| 0ss-of-Control Prediction

Quadcopter Loss-of-Control Prediction
Using Recurrent Neural Networks

Master of Science Thesis
Anique Altena

- 'lc—

L 0ss-of-Contro
~rediction

Quadcopter Loss-of-Control Prediction
Using Recurrent Neural Networks

by

Anigue Altena

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended on Friday January 215t 2022 at 09:30.

Student Number: 4554345

Project Duration: March 2021 - January 2022

Thesis Committee: Prof. Dr. G.C.H.E. de Croon Chairman
Dr. Ir. C.C. de Visser Daily Supervisor
Dr. Ir. M.F.M. Hoogreef External Member

o]
TUDelft

Abstract

Unmanned aerial vehicles (UAVs), also known as drones, are increasingly used for a variety of pro-
fessional and amateur applications. However, due to the extreme agility of these vehicles, they easily
suffer from loss-of-control (LOC). On-board LOC prevention systems should be designed which re-
quire low memory and computing power, as these resources are rare on most drones. Data-driven
techniques fit these requirements.

Recurrent neural networks (RNNs) are data-driven techniques that have characteristics that are de-
sirable for the loss-of-control prediction problem. These models can detect patterns from sequential
data automatically. Traditional RNNs can identify short-term time-dependent features in time-series
and advanced RNN structures can recognise even longer time-dependent patterns. The aim of this
research is to identify which RNN model is most suitable for LOC prediction and if it can generalise
loss-of-control prediction of quadcopters for different scenarios, where the aerodynamic characterist-
ics, operating conditions, quadcopter type or loss-of-control event are altered compared to the nominal
scenario. As it is unknown beforehand how complex and time-dependent the failure features are that
are present in the sensor data, four RNN architectures will be tested to identify which model performs
best: long short-term memory (LSTM) network, bidirectional LSTM (BiLSTM) network, LSTM network
preceded by a convolutional neural network (CNN-LSTM) and gated recurrent unit (GRU) network.

Real-life flight tests using a Tiny Whoop quadcopter were performed where LOC was initiated by de-
manding a too high yaw rate of +2000 deg/s. On-board (sensor) measurements were captured during
these flights and no external tracking system or sensors were necessary to predict an upcoming LOC
event. All models were capable of predicting loss-of-control and the commanded rotor values provided
the clearest early warning signals for this, as these values showed saturation before the start of the
LOC event. For optimal performance, the gyroscopic measurements or accelerations should be used
as well.

Different results were found for the various generalisation scenarios. For both changing mass and pro-
peller type, the models underestimated the time to loss-of-control, which was as expected. Therefore, it
is possible to compensate for these deviations and the models can thus still be used for LOC prediction
when these changes are present. On the other hand, for flying in wind conditions and using a different
quadcopter, the results were inconclusive and additional research is necessary to draw conclusions
on generalisation performance. The downside of the models is that they can only be used for loss-of-
control events that happen by demanding a too high yaw rate and the time to loss-of-control should be
similar to the ones from the training set.

Preface

This project started out of an interest in artificial intelligence applied to real-life flight data which contrib-
utes to sustainable aviation. Although the ambition was to create a fully working, closed-loop loss-of-
control prediction system that actually could make aircraft fly more efficient, | soon realised that | must
appreciate the small achievements accomplished on my way to fulfil this. | cannot solve this problem
on my own in nine months and | hope that the findings of this project can serve as a starting point for
any enthusiastic student, scientist or others who share the same ideal.

This research would not have been possible without the guidance of Coen de Visser. | would like to
thank him for giving me the freedom and confidence to direct this thesis project the way | had in mind
and for all the discussions and brainstorm meetings we have had. However, | am in particular thankful
for his enthusiasm with which he kept repairing the drones | broke at least twice a week during the ex-
perimental phase of this research. Without his endless enthusiasm and effort, it would not have been
possible to achieve the results we have.

After five and a half years, my time as a student at the TU Delft has come to an end. Throughout these
years, | have made many new friends with whom | have gone through all the ups and downs that come
along with the life of a student. | am grateful for all of them and hope to keep in touch for many more
years. For now, | am excited that my time at the TU Delft has not finished yet and | am looking forward
to start my career as a PhD student at the faculty of Aerospace Engineering.

