngas is high compared to typical flue gases, enabling a more efficient cap-
ture step. Pre-combustion capture is considered to be the most mature among the different
capture technologies, since it is the only technique that is currently applied at a full scale
power plant (Kemper County IGCC) and it is the most chosen technology in planned projects
worldwide at the moment[6]. It is, however, only applicable for new-build plants since large
alterations in the fuel processing are required for existing conventional plants. For existing
plants, Post-Combustion Capture (PCC) has the highest potential of becoming commercial
in the coming decades. In PCC, the CO2 is captured from the industrial flue gases after
combustion. It typically uses a reactive solvent to absorb the acid gas from the entering flue
gases. Alkanolamines are widely used as a solvent, with Monoethanolamine (MEA) being
the most common[7]. The third CCS technology is oxy-fuel combustion, in which the fuel is
burned with only oxygen instead of air. This results in flue gases consisting of mainly CO2
and water vapour, which are easily separated by condensing the water vapour. The initial
air separation step in which pure O2 is obtained, however, demands a lot of energy and the
increased flue gas temperature due to the combustion with solely oxygen, requires the use of
special materials. A general, schematic representation of the described technical options for
CCS is given in Figure 1-3.
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Figure 1-3: Technical CCS options for CO2 capture from coal-fired power plants [6]

1-2 Post-Combustion Capture

In PCC processes the CO2 is captured from flue gases produced by the combustion of fossil fu-
els. PCC has several advantages over the other CCS technologies, especially if it is retrofitted
to existing plants. No large changes have to be made in process plants for PCC to be ap-
plicable. Currently, there are three main PCC processes: chemical absorption, adsorption
and membrane separation[6]. In absorption processes, CO2 is absorbed in a solvent, which is
regenerated at elevated temperature and pressure. Adsorption is the process in which CO2 is
captured by a solid material and in membrane separation, a membrane is used to selectively
permeate CO2 from the flue gas. The latter two technologies have some advantages over
chemical absorption (e.g. the lower energy requirement) but are nowadays still in develop-
ment and only applied at small scale. Hence, PCC using chemical absorption is currently the
most viable CO2 capturing technology for retrofitting to existing industrial plants.

Although the PCC process is not very complicated (for a more detailed description refer
to Section 2-1), controlling it is not an easy task. First, the flue gas composition and flow
rate vary due to upstream operational variations in the (power) plant. Moreover, elevated
temperatures and contamination of the flue gas cause solvent degradation and deactivation
(Section 2-2). Controlling the process performance requires accurate monitoring of the amine
solution in real-time. Two important parameters of the solvent that need to be monitored are
the solvent concentration and the CO2 loading. Nowadays, these parameters are measured by
means of laboratory analysis of solvent samples, which is both time-consuming and laborious
and therefore not applicable for direct operational purposes.

Attempts have been made to make use of fourier transform infrared (FTIR) in combination

Master of Science Thesis A.C. van Eckeveld
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with a multivariate analysis method (known as chemometrics) for real-time measurement of
solvent concentration and acid gas loading and the results were promising as it comes to the
accuracy of the predictions[8, 9]. There are, however, some disadvantages in using FTIR
involving costs of the apparatus and need for it to be located within a few meters of the
process. Furthermore, the method showed unsatisfactory results when the solvent mixture
exceeds calibration limits for the different components or when it contains components the
model was not properly calibrated for.

A more cost-effective method for determination of solvent and solute composition in the liquid
can be found in the combination of easy measurable solvent properties with a multivariate
chemometric method. Previously, some work has been done using different analytical tech-
niques to determine the solvent composition. Conductivity measurements have been used for
CO2 concentration monitoring[10, 11], but the use of one analytical technique restricts the
possible prediction to only one component. A combination of density and refractive index
measurements has been evaluated for estimation of the solvent and solute concentrations in
amine based CO2 capture processes[12] and the results were promising in terms of predictive
accuracy. However, the robustness of this technique to disturbances is limited due to the
inclusion of only two measured quantities. The sensitivity of sonic speed to amine concen-
tration was identified by Hawrylak et al.[13] and sonic speed might therefore be applicable
for the prediction of the amine concentration in the solvent. Recently, a screening study has
been carried out to assess the sensitivities of different simple analytical techniques to com-
positional changes in the solvent mixture[14]. Assessed solvent properties were conductivity,
pH, density, refractive index and UV-vis spectra. Combinations of density, refractive index,
conductivity and pH showed promising results for predicting the MEA and CO2 concentra-
tions of solvent samples. No method has been reported in literature concerning the online
prediction of solvent composition, which is both cost effective and readily implemented.

1-3 Objectives

The objective of this study is to develop an empirical, chemometric model to monitor the
performance of a PCC chemical absorption process in real time, based on easy measurable
properties of the active solution and using a PCC process with MEA as active solvent as a
base case. The following sub-goals are formulated:

1. Assess the suitability of different measurable solvent properties for determination of the
MEA and CO2 concentration in the solvent

2. Develop a chemometric model to determine the MEA and CO2 concentration from the
chosen analytical techniques

3. Validate the model performance both offline and online

4. Assess the robustness of the predictive performance of the model to solvent degradation

A.C. van Eckeveld Master of Science Thesis
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1-4 Approach

This study aims at the development of a method for online prediction of the solvent and
solute concentration in a MEA-based PCC chemical absorption process. First several solvent
properties have been assessed for their sensitivity to changes in the MEA and CO2 concen-
trations in the solvent. Based on the results of these sensitivity experiments a selection of
different properties is used for model calibration. For that purpose a calibration data set
has been obtained by measuring the respective properties in prepared lab samples. Different
combinations of measurements from that calibration set were used for model development and
the best performing combination of properties, in terms of costs and predictive accuracy, was
subsequently selected and used to calibrate a chemometric model. Validation of the model
was done using both offline lab-sample measurements and online validation on a mini-pilot
plant. The model robustness to solvent degradation was evaluated during a three-week con-
tinuous experiment, carried out at a microplant. Finally attempts were made to combine the
model with process data.

1-5 Outline of the report

In Chapter 2 the theoretical background of this study is shortly described, both for MEA-
based PCC and for chemometrics. Chapter 3 describes the experimental techniques that were
used. The fourth chapter contains a manuscript on the model development and validation,
that has been submitted to Industrial & Engineering Chemistry Research (IECR). The
assessment of model robustness with respect to solvent degradation is covered in Chapter 5
and the process data attempts in Chapter 6. Conclusions and a future outlook are provided
in Chapter 7.
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Chapter 2

Theoretical background

2-1 Chemical absorption using MEA as solvent

Chemical absorption based on amine solvents is a very mature technique in capturing CO2 and
has been used ever since the 1930s in the process industry. Alkanolamines, chemical structures
that carry an hydroxy and amino structure on a alkane basis, are common solvents in these
kind of processes. They remove CO2 from the entering gas stream by means of an exothermic
reaction between the amine and the CO2. Different amines have been investigated with
respect to CO2 capture capacity, stability and reactivity. The alkanolamines can be divided
into three major groups: primary, secondary and tertiary amines, referring to the number of
amine groups per molecule. In this study, a primary amine called Monoethanolamine (MEA)
was used as a base case. It is the least expensive and it is known to have a high reactivity
and hence can capture large quantities of CO2 in a relatively short amount of time[15]. The
drawbacks are that its capacity for CO2 (on a molar basis) is low compared to secondary
and tertiary amines, that the energy required for regeneration is relatively high and that
it is sensitive to degradation from contaminants in the flue gas[7]. Notwithstanding these
disadvantages, MEA has been used for over 70 years in the process industry and it has been
researched widely as a reactive solvent in acid gas capturing processes.

The Post-Combustion Capture (PCC) process using chemical absorption with an amine-based
solvent consists typically of an absorber column in which the flue gases contact the solvent in
countercurrent. The acid gas is absorbed by the solvent and the cleaned flue gases leave the
top of the absorber. The rich solvent (high CO2 content) is then pre-heated in the lean-rich
heat exchanger and fed to the stripper column, where the solvent is regenerated at elevated
temperature and pressure. The operating temperature of the stripper is most often between
100 and 120 [◦C] whereas the pressure is typically around 1.9 [bara]. In order to regenerate
the solvent elevated temperatures are required. Too high temperatures, however, accelerate
solvent degradation. The heat required to release the CO2 from the solvent is supplied by a
reboiler, often integrated with the steam cycle of the host plant. Steam and CO2 are leaving
through the top of the stripper and the steam is subsequently condensed from the CO2,
yielding a relatively pure CO2 stream. The lean solvent (low CO2 content) is leaving the
bottom of the stripper column and exchanges heat with the rich solvent entering the stripper,
before it enters the absorber again. A schematic representation of the process is provided in
Figure 2-1.
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Figure 2-1: General flowscheme of PCC plant

The used solvent (MEA) is one of the simplest alkanolamines and consists of an ethanol
molecule with an amine group opposite to the hydroxyl group:

OH C C N

Figure 2-2: Monoethanolamine molecule

MEA is typically diluted to around 30 [wt%] in water to limit the solvent degradation (which
increases at higher MEA concentrations) but to retain a significant CO2 capturing capacity.
The overall reaction between CO2 and the aqueous MEA solution is usually represented as[16]:

CO2 + MEA ⇀↽ MEACOOH (2-1)
MEACOOH + MEA ⇀↽ MEACOO− + MEA+ (2-2)

These reactions are reversed in the stripper. Reaction (2-1) is rate determining since Reaction
(2-2) is considered to be an instantaneous reaction. The theoretically maximal CO2 molar
loading following from this reaction scheme is 0.5 mole CO2 per mole MEA.
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2-2 MEA degradation

The process performance depends not only on the MEA concentration and acid gas loading.
The solvent degrades due to irreversible reactions with several components to form undesirable
compounds, diminishing the absorbing capacity of the solvent. A disadvantage of using MEA
as absorbent is the relatively high degradation rate due to reactions with e.g. SOx, NOx and
O2. The flue gasses should therefore be pre-treated to remove amine degrading contaminants.
H2S has to be removed as well since MEA favours its absorption over carbon dioxide. A
complete removal of these contaminants is not feasible and degradation due to contamination
has to be taken into account.

There is still some uncertainty about the actual degradation mechanisms for MEA, but the
mechanisms can be classified in three different types: carbamate polymerization, oxidative
degradation and thermal degradation of the solvent[17]. The latter requires temperatures
over 200◦C and will not occur under normal process conditions. The other two are treated
in some more detail in this section. The formation of Heat Stable Salts (HSS) from MEA is
covered as well.

Important for this study are the degradation products since they might disturb the developed
model and are to be included in the screening experiments.

2-2-1 Carbamate polymerization

Carbamate polymerization occurs at elevated temperatures and in the presence of CO2 (e.g.
in the stripper). Under stripper conditions, Reactions (2-1) and (2-2) are reversed, but in
some cases unwanted side reactions occur.

Polderman and Steel proposed a mechanism for carbamate polymerization of MEA that is
widely accepted. The first step is the cyclization of MEA carbamate to 2-oxazolidone as is
shown below[18].

MEA + CO2
NH

O

O + H2O

2-oxazolidone can further react irreversibly with free MEA to form 1-(2-hydroxyethyl)-2-
imidazolidone, often referred to as HEIA.

NH

O

O + MEA
N

OH

O

HN + H2O
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HEIA can subsequently be hydrolyzed to form N-(2-hydroxyethyl)-ethylenediamine, also
known as HEEDA.

N
OH

O

HN + H2O HO
NH

NH2
+ CO2

Yazvikova and Zelenskaya [19] discovered that an intermediate product is formed in the
reaction of 2-oxazolidone to HEIA:

NH

O

O + MEA HO
NH

O

NH
HO + H2O

The product of this reaction, N,N’-di(2-hydroxyethyl)urea (DHU) converts to HEIA upon
heating.
The production of HEIA appears to be the dominant phenomenon[20], with HEEDA playing a
smaller role. HEEDA and HEIA are considered as key degradation components in carbamate
polymerization. DHU is expected to play a minor role since it is an intermediate product in
the formation of HEIA and it will therefore not accumulate in the process.
The kinetics of carbamate polymerization are positively depending on the MEA concentration,
the CO2 loading and the temperature, with the latter having the strongest influence.
For the screening experiments, HEIA is chosen as the representative component for carba-
mate polymerization since it is considered to be one of the most important products of this
degradation process.

2-2-2 Oxidative degradation

Under oxidative conditions, MEA can degrade to various degradation products. The oxidation
is driven by the presence of oxygen in the treated gas, leading to free radical reactions in the
process. Dissolved iron, often present due to oxidation of the process equipment, plays a
major role in the oxidation process because it catalyzes oxidation by decomposing peroxides
into free radicals. Dissolved copper and nitrogen oxides are also catalysts for the oxidative
degradation process.
Several pathways for the different oxidative degradation products have been proposed [17, 21].
The main observed degradation products include ammonia and organic acids such as acetic
acid, formic acid, glycolic acid and oxalic acid[22]. Oxalic acid is found to be decomposing
to formic acid, whereas the other acids react with MEA to form either imides or HSSs, the
latter of which will be covered in the next section.
A pollutant mix has been included in the screening experiments, consisting of 5 oxidative
degradation products: ammonia, formaldehyde, formic acid, acetic acid and oxalic acid.
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2-2-3 Heat stable salts formation

HSSs are formed by the reaction of the amine solvent with strong acids. The oxidative
degradation products of MEA, described in Section 2-2-2, are a well-known source of HSSs.
Another source is the reaction of MEA with pollutants like hydrochloric acid (HCl), sul-
furoxides (SOx) and nitrogenoxides (NOx) resulting in the formation of different salts (e.g.
chloride, sulfate, nitrate), thereby reducing the active MEA concentration. These salts do
not contribute to CO2 capture, are not regenerated under normal process conditions and can,
in high concentrations, damage the equipment due to their corrosive nature.

