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Abstract—Multi-agent networks are known for their scalability,
robustness, flexibility, and are typically tasked with a variety
of tasks such as target tracking, surveillance, traffic control,
and environmental monitoring. Distributed Particle Filters
(DPF) are often employed when the for non-linear parameter
estimation with non-Gaussian noise. In this paper, we propose
a novel distributed particle filter whose transmitted quantities
are particles. The fusion process of particles is implemented in a
distributed and iterative fashion. To reduce the communication
overhead, we adopt the Gaussian process-enhanced resampling
algorithm, which reduces the size of local particle set, while still
ensures acceptable filtering performance. To determine the local
particle set after the communication, we propose two solutions.
Our first algorithm (GP-DPF) adopts a “scoring mechanism”,
allowing local agents score the received particles and using the
scores as the selection criterion. Our second proposed solution
(FA-DPF) is a meta-heuristic approach, which uses the well
known firefly algorithm as a selection method for particle-based
distributed particle filtering. Our simulations demonstrate the
superiority of our proposed algorithms under the condition
of limited communication and computational resources against
other state-of-the-art distributed particle filters.
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1. INTRODUCTION
In a multi-agent network, agents cooperate to solve a given
problem, and offer solutions beyond the individual knowl-
edge of each agent. In some applications, such as target
tracking [1], relative time-varying localization [2], relative
formation control [3] and environmental monitoring [4], we
aim to estimate certain parameters (or states) of the sur-
rounding environment given partial measurements covered
with random disturbances [5], which can be formulated as a
filtering problem in signal processing. In the aforementioned
applications and more, these models are typically non-linear
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where the underlying noise is non-Gaussian. In these scenar-
ios, Particle filtering is shown to outperform Kalman filtering,
particularly in nonlinear estimation problems[6]. However,
using a centralized approach for particle filtering lacks scal-
ability, robustness, and flexibility. Therefore, distributed
approaches have been widely studied recently to overcome
these limitations in the past decades.

Recent work

To effectively implement DPF, approximation strategies must
be utilized to reduce the inter-agent communication bur-
den. Depending on the nature of the quantities transmitted
across the network, we could divide DPF into weight-based,
posterior-based, likelihood-based, and particle-based meth-
ods [6].

Weight-based algorithms aim to achieve consensus on the
weight of each particle or the local likelihood value. The
advantage of this type of DPF lies in its intuitive theoretical
derivation and simple numerical computation. As a price,
it has several limitations. First, the assumption that local
random number generators are synchronized needs to hold
to ensure an identical set of particles at each node. Second,
the communication cost is proportional to the number of
local particles. To reduce this cost, several approximation
algorithms have been proposed. In [7], the combination of
auxiliary particle filter and selective gossip is proposed to
reduce communication cost. In [8], graph-based signal pro-
cessing technique is used to approximate the particle weights
by exploiting the inner structure of particle distribution.

Posterior-based algorithms use a parametric representation to
describe the local posteriors and exchange sufficient statistics
instead of particles to reduce communication overhead, but
sacrifice some accuracy as a cost. Such DPFs generally
require minimal communication resources. However, the
design of the approximation algorithm is critical because the
local posterior distribution can be very complex. In [9] [10],
posteriors are approximated as Gaussian distributions. This
is not suitable for the non-linear, non-Gaussian scenarios that
the particle filter is used for. The Gaussian mixture model
(GMM) is introduced to fit any kind of posterior distribution
with an adjustable number of Gaussian components. In [11],
the GMM is used to represent the posteriors. An adaptive
Gaussian mixture learning algorithm for DPF is proposed in
[12], aiming at adaptively choosing the number of Gaussian
components in GMM for each agent. In [13], an importance
sampling-based nonlinear fusion algorithm from the optimal
perspective is proposed. These methods reduce the commu-
nication cost, but require computational power.
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Likelihood-based algorithms aim at calculating the global
likelihood function (GLF) in a distributed way. Here, local
likelihood functions are approximated and then transmitted.
In [14], the algorithms only work under the prerequisite
that the local likelihood functions belong to the exponential
family. In [15], the exponential family constraint is removed.
The most significant benefit is that each agent can compute
the global posterior independently when the GLF is available
locally. However, recent likelihood-based algorithms require
the noise at all sensors to follow the same distribution.