Anique Altena
Delft, January 2022

Abstract

Preface

List of Abbreviations
List of Figures

List of Tables

1 Introduction

2 Thesis Project
2.1 Research Motivation
2.2 Research Question.

I Preliminary Thesis Report

3 Unmanned Aerial Vehicle Safety
3.1 Fault Tolerant Control System . .
3.2 FlightEnvelope.

Contents

3.2.1 Safe Flight Envelope Protection

3.3 Loss-of-Control
3.3.1 LOCresearch.

3.3.2 Quadcopter LOC Definition

34 Conclusion

4 Data-Driven Prediction Techniques

4.1 Prognostics and Health Management.

42 DataAnalysis.
4.3 Deep Learning Methods
4.3.1 Long Short-Term Memory
4.3.2 Gated Recurrent Unit. . .
44 Conclusion

5 Methodology

5.1 Research Procedure
52 Tools

5.21 TensorFlow

5.2.2 Bebop Simulator
5.3 Experimental Set-Up.
54 Planning.
5.5 Risk Identification.

6 Conclusion Preliminary

Il Thesis Paper

Il Discussion

7 Conclusion and Recommendations
7.1 Conclusion

30

48
49

Contents iv
7.2 Recommendations e 50
IV Appendices 52
A Simulator Details 53
A.1 Data Generationand Processing 53
A.2 Network Architecture e 54
A.3 NominalResults e 55
A.4 GeneralisationResults 57
B Experiment Details 61
B.1 Validation of SimulationResults 61
B.2 Additional Results e 63

References

70

List of Abbreviations

Abbreviation Definition

AE Auto-Encoder

AFTCS Active Fault Tolerant Control System
ANN Artificial Neural Network

API Application Programming Interface
BiLSTM Bidirectional Long Short-Term Memory
CAST Commercial Aviation Safety Team

CD Contrastive Divergence

CG Centre of Gravity

CNN Convolutional Neural Network

CSD Critical Slowing Down

DL Deep Learning

DNN Deep Neural Network

DTW Dynamic Time Warping

EA-FMS Envelope-Aware Flight Management System
ESC Electronic Speed Controller

EWS Early Warning Signals

FAA Federal Aviation Authority

FC Flight Controller

FDD Fault Detection and Diagnosis

FSAM Flight Safety Assessment and Management
FTCS Fault Tolerant Control System

GAN Generative Adversarial Network

GRU Gated Recurrent Unit

IMU Inertial Measurement Unit

JSAT Joint Safety Analysis Team

kNN k-Nearest Neighbour

LOC Loss-of-Control

LSTM Long Short-Term Memory

ML Machine Learning

NASA National Aeronautics and Space Administration
PFTCS Passive Fault Tolerant Control System
PHM Prognostics and Health Management
QLC Quantitative Loss-of-Control Criteria
RBM Restricted Boltzmann Machine

RMSE Root Mean Square Error

RNN Recurrent Neural Network

RUL Remaining Useful Life

SFE Safe Flight Envelope

SFEP Safe Flight Envelope Protection

SMC Sliding Mode Controller

SPA Sparse Auto-Encoder

SRF Single Rotor Failure

SRUCKF Square Root Unscented Complementary Kalman Filter
sUAV Small Unmanned Aerial Vehicle

SVM Support Vector Machine

UAV Unmanned Aerial Vehicle

3.1
3.2

4.1
4.2

4.3

4.4
4.5
4.6

5.1
5.2
5.3
54

A1
A2
A3
A4
A5
A6

AT
A8

B.1
B.2
B.3

B.4
B.5

List of Figures

Standard structure of an AFTCS [42] 6
Two possible ways to visualise the flightenvelope [29] 8
Categorical breakdown of PHM methods [30] [40][43] 13
Modules of classical data-driven and deep learning Prognostics and Health Management

CYCle . . e 15
A window with size s slides over the measurement data to create small samples of data