Common HSSs in amine processes include formate, acetate, oxalate, nitrate, nitrite, sulfate,
sulfite and thiosulfate, the concentrations of which are depending on the contaminants present
in the system. Nitrate, nitrite, sulfate, sulfite and thiosulfate originate from the presence of
NOx and SOx in the flue gas while the other HSSs are formed fromMEA degradation products.

HNO3 and H2SO4 have been added to the samples as representative products from solvent
contamination with NOx and SOx. These components and a part of the components in the
pollutant mix, are also known to form HSSs with MEA.

2-3 Chemometrics

In this study, a model has been developed for the prediction of both MEA and CO2 con-
centrations in the solvent. Chemometrics were used to calibrate and develop the model
using experimentally obtained calibration data. Chemometrics is the application of statisti-
cal methods in chemistry[23, 24, 25]. Svante Wold was the first to introduce chemometrics
to the world in an application in 1971 (see [26]). In the current study, chemometrics were
used to solve a predictive problem (as opposed to a descriptive problem): properties of the
chemical system were modeled to predict new properties of interest. Chemometrics were both
used in multivariate calibration of the developed model and in data compression by means
of Principal Component Analysis (PCA) and Partial Least Squares (PLS). In this section a
short introduction into chemometrics and data handling is provided.

2-3-1 Scaling

The raw measurement data was pretreated to remove (part of) the noise and to be able
to compare different measurements with each other. The main pre-treatment methods are
shortly described in this section.

Mean-centering involves the subtraction of the average response of each variable from all
responses of that variable (Equation(2-3)). This operation removes unwanted leverage effects
from the data, to focus on the differences in the data induced by changes in Y-variables (or
predicted variables, as opposed to X- or measured variables). Both X- and Y-data is usually
mean-centered.

Xmc = X − 1N · x̄ (2-3)
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Variance scaling, on the other hand, involves division of the data by the standard deviation of
the responses in the respective variable (Equation 2-4). Variance scaling is mainly important
if responses from different measurement techniques are compared. It prevents the variables
with the largest absolute range to dominate the other variables. A data set is said to be
z-scored if both mean-centering and variance scaling are applied.

Xz−scored = (X − 1N · x̄)(diag(S))−1 (2-4)

It is sometimes desirable to scale a block (a number of variables of the same type) using the
same scaling factor. Blockscaling is warranted if a data set contains different "blocks" of the
same type of variables, e.g. the wavelengths in spectroscopic data.

Pretreatment techniques for spectroscopic data

Spectroscopic data is characterized by the large number of X-variables (or wavelengths) that
are simultaneously measured. Besides the previously described block-scaling, special pre-
treatment techniques have been developed for this kind of data.

Windowing is the most straightforward preprocessing technique for spectroscopic data. It
is aimed at selecting the relevant variables (or wavelengths) that are affected by the species
of interest. Although this technique can easily be implemented, it is a very rough filtering
technique. There is a risk of throwing away relevant data and of increasing the influence of
noise on the data.

Baseline drift and differences in baseline slope of the spectroscopic data can be removed
making use of derivatives of the data set. The first derivative of the data removes the baseline
drift and the second derivative also removes baseline slope from the data. This can be needed
in comparing peaks in measured spectra.

Multiplicative Scatter Correction (MSC), Standard Normal Variate (SNV) and Orthogonal
Signal Correction (OSC) are examples of pretreatment techniques that have been effectively
used in many spectroscopic applications, mainly in near infrared (NIR) spectroscopy. MSC
and SNV are techniques to correct for light scattering and reflectance in sample response
profiles[27]. OSC filtering is aimed at removing (spectral) variations that are unrelated to
changes in sample composition. The use of OSC filtered data leads in general to a less complex
and more robust final model.

2-3-2 Chemometric techniques

Numerous different chemometric methods have been developed, each having its own advan-
tages and disadvantages. Depending on the size, the noise level, the non-linearity and other
characteristics of the data set, a proper method has to be applied. The most important and
well-known chemometric methods that can be used in model development are covered in this
section.
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Classical least squares

Classical Least Squares (CLS) is one of the simplest and most straightforward chemometric
techniques and can be considered a starting point for other, more sophisticated methods. It
is a direct classical expression of the absorbance version of the Lambert-Beer law (Equation
3-10) for a multiple analytes system:

X = YK̂ + E (2-5)

In case of the Lambert-Beer law, K represents the pure component spectra of the species
present. The estimator of these spectra (K̂) is found from Equation (2-6) and using that
estimator, the concentrations of all analytes are assessed.

K̂ = (YtY)−1YtX (2-6)
Ŷunk = XmeasK̂(K̂K̂t)−1 (2-7)

There are some drawbacks in using CLS and one of the most important restrictions is that all
analytes that are present in the mixture must be known. In other words, the concentration
of all components in all calibration samples is required. Furthermore, the model becomes
unstable if there is a substantial amount of collinearity between the responses for different
analytes. In addition, CLS presumes perfect linearity between dependent and independent
variables which, most often, does not reflect reality. CLS also requires to have at least as
many samples (m) and variables (n) as there are analytes and hence large calibration sets are
needed if many analytes are present.

CLS is a very simple and straightforward method that, if all restrictions are fulfilled, yields
reasonable results with a relatively small effort.

Inversed Least Squares

As implied by its name, the Inversed Least Squares (ILS) method is the inverse of the CLS
method:

Y = B̂X + E (2-8)

It therefore, in contrast with CLS, assumes that the error is included in the concentrations
(dependent or Y-variables) rather than in the measurements (independent or X-variables).
The calibration matrix B̂ is found using Equation (2-9).

B̂ = YXt(XXt)−1 (2-9)

The X-data must have at least as many samples as variables, which becomes a problem in,
e.g., spectroscopy due to the large number of wavelengths. Either a subset of variables has
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to be used in the model (windowing) or the data should be condensed to a lower number of
variables. The methods described in the following sections basically present a way to compress
the data onto a fewer number of variables to be able to apply ILS to data sets with a large
number of variables.
The calibration matrix B̂ can be used to find unknown concentrations of all analytes:

Ŷunk = B̂Xmeas (2-10)

Unlike CLS, ILS does not require concentration values for all analytes in the system. ILS
does not account for all variation in the X-data but only for the variations caused by changes
in the Y-variables of interest, implicitly accounting for variations in X-data originating from
other sources. It has the ability to ’neglect’ irrelevant variations in the data set to some
extent, increasing its robustness over CLS models.

Principal component regression

To overcome the limitation of ILS for data sets with a large number of X-variables, the
data set has to be compressed to a smaller number of X-variables. One way to do so is by
combining PCA with ILS. This method is called Principal Component Regression (PCR).
PCA is used to compress the data set and ILS is subsequently used for the regression step. In
ILS, data compression can only be achieved using windowing. Data compression in PCR is
accomplished by calculation of a reduced number of factors (or Principal Components (PCs))
from linear combinations of the original variables. The new factors are defined in such a way
that the first factor has the largest possible amount of variance captured from the original
data set and each succeeding factor covers the highest possible variance that is orthogonal
to the preceding factor(s). This orthogonality eliminates the stability problems for collinear
data sets that are experienced with the previously described methods.
The compression step is mathematically represented in equation (2-11), where P is the load-
ings matrix and T is the scores matrix, containing respectively the newly defined PCs in
terms of the original variables and the intensities of each sample with respect to that PCs.

X = TPt + E (2-11)

The PCs are chosen in such a way that each sequential PC describes as much of the remaining
variance in the X-data as possible. Data compression occurs when the number of used prin-
cipal components is less than the number of original variables. Determination of the amount
of principal components to be used is an optimization between a good explanation of the
original data on the one hand and over-fitting of that data on the other.
The PCR model is calibrated using Equations 2-12 and 2-13 and the obtained regression
matrix B̂ is then used to predict the unknown Y-data, using Equation 2-10.

Q = (TtT)−1TtY (2-12)
B̂ = PQ (2-13)
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The two main advantages of PCR over CLS and ILS are therefore that the stability problems
with collinear data sets are eliminated and that the method can be applied for data sets with
a large number of X-variables.

Partial Least Squares Regression

Partial Least Squares Regression (PLSR) is a widely applied regression tool in chemometrics.
It is very much comparable to PCR with this difference that the factors are defined not only
based on a maximum of variance in the X-data, but in both the X- and the Y-data. This
is accomplished by maximizing the covariance between X and Y. The regression matrix then
becomes:

B̂ = W(PtW)−1Q (2-14)

The new matrix W contains the loading weights that are introduced to maintain orthogo-
nal scores. The unknown Y-data can again be estimated using Equation 2-10. The newly
constructed components in PLSR are called Latent Variables (LVs) and are equivalent to the
principal components in PCR.

A distinct advantage of PLSR over PCR is that most often, simpler models (i.e. consisting of
less components) can be built, that are as effective as more complex PCR models built from
the same calibration data. PLS models are therefore generally more stable than PCR models.
The need to use both the X- and Y-data in the definition of the LVs results, however, in in-
creased complexity of the PLSR model calibration and expression. The PLSR-algorithms (for
details refer to [28][29]) are therefore more complex than the simple two-step PCR algorithm.
Another disadvantage of PLSR over PCR is the larger potential for over-fitting, especially if
the Y-data is rather noisy. Critical in using PLS is the determination of the number of latent
variables to be used.

2-3-3 Statistical diagnostics

Root-mean-square error

To assess and compare the quality of different chemometric models, and to decide on the
number of components to be used, several performance indicators are proposed in literature.
Most often, the Root-Mean-Square Error of Calibration (RMSEC) and the Root-Mean-Square
Error of Prediction (RMSEP) are used for internal and external validation, respectively. The
RMSE is defined as the square root of Predicted Residual-Sum-of-Squares (PRESS) divided
by the number of degrees of freedom in the calibration.

RMSEC =

√√√√√ n∑
i=1

(ŷi,cal − yi,cal)2

d
(2-15)
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RMSEP =

√√√√√ n∑
i=1

(ŷi,val − yi,val)2

d
(2-16)

In deciding on predictive model performance and number of components to be used in the
developed models the RMSEP is used. The RMSEP is an indicator for the mean error in the
predicted variables, expressed in the units of that variable.

Residuals and hotelling

Hotelling’s T-Squared and Q-residuals are indicators that help to explain how well the model
describes individual samples. Given a model as described in Equation 2-11, for a given
observation i, the Q-residual is defined as

Qi = eieT
i = xi

(
I − PkPT

k

)
xT

i (2-17)

Where eT
i is the ith row of the residual matrix E (see Equation 2-18) and xT

i is the ith row
of the data matrix X.

E = X − TPT (2-18)

The Q-residual indicates how well each observation is matched by the model. It is therefore
a lack-of-fit statistic, which can be used for outlier detection outside the calibration set. A
high Q-value for a validation sample indicates that the respective sample might be an outlier.

The hotelling’s T 2 values represent the variation of different observations within the model
and can therefore be used to detect outliers within the calibration data set. For a model as
described in Equation 2-11 it is defined as:

T 2
i = tiλtT

i = xiPkλ−1PT
KxT

i (2-19)

Where ti is the ith row of the scores matrix T and λ is a diagonal matrix containing the
eigenvalues corresponding with the components in the model (principal components or latent
variables). High T 2 values indicates possible outliers within the calibration sample set.
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Chapter 3

Experimental

3-1 Miniplant

The first continuous validation of the developed model was performed at the the Karlsruhe
Institute of Technology (KIT). The TNO-owned mini carbon capture plant was operated
there (Figure 4-3). A PID of the miniplant is provided in Appendix A-2 and a process
description of the miniplant can be found in Section 4-2.

3-2 Microplant

Figure 3-1: Picture of the microplant set-
up

Part of the validation experiments were carried out at
the TNO microplant set-up. This set-up is a small
CO2 capture plant, mainly used for degradation re-
lated experiments. The microplant is depicted in Fig-
ure 3-1 and a PID is provided in Appendix A-1.
As indicated by its name, the microplant is a small
scale CO2 capture plant. The absorber and stripper
have a height of approximately 1.2 [m] and an inner
diameter of approximately 0.09 [m]. The total liquid
volume in the system is around 8 [l], if the measure-
ment loop is connected. Typical solvent flow rates in
the microplant are around 6 [l/h], with an artificial
flue gas flow of approximately 450 [l/h] consisting of
12 [vol%] CO2 and 88 [vol%] air. The rich solvent,
coming from the absorber, enters the absorber sump
that contains around 1 [l] of solvent. The solvent is
usually pumped from the absorber sump by the rich
solvent pump (P202 in the PID diagram) and the liq-
uid level in the sump is controlled by pump P201. This
pump starts if a certain liquid level is reached. The
rich solvent pump did not work during the experiments and therefore the entire flow was
pumped by P201.
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During the experiments, the test loop containing all measurement devices was switched be-
tween the lean and the rich flow. In the rich circuit, it was connected directly after the
absorber sump, whereas in the lean, it was located after the lean-rich heat exchanger. The
absorber was operated at atmospheric pressure and the stripper at 1.9 [bara] and 117 [◦C].
The solvent temperature in the absorber depended on the amount of CO2 captured by the
solvent and was around 35-40 [◦C].