As its name suggests, particle-based algorithms specify that
the particles themselves are the data transmitted in the net-
work. Little work has been done under this category, consid-
ering the high communication requirements. With the gradual
maturity of research on particle filtering, more and more
proposed resampling algorithms [16][17][18][19][20][21] re-
duce the need for a large number of particles. Even with a
very limited number of particles, the diversity of particles can
also be well maintained. The above research advance makes
it possible to exchange particles directly when implementing
DPF. The main advantage of this type of DPF is its great
flexibility in modeling distributions and the elimination of the
assumption of independent measurement noise of agents [6].

Overview

Our contribution is to propose a novel particle-based DPF,
which reduces the size of the local particle set by selecting
the most representative particles from the received set. In
section 2, a target tracking problem is used as a motivation for
particle filtering, followed by a concise overview of Particle
filtering and Gaussian Process Regression. In section 3,
the GP-enhanced resampling algorithm and a novel particle-
based distributed particle filter are presented. In section 4, the
firefly algorithm is used to optimize the information fusion
stage in the previous section. In section 5, the performance of
the proposed algorithms are compared to some state-of-the-
art DPFs. In section 6, the numerical results are presented.

2. PRELIMINARIES
Consider the following state space model

xn = g(xn−1) + un (1)
yn,k = hk(xn) + vn,k k = 1, · · · ,K, (2)

where the transition model (1) describes the evolution process
of the state x ∈ Rd over time, where d is the dimension of
the state-space, g(·) is a possibly nonlinear mapping function,
and un ∈ Rd is the process noise at the nth time instant. The
measurement model (2) explains the relationship between the
target state x and the measurements yn,k ∈ Rb of sensor k at
the nth time instant.

Let yn
def
= {yn,k, k = 1, · · · ,K} denote the collection

of measurements taken at time instant n, and let y1:n
def
=

{y1, · · · ,yn} denote the collection of measurements up to
time instant n, then our objective is to sequentially estimate
the state xn based on measurements y1:n. Unless other-
wise mentioned, we assume that the measurements taken
at different sensors at each time instant are conditionally
independent given the state vector xn [6], i.e., the global
Bayesian likelihood function can be factorized as

p(yn|xn) =
K∏

k=1

p(yn,k|xn). (3)

Particle Filtering (PF)

A particle filter (PF) is often employed to solve this prob-
lem, particularly when the state-space model is non-linear
and/or the noise is non-Gaussian. Given the measurements
y1:n, the likelihood p(yn|xn) from (3), and the dynamics
p(xn|xn−1), a PF approximates the posterior p(xn|y1:n) by
a set {xm

n , ωm
n }Mm=1, where xm

n are the particles, and ωm
n are

the corresponding weights. In particular, we will employ a
Bootstrap particle filter, which is a variation of the sequential
importance resampling, where the dynamical model is used
as the importance distribution q(·) [22], i.e.,

q(xn|xm
0:1:n−1,y1:n) = p(xn|xn−1), (4)

where M particles xm
n are drawn from q(·) and the weights

corresponding to these particles are proportional to the fol-
lowing likelihood function

ω(xm
n ) ∝ ω(xm

n−1)p(yn|xm
n ), (5)

such that the weights are normalized i.e.,
∑M

m=1 ω
m
n = 1. In

this paper, we use function

{xm
n , ωm

n }Mm=1 = PF({xm
n−1, ω

m
n−1}Mm=1,yn) (6)

to denote the particle filtering operation, where the input is
a set of M weighted particles at time instant n − 1 , along
with the measurements yn at time instant n, and the output
is the updated M weighted particles describing the current
posterior distribution at the nth time instant.