[10] . o e 16
Base deep learning architectures for PHM purposes [30] 18
Sketch of internal flow of an LSTMcell [30] 20
Sketch of internal flowofa GRU cell [30] 21
Proposed researchplan e 23
Differences between RMSE and Scoring Function[37] 26
Definition of the body frame of the tested quadcopter, the Parrot Bebop 2 [34] 26
Proposed planning for the research project 27
High-level Simulink model of the Parrot Bebop2 53
Outcome of the two different branches of the neural network 54
Root Mean Squared Error values in seconds for different amount of hidden nodes . .. 55
Root Mean Squared Error values in seconds for different amount of nodes in the final layer 56
Performance of all networks on the validation run, including RMSE value inseconds 57
Root Mean Squared Error values in seconds for different quadcopter masses and differ-

entmodeltypes L 58
Performance of the CNN-LSTM network on different masses, including RMSE values in seconds 58

Performance of the LSTM network for different wind conditions, including RMSE values in seconds 60

Performance of the GRU network for different masses, including RMSE values in seconds 62
Performance of the GRU network for different wind runs, including RMSE values in seconds . . . 63
Performance of the GRU network trained on both pitch and yaw runs, including RMSE values in

SECONAS e e e e 65
Rotor commands during the dangerous manoeuvre for the validation and propeller run . 66

Predicted time to loss-of-control during the dangerous manoeuvre for the validation and
propellerrun e e e 67

vi

4.1

4.2

AA
A2
A3
A4
A5

B.1

B.2
B.3

List of Tables

Characteristics of the standard deep learning architectures and their most important vari-
ants [30] [40] [43] e 17

Advantages and disadvantages for different deep learning architectures 19
Default network settings L 54
RMSE values in seconds for different window sizes 55

Average RMSE values in seconds of all models for different amount of nodes in final layer 56
RMSE values in seconds for a run with and without the additional feature 56
RMSE values in seconds for runs with different wind conditions 59

RMSE values in seconds on the validation run for a fully-connected neural network and
four RNNS e 64

RMSE values in seconds for a run with and without the additional feature 64
RMSE values in seconds on the yaw validation run for a network trained on yaw runs
only and trained on both yaw and pitchruns 65

Vi

Introduction

Unmanned Aerial Vehicles (UAVs), better known as drones, have gained increased popularity over the
past decade for a large variety of applications. The vehicles are used professionally for both civil and
military purposes, such as in agriculture, cargo delivery, aerial observation, search and rescue oper-
ations and entertainment applications. Beside this, drones are nowadays also used for recreational
purposes. According to the Federal Aviation Authority, in 2019 1.32 million small UAVs were registered
for recreational purposes in the United States, which is only expected to grow over the next five year
[15].

This increasing popularity of drones raises concerns about safe flight of these vehicles, especially for
drones used for recreational purposes. Amateur pilots are not aware how powerful UAVs can be and
can have trouble dealing with the extreme agility of such vehicles. They are not familiar with the dynam-
ical possibilities and limitations of drones, which can lead to damage or even loss-of-control, leading to
crashes if left unaddressed. In a 2017 study, 100 UAV reported mishaps were analysed, out of which
34 were categorised as loss-of-control, making it the largest category of UAV mishaps [6]. These num-
bers emphasise the importance of more detailed research on loss-of-control prediction and mitigation
techniques.

Currently, no techniques exist that can predict loss-of-control on-board of drones. The amount of
memory and computing power available in these vehicles is the limiting factor for conventional tech-
nigues which rely on flight envelope determination. The aim of this research is therefore to create a
data-driven algorithm that can detect dangerous flight and predict the time until the start of a loss-of-
control event. Real-life flight tests using a quadcopter UAV are performed to obtain data from failure
runs which are used to create this algorithm and test for what different applications this algorithm can
be used.

The remainder of this thesis is structured as follows. First, a motivation for this research is provided
in Chapter 2, together with the research objective and question. Part | presents the preliminary study
that was performed to obtain an understanding of the loss-of-control problem and different data-driven
techniques. In Part Il, the results of the research are presented by means of a scientific paper. Con-
clusions and recommendations are provided in Part lll. Finally, this thesis ends with the appendices in
Part IV, where additional results that were not reported in the paper are written down.