3-3 Analytical techniques

Different analytical techniques were used in obtaining calibration and validation data for
the developed models. All used analytical techniques are shortly described in this section,
including the methods to analyze the MEA and CO2 concentration in the different samples.

3-3-1 Density

The density of a substance is defined as its mass per unit volume:

ρ = m

V
(3-1)

For the offline density measurements a DMA 4500 Anton Paar oscillating tube density meter,
with an accuracy of ±0.00005 [g/cm3] was used. This density meter uses the oscillating U-
tube principle. The density is determined by measurement of the oscillation frequency of the
tube containing a sample. The eigenfrequency of the oscillating tube is influenced by its mass
and that principle is used to calculate the density of the inserted medium.

Inline density measurements were performed using CMF010 Elite MicroMotion coriolis flow
and density meter. The accuracy of this device was ±0.0005 [g/cm3] The density is measured
in the same way as in the offline density meter. The natural frequency of the tubes in
the coriolis meter changes with changes in the density of the flowing medium which can be
deduced from that frequency.

3-3-2 Viscosity

Viscosity is a measure of the resistance of a fluid against deformation by shear or tensile
stress. Hence the viscosity is the resistance of a fluid against a change of form, as can be seen
from Equation 3-2. Viscosity is expressed in terms of dynamic (µ) or kinematic viscosity (ν).

τ = µ

(
∂u

∂y

)
(3-2)

ν = µ

ρ
(3-3)
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Measurements of the viscosity were conducted by means of a Low Shear 40 rheometer from
Contraves, having an accuracy of ±1 [%] of the measured value. This rheometer uses the
Couette principle. The medium is contained in a small cup in which a rotating cylinder is
immersed. The resistive force that the medium exerts at the rotating cylinder is measured
and used to calculate the viscosity of the medium. The cup is temperature controlled.

3-3-3 Conductivity

Conductivity, or electrical conductivity, is the opposite of electrical resistivity. It is a measure
of the ability of a material to conduct an electric current and is expressed in terms of Siemens
per length unit. The conductivity is generally defined as the magnitude of the current density
divided by the magnitude of the electric field in a substance:

σ = J

E
(3-4)

A portable Orion Star A322 conductivity meter from ThermoScientific was used for offline
conductivity measurements (±0.5 [%] of value). The online measurements were done using a
SZ3274.168 EC probe combined with a C7635 conductivity controller having an accuracy of
±0.1 [mS/cm], both purchased from Nieuwkoop bv.

3-3-4 pH

The acidity of a substance is usually expressed in terms of pH. Solutions with a pH below 7
are said to be acidic and solution with a pH higher than 7 are said to be basic. Pure water
has a pH of 7. The pH is defined as the negative logarithm of the hydrogen ion activity in a
solution:

pH = − log10(aH+) = log10

( 1
aH+

)
(3-5)

Offline pH measurements were carried out using a PHM210 from Radiometer Analytical. For
online measurements a pH3630 transmitter was combined with a SZ165 pH probe, both from
Nieuwkoop bv. Both analytical techniques have an accuracy of ±0.01 pH.

3-3-5 Refractive index

The refractive index is a number that describes the propagation of light through a medium. It
is defined as the speed of light in vacuum divided by the speed of light in the medium (Equation
3-6). The refractive index is often reported as nD20, were n stands for the refractive index, D
for the wavelength of the used light (in this case the D line of natrium, or 589 [nm]) and 20
for the reference temperature in degrees centigrade. An inline brix refractometer (CM780N)
from Atago was used for the brix measurements, which were subsequently converted to nD20
values using an empirical correlation that was provided by Atago (Equation 3-7).

n = c

v
(3-6)
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nD20 = 1.333 + 1.335 × 10−3(BRIX) + 7.608 × 10−6(BRIX)2 (3-7)

The accuracy of the used analytical device was ±0.1 [%].

3-3-6 Speed of sound

The speed at which sound waves propagate through a medium is called the speed of sound
in that medium. It is thermodynamically defined as the partial derivative of pressure with
respect to density, taken adiabatically:

c2 =
(
∂p

∂ρ

)
s

(3-8)

Speed of sound measurements were done using three different analytical devices. Two Olym-
pus 5 [MHz] transducers combined with a LeCroy 9400A scope and an ultrasonic analyzer
were used to conduct the sonic speed measurements in the screening experiments. The trans-
ducers were placed at in a water bath at a distance of 0.2 [m] from each other and the sample
was placed in between. The sample was contained in a PVC cup with a width of 0.015 [m],
covered with thin adhesive plastic. This thin plastic was used because it has negligible influ-
ence on the obtained measurement results. Sonic speed data was obtained by comparing the
time between the sending and receiving of a sonic signal with and without the sample. Due
to apparatus limitations, this technique could only be applied at room temperature.
For the calibration experiments a LiquiSonic lab system from SensoTech was used. The
inline measurements of the speed of sound were conducted using a SensoTech LiquiSonic 20
controller, combined with an immersion type probe 40-40. Both probes measure the sonic
speed by measurement of the time between sending and receiving a sonic signal over a fixed
distance. The measurement accuracy for both probes was ±0.1 [m/s]. The probe that was
used inline was contained in a specially fabricated metal cup. The cup had an inner diameter
of 0.08 [m] and a liquid level height of around 0.10 [m].

3-3-7 NIR spectroscopy

near infrared (NIR) spectroscopy uses the near-infrared region of the electromagnetic spec-
trum (typically 800 to 2500 [nm]). It is typically applied in pharmaceutical and medical
applications as well as in quality control of e.g. food. A NIR256-2.0 AvaSpec spectrometer
from Avantes was used to obtain the NIR spectra, with an AvaLight-HAL tungsten light
source and a dip probe and flow cell, for offline and online measurements respectively (light
source accuracy ±0.1 [%], photometric accuracy ±1 [%]). The bandwidth of this spectrometer
was 1016 to 2045 [nm]. Averaging was done over 10 spectra and the integration time was 20
[ms]. The collected spectra were converted to absorbance spectra using Equation 3-9.

An = − log
(
samplen − darkn

refn − darkn

)
(3-9)

The dark spectrum was collected with the light source switched off and water was used for
the reference spectrum.
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3-3-8 UV-vis spectroscopy

The part of the electromagnetic spectrum located at the boundary of the visible and the
ultraviolet is used in UV-vis spectroscopy. Most liquid- and gas-phase UV-vis spectroscopic
measurements rely on Beer’s Law, in which the light absorbance is expressed in terms of the
molar absorption coefficient, the pathlength and the concentration of different species in the
medium.

A = εbC (3-10)

An Ultrospec 2100 pro from GE Healthcare was used to collect the UV-vis spectra, with a
bandwith of 201 to 900 [nm]. The wavelength accuracy was ±1 [nm] and the photometric
accuracy ±0.5 [%]. This apparatus is only able to perform spectroscopy on lab samples and
not for online purposes.

3-3-9 Analysis of MEA concentration

Figure 3-2: The phosphoric acid set-up
for CO2 concentration analysis

The MEA concentration is determined using a Titralab
TIM965 titration manager, with an accuracy of ±0.7
[%], combined with a SAC850 sample changer, both
from Radiometer Analytical. A solution of 0.1 [M] HCl
is used as titrant. 100 [µl] of a sample is diluted with 25
[ml] water and 1 [ml/min] of titrant is added until the
deflection point has been reached. Given the amount of
titrant added to reach the deflection point, the molarity
of MEA in the sample is found and the mass concen-
tration can be calculated if the density of the sample
is known. The MEA concentration with respect to the
unloaded solution is subsequently found using the CO2
concentration. The combined accuracy of this method
(amount of sample added included) was considered to
be ±2.5 [%]

3-3-10 Analysis of carbon dioxide concentration

To determine the CO2 concentration in a sample the phosphoric acid set-up is used (Figure
3-2). 5 [ml] of a sample is injected in the flask, containing boiling phosphoric acid. A nitrogen
flow of 400 [l/h] is circulated through the flask. All CO2 is released from the sample when it
contacts the phosphoric acid and it is subsequently transported to a Rosemount BINOS 100
2M CO2 analyser with the nitrogen flow. The amount of released CO2 is analyzed and used
to calculate the molar concentration of CO2 in the sample. With a known density, the mass
concentration of CO2 in the sample is obtained. The accuracy of this method was rather low
due to many disturbing influences and was considered to be ±5 [%].
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Chapter 4

Model development and validation

4-1 Introduction

This chapter deals with the development and validation of the predictive chemometric model
to determine the Monoethanolamine (MEA) and CO2 concentrations in the solvent in real-
time. The model development and validation was divided into five parts:

1. Sensitivity assessment
Investigation of different analytical techniques to be used in model development

2. Construction of a calibration data set
Preparation of calibration samples and measuring of required solvent properties

3. Calibration and development of the final model
Utilization of the calibration data set to calibrate and develop a chemometric model

4. Validation of the developed model by means of lab-samples
Offline validation of the predictive accuracy of the developed model

5. Online validation of the developed model at the miniplant
Experiments at a CO2 absorbing miniplant, operated at the the Karlsruhe Institute of
Technology (KIT)

The process and results of model development and validation have been described in a
manuscript that was submitted to Industrial & Engineering Chemistry Research (IECR).
The submitted manuscript is presented in section 4-2, the appendices are to be found in
Chapter B.

4-2 Submitted manuscript
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Abstract

A method has been developed for online liquid analysis of the amine and absorbed CO2
concentrations in a post-combustion capture process using monoethanolamine as a solvent.
Online monitoring of the dynamic behaviour of these parameters is of major importance in
process control and is currently only achieved using expensive Fourier transform infrared spec-
troscopy. The developed method is based on cheap and easy measurable quantities. Inverse
least-squares models were built at two temperature levels, based on a set of 29 calibration
samples with different MEA and CO2 concentrations. Density, conductivity, refractive index
and sonic speed measurements were used as input data. The developed model has been vali-
dated during continuous operation of a mini CO2-capture pilot-plant. Concentrations of MEA
and CO2 were predicted with an accuracy of 0.53 [wt%] and 0.31 [wt%], respectively. Pro-
cess dynamics, like step-changes in the CO2 flue gas concentration, were covered accurately
as well. The model showed good robustness to changes in temperature. Combining density,
conductivity, refractive index and sonic speed measurements with a multivariate chemometric
method enables the real-time and accurate monitoring of the acid gas and monoethanolamine
concentrations in CO2 absorption processes.

1 Introduction

Capturing CO2 from industrial flue gases has a great potential in reducing the emission of
this major greenhouse gas into the atmosphere[5]. One of the ways to capture CO2 is Post-
Combustion Capture (PCC) using an amine based-chemical absorption process[30]. In such a
process, the CO2 in the flue gas reacts with the aqueous amine solution, which is regenerated
again at elevated temperature and pressure. The process generally consists of an absorber and
a stripper column, as depicted in Figure 4-1. The flue gasses are brought in contact with the
solvent in the absorption column (C1), where the CO2 reacts with the solvent. The cleaned
flue gas is purged and the CO2-rich solvent is heated in the lean-rich heat exchanger (H1)
and subsequently regenerated in the stripper column (C2). The CO2 is thermally stripped
from the solvent and the lean solvent is cooled in the lean-rich heat exchanger and recycled to
the absorber. In this work, chemical absorption with an aqueous MEA solution as absorbing
agent is used as a base case.
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Figure 4-1: Flow sheet of a typical amine-based CO2 capture process. Dotted condensate return
line represents the installation in the TNO mini-plant

Although this PCC process is in principle not very complicated, controlling its performance
is not an easy task. First, the flue gas composition and flow rate fluctuate due to upstream
operational variations in the (power) plant. Second, solvent degradation and deactivation oc-
curs, induced by elevated temperatures in the process and by irreversible reactions with other
species present in the flue gas (e.g. O2, SOx and NOx) or CO2 [31, 32], leading to a reduction
in capture capacity. Controlling process performance, therefore, requires accurate monitor-
ing of the absorbent and CO2 concentrations in the liquid phase. Current methods (based
on offline lab analysis) are laborious and fail to cover fast transient behavior in the solvent
composition. fourier transform infrared (FTIR) combined with a multivariate chemometric
method to predict these concentrations online for PCC processes exploiting the potassium
salt of β-Alanine[8] and MEA[9] as absorbents. The obtained results were promising with
respect to the predictive accuracy. However, there are some disadvantages related to the use
of FTIR: first, the relatively high costs of the required apparatus and second, the need for it
to be located within a few meters of the process. Furthermore, the method shows unsatis-
factory results when the concentrations of the components in the mixture exceed respective
calibration limits, or when the mixture contains components the model was not calibrated
for.