Gaussian Process (GP)

Gaussian process (GP) is a powerful non-parametric
Bayesian method [23], which unlike other parametric regres-
sors has relaxed assumptions on the structure of the underly-
ing system model. Consider a model with an input data set
X

def
= [x1,x2, · · · ,xM ], where xm corresponds to the mth

input, and y
def
= [y1, y2, · · · , yM ] is the corresponding output

vector, such that

ym = f(xm) + ηm m = 1, · · · ,M (7)

is the mth measurement and ηm ∼ N (0, σ2
η) is the noise on

this measurement. In Gaussian Process regression, the signal
term f(·) is assumed to be GP distributed, which allows us
to make predictions on arbitrary input x∗. By definition,
the prediction distribution follows a joint multivariate normal
distribution which can be written as

f(x∗)|y,X,x∗ ∼ N (µ(x∗),Σ(x∗)), (8)

where

µ(x∗) = K(x∗,X)(K(X,X) + σ2
ηI)

−1y, (9)

Σ(x∗) = K(x∗,x∗)−K(x∗,X)(K(X,X)+σ2
ηI)

−1K(X,x∗).
(10)

Here, K is the kernel of GP, which is chosen based on the
prior knowledge on the given data set such as smoothness. A
common choice of kernel is the Gaussian kernel

K(xm,x∗) = exp(
1

2σ2
||xm − x∗||2), (11)

which is both positive and smooth.
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GP-enhanced resampling

Given the pairs of particles and weights {xm, ωm}Mm=1,
Gaussian process can be used to model the local posteriors
from (9) and (10), which is called GP-enhanced resampling
[17]. Let the approximated GP representing the posterior be
denoted by GP1. Since the estimation results are particle
weights, an additional normalization step has to be performed
later.

To use the uncertainty knowledge provided by GP1, and to
enable exploration, we artificially build a second particle set
using the function f(x) = µ(x) + 3Σ1/2(x). The input for
the function is formed by generating M − 1 intermediary
particles from the existing ones, such that the second particle
set can be denoted as {x̂m, f(x̂m)}M−1

m=1 . This set is then
approximated using GPR again. By doing so, the particles
with high variance can also be taken into consideration.

To choose whether to sample from GP1 or GP2, we define
a parameter ζ, and generate a scalar u from a uniform
distribution between 0 and 1. If u ≥ ζ, we sample from
GP1, otherwise from GP2. By tuning the parameter ζ, we
can decide whether the final resampling results are more
inclined to exploitation or exploration 2. The final weights
after resampling would be 1/M uniformly for all weights.
In comparison to classical resampling algorithms e.g., sys-
tematic resampling [24], GP-enhanced resampling algorithm
only needs much fewer particles to achieve the same bound
on the estimation error under the constant velocity (CV)
model [17]. The pseudo code of Gaussian Process enhanced
resampling (GP-R) is given in Algorithm 1.

Algorithm 1 Gaussian process enhanced resampling (GP-R)

Require: {xm
n , ωm

n }Mm=1, ζ ∈ [0, 1]
1: Initialize GP hyperparameter σ
2: Fit a GP GP1 using particle set {xm

n , ωm
n−1}Mm=1

3: for m = 1, · · · ,M − 1 do
4: x̂m

n = (xm+1
n − xm

n )/2 + xm
n

5: {µ(x̂m
n ),Σ(x̂m

n )} = GP1(x̂m
n )

6: Compute f(x̂m
n ) = µ(x̂m

n ) + 3Σ1/2(x̂m
n )

7: end for
8: Fit a GP GP2 using particle set {x̂m

n , f(x̂m
n )}M−1

m=1
9: for m = 1, · · · ,M do
10: Draw u ∼ U[0,1]