Thesis Project

This thesis project focuses on predicting loss-of-control (LOC) for unmanned aerial vehicles. This
chapter motivates that this is a relevant research topic. Next to this, the research objective and question
will be provided.

2.1. Research Motivation

Loss-of-control is the cause of the majority of the (fatal) accidents in aviation [7]. Due to this, LOC
prevention has received major attention since the late 90s. There are many approaches that contribute
to LOC prevention, from smart algorithms that can detect loss-of-control to improved pilot training to
prevent human error induced loss-of-control. On the other hand, LOC prediction and mitigation are less
investigated topics and solutions that are invented cannot tell the exact time until LOC occurs. Being
able to predict LOC will happen within a certain time horizon will benefit both safe and sustainable avi-
ation. Safety is improved, as such an algorithm allows for earlier intervention from the flight crew or the
autopilot. Sustainable aviation benefits as aircraft can be designed with lower safety margins, as they
can fly closer to the boundaries of the safe flight envelope. This is because a LOC prediction system
provides early warning signals when flying too close to these boundaries, which allows for enough time
to recover to a safe condition. Lower safety margins imply lighter aircraft, which need less fuel and are
therefore more sustainable. It is thus worth creating algorithms that can predict the exact time to an
upcoming LOC event.

Not only aircraft suffer from loss-of-control. For drones, this is also the main cause for crashes [6], which
implies that an algorithm should be created that works for these vehicles as well. However, drones
suffer from low computing power and available memory, which means that the proposed method should
require only information that is available on-board. Data-driven techniques that use on-board sensor
measurements serve as a solution. Another benefit of these techniques is that they can learn patterns
from data automatically. This is useful as it is usually unknown what exact combination of vehicle
behaviour and operating conditions causes a LOC event. One point of concern is that a data-driven
model is trained on previous failure runs and it is therefore unknown to what extent it can generalise for
scenarios that deviate from these runs in terms of aircraft characteristics, operational conditions and
LOC events. This will be an essential part of the thesis project.

2.2. Research Question

To investigate if LOC prediction using a data-driven algorithm is possible and if such a model can gen-
eralise, simulations and real-life flight tests will be conducted using a quadcopter UAV. It is convenient
to use a quadcopter as test case, because this is less costly and safer, as many failure runs should be
done to validate the working of a LOC prediction algorithm. Beside this, quadcopters are the most com-
monly used multicopter UAVs, which means easy access and support for these vehicles is available.
To research generalisation capabilities of the model, representative configurations and conditions that
happen often during aircraft nominal flight will be chosen. These are changes in weight and centre
of gravity position, changes in wind speed and changes in LOC scenarios. The weight of an aircraft

2

2.2. Research Question 3

changes during flight due to fuel usage. This is also the main reason why the centre of gravity location
alters during flight. Wind speed also changes continuously during flight. Lastly, the course of each air-
craft accident is different, resulting in a large variety of LOC scenarios. If positive results are achieved
for these varying conditions and scenarios on the quadcopter test case, the same methodology could
work on aircraft in nominal flight facing the same variations.

With this in mind, the following research objective is proposed:

The objective of this thesis project is to determine whether data-driven algorithms can generalise
loss-of-control prediction of quadcopters with varying aerodynamic characteristics, operating in
different conditions and for different LOC events. It is hypothesised that this can be done by
training a neural network on nominal quadcopter configuration failure data and use this network
to predict loss-of-control for quadcopters in different configurations and for different operational
conditions and envelope violations.

Based on this research objective, the main research question is set to:

Can a neural network generalise loss-of-control prediction of quadcopters with aerodynamic
characteristics, operational conditions and LOC scenarios representative for aircraft in nominal
condition?