Master of Science Thesis A.C. van Eckeveld



26 Model development and validation

A more cost-effective method for determination of solvent and solute composition in the liquid
can be found in the combination of easy measurable solvent properties with a multivariate
chemometric method. Previously, some work has been done using different analytical tech-
niques to determine solvent composition. Conductivity measurements have been used for
CO2 concentration monitoring[10, 11], but the use of one analytical technique restricts the
possible prediction to only one component. A combination of density and refractive index
measurements has been evaluated for estimation of the solvent and solute concentrations in
amine based CO2 capture processes[12] and the results were promising in terms of predictive
accuracy. However, the robustness of this technique to disturbances is limited due to the
inclusion of only two measured quantities. The sensitivity of sonic speed to amine concentra-
tion was identified by Hawrylak et al.[13] and sonic speed might therefore be applicable for
the prediction of the amine concentration in the solvent. Recently, a screening study has been
carried out to assess the sensitivities of different simple analytical techniques to compositional
changes in the solvent mixture[14]. Assessed solvent properties were conductivity, pH, density,
refractive index and UV-vis spectra. Combinations of density, refractive index, conductivity
and pH showed promising results for predicting the MEA and CO2 concentrations of solvent
samples. No method has been reported concerning the online prediction of solvent composi-
tion, which is both cost effective and readily implemented. The objective of this work is to
develop a real-time model that enables monitoring of the absorbent concentration and acid
gas loading, based on solvent properties that are relatively inexpensive and easy to measure.

This paper is organized as follows. The method to come to a predictive model is described
in Section 2. Used chemical and the experimental procedure is treated in Section 3, followed
by the results and model calibration in Section 4. Finally, the model validation is described
in Section 5 and the paper is concluded in Section 6.

2 Approach

To come to a predictive model for the MEA and CO2 concentration in a carbon capture
process, first screening experiments were carried out. The sensitivity of density, conduc-
tivity, pH, viscosity, sonic speed, refractive index, near infrared (NIR) spectroscopy and
visible ultra-violet (UV-vis) spectroscopy to changing solvent composition and the presence
of contamination was assessed. The MEA and CO2 concentrations were the most important
variables included in these screening experiments. In addition, five other factors were included
to account for solvent degradation, deactivation and temperature. Nitric acid (HNO3) and
sulfuric acid (H2SO4) are the third and fourth factor. They are the main contaminants result-
ing from the presence of NOx and SOx in flue gasses and are also known to form Heat Stable
Salts (HSS) with MEA. According to Rochelle et al.[17], 1-(2-hydroxyethyl)imidazolidone-2
(HEIA) is one of the major products from the thermal degradation pathway called carbamate
polymerization and is, therefore, included as well. Next to that, a pollutant mix is added as
the sixth factor, containing common oxidative degradation products: ammonia, formic acid,
formaldehyde, acetic acid and oxalic acid[33]. Temperature is included as the seventh factor
to evaluate the dependence of the analytical techniques on temperature changes.

Assessing the relations between seven parameters at two levels (low and high) would involve 27

= 128 different samples. To reduce the number of required samples, the design of experiments
approach is used[34]. A two-level (high and low), seven-factor fractional-factorial DOE was
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developed, having a resolution of IV. This means that first order-interactions are confounded
with third-order interactions and second-order interactions with each other. Only first order
effects can be investigated following this approach. This is not problematic, since the first-
order sensitivities were the main interest of these screening experiments.

Table 4-1: High and low values used in the design of the screening
experiments. Concentrations are with respect to the total solution.

Factor Low value High value
MEA [wt%] 25 35
CO2 [wt%] 0 5
HNO3 [wt%] 0 1
H2SO4 [wt%] 0 1
HEIA [wt%] 0 1
Pollutants consisting of
Ammonia [wt%] 0 0.25
Formaldehyde [wt%] 0 0.25
Formic acid [wt%] 0 0.50
Acetic acid [wt%] 0 0.50
Oxalic acid [wt%] 0 0.25
Temperature [◦] 20 60

Sixteen samples are required fol-
lowing this approach, accompanied
by a center point sample. The
high and low levels for all seven
factors are listed in Table 4-1,
where the concentrations are in
mass percentages of the total solu-
tion. The MEA concentration in
actual absorption processes is usu-
ally around 30 [wt%] and the high
and low concentrations are chosen
around this value. The maximum
CO2 concentration depends on the
MEA concentration and is chosen
to be 5 [wt%] of the total solu-
tion. This concentration is for all
samples smaller than the maximum

concentration of 0.5 mole per mole MEA, which allows the free MEA to react with added
contaminants. Desorption of CO2 due to the addition of contaminants will, therefore, be
negligible. The added amounts of pollutants, HNO3, H2SO4 and HEIA are small and only
aimed to assess the influence of these components on the measurement results. The chosen
concentrations do not reflect actual concentrations occurring in process plant operation.
Sensitivities of all measurement techniques were assessed with respect to the MEA and CO2
concentrations and their robustness against pollution and contamination. In order to do
so, a sensitivity parameter was computed from the measurement data. The measurement
results were first multiplied with a 1 or -1 for a high or low level in the DOE, respectively,
and were subsequently summed for each factor separately. This resulted in a number that
represents the change in a measured quantity due to an increase in the respective factor.
Dividing this value by the standard deviation of the corresponding measured property resulted
in a sensitivity parameter that allows for a comparison between all measured quantities.
The obtained sensitivity parameter was used to investigate the applicability of the different
analytical techniques in predictive modeling of the MEA and CO2 concentration in the solvent.
For subsequent model calibration and validation 29 samples were prepared containing different
MEA and CO2 concentrations. No other components were added to the samples, because
only the MEA and CO2 concentration were to be quantified by the model. Seventeen of these
samples were used in model calibration and the remaining were used for model validation.
The applied ranges for MEA and CO2 and the temperature used in model calibration are
typical for chemical absorption plants exploiting MEA as absorbent. Most commonly, MEA
concentrations of around 30 [wt%] are used in process plants. Higher concentrations are rarely
applied and the MEA concentration range is therefore defined to be 20-36 [wt%] MEA as a
function of the fresh and unloaded solution. It is common practice in this kind of processes to
express the concentration of the absorbing agent in terms of the unloaded solution and this
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Figure 4-2: Model development sample distribution for 40 [◦C] (left) and 55 [◦C] (right). Filled
dots represent calibration samples, open dots represent validation samples.

convention is followed here. CO2 concentrations are defined as molar loading of MEA. The
applied range is 0 - 0.5 mole per mole MEA. The sample set was divided into two sets of 23
samples, as indicated in Figure 4-2, one of these sets was used for model development at 40
[◦C] and the other for model development at 55[◦C]. The chosen temperatures are typical for,
respectively, the lean and rich solvent flows at the measurement positions indicated in Figure
4-1.

Several chemometric models were created using the calibration data to evaluate the predictive
performance of different combinations of analytical techniques. The best performing model
is subsequently evaluated during two continuous trials on a mini capture plant and finally
validated using manual offline analysis.

3 Materials and experimental procedure

3.1 Used Chemicals

MEA (99%), HEIA (75%), sulfuric acid (65%), ammonia (28-30%), formaldehyde (37%),
acetic acid (99.5%) and oxalic acid (0.5 [M]) were purchased from Sigma-Aldrich. Formic
acid (98-100%) was purchased from Merck and nitric acid (65%) from Fluka. All chemicals
were used as received.

3.2 Sample analysis

The MEA concentration in the samples is measured using titration with HCl. A TIM965
titration manager from Radiometer Analytical is used for this purpose. CO2 concentrations
were obtained by injecting a known quantity of the sample into boiling phosphoric acid,
releasing all the dissolved CO2. The amount of CO2 in the gas phase is continuously measured
using a Binos 100 2M carbon dioxide analyzer from Rosemount Analytical. Accuracy of these
analytical techniques is ±2.5% and ±5% of the measured values, respectively.
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3.3 Screening experiments

The samples have been prepared in an ice-bath and under a nitrogen blanket, to prevent any
unwanted side reactions to occur. A loaded and unloaded MEA stock solution was made,
containing 50 [wt%] MEA and a CO2 loading for the loaded solution of 0.5 mole per mole
MEA. The main contaminants (HNO3, H2SO4 and HEIA) were diluted to 25 [wt%] before
being added to the samples. All mentioned concentrations are in [wt%] of the entire solution.
The samples were prepared from these stock solutions and the pollutants mix, which was
prepared by addition of individual pollutants to demineralized water. The samples were
heated to the required temperature before measurements were conducted.

Densities were measured using a DMA 4500 Anton Paar oscillating U-tube density meter.
Conductivity measurements were performed using the Orion Star A322 portable conductivity
meter from Thermo Scientific, with a linear temperature correction of 2.1 [%/◦C ]. pH was
measured with a PHM210 pH meter from Radiometer Analytical. An inline brix refractometer
(CM780N) produced by Atago was used for the brix measurements (BRIX), which were
converted to refractive index (nD20) values using the following empirical correlation, provided
by Atago:

nD20 = 1.333 + 1.335 × 10−3 × (BRIX) + 7.608 × 10−6 × (BRIX)2 (4-1)

Viscosities were measured using a Contraves Low Shear 40 viscometer. NIR spectra were
obtained using an Avantes AvaSpec NIR256-2.0 spectrometer, operated with an AvaLight-
HAL tungsten halogen light source and a dip probe. The wavenumber range of the resulting
spectra was 4891-9833 [cm−1]. Integration time was 20 [ms] and averaging was done over
10 spectra. UV spectra were measured using the Ultrospec 2100 pro from GE Healthcare,
with wavelengths ranging from 210 to 900 [nm]. Two Olympus 5 [MHz] transducers combined
with a LeCroy 9400A scope and an ultrasonic analyzer were used to conduct the sonic speed
measurements. The transducers were placed in a water bath facing each other and the sample
was placed in between. The sample was contained in a PVC cup, covered with thin adhesive
plastic. This thin plastic has negligible influence on the obtained measurement results. Sonic
speed data was obtained by comparing the time between sending and receiving a sonic signal
with and without the sample. Due to apparatus limitations, the sonic speed was measured
at room temperature only.

3.4 Calibration experiments

The samples used for model calibration were prepared from two stock solutions, containing 40
[wt%] MEA of the fresh (unloaded) solution. One of the stock solutions was loaded with 0.526
mole CO2 per mole MEA (or 12.6 [wt%] CO2 of the total solution). The samples were prepared
from the stock solutions in air and at room temperature. The samples were subsequently
heated to the respective temperature levels (40 [◦C] or 55 [◦C]). Required measurements were
done and the acquired data was used for model calibration and assessment (Section 4.2).

The analytical techniques were the same as in the screening experiments except for sonic
speed. A LiquiSonic Lab system from SensoTech was used to measure the sonic speed in
the samples. This technique could also be used at elevated temperatures, required for the
calibration measurements.
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3.5 Continuous trial

Figure 4-3: Miniplant absorber (left) and strip-
per column

Model validation is carried out at the TNO mini
absorption plant[35]. A picture of the absorber
and stripper column of that plant is given in Fig-
ure 4-3. The flow-sheet of this pilot plant is shown
in Figure 4-1, where the dotted line represents the
condensate return line in the mini-plant set-up.
Artificial flue gas was fed to the absorber packed
column, were CO2 was absorbed in the aque-
ous MEA solution. The cleaned flue gases were
vented into the atmosphere. The rich (loaded)
solvent was heated and then fed to the desorber,
where the dissolved CO2 was released at elevated
temperature and pressure. The lean solvent was
subsequently recirculated to the absorber. Speci-
fications of the plant are given in Table 4-2. The
plant was operated with aqueous MEA as solvent
and an artificial flue gas flow containing a mixture
of CO2 and air. The measurement loop consisted
of density, pH, conductivity, NIR and refractive
index sensors. During the first test run, it was in-
stalled in the lean stream, directly after the lean
cooler (H3 in Figure 4-1). For the second test
run it was moved to the rich stream, after the ab-
sorber bottom pump. Refractive index and NIR
measurements were conducted using the same ap-
paratus as for the calibration experiments.

Inline density measurements were done using
an Elite MicroMotion Coriolis flow and density
meter. Conductivities were measured using a
SZ3274.168 EC probe combined with a C7635 mi-
croprocessor, both from Nieuwkoop bv. pH was
measured using a SZ165 probe and a PH3630
transmitter, also from Nieuwkoop bv. Due to
an incompatibility with the measurement appara-
tus, the sonic speed measurements were not per-
formed inline; they were done on manually taken samples. These samples were also used to
validate the models by analyzing the MEA and CO2 concentrations as described in Section
5. During the measurements, twelve samples were taken; three during the first run and nine
during the second run.
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4 Results

4.1 Screening experiments

Table 4-2: Specifications mini-plant

Absorber height [m] 3.5
Absorber inner diam. [m] 0.045
Stripper height [m] 3.0
Stripper inner diam. [m] 0.045
Liquid circulation rate [kg/h] 15
liquid volume [l] 20

The obtained sensitivity results are listed in Ta-
ble 4-3, and the quantities that are most sensitive
to changes in different parameters can be identi-
fied. The sensitivity parameter has a value be-
tween -1 and 1, which indicates the sensitivity of
a specific measured property for changes in the
respective parameter. A sensitivity close to -1 or
1 indicates that the relation between a measured
property and a changed parameter is very strong.
For the UVvis and NIR, the sensitivity was calculated for the entire spectra, but the results
for only two wavelengths (from the entire spectra) are listed in Table 4-3, having the largest
sensitivities with respect to the MEA and/or CO2 concentrations.