11: if u ≥ ζ then
12: Draw x̃m

n from GP1
13: else
14: Draw x̃m

n from GP2
15: end if
16: Assign weights: ω̃m

n = 1/M
17: end for
18: return {x̃m

n , ω̃m
n }Mm=1

3. GP-BASED DISTRIBUTED PARTICLE
FILTER

In this section, we present a novel particle-based Distributed
Particle Filter (DPF) i.e., Gaussian Process based DPF (GP-
DPF), which is based on the GP-R discussed in the earlier
section. When exchanging particles, the goal is to merge

2In optimization, exploitation means to focus the search on a local space
where a current good solution exists while exploration means to explore the
search space on a global scale.

particle sets between neighboring nodes, and in this process
we aim to filter out the most representative particles from the
received ones. In this section, we present a method where
each agent can score each received particle based on its local
measurements. We define the score as the likelihood value,
i.e., the score of the mth received particle at sensor k at time
n is calculated as

smn,k = p(yn,k|xm
n ). (12)

In order to achieve the purpose of information fusion, we
need to make sure the particle set of each agent is fully
mixed. If multiple communication iterations are performed
between consecutive time instants, each agent can gradually
gain particles from the entire network.

Next, we briefly describe the algorithm presented in Algo-
rithm 2. Each agent first starts with local particle filtering and
GP-enhanced resampling, resulting in a set of weighted parti-
cles. In each communication iteration, each sensor broadcasts
a subset of its local particles, whose size is determined as
ϕM, where ϕ ∈ (0, 1], to all its adjacent nodes. The agents
then calculate the scores of the received particles and select
particles with higher scores.

In order to compose the final particle set, ⌈M/(Dk + 1)⌉
particles are drawn from the local particle set, where Dk
is the number of adjacent nodes of agent k and ⌈·⌉ is the
ceiling operation. The remaining particles are from the
particles received from connected agents and are determined
in resampling stage to increase the diversity of the particles.
Information will be diffused across the network, integrating
the knowledge of all measurements across the agents. Pa-
rameters such as ϕ, local particle size M , and the number
of iterations Lb can be adjusted to balance between tracking
performance and communication overhead.

Algorithm 2 GP-DPF

Require: {xm
n−1,k, ω

m
n−1,k}Mm=1,yn,k, ϕ ∈ (0, 1]

1: Initialize the number of iterations Lb, degree Dk

2: {xm
n,k, ω

m
n,k}Mm=1 = PF({xm

n−1,k, ω
m
n−1,k}Mm=1,yn,k)

3: {xm
n,k, ω

m
n,k}Mm=1 = GP-R({xm

n,k, ω
m
n,k}Mm=1)

4: for i = 1, · · · , Lb do
5: Randomly draw ϕM particles from {xm

n,k}Mm=1

6: Sensor k sends {xm
n,k}

ϕM
m=1 to its neighbors

7: Compute scores {smn,k}
ϕMDk

m=1 of ∪j∈Nk
{xm

n,j}
ϕM
m=1

8: Randomly draw ⌈ M
Dk+1⌉ particles from {xm

n,k}
ϕM
m=1

9: {xm
n,k}Mm=⌈ M

Dk+1 ⌉+1

= Resample(∪j∈Nk
{xm

n,j}
ϕM
m=1, {smn,k}

ϕMDk

m=1 )

10: Combine two subsets of particles and get {xm
n,k}Mm=1

11: end for
12: xn,k = mean({xm

n,k}Mm=1)

13: return xn,k, {xm
n,k, ω

m
n,k}Mm=1

Note: The whole algorithm is executed at all nodes in
parallel i.e., ∀k = 1, · · · ,K

4. META-HEURISTIC BASED PARTICLE FILTER
In the previous section, a scoring mechanism was proposed as
a method to select representative particles from the received
ones. However, the limitation is that only particles from the
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existing ones can be chosen and the results may deviate when
the size of particle set is relatively small. In this section,
we regard the particle selection process as an optimization
problem, i.e., continuously optimizing the local particle set.
Various optimization algorithms can be utilized to achieve the
above goal. In this paper, we use modern metaheuristics to
search for a globally optimal particle set. Among various
choices, the Firefly algorithm (FA) [25] is adopted due to
its superiority over genetic algorithms and particle swarm
optimization.