The main question consists of several parts that should be investigated separately by means of sub-
questions. The first part focuses on identifying data-driven methods that can be used for LOC prediction.
The second part focuses on neural networks, as it is expected that these are most suited for LOC pre-
diction. Therefore, state-of-the-art neural network architectures are investigated and the most accurate
architecture is identified. Furthermore, there are three more parts, all related to different conditions and
scenarios that should be investigated as described in the main question. The subquestions are listed
below:

1. How is loss-of-control defined for a nominally operating quadcopter?
2. Which data-driven approaches can be used for loss-of-control prediction?

(a) Which data-driven techniques exist in literature?
(b) Which techniques are most suitable for LOC prediction?
(c) Which sensor data and/or operational conditions should be considered for prediction?

3. What neural network architecture performs best in predicting loss-of-control?

(a) Which NN architectures exist in literature?
(b) Can NN architectures be used for real-time (off-board) deployment?
(c) Which architecture achieves highest prediction accuracy?

4. Can NN algorithms generalise the prediction of loss-of-control for quadcopters with different
weight and CG location?

(a) How much can the weight of the quadcopter vary before prediction accuracy is not sufficient
anymore, where the CG location is attempted to remain the same?

(b) How far can the CG location be altered before prediction accuracy is not sufficient anymore,
where the quadcopter weight is attempted to remain the same?

(c) Can both the weight and CG location be changed while still predicting LOC sufficiently?

5. Can NN algorithms generalise the prediction of loss-of-control for quadcopters flying in different
wind conditions?

(a) How much wind can be present before prediction accuracy is not sufficient anymore?
(b) Does the wind direction influence the prediction accuracy?

2.2. Research Question 4

6. Can NN algorithms generalise the prediction of loss-of-control for quadcopters subject to different
loss-of-control scenarios?

(a) Can a NN trained to predict LOC by demanding a too high yaw rate also predict LOC when
demanding a too high pitch rate?

(b) Can a NN trained to predict LOC by demanding a too high yaw rate also predict LOC when
demanding a too high roll rate?

The first and second subquestions and the first part of the third subquestion will be researched through
a literature review that is reported in Part I. The remainder of question 3 will be investigated using a
quadcopter simulation environment and dedicated deep learning model creation and training platform.
Results of this are presented in Part IV, Appendix A. Questions 4 to 6 will be inspected using the same
quadcopter simulator and deep learning platform and after that will be validated with real-life flight tests.
The most important results of these flight tests are presented in a scientific article in Part II.

Part |

Preliminary Thesis Report

Unmanned Aerial Vehicle Safety

In present day, Unmanned Aerial Vehicles (UAVs), more commonly referred to as drones, are used
more often in civil and military applications, such as cargo delivery, search and rescue operations,
aerial observation, precision architecture and other applications. The drone market is expected to
keep growing in the near future, facilitated by dropping prices, high-level equipment such as built-in
cameras and relatively easy manoeuvring [15]. The Federal Aviation Authority (FAA) expects that the
recreational small UAV (sUAV) fleet in the United States will continue growing over the next few years,
from 1.32 million in 2019 to 1.48 million in 2024 [15]. This increase poses safety threats, as users are
usually not trained drone pilots and therefore unaware of unsafe situations. From this, ensuring safe
flight of UAVs has recently become an emerging field of interest. Current safety enhancement methods
must be explored, as well as future opportunities to improve safety. This chapter first discusses a
currently often used tool for flight safety enhancement: fault tolerant control systems. After that, two
other concepts that are closely related to safe flight are elaborated upon: safe flight envelope and
loss-of-control.

3.1. Fault Tolerant Control System

Fault Tolerant Control Systems (FTCS) are one of the possible solutions for enhancing UAV safety. The
aim of such a control system is to maintain stability and performance of the UAV in case any anomaly
or failure occurs [42]. This system can be classified into two categories: Passive Fault Tolerant Control
Systems (PFTCS) and Active Fault Tolerant Control Systems (AFTCS). Passive systems contain fixed
controllers, which are robust against a predefined class of faults [42]. On the other hand, active con-
trollers have a reconfigurable controller that can react to the failures present in the system, such that
acceptable stability and performance are preserved under any faulty condition [42]. The latter is robust
to a broader range of failures, but requires on-board, real-time Fault Detection and Diagnosis (FDD).