Table 4-3: Sensitivity results from screening experiments

Property MEA CO2 HNO3 H2SO4 HEIA Pollutants Temperature
Conductivity -0.31 0.78 0.23 0.18 -0.03 0.29 0.16
pH 0.09 -0.54 -0.14 -0.15 -0.04 -0.22 -0.69
Density 0.06 0.88 0.10 0.15 0.04 0.14 -0.32
Refractive index 0.63 0.69 0.09 0.08 0.05 0.19 0.07
Viscosity 0.44 0.33 0.07 0.06 -0.02 0.04 -0.71
Sonic velocity 0.74 0.54 -0.03 0.06 0.12 0.19 -
NIR 5975 [cm−1] 0.32 0.74 0.01 0.04 -0.07 0.16 -0.50
NIR 6922 [cm−1] -0.92 -0.19 -0.05 -0.04 -0.04 -0.18 0.05
UV-vis 270 [nm] 0.11 0.63 0.49 -0.14 0.06 0.28 0.29
UV-vis 300 [nm] 0.07 0.17 0.93 0.06 0.01 0.09 0.11

Temperature has a large effect on certain measured quantities. However, since the temper-
ature is normally already measured inline in process plants it can be accounted for by the
developed model and will, therefore, not be discussed in more detail.

From Table 4-3 it follows that conductivity measurements showed a large sensitivity to the
CO2 concentration in the solvent. Furthermore, it was sensitive to pollutants and contami-
nants in the samples and might therefore be used to identify solvent degradation and to limit
its impact on model accuracy. The pH showed also a large (but negative) sensitivity to the
CO2 concentration and a somewhat lower sensitivity to contaminants in the solvent. The
sensitivity for MEA was quite low for especially pH and density measurements, the latter of
which, however, was very sensitive to changes in the CO2 concentration. Refractive index was
both sensitive to MEA and CO2 concentrations and relatively robust to pollution, making it
an attractive option in model development. The small sensitivity of viscosity measurements
to contamination of the samples was encouraging, but due to a lack of availability of inline vis-
cometers it is not used in further model development. Measurements of the sonic speed were
sensitive to MEA concentration and a combination of sonic speed with density measurements
is a promising option in estimating both MEA and CO2 concentrations.
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The UV-vis spectra showed a large sensitivity for mainly HNO3 and CO2 in certain wavelength
ranges, but when it comes to MEA this sensitivity was limited. Furthermore, degradation
causes the sample color to darken, indicating that a large amount of the visible light is
absorbed in the samples. UVvis spectroscopy is therefore not adequate in process plant
operation, where degradation occurs. NIR spectroscopy appeared to be sensitive to both
MEA and CO2 concentrations for certain wavelength ranges and pollutants and contaminants
had a small influence on the obtained measurement results, for most wavelengths.

The described results are comparable with the sensitivities obtained by van der Ham et al.[14].
Differences occur for mainly conductivity and pH measurements. As mentioned in Section 3.3,
a linear temperature correction was used for the conductivity measurements, which caused
the, in this work obtained, sensitivity results of the conductivity to differ from the sensitivity
obtained by van der Ham et al. The pH measurements were found to be less sensitive to both
MEA and CO2 concentration and more sensitive to temperature. Differences in experimental
procedure might be causing these deviations. In addition to the previous work done by van der
Ham et al., sonic speed, viscosity and NIR spectra were added to the screening experiments
in this work. The presence of the carbamate polymerization product HEIA, which was not
included in previous work, appeared to have a small influence on the assessed quantities
compared to the other contaminants and pollutants, as follows from Table 4-3.

Based on the results of the screening experiments, only UV-vis and viscosity were excluded
from further model development. Included were density, conductivity, pH, refractive index,
sonic speed and NIR measurements.

4.2 Model calibration

The acquired calibration data is used to construct chemometric models based on different
combinations of solvent properties, in order to assess which combination can best be used to
calibrate the model, in terms of costs and predictive accuracy.

The performance of the developed models was compared based on the Root-Mean-Square
Error of Prediction (RMSEP), for the validation samples:

RMSEP =

√√√√√ n∑
i=1

(ŷi,val − yi,val)2

n
(4-2)

Where n is the number of samples, Yi is the measured and ŷi the predicted value for the
respective variable. The RMSEP represents the mean predictive error in the units of the
respective predicted (or Y)-variable, in this case in weight percentage of the fresh solvent for
MEA and in weight percentage of the total solution for CO2.

All initially developed models were based on Partial Least Squares Regression (PLSR)[36].
This technique makes use of the inverse calibration approach, where it is possible to calibrate
for the desired components while implicitly accounting for the other sources of variation. The
data compression step in PLSR is bilinear, meaning that both the X- and Y-block data (or
observed and predicted data) are projected onto newly defined Latent Variables (LVs). The
latent variables are constructed based on maximum of variance captured in both the X- and Y-
block data. The optimal number of latent variables to be used is determined iteratively using
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the RMSEP for the validation samples as judging parameter. Since PLSR is an essentially
linear technique, it is only able to model linear or weakly non-linear relations. Most measured
quantities, however, have a non-linear temperature dependency resulting in reduced accuracy
for non-calibrated temperature levels. It was therefore decided not to include temperature as
a variable in the X-data but to develop models at two constant temperature levels (40[◦C] and
55[◦C]). For optimal model performance the measurement loop temperature should, therefore,
be maintained at one of the calibrated values.

Data pre-treatment was different for NIR spectra and the other measurement data. The raw
NIR data was first converted to absorbance spectra using

An = − log
(
samplen − darkn

refn − darkn

)
(4-3)

where An is the absorbance spectrum of sample n, samplen is the raw NIR spectrum of the
sample and refn and darkn are a reference and dark spectrum. Demineralized water was used
as a reference. The absorbance spectra were subsequently windowed to exclude wavelength
ranges where MEA and CO2 concentration differences had no influence on the amount of
absorbed light. The resulting spectra in the wavenumber range of 5271 - 8313 [cm−1] were
block scaled instead of variance scaled to preserve the mutual inner dependencies. Different
filtering techniques were assessed. The use of first or second order derivatives of the spectral
data is a common way to remove, respectively, baseline offset and global trend from the
spectral data. Other proposed NIR spectral filtering techniques include Multiplicative Scatter
Correction (MSC), Standard Normal Variate (SNV)[37] and Orthogonal Signal Correction
(OSC)[38]. MSC and SNV are correction techniques for light reflections and scattering that
affect the NIR spectra. Spectral variations that are unrelated to the concentrations of the
species of interest are removed using OSC filtering. All mentioned preprocessing techniques
were assessed for their influence on the RMSEP of the resulting model.

The other measurement data was z-scored by mean-centering and variance scaling. Mean
centering was applied to remove unwanted leverage effects from the data and to focus on the
differences in data induced by changes in Y-variables. Subsequent variance scaling removed
weighing that was artificially induced by the scales of the measured quantities.

The obtained RMSEP for a selection of the assessed data sets is listed in Table 4-4. For
the NIR data, only the models based on the first and second-order derivative of NIR and
the unfiltered NIR data are reported in the table. The other filtering techniques showed
comparable or worse predictive accuracy. The RMSEP values obtained by Geers et al. 5 ,
using the FTIR data, are reported in the last row of Table 4-4. These values were scaled to
the absorbent and acid gas ranges used in this study, for comparability purposes.

From Table 4-4 it follows that the best-performing model at 40 [◦C], in terms of RMSEP,
was the model based on a combination of all assessed quantities, but exclusion of the NIR
data gave only a slight increase in RMSEP. Models based on solely NIR data performed
worse than most models based on the other data. The smallest predictive error based on the
non-spectroscopic measurements was obtained using only density, pH, refractive index and
sonic speed data for model calibration. At 55 [◦C], the model based on density, conductivity,
refractive index and sonic speed showed a comparable performance with the model based on
all data. Other combinations of measurement data had a considerably higher RMSEP for
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Table 4-4: RMSEP values for the developed models for 40 [◦C] (left) and 55 [◦C] (right)

Included data RMSEP MEA [wt%] RMSEP CO2 [wt%]
All 0.13/0.42 0.03/0.11
NIR 0.22/0.63 0.11/0.08
1st derivative of NIR 0.27/0.52 0.08/0.11
2nd derivative of NIR 0.27/0.47 0.09/0.12
Density/pH/cond./refr. ind./sonic speed 0.17/0.53 0.04/0.12
Density/cond./refr. ind./sonic speed 0.24/0.44 0.05/0.11
Density/refr. ind./sonic speed 0.19/0.89 0.05/0.12
Density/pH/refr. ind./sonic speed 0.15/0.86 0.04/0.12
FTIR (obtained by Geers et al.)[8] 0.38 0.26

especially MEA. Remarkable is the large difference in accuracy between the models at 40
[◦C] and 55 [◦C]. Calibration measurements were carried out in air, possibly resulting in the
absorption of uncalibrated species from air (oxygen/nitrogen) that could disturb the models.
Higher temperatures influence the equilibrium concentration of these species and, possibly,
enforce reactions in the samples. The effect of these temperature related changes depends
on the time the sample has been heated which was not constant over all samples, thereby
inducing uncertainties to the calibration data. Consequently, the models calibrated at 55
[◦C] were less accurate, but more robust to disturbances. The final model was, therefore,
calibrated using measurements of the density, conductivity, refractive index and sonic speed.

Table 4-5: Estimated purchase costs of an-
alytical equipment

Conductivity [e] 650
pH [e] 550
Density [e] 3,500
Refractive index [e] 5,000
Sonic speed [e] 7,000
NIR [e] 20,000
FTIR [e] 100,000

These four techniques were chosen for model robust-
ness purposes and to reduce apparatus costs. Esti-
mated costs for the different measurement techniques
are summarized in Table 4-5 and it follows that exclu-
sion of NIR is advantageous in terms of costs, since
the NIR spectrometer is the most expensive analyt-
ical technique used. The accumulated costs of the
four analytical techniques is estimated to be around
e16,000, representing a more than six times reduction
compared to the use of FTIR alone.
All models calibrated at 40 [◦C] showed significantly

increased predictive accuracy compared to that obtained by Geers et al. The 55 [◦C] models
were slightly less accurate in MEA but more accurate in CO2 concentration prediction. The
obtained predictive accuracy in this work is promising when it comes to process control
purposes.
Figure 4-4 shows the predicted versus measured concentrations for both MEA and CO2 in
the 40 [◦C] and 55 [◦C] cases. The confidence intervals for the predicted concentrations were
constructed following the hetroscedastic error of prediction theory presented by Faber et
al[39].
Since the model based on density, conductivity, refractive index and sonic speed consisted of
four latent variables based on four X-variables, no data compression was required. Therefore
an Inversed Least Squares (ILS) model was built instead of a PLSR model. The regression
step in such a model is the same as for PLSR, but no data compression step is involved.
The final model is an ILS model, calibrated with density, conductivity, refractive index and
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sonic speed measurement data of 29 calibration samples. The model was calibrated at two
temperature levels: 40 [◦C] and 55 [◦C].
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Figure 4-4: Predicted versus measured MEA (left) and CO2 concentrations for the two temperature
levels: 40 [◦C] (blue) and 55 [◦C] (red)

5 Model validation

Continuous validation tests were carried out at the mini-plant, previously described in Section
3.5. The mini-plant consisted of an absorber and stripper column, for acid gas capturing
purposes. Aqueous MEA was used as an absorbent for capturing CO2 from artificial flue gas.
The solvent temperature at the measurement locations was approximately 44 [◦C] in the lean
circuit and deviated from 32 [◦C] to 42 [◦C] in the rich circuit due to the changing amount of
absorbed CO2. The acquired data was used as an input to the model calibrated at 40 [◦C],
described in Section 4.2, and the performance of the model was evaluated. The MEA and
CO2 concentrations in the, during the test runs acquired, samples were predicted using the
model based on density, conductivity, refractive index and sonic speed. Only the sonic speed
data was not acquired continuously, for reasons described in Section 3.5. Since no continuous
sonic speed data was available, the continuous concentrations were evaluated using a model
based on density, conductivity and refractive index only. The accuracy of this model was
slightly less compared to the model based on four properties (table) but the dynamics in the
process were followed.

The continuously predicted concentrations are presented in Figure 4-5. The obtained con-
centrations in the first run are smooth and dynamics of switching on the CO2 in the flue
gas are well covered. Small fluctuations in the MEA and CO2 concentrations during the test
were caused by changes in the stripper conditions and in the amount of condensate water
added. The continuously predicted concentrations for the second run are less smooth. Large
fluctuations during the end of the test were caused by the presence of some air bubbles, in-
fluencing the measurements. As depicted in Figure 4-1, vaporized water was separated from
the stripper outlet gas flow in a condenser. In the mini-plant, this condensate water was
recirculated to the system directly after the absorber bottom pump (P1). During the last
part of the second test run the condensate water reservoir was almost empty, resulting in
the introduction of some air bubbles in the system. The measurement errors caused by these
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air bubbles, however, can easily be filtered out of the data and are therefore not much of
a problem. The location of condensate water addition also caused the smaller fluctuations
during the rest of the test run. The continuous flow of condensate water diluted the solvent to
some extent (order of magnitude of 20-30%). A changing solvent flow rate from the absorber
bottoms caused changes in the extent of dilution, resulting in the abruptly changing MEA
and CO2 concentrations visible in Figure 4-5. However, the CO2 step test dynamics were
covered accurately. The amount of CO2 in the flue gas was reduced from 12 [mol%] to 0
[mol%] in six steps, after which it is restored to 12 [mol%] and again switched off and restored
to 12 [mol%]. All these events are reported in the figure and well covered by the model.
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Figure 4-5: Predicted MEA (top) and CO2 (bottom) concentrations for the first (left) and second
(right) continuous test run. Molar CO2 fractions in the artificial flue gas and the CO2 step test are
given in the top figures.