Firefly Algorithm

The Firefly Algorithm (FA) mimics the social behavior of
fireflies flying through the sky and is based on the following
principles.

Attractiveness—The brightness of a firefly at a certain location
x is determined by the objective function, i.e., I(x) ∝ f(x).
The attractiveness β is relative and it should be judged by
other fireflies. The attractiveness of the brighter of the two
fireflies, l and j, to the other should vary with the distance rlj
between the two. This relationship is usually described by the
following equation:

β(rlj) = β0/(1 + γr2lj), (13)

where β0 is the attractiveness when rlj = 0 and γ is called
light absorption coefficient, which determines the strength of
the influence of distance on attractiveness. The distance can
be defined using the Cartesian distance rlj = ||xl − xj ||2.

Movement—The movement of a firefly l towards a brighter
firefly j can be modeled as

xl = xl + β0e
−γr2lj (xj − xl) + αε, (14)

where the second term is due to the attractiveness and the
third term is a random term. The use of random term gives
FA the ability to explore the search space. Therefore, it is
possible to achieve a good balance between local intensive
exploitation and global exploration by adjusting α ∈ [0, 1].

Firefly Algorithm based DPF (FA-DPF)

In this section, we employ the Firefly Algorithm as a selection
method for particle-based distributed particle filtering. The
pseudo-code of FA-DPF is presented in Algorithm 4. We as-
sume the information of two agents is fused at a time. Hence,
the gossip communication protocol is adopted. Agents l and
j are selected at a single communication iteration. We define
the brightness of each particle as a function of the likelihood
value, given measurement information of both agents. The
flowchart of the algorithm is depicted in Figure 1, which
would be explained in the following. Note, we only describe
the behavior of agent l, and the same for agent j.

Each agent performs local particle filtering and GP-enhanced
resampling, resulting in a set of weighted particles. The
data at agent l should be {xm

n,l, ω
m
n,ll}Mm=1, where the first

l subscript relates to the particle origin and the second to
the likelihood based on agent l’s measurements. When the
importance density is chosen to be the same as transition
function as discussed in section 2, the particle weight is equal
to the likelihood value. After the communication round, agent
l would hold the data {xm

n,l, ω
m
n,ll}Mm=1 and {xm

n,j , ω
m
n,jj}Mm=1

from agent j.

The particle brightness function is given in (15). Now we do
not only need the likelihood based on measurements at l: ωm

ll ,

Figure 1: A flowchart of the proposed FA-DPF for a single
time instant n.

we also require ωm
lj .

I(xm
n,l) = ωm

ll ω
m
lj . (15)

To obtain this value, we introduce another communication
round. Agent l now receives {ωm

n,lj}Mm=1 from agent j. This
completes the communication and the data held by agent l is
{xm

n,l, ω
m
n,ll, ω

m
n,lj ,x

m
n,j , ω

m
n,jj , ω

m
n,jl}Mm=1.

After determining the corresponding brightness, i.e,
{I(xm

n,l), I(x
m
n,j)}Mm=1, we can proceed to the firefly algo-

rithm based fusion (FAF). First, for each particle drawn from
the set {xm

n,l}Mm=1, taking xp
n,l as an example, we make a

comparison between I(xp
n,l) with max({I(xm

n,j)}Mm=1). If
I(xp

n,l) < max({I(xm
n,j)}Mm=1), we randomly draw a particle

xq
n,j from the set {xm

n,j}Mm=1 meeting the requirement that
I(xq

n,j) > I(xp
n,l). The above operations can be performed

efficiently by introducing a sorting algorithm. Then we

4
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move the particle xp
n,l towards xq

n,j based on the following
movement rule which is rephrased from (14):

xp
n,l = xp

n,l + β0/(1 + γr2pq)(x
q
n,j − xp

n,l) + αε, (16)

where rpq = ||xp − xq||2 and ε follows the same distribution
as the process noise. The above procedure needs to be
repeated M times until each particle in particle set {xm

n,l}Mm=1

has been processed. Multiple iterations can be executed to
ensure information from the entire network is fully fused. The
pseudo-code for FAF is presented in Algorithm 3.

Algorithm 3 Firefly Algorithm-based Fusion(FAF)

Require: {xm
n,l, I(x

m
n,l)}Mm=1, {xm

n,j , I(x
m
n,j)}Mm=1

1: Initialize Firefly algorithm hyperparameters β0, α, γ
2: for p = 1, · · · ,M do
3: if max({I(xm

n,j)}Mm=1) > I(xp
n,l) then

4: Randomly draw xq
n,j meeting I(xq

n,j) > I(xp
n,l)

5: rpq = ||xp
n,l − xq

n,j ||2
6: xp

n,l = xp
n,l + β0/(1 + γr2pq)(x

q
n,j − xp

n,l) + αε
7: end if
8: end for
9: return {xm

n,l}Mm=1

Note: ε is generated from the distribution same as the
process noise.

Algorithm 4 FA-DPF

Require: {xm
n−1,k, ω

m
n−1,k}

M,K
m=1,k=1, {yn,k}Kk=1

1: Initialize the number of gossip iterations Lg
2: Execute the following tasks ∀k = 1, · · · ,K

{xm
n,k, ω

m
n,k}Mm=1 = PF({xm

n−1,k, ω
m
n−1,k}Mm=1,yn,k)

{xm
n,k, ω

m
n,k}Mm=1 = GP-R({xm

n,k, ω
m
n,k}Mm=1)

Calculate the particles’ weight {ωm
n,kk}Mm=1

3: for i = 1, · · · , Lg do
4: Randomly select 2 adjacent sensors l, j
5: Exchange particles and weights
6: Run parallel at sensors l, j:{

Calculate weight ωm
n,lj of set {xm

n,l}Mm=1

Calculate weight ωm
n,jl of set {xm

n,j}Mm=1

7: Exchange weights {ωm
n,jl}Mm=1, {ωm

n,lj}Mm=1

8: Calculate particles’ brightness at sensors l, j
9: Run FAF at sensors l, j
10: end for
11: xn,k = mean({xm

n,k}Mm=1) ∀k = 1, · · · ,K
12: return {xn,k}Kk=1, {xm

n,k, ω
m
n,k}

M,K
m=1,k=1

5. PERFORMANCE ANALYSIS
In this section we present the performance of the proposed
algorithms in terms of communication overhead and compu-
tational complexity, as shown in Table 2. We include GL-
DPF [8] and GM-DPF [13] for comparison as well, but the
derivation is omitted.

Table 1: Explanation of labels in Table 2

Label Comment (# denotes ”the number of”)
L1 # randomized gossip iterations in GL-DPF
K # agents
z # reserved Laplacian transfer coefficients
M the size of local particle set

Nknn # nearest neighbors in k-NN
d the dimension of the state space
L2 # communication iterations in GM-DPF
C # components in GMM

LEM # EM iterations
Lf # iterations for fusion stage
Lft # iterations for fine-tuning
Lb # communication iterations in GP-DPF
ϕ a scalar between (0,1]
Lg # communication iterations in FA-DPF.

Table 2: Communication and Computation Complexity.

Algorithm Communication Computation
GL-DPF O(2L1z/K) O(M3 +NknnMd)

GM-DPF O(L2Cd2)−
O(KL2Cd2)

O([(LEM +K)LfM
+M +KLft]Cd2)

GP-DPF O(2ϕdMLbK) O(M3 + (M − 1)3)

FA-DPF O(LgM(2d+ 4)/K)
O(2LgMlog(M)d/K
+M3 + (M − 1)3)

Communication Overhead

GP-DPF—Particles are transmitted across the network. Let
Lb denote the number of broadcast iterations. There are
2|E|ϕdM scalars to be transmitted in every iteration where
|E| is the number of links in the multi-agent network. Since
|E| ranges from O(K) to O(K2) for a connected network,
the worst case communication complexity per agent during
each time step is O(2ϕdMLbK).