The accuracy of the predicted MEA and CO2 concentrations is assessed by analyzing these
concentrations in the acquired samples. The measured concentrations were compared to the
predicted concentrations based on the, previously mentioned, four analytical techniques. The
predictive error was again expressed in terms of the RMSEP, and the results are presented
in Table 4-6 for both experiments. The developed method showed to be very accurate,
especially for MEA. The use of different density and conductivity measurement apparatus
did not disturb the results significantly. Remarkable is the difference in accuracy between
both tests. First, it should be noted that the RMSEP for the first experiment was based
on only three samples. Furthermore the first run measurements were conducted in the lean
flow, which had an almost constant temperature of 44 [◦C]. The temperature of the rich
flow however, where the measurement loop was installed during the second run, was not
controlled at a certain level and fluctuated between 32 [◦C] and 42 [◦C], resulting in less
accurate concentration predictions. Comparison of the RMSEP values for the continuous
validation with the lab sample accuracy (Table 4-5 and Table 4-6, respectively) reveals that
the continuous accuracy is significantly less compared to the lab sample accuracy, but it is
still sufficient for process control purposes. The large deviations in temperature had a limited
effect on the predictive performance of the model, but an increased accuracy will be obtained
if the measurement loop temperature is maintained at the calibrated level.
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Table 4-6: RMSEP values for the continuous trials

RMSEP MEA [wt%] RMSEP CO2 [wt%]
Test run 1 0.46 0.17
Test run 2 0.53 0.31

6 Conclusions and future outlook

A method has been developed to estimate the solvent and solute concentration in the liquid
phase of an acid gas chemical absorption process. Density, conductivity, pH, viscosity, sonic
speed, refractive index, NIR and UVvis spectroscopy were assessed for their applicability in
predictive modeling of the MEA and CO2 concentration. Based on this first screening, UVvis
spectroscopy and viscosity measurements were removed. Evaluation of different combinations
of the other analytical techniques resulted in an optimal combination in terms of predictive
accuracy and costs, consisting of density, conductivity, refractive index and sonic speed mea-
surements. A multivariate ILS model was calibrated for inline prediction of the solvent and
solute concentration. The model was developed using 29 samples with known MEA and CO2
concentrations. During the continuous tests, the model was able to predict the MEA and
CO2 concentrations with an accuracy of 0.53 and 0.31 [wt%], respectively under changing
process conditions. Advantages of the developed model over models based on FTIR data are
an increased accuracy, a more than six times reduction in apparatus costs and a simpler in-
stallation in actual process plant environment. Expected is that this method is applicable to
other solvents in different acid gas capturing processes as well, such as natural gas sweetening.

Future work involves the inclusion of other promising quantities like viscosity for more accu-
rate predictive modeling and model calibration for other industrial processes. Furthermore,
process data can be included for increased accuracy reasons as well as an assessment of the
extent of solvent degradation. The cyclic loading (or net loading) of the processes can be
calculated from process data and compared to the cyclic loading based on model predictions.
Process data can also be used to compare theoretical absorbing and desorbing behavior with
actual plant performance to assess the influence of solvent degradation on plant performance.
Another interesting option is increasing the robustness of the model, by including some degra-
dation or contamination into the calibration set. In actual process plant operation this can
be advantageous because prolonged plant operation results in more solvent degradation and
pollution. Increased model robustness to degradation and contamination of the model will
therefore increase its applicability in industrial process operation.

Measurement of the density, conductivity, refractive index and sonic speed, combined with a
multivariate chemometric method can readily be used to accurately monitor the liquid MEA
and CO2 concentrations in a post-combustion CO2 capturing process.
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Chapter 5

Model robustness

For actual process plant application, model robustness against solvent degradation is of major
importance. Solvent degradation influences the measurements, thereby affecting the predic-
tive accuracy of the model. In this section the robustness of the model against solvent
degradation is assessed. Offline model robustness was evaluated based on pilot plant samples
from the 2012 CATO-2 campaign. Online analysis was carried out at the TNO microplant,
during a continuous experiment lasting three weeks. First, the previously described model
calibration was extended with degraded samples, aimed at increasing the robustness of the
model against disturbances.

5-1 Model calibration with degraded samples

For increased robustness purposes the calibration set was extended with eight degraded MEA
samples. Four degraded samples were added to the validation set. These samples were taken
from a series of experiments in the Octavius project, aimed at assessment of the influence of
metals on oxidative MEA degradation. Three different degraded samples were used. The first
was degraded without any further external contamination, to the second some stainless steel
was added and the third contained a small amount of fly ash. Different amounts of degraded
MEA samples were added to a subset of the calibration samples and were used as calibration
samples themselves. Expected is that these samples contain a collection of degradation prod-
ucts representative for industrial applications. The MEA and CO2 concentration of these
polluted samples is measured using the previously described HCL titration and boiling phos-
phoric acid methods respectively (Sections 3-3-9 and 3-3-10). Table 5-1 shows the polluted
samples and the amount of pollution added. All samples have been measured both at 40 and
55 [◦C].

In accordance with the development of the unpolluted models, PLS models were built based
on these polluted data sets and the model performance was evaluated using the validation
sample set, extended with the polluted validation samples. The RMSEP values for both MEA
and CO2, at both temperature levels, were obtained and are listed in Table 5-2.

Comparison of these results with the RMSEP for the unpolluted model (as listed in Table 4-4)
shows that the polluted models are less accurate, due to the addition of polluted samples to
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Table 5-1: Pollution added to calibration and validation samples

Sample Amount of sample (g) Poll sample 1 [g] Poll sample 2 [g] Poll sample 3 [g]
#5 25.00 5.00 5.00 5.00
#8 29.94 5.00 0 0
#9 30.00 0 0 10.00
#10 30.00 0 5.00 0
#13 30.00 10.00 0 0
#T1 30.00 7.50 0 0
#T4 30.00 0 10.00 0
#T11 30.00 5.00 5.00 5.00
#T13 30.00 0 0 7.50

Table 5-2: RMSEP values for the developed models for 40 [◦C] (left) and 55 [◦C] (right)

Included data RMSEP MEA [wt%] RMSEP CO2 [wt%]
All 0.47/0.64 0.38/0.26
NIR 0.59/0.91 0.48/0.29
1st derivative of NIR 0.58/0.57 0.47/0.24
2nd derivative of NIR 0.50/0.58 0.42/0.29
Density/pH/cond./refr. ind./sonic speed 0.51/0.74 0.24/0.28
Density/cond./refr. ind./sonic speed 0.46/0.67 0.23/0.23
Density/refr. ind./sonic speed 0.46/1.06 0.28/0.27
Density/pH/refr. ind./sonic speed 0.45/1.05 0.27/0.29
FTIR (obtained by Geers et al.)[8] 0.38 0.26

the validation set. However, the difference between the calibration for 40 and 55 [◦C] is smaller
for the polluted models. This indicates that the polluted model is more robust to disturbances
in the validation set and is better able to cope with the effects of heating the samples to 55
[◦C], described in Section 4-2. The RMSEP for the unpolluted, 40 [◦C] model, if the same
polluted validation set is used, is 0.71 [wt%] and 0.48 [wt%] for MEA and CO2 respectively.
Therefore, in case the polluted validation data set is used, the polluted model performs
significantly better than the unpolluted model. The combination of density, conductivity,
refractive index and sonic speed data, which was chosen as favourable combination for the
unpolluted model, is the most accurate for both MEA and CO2 at both temperature levels.

5-2 Pilot samples

The influence of degradation components on the accuracy of both the polluted and clean
model was first tested on pilot plant samples, obtained during a campaign in 2012. In 2008,
TNO commissioned a CO2 capture plant, able to process approximately 1500 [Nm3/h] flue gas
and to capture 250 [kg/h] of CO2. Several experimental campaigns were carried out at this
pilot plant in 2012, as a part of the CATO-2 research program. Eleven during those campaigns
obtained samples were analyzed in the lab to acquire model input data (density, conductivity,
refractive index and sonic speed) and the MEA and CO2 concentrations were analyzed. The
measured concentrations were subsequently compared to the predicted concentrations, in

A.C. van Eckeveld Master of Science Thesis



5-3 Microplant experiment 41

Table 5-3: RMSEP for MEA and CO2 of pilot samples

RMSEP MEA [wt%] RMSEP CO2 [wt%]
Unpolluted model 0.75 0.29
Polluted model 0.94 0.26

order to evaluate the model accuracy for these degraded samples and to study the effects of
degradation on this accuracy. This was solely done for the model calibrated at 40 [◦C]. The
RMSEP for both the unpolluted and the polluted model are presented in Table 5-3.

The RMSEP for the polluted model is, opposed to what was found in Section 5-1, notably
larger for MEA. This indicates that the degradation products that were included in the model
do not match the degradation products in the pilot plant samples. As mentioned in Section
5-1 the added degraded samples included mainly oxidative degradation products that were
generated at low temperature. In the pilot plant, the solvent has been at higher temperatures
and pressures (at stripper conditions) and, therefore, not only oxidative degradation did
occur, but carbamate polymerization as well. Furthermore, real flue gasses were treated
in the pilot plant, containing contaminants that were also causing degradation. The pilot
samples contained another ’degradation product mix’ than the Octavius samples, causing a
larger predictive error in the polluted model. The amount of degradation in the pilot samples
could not be identified accurately, but it ranged between the 2 and 7 [%] of the initial MEA
concentration. It is evident that even the polluted pilot samples from an experiment that had
more than 1000 operating hours were still accurately monitored by both models.

5-3 Microplant experiment

For further robustness assessment purposes a continuous experiment was carried out at the
previously described microplant (Section 3-2). The experiment lasted approximately three
weeks and was aimed at an assessment of the influence of gradual degradation on the model
performance. Degradation was increased by using a mixture of air and CO2 as flue gas,
having a O2 concentration of around 17.6 [vol%]. Furthermore, during the last days of the
experiment, coppersulfate was added, which has a catalytic effect on oxidative degradation.
Density, conductivity, refractive index and sonic speed were measured online in a temperature
controlled test rig. The temperature of this measurement loop was maintained at approxi-
mately 40 [◦C]. The continuous results and the analyzed samples that were taken are depicted
in Figure 5-1. These results were obtained using the unpolluted model. The continuous re-
sults obtained using the polluted model are depicted in Appendix C-3. RMSEP values for
both models are listed in Table 5-4.

Table 5-4: RMSEP for MEA and CO2 during the microplant experiment

RMSEP MEA [wt%] RMSEP CO2 [wt%]
Unpolluted model 0.75 0.18
Polluted model 0.57 0.23

The polluted model performs significantly better when it comes to MEA, and slightly worse
for CO2. Since MEA is the degrading component, it was expected that the addition of
pollution to the model would have the strongest effect on the predicted MEA concentration.
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Figure 5-1: Continuously predicted MEA and CO2 concentrations and the concentrations in ana-
lyzed samples (marks) during the microplant experiments, obtained with the unpolluted model

Figure 5-2: Changed colour of the sam-
ples between the beginning and the end
of the microplant experiment

The RMSEP for the microplant experiment is compa-
rable with the results obtained during the KIT experi-
ments, in case the same unpolluted model is used. The
RMSEP for MEA is a bit higher whereas the RMSEP for
CO2 is lower. These differences were caused by a slightly
different conductivity probe calibration and by the use of
a different sonic speed probe. Notwithstanding the dif-
ferences in the model accuracy, it still predicts the MEA
and CO2 concentrations within an error of 0.75 and 0.23
[wt%] for MEA and CO2 respectively.

The continuous predictions of the MEA concentration
reveal a reduction from the initial 30 [wt%] to below 25
[wt%]. This reduction is partly caused by sampling. Due to the limited liquid volume in
the microplant (around 8 [l]), the replacement of the sample volume by water dilutes the
solvent substantially. 24 samples of around 40 [ml] each were taken, adding up to a total
sample amount of 0.96 [l]. The remaining reduction in MEA concentration (around 8.5 %)
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is caused by degradation of the solvent. The solvent colour is an indication of the amount
of degradation and the change in colour between the first and the last sample is depicted in
Figure 5-2.

Since the test rig was switched between the lean and rich stream several times, some step
changes in the CO2 concentrations are visible in Figure 5-1. The period with a CO2 concen-
tration between 3 and 4 [wt%] is caused by a reduced CO2 content in the flue gas during that
period.

There seems to be no relation between the error in the predicted concentrations and the
amount of degradation, as can be seen in Figure 5-3. The error does not grow over time, indi-
cating that the model is able to predict the MEA and CO2 concentrations even in degrading
circumstances.
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Figure 5-3: Error in MEA and CO2 estimations over time. No significant relation between the
error and the time of operation was visible.
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Chapter 6

Process data

The availability of online data concerning Monoethanolamine (MEA) and CO2 concentrations
enables new ways to evaluate the performance of the absorption process. The combination
of the model with process data that is already measured is one of these possibilities. This
combination can be used for model and process performance evaluation, which will both be
treated in this chapter.