FA-DPF—In addition to exchanging particles, the likelihood
values also need to be exchanged for FA-DPF. Hence, in each
iteration, a total of 2M particles as well as 4M likelihood
values need to be exchanged. Let Lg denote the number of
iterations, the average communication complexity per agent
is O(LgM(2d+ 4)/K).

Computational Complexity

GP-DPF—Exact GP inference is quite computationally de-
manding, requiring O(M3) time complexity and O(M2)
space complexity [26], which prevents us from using more
particles. This is also the bottleneck of GP-enhanced resam-
pling. Finally, since GPR is performed twice in GP-DPF,
the computation complexity is approximately O(M3+(M−
1)3). Note: in computing the computational complexity, we
assume hyper-parameters training for GP is excluded.

FA-DPF— In the FA-DPF, a sorting algorithm, requir-
ing O(Mlog(M)d) [27], is added. Hence, under the
gossip protocol, the average complexity per agent is
O(2LgMlog(M)d/K +M3 + (M − 1)3).
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6. SIMULATION
In this section, we present the performance evaluation of our
proposed algorithms compared to other state-of-the-art DPFs
through simulation.

Simulation Scenario and Setup

We consider a target tracking problem where a single agent
moves following the Wiener process acceleration model [1]
and 9 sensor nodes are deployed in an area of 200m× 200m.
The state vector (17) of the target contains 6 elements, includ-
ing the position, velocity and acceleration in two-dimensional
space, where the unit of velocity is m/s, and the unit of
acceleration is m/s2.

xn = [xn,1 xn,2 ẋn,1 ẋn,2 ẍn,1 ẍn,2]
T (17)

The transition function is defined as follows,

g(xn) = Dxn + un, (18)

where

D =


1 0 t 0 1

2 t
2 0

0 1 0 t 0 1
2 t

2

0 0 1 0 t 0
0 0 0 1 0 t
0 0 0 0 1 0
0 0 0 0 0 1

 . (19)

t is the state transition interval, which is set to 1 in our case.
un follows a multivariate Gaussian distribution N (0,R),
where

R = σ2
u



1
20 t

5 0 1
8 t

4 0 1
6 t

3 0
0 1

20 t
5 0 1

8 t
4 0 1

6 t
3

1
8 t

4 0 1
3 t

3 0 1
2 t

2 0
0 1

8 t
4 0 1

3 t
3 0 1

2 t
2

1
6 t

3 0 1
2 t

2 0 t 0
0 1

6 t
3 0 1

2 t
2 0 t

 . (20)

To estimate the unknown time-varying state vector of the
moving target, we deploy 9 agents at known positions to
perform the measurement tasks, i.e., the target’s range and
Doppler (range rate). We denote the position of the kth
sensor as lk = (lk,1, lk,2), then the measurement vector can
be expressed as

hk(xn) = [hk,range(xn) hk,doppler(xn)]
T , (21)

where the two elements are specified as follows,

hk,range(xn) =
√
(xn,1 − lk,1)2 + (xn,2 − lk,2)2, (22)

hk,doppler(xn) =
ẋn,1(xn,1 − lk,1) + ẋn,2(xn,2 − lk,2)√

(xn,1 − lk,1)2 + (xn,2 − lk,2)2
,

(23)

and the measurement noise vn,k follows N (

[
0
0

]
,

[
σ2
v 0
0 σ2

w

]
).

We set σu to 0.5, σv to 1, and σw to 1. More specifically,
the parameter σu determines the variance of the noise on
the position, velocity and acceleration of the target, and the
parameters σv , σw determine the variance of the noise on the
two measurements, namely, range and Doppler. The initial
target state is set to [0, 0, 4, 13,−1,−3]T . Figure 2 shows the
sensor network and a realization of the target trajectory. We
set α to 1, γ to 0.03, and β0 to 0.5 for FAF.

Figure 2: Multi-agent network, communication links and
target trajectory (we here have 9 agents with known positions,
and our goal is estimate the 6D state vector of the unknown
agent. The dotted blue line is one unknown trajectory realiza-
tion).

Communication Overhead

In particle-based DPF, since the communication overhead
is determined by both the particle set size and the number
of communication iterations, we change the communication
overhead by fixing the number of particles and varying the
number of communication iterations. The number of particles
for each proposed algorithm is chosen to be the elbow point
of the function describing the relationship between tracking
error and particle set size under the condition that the number
of iterations is sufficiently large, i.e. M = 50 for GP-
DPF, and M = 10 for FA-DPF. It also shows when firefly
algorithm is used, the number of local particles can be further
reduced as long as there are enough iterations. For GL-
DPF and GM-DPF, we fix the number of particles to M =
2000. For GL-DPF, we keep z = 500 Laplacian transform
coefficients.

In Figure 3, we show the trajectory error average RMSE
(ARMSE), whose definition is given in below, for each DPF
algorithm as a function of the count of scalars transmitted
between sensors in the network. We plot the tracking error
of centralized particle filter where all measurements are gath-
ered in the fusion center as a benchmark, as shown by the flat
dotted line. As expected, there is a trade-off between esti-
mation accuracy and communication cost. From the figure,
we can see that GM-DPF has the smallest communication
overhead while GL-DPF requires much higher communica-
tion resources. Our proposed GP-DPF and FA-DPF show
good estimation performance under limited communication
resources. Although the communicated scalars cannot be
compressed to the level of GM-DPF, their demands for com-
munication resources are far less than that of GL-DPF. In
addition, The FA-DPF can achieve faster convergence speed
and lower estimation error. We use ARMSE as a performance
metric, which is defined as

ARMSE =

√√√√ 1

N

N∑
n=1

∥xn − x̂n∥22, (24)

where N denotes the time length while xn and x̂n denote the
true state and estimated state respectively ARMSE.
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Figure 3: Tracking performance ARMSE as a function of the
communication cost per time step (x-axis in log scale). Figure 4: Time complexity comparison among various DPFs.

Time Complexity

Time complexity is also an important metric for algorithms
when it comes to practical implementation. The hyper-
parameters in each algorithm are mostly problem specific,
making the theoretical comparison challenging. To compare
different algorithms, the running time (in seconds) required
to achieve an ARMSE of approximately 2 for each algorithm
was determined and plotted in Figure 4. Here, boxplot [28] is
adopted and 50 Monte Carlo experiments are executed.

From the figure, we can see that the time complexity of the
GM-DPF is far larger than that of other DPFs, and hence, it
is difficult to apply with high real-time requirements. In con-
trast, the complexity of the GL-DPF algorithm is relatively
lower but still higher than the proposed algorithms in this
paper, showing our proposed algorithms more appealing to
practical use.

7. CONCLUSIONS
We have proposed a novel particle-based distributed particle
filter in this paper. In section 2, two key points of particle-
based DPF are stated. The first one is to resort to efficient
resampling algorithms to reduce the size of local particle
set and therefore solve the problem of high communication
overhead. In this paper, GP-enhanced resampling is adopted.
The second one is to design algorithms determining which
particles to be kept after particle exchange to improve estima-
tion performance. We have given two solutions in this paper.
First, a ”scoring mechanism” is proposed. Second, one of
the most well-known metaheuristics, firefly algorithm, is used
to evolve the local particle set when new information is ac-
quired. Numerical results shows the potential of our proposed
algorithms compared with some state-of-the-art DPF in terms
of both communication overhead and time complexity. In the
future, more combinations of efficient resampling algorithms
and metaheuristics can be explored.
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