6-1 Cyclic loading

The first and most straightforward method to combine process data with online MEA and
CO2 concentrations is by comparing the cyclic loading. The cyclic loading is the difference
between the lean and rich loading and is calculated from process data by dividing the amount
of captured CO2 by the MEA flow rate:

αcyc = αrich − αlean = ṅCO2,cap

ṅMEA
(6-1)

The cyclic loading is in this case expressed in terms of the net loading of MEA, but it can
also be expressed in terms of the entire flow rate in the lean or rich stream. The amount
of CO2 captured from the flue gas can either be calculated from the difference between CO2
concentration in the gaseous in- and out-let of the absorber or by the difference between the
CO2 concentration in the rich and lean flow. This gives two ways to obtain the cyclic loading
and the results can be compared to evaluate the predictive performance of the model and to
identify possible model runaways. This possibility has not been assessed experimentally. In
order to do so, two measurement loops are required (both in the lean and rich stream) and
there was only one loop available.

6-2 Vapour-Liquid-Equilibria

Another way to exploit the available process data is to compare the theoretical and actual
Vapour Liquid Equilibrium (VLE) of the MEA-H2O-CO2 system. Based on pressures and
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temperatures in the absorber and stripper the theoretical rich and lean loading can be de-
termined. The theoretical loadings are then compared to the actual loadings obtained by
the chemometric model and the deviations from the theoretical behaviour are assessed. The
actual VLE will never reach the theoretical values due to non-ideal column performance and
due to the fact that the columns (especially the absorber column) is not reaching equilibrium.
However, degradation will cause a further deviation from the theoretical behaviour and that
increased deviation can be considered as a measure for the amount of solvent degradation
and deactivation. It is therefore very useful in process control.

Experimental VLE data for the MEA-H2O-CO2 system as a function of the partial pressure of
CO2 and the temperature has been fitted by Oexmann [40]. The CO2 loading appeared to be
almost unaffected by the MEA concentration for loadings lower than 0.5 [mole/mole MEA].
It can, therefore, be expressed as a function of the temperature and the partial pressure of
CO2 only:

lnP ∗CO2 = CpCO2,0 + CpCO2,1
1
T

+ CpCO2,2α+ CpCO2,3fracαT + CpCO2,4α
2 + CpCO2,5

α2

T

+CpCO2,6α
3 + CpCO2,7

α3

T
+ CpCO2,8α

4

(6-2)

This equation has been fitted to experimental data by Oexmann and appeared to be more
accurate than the electrolyte-NRTL equation of state developed by Austgen et al.[41]. Ex-
perimental data is covered more accurately by the Oexmann equation, especially in the high
loading regime (above 0.45 [mole/mole MEA]). The only required process data is the partial
pressure of CO2 and the temperature at the liquid outlet of both the absorber and stripper
column. Temperatures can directly be obtained from the process data, but the partial pres-
sures of CO2 have to be calculated. Using the absorber top pressure, the absorber pressure
drop and the CO2 content at the gaseous absorber inlet, the partial pressure of CO2 at the
absorber liquid outlet was calculated. Obtaining the partial pressure of CO2 at the stripper
liquid outlet is more complicated. The total pressure is easily found using the stripper top
pressure and the pressure drop over the stripper. The CO2 partial pressure is obtained by
subtracting the partial pressure of H2O at stripper bottom conditions from the total pressure
at that location. The relation between the partial pressure of H2O and the solvent tempera-
ture has been fitted from data obtained using Aspen 8.0 and the electrolyte NRTL - Redlich
Kwong thermodynamic model. The fitted equation was of the form of the Antoine equation,
which provided good fits for the MEA-H2O system:

log(PH2O) = A− B

Tstr
(6-3)

A and B are fitted parameters and a function of the MEA concentration in the stripper.
These parameters were fitted to the MEA concentration using a second order polynomial fit.
The fitted values are reported in Appendix D.

A performance parameter β was defined as the ratio between the actual and theoretical CO2
loading:

β = αact

αtheor
(6-4)
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Figure 6-1: Performance parameter β during the 2012 pilot plant campaign

Since in the absorber column equilibrium will generally not be reached, β will always be
smaller than one. The stripper is operating closer to equilibrium and β will therefore be
larger under stripper conditions, as compared to the absorber.

A first test of this performance parameter β was carried out using pilot plant data from
the same campaign as used in Section 5-2. Process data from that campaign, together with
available MEA and CO2 concentrations from the taken samples, was used to calculate the
theoretical loading and the resulting values for β are depicted in Figure 6-1.

For both the stripper and absorber, β seems to be slightly decreasing over time, but the
decreasing trend is very noisy and therefore not suitable as indicator for the amount of
solvent degradation. Better results would probably be obtained if an experiment was carried
out without any solvent reclaiming and addition of fresh solvent. Several refills with fresh
solvent were done during the 2012 campaign, disturbing the obtained results. During the last
part of the experimental campaign (starting from 600 [h] of operation) no further refills were
performed and the decreasing trends in β for both the absorber and stripper are indeed more
obvious.
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Chapter 7

Conclusions and future outlook

7-1 Conclusions

A method has been developed for online monitoring of the MEA and CO2 concentrations in
a chemical absorption PCC process. Density, conductivity, pH, refractive index, sonic speed
and viscosity measurements, as well as NIR and UVvis spectroscopy have been assessed for
their applicability as indicators of the MEA and CO2 concentrations in the solvent. Based
on this first screening, viscosity and UVvis spectroscopy have been removed from the data
set and model calibration has been done using the remaining analytical techniques. An
optimal combination of calibration data has been chosen, based on predictive accuracy of
the developed models and the costs of the required measurement apparatus. A combination
of density, conductivity, refractive index and sonic speed measurements was found to be
favourable over the other combinations. This data set was used as input for a multivariate
ILS model, that calculates the MEA and CO2 concentrations of the measured solvent. The
method was demonstrated at a CO2 capturing miniplant and during a three week experiment
at a microplant. The method is applicable within its calibration range: 20-36 [wt%] for MEA
(with respect to the unloaded solution) and a CO2 loading of 0-0.5 mole per mole MEA, and
at two temperature levels: 40 and 55 [◦C]. The model calibrated at 40 [◦C] has been validated
extensively at both the mini- and microplant and the mean predictive error in the validation
experiments always stayed within 0.94 [wt%] and 0.31 [wt%] for MEA and CO2 respectively.
The best accuracy was obtained during the offline lab sample validation and was 0.24 [wt%]
for MEA and 0.05 [wt%] for CO2. The inclusion of degraded samples in the calibration set
had a positive influence on the predictive accuracy of the model in degrading circumstances if
the added pollution was of a comparable nature as the degradation in the predicted solvent.
In case the solvent degradation is of another nature the addition of degraded samples to the
calibration set had a negative effect on the predictive accuracy of the model.

The combination of process data with the model provides new insight in model and process
performance. Two ways to do so were identified. Comparison of the cyclic loading calculated
from the model and from the process data provides a measure for the model performance.
This has not experimentally been tested due to the lack of a double test loop. Another option
to combine process data with the model is a comparison of the actual and theoretical VLE
in the absorber and stripper liquid outlet to derive a degradation parameter. This was tried
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for the pilot samples from 2012, but no significant relation between the derived degradation
parameter and the time of operation was found.

Advantages of the developed method over the previously investigated method based on FTIR
measurements[8, 9] are an increased accuracy, a more than six fold reduction in apparatus
costs, a simpler installation in process plants and an increased robustness against unwanted
(degradation) components. The robustness with respect to degradation has been assessed at
the microplant during a three week continuous experiment and no significant relation between
the amount of degradation and the predictive accuracy of the model was found. The accuracy
of the model was retained, with around 8.5 [%] of the MEA being degraded. Furthermore,
the method showed good robustness to temperature differences (it was still accurate with
temperature fluctuations of 10 [◦C]) and to the use of different analytical apparatus to collect
the measurement data.

The model provides new possibilities from a process control and a scientific perspective.
The chemical absorption process can be accurately monitored and can therefore better be
controlled by e.g. solvent reclaiming and alterations in process conditions. From a scientific
perspective, the continuous monitoring of the MEA and CO2 concentrations gives a more
detailed insight in process behaviour and in the influence of different parameters on process
performance.

The developed method is believed to be applicable in other acid gas capturing processes
as well, such as natural gas sweetening. The applications are therefore numerous and the
potential of the developed method is promising.

7-2 Future outlook

Future work should involve an attempt to increase the predictive accuracy and robustness
of the model. This can be done via a more detailed assessment of other promising solvent
properties like viscosity, for model calibration. Inclusion of other solvent properties might
increase the robustness of the model to e.g. solvent degradation.

This model robustness can also be increased by the addition of a more complete degradation
products mix to the calibration samples to increase the accuracy for degraded solvents. This
study pointed out that, if the added degradation products were of the same nature as the
degradation in the measured solvent the model accuracy was increased. Addition of a repre-
sentative degradation mix for industrial applications would increase the applicability of the
model in process plants.

Furthermore, the applicability of the developed model in other (acid gas capturing) industrial
processes has to be investigated, for the model having a large potential in other processes and
industries.

Another very interesting option is a more extensive assessment of the combination of process
data with the developed model. The two possibilities investigated in this study should be
verified experimentally and other possibilities could be developed. To calculate the cyclic
loading from process data, a second measurement loop is required. For the evaluation of the
actual vs. theoretical VLE a gradual degradation experiment has to be carried out at the
miniplant or at a pilot plant, with accurate monitoring of the process conditions.
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Appendix A

A-1 PID microplant
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52 Process and Instrumentation Diagrams

A-2 PID miniplant
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Appendix B

B-1 Screening experiments

Table B-1: Overview of the high (1) and low (-1) values for the samples used in the screening
experiments

Sample MEA CO2 HNO3 H2SO4 HEIA Pollutants Temperature
#1 0 0 0 0 0 0 0
#2 1 1 1 1 1 1 1
#3 1 1 1 1 -1 -1 -1
#4 1 1 -1 -1 -1 -1 1
#5 1 1 -1 -1 1 1 -1
#6 1 -1 1 -1 -1 1 1
#7 1 -1 1 -1 1 -1 -1
#8 1 -1 -1 1 1 -1 1
#9 1 -1 -1 1 -1 1 -1

#10 -1 1 1 -1 1 -1 1
#11 -1 1 1 -1 -1 1 -1
#12 -1 1 -1 1 -1 1 1
#13 -1 1 -1 1 1 -1 -1
#14 -1 -1 1 1 -1 -1 1
#15 -1 -1 1 1 1 1 -1
#16 -1 -1 -1 -1 1 1 1
#17 -1 -1 -1 -1 -1 -1 -1
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Table B-2: Raw measurement data from screening experiments

Sample Density Conductivity pH Refr. ind. Viscosity Speed of sound
[g/ml] [mS/cm] - [nD20] [mpa.s] [m/s]

#1 1.0455 20.07 10.14 1.382 2.695 1698.9
#2 1.0769 29.65 9.33 1.404 2.447 1760.8
#3 1.0869 22.31 10.54 1.396 5.770 1757.8
#4 1.0502 20.12 9.62 1.394 1.913 1746.6
#5 1.0820 19.30 10.56 1.398 5.151 1786.8
#6 1.0096 14.57 10.01 1.386 1.854 1713.2
#7 1.0248 5.25 11.43 1.379 3.362 1725.2
#8 1.0065 5.82 10.32 1.381 1.502 1721.1
#9 1.0345 10.85 10.98 1.383 3.649 1725.4
#10 1.0563 32.45 9.25 1.383 1.573 1690.6
#11 1.0820 34.75 10.02 1.384 3.017 1712.0
#12 1.0660 38.80 9.07 1.386 1.531 1713.5
#13 1.0790 26.98 10.26 1.383 3.001 1707.3
#14 1.0066 15.50 9.98 1.367 1.159 1653.3
#15 1.0372 21.24 10.69 1.372 2.437 1684.6
#16 1.0026 12.36 10.05 1.369 1.198 1667.5
#17 1.0111 0.87 12.24 1.363 2.137 1646.0
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Figure B-1: Raw NIR spectra for the seventeen samples used in the screening experiments, each
line representing an individual spectrum
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Figure B-2: Raw UVvis absorbance spectra for the seventeen samples used in the screening exper-
iments, each line representing an individual spectrum.
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Figure B-3: Sensitivity results for the entire NIR spectrum
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Figure B-4: Sensitivity results for the entire UVvis spectrum
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B-2 Model calibration

Table B-3: Raw data used in final model calibration at 40 [◦C]. #C are the calibration and #V
the validation samples

Sample MEA CO2 Density Conductivity Refr. ind. Son speed
[wt% unl. solv.] [wt%] [g/ml] [ms/cm] [nD20] [m/s]

#C1 20 0.0 1.001 1.67 1.357 1624.0
#C2 20 3.6 1.036 28.58 1.366 1654.3
#C3 20 6.9 1.069 46.60 1.374 1678.9
#C4 24 2.2 1.023 17.75 1.367 1661.3
#C5 24 4.3 1.044 28.84 1.373 1677.1
#C6 24 6.3 1.064 39.50 1.378 1694.0
#C7 28 0.0 1.004 1.16 1.367 1661.4
#C8 28 2.5 1.028 29.02 1.373 1684.8
#C9 28 5.0 1.052 29.25 1.380 1700.7
#C10 28 7.3 1.075 39.45 1.385 1719.0
#C11 28 9.5 1.096 46.65 1.391 1736.1
#C12 32 2.9 1.034 17.02 1.380 1704.1
#C13 32 5.6 1.060 28.62 1.387 1723.1
#C14 32 8.2 1.086 36.35 1.393 1745.9
#C15 36 0.0 1.007 0.91 1.378 1694.6
#C16 36 6.3 1.068 26.89 1.393 1744.0
#C17 36 11.8 1.123 35.50 1.406 1792.2
#V1 20 5.3 1.053 39.85 1.370 1666.9
#V2 24 8.2 1.083 37.45 1.383 1707.4
#V3 26 3.5 1.037 18.51 1.374 1681.9
#V4 30 6.5 1.068 26.39 1.386 1723.0
#V5 32 0.0 1.006 0.77 1.373 1679.1
#V6 36 3.2 1.038 12.72 1.386 1725.5
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Table B-4: Raw data used in final model calibration at 55 [◦C]. #C are the calibration and #V
the validation samples

Sample MEA CO2 Density Conductivity Refr. ind. Son speed
[wt% unl. solv.] [wt%] [g/ml] [ms/cm] [nD20] [m/s]

#C1 20 0.0 0.993 2.26 1.357 1624.9
#C2 20 3.6 1.028 38.70 1.367 1658.0
#C3 20 6.9 1.061 60.40 1.375 1683.5
#C4 24 2.2 1.016 22.96 1.368 1660.5
#C5 24 4.3 1.036 39.10 1.374 1678.2
#C6 24 6.3 1.057 52.75 1.381 1704.1
#C7 28 0.0 0.996 1.59 1.368 1654.7
#C8 28 2.5 1.020 39.75 1.376 1682.3
#C9 28 5.0 1.044 39.00 1.380 1696.8
#C10 28 7.3 1.067 51.50 1.386 1718.5
#C11 28 9.5 1.088 62.50 1.392 1737.8
#C12 32 2.9 1.025 22.64 1.382 1696.0
#C13 32 5.6 1.052 38.25 1.389 1719.4
#C14 32 8.2 1.078 50.65 1.395 1743.5
#C15 36 0.0 0.999 1.32 1.379 1679.9
#C16 36 6.3 1.059 37.15 1.394 1736.2
#C17 36 11.8 1.114 50.25 1.409 1798.1
#V1 20 1.8 1.011 13.74 1.362 1642.3
#V2 24 0.0 0.995 1.11 1.364 1642.1
#V3 26 5.7 1.051 29.00 1.380 1699.7
#V4 30 4.0 1.038 21.2 1.381 1696.9
#V5 32 10.7 1.102 36.95 1.399 1761.5
#V6 36 9.1 1.088 30.15 1.401 1760.6
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B-3 Model validation

Table B-5: Measurement results for the samples acquired during the first continuous validation run
at KIT

Sample MEA CO2 Density Conductivity Refr. ind. Sonic speed
[wt% unl. solv.] [wt%] [g/ml] [mS/cm] [nD20] [m/s]

#1.1 27.7 2.6 1.027 20.36 1.373 1683.2
#1.2 25.7 2.3 1.023 18.78 1.370 1674.0
#1.2 26.2 2.0 1.021 17.24 1.370 1671.2

Table B-6: Measurement results for the samples acquired during the second continuous validation
run at KIT

Sample MEA CO2 Density Conductivity Refr. ind. Sonic speed
[wt% unl. solv.] [wt%] [g/ml] [mS/cm] [nD20] [m/s]

#2.1 21.7 5.4 1.059 35.16 1.374 1680.5
#2.2 20.7 4.5 1.050 32.58 1.372 1672.1
#2.3 20.4 3.7 1.041 29.26 1.368 1660.5
#2.4 20.4 3.1 1.034 24.90 1.366 1657.4
#2.5 22.4 2.7 1.030 20.92 1.366 1656.9
#2.6 22.1 2.2 1.025 16.91 1.365 1655.5
#2.7 19.5 1.5 1.019 13.00 1.362 1637.2
#2.8 21.2 5.4 1.054 36.38 1.372 1675.3
#2.9 19.8 5.7 1.057 42.28 1.370 1670.0
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Appendix C

C-1 Polluted model calibration

Table C-1: Raw data used in polluted model calibration at 40 [◦C]. #P are the polluted calibration
and #PV the polluted validation samples

Sample MEA CO2 Density Conductivity Refr. ind. Sonic speed
[wt% of unl. solv.] [wt%] [g/ml] [mS/cm] [nD20] [m/s]

#P1 22.20 4.99 1.058 37.35 1.377 1685.5
#P2 27.00 3.16 1.060 35.70 1.381 1704.6
#P3 25.60 5.16 1.061 34.55 1.381 1702.1
#P4 26.70 7.07 1.080 43.05 1.386 1722.2
#P5 29.30 5.93 1.072 34.00 1.390 1730.4
#P6 21.10 6.82 1.079 45.30 1.383 1697.2
#P7 18.70 5.94 1.070 46.45 1.379 1680.0
#P8 18.20 5.74 1.069 46.20 1.378 1678.0
#PV1 20.20 5.60 1.061 47.95 1.374 1675.1
#PV2 27.20 6.39 1.074 42.80 1.386 1717.9
#PV3 26.40 4.74 1.059 34.20 1.382 1702.2
#PV4 32.40 8.47 1.097 42.55 1.397 1757.6

Table C-2: Raw data used in polluted model calibration at 55 [◦C]. #P are the polluted calibration
and #PV the polluted validation samples

Sample MEA CO2 Density Conductivity Refr. ind. Sonic speed
[wt% of unl. solv.] [wt%] [g/ml] [mS/cm] [nD20] [m/s]

#P1 22.20 4.99 1.051 50.45 1.378 1686.7
#P2 27.00 3.16 1.052 45.25 1.382 1700.4
#P3 25.60 5.16 1.053 46.25 1.382 1705.2
#P4 26.70 7.07 1.072 56.40 1.388 1720.9
#P5 29.30 5.93 1.064 45.20 1.391 1726.1
#P6 21.10 6.82 1.071 61.80 1.384 1700.2
#P7 18.70 5.94 1.062 61.45 1.380 1682.2
#P8 18.20 5.74 1.061 59.50 1.379 1680.3
#PV1 20.20 5.60 1.053 61.00 1.374 1679.8
#PV2 27.20 6.39 1.066 56.55 1.387 1716.8
#PV3 26.40 4.74 1.051 47.25 1.382 1701.1
#PV4 32.40 8.47 1.089 59.05 1.399 1754.8
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C-2 Pilot plant samples
Table C-3: MEA and CO2 concentrations and raw measurement data of the pilot samples

Operation MEA CO2 Density Conductivity Refr. ind. Sonic speed
[h] [wt% unl. solv.] [wt%] [g/ml] [mS/cm] [nD20] [m/s]
12.9 32.06 5.71 1.063 32.55 1.388 1730.3
17.8 29.15 8.70 1.092 49.40 1.392 1741.0
17.8 31.23 6.17 1.065 35.15 1.386 1723.2
35.9 32.16 5.11 1.057 30.90 1.386 1720.5
436.5 35.42 10.42 1.115 43.50 1.405 1785.3
707.4 34.03 5.92 1.064 32.10 1.390 1734.2
707.4 33.96 10.45 1.108 47.85 1.400 1769.8
852.2 35.32 10.00 1.108 46.65 1.401 1772.5
852.2 35.94 6.04 1.067 31.90 1.391 1739.4
1017.1 33.92 10.12 1.109 47.45 1.401 1770.2
1017.1 33.86 5.95 1.064 31.25 1.390 1733.9

C-3 Microplant experiments
Table C-4: Measurement data used for prediction of the MEA and CO2 concentrations in the
samples taken during the continuous experiment at the microplant

Samples MEA CO2 Density Conductivity Refr. ind. Sonic speed
[wt% unl. solv.] [wt%] [g/ml] [mS/cm] [nD20] [m/s]

#1 29.47 3.55 1.037 25.57 1.376 1694.7
#2 29.98 6.90 1.073 37.43 1.386 1726.0
#3 29.99 7.36 1.077 38.56 1.387 1730.7
#4 30.26 9.06 1.094 45.10 1.392 1744.1
#5 30.04 9.19 1.096 45.29 1.392 1745.8
#6 30.24 7.81 1.078 42.27 1.388 1732.2
#7 29.95 9.04 1.091 44.27 1.390 1739.3
#8 29.91 7.38 1.074 43.41 1.386 1725.9
#9 29.27 7.13 1.073 38.69 1.385 1721.2
#10 28.82 8.76 1.089 45.44 1.389 1732.9
#11 28.48 8.48 1.088 45.89 1.388 1730.1
#12 26.88 6.53 1.068 44.82 1.381 1706.7
#13 27.76 6.62 1.071 42.92 1.383 1713.7
#14 28.81 8.56 1.090 46.09 1.389 1735.7
#15 26.96 6.21 1.067 44.26 1.381 1707.7
#16 26.46 6.42 1.067 42.42 1.381 1706.3
#17 25.62 5.84 1.062 39.28 1.379 1698.1
#18 24.19 3.61 1.038 35.12 1.371 1675.4
#19 24.62 5.48 1.059 37.02 1.377 1692.7
#20 24.69 5.56 1.058 37.15 1.376 1690.4
#21 24.73 5.82 1.060 37.92 1.377 1692.7
#22 24.41 5.83 1.059 38.18 1.376 1690.1
#23 24.59 5.91 1.060 38.61 1.377 1692.0
#24 24.58 5.89 1.060 38.71 1.377 1691.5
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Figure C-1: Continuously predicted MEA and CO2 concentrations and concentrations in analysed
samples (marks) during the microplant experiments, obtained with the polluted model
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Appendix D

D-1 VLE data

Table D-1: Coefficients used in the Oexmann equation [40]

Coefficient Value
CpCO2,0 22.53
CpCO2,1 -7904
CpCO2,2 105
CpCO2,3 -16810
CpCO2,4 -286.4
CpCO2,5 26480
CpCO2,6 381.7
CpCO2,7 8294
CpCO2,8 -257.4

Fitted parameter used in Equation 6-3. Parameters were fitted to the MEA concentration
using a second order polynomial fit. Values for the coefficients are listed in Table D-2.

A = a1 ∗ x2
MEA + a2 ∗ xMEA + a3 (D-1)

B = b1 ∗ x2
MEA + b2 ∗ xMEA + b3 (D-2)

Table D-2: Coefficients fitted to MEA concentration in Equation D-1 and D-2

Coefficient Value
a1 -74.45
a2 15.87
a3 -2140.90
b1 -0.189
b2 -0.113
b4 7.738
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Glossary

List of Acronyms

CATO CO2 Afvang, Transport en Opslag

CCS Carbon Capture and Storage

CLS Classical Least Squares

FTIR fourier transform infrared

HSS Heat Stable Salts

IEA International Energy Agency

IECR Industrial & Engineering Chemistry Research

ILS Inversed Least Squares

KIT the Karlsruhe Institute of Technology

LVs Latent Variables

MEA Monoethanolamine

MSC Multiplicative Scatter Correction

NIR near infrared

OSC Orthogonal Signal Correction

PCs Principal Components

PCA Principal Component Analysis

PCC Post-Combustion Capture

PCR Principal Component Regression

PLS Partial Least Squares

PLSR Partial Least Squares Regression

PRESS Predicted Residual-Sum-of-Squares
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72 Glossary

RMSEC Root-Mean-Square Error of Calibration

RMSEP Root-Mean-Square Error of Prediction

SNV Standard Normal Variate

VLE Vapour Liquid Equilibrium

UV-vis visible ultra-violet

A.C. van Eckeveld Master of Science Thesis



73

List of Symbols

Symbols
A Absorbance spectrum
A Fitted parameter in adapted antoine equation
B Fitted parameter in adapted antoine equation
b Pathlength
C Concentration of species
c Speed of light in a vacuum
CpCO2 Coefficients used in the Oexmann equation
d Degrees of freedom
E Magnitude of the electric field
E Error matrix
J Magnitude of the current density
K Regression matrix
m Mass
m Number of samples
n Number of variables
n Refractive index
ṅ Molar flow rate
P∗CO2

Partial pressure of CO2 estimated using the Oexmann equation
PCO2 Partial pressure of CO2

P Matrix containing X-loadings
Q Q-residual
S Standard deviation
s Entropy
T Temperature
T Scores matrix
u Speed
V Volume
v Speed of light in a substance
W Loading weights
X Measured data
Y Predicted data

Greek Symbols
α CO2 loading of the solvent
αcyc Cyclic loading
β Ratio between actual and theoretical loading
λ Diagonal matrix with eigenvalues of model components
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74 Glossary

ε Molar absorption coefficient
µ Dynamic viscosity
ν Kinematic viscosity
ρ Density
σ Electrical conductivity
τ Local shear velocity

Superscripts and subscripts
t Transpose of matrix
^ Estimated value
as Autoscaled
mc Mean centered
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