[—
Foult Detection
and Dhagnosis
(PO
Actuator W Sysiem ¥ Sensor
\\ _"____ Faulls l Faults ¢ Faults
Command r |Reconfigurable u 3 z
{Reference) Feedforward —"(- Svstem % S'.'I:I'.‘&‘FSI
Governor Controller - il -
£ -" |
!Ki:cm1|'|gL|Tnt10|1
bl | Mechanism
Reconfigurable
1 Feedback
Controller [

Figure 3.1: Standard structure of an AFTCS [42]

3.1. Fault Tolerant Control System 7

Figure 3.1 shows the structure of an AFTCS. The FDD scheme has a prominent place within this struc-
ture, as it drives the reconfiguration of the controllers. The prime goal of the FDD is fault detection,
isolation and identification. Two possible ways to do this exist: model-based or data-driven. Hybrid
options can be used as well, utilising strengths of both approaches.

Model-based approaches use a mathematical representation of the aircraft or UAV based on physical
principles to estimate the expected nominal state of the system. If the true state deviates from the
expected state beyond a predetermined threshold, the system is said to be faulty. The downside is
that fault identification is not included. Most model-based approaches use Kalman Filter variants for
state estimation. Goslinski et al. [19] derived a new type of Kalman filter, Square Root Unscented
Complementary Kalman Filter (SRUCKEF), for low computational attitude estimation of a quadcopter
UAV, which can be used to observe sensor faults. In 2018, Hasan and Johansen [20] cascaded both a
nonlinear Thau observer and a linearised Kalman Filter for actuator fault diagnosis. Other state estima-
tion methods are used as well. In a recent study, Mallavalli and Fekih [26] proposed to use an adaptive
fuzzy state observer, which can estimate states that are immeasurable by the system’s sensors. An
advanced Sliding Mode Controller (SMC) uses the outputs of the observer to guarantee stability of a
quadcopter subject to multiple actuator faults and external disturbances.

Data-driven approaches utilise data from sensor measurements to detect and identify anomalies. A
data-driven model can work in different ways. A first approach works in a similar fashion as the model-
based approach. The model uses data to learn the nominal behaviour of the system and during oper-
ation it compares the true behaviour with the expected behaviour to detect off-nominal conditions. A
second approach identifies features in measurement data that are associated with specific conditions,
such as nominal conditions or specific fault conditions. If similar conditions are measured during flight,
the model can classify the condition, which directly includes identification. A downside of the latter ap-
proach is that only specific faulty conditions can be identified. A large amount of data-driven techniques
exist, which can be divided into many different categories. More information on this can be found in
Chapter 4.

Although data-driven approaches have their advantages compared to model-based approaches, there
are also limitations that must be faced. These approaches require a large training data set containing
many failure runs to be able to learn failure features. Another downside is that the generalisation cap-
abilities of these methods are not yet widely investigated. The data used for testing the accuracy of a
model is usually similar to the data used for training the model. It is unknown to what extent data-driven
models can correctly detect faults outside the training and test domain.

Despite these limitations, many studies exist where data-driven approaches are successfully applied to
UAVs for fault detection and diagnosis. In a 2020 paper, Bronz et al. [9] proposed a classical machine
learning technique, Support Vector Machine (SVM), for real-time multiclass actuator fault detection in a
small fixed-wing UAV. Sadhu et al. [33] used an advanced deep learning approach, combining both a
convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) network to de-
tect propeller breakdown of a quadcopter. An auto-encoder (AE) is used after fault detection to classify
the fault type. To determine the level of degradation of a quadcopter propeller, Manukyan et al. [28]
used a more classical data-driven approach. As core technique, they use a k-nearest neighbours (kNN)
algorithm that classifies samples based on similarity or a distance measure. As distance measure, the
Dynamic Time Warping (DTW) technique is applied, which can deal with time-series of unequal length.

Fault detection and diagnosis is thus a broadly researched topic for UAV safety enhancement. How-
ever, an important note should be made here. Aircraft and UAV incidents or accidents do not only occur
due to faults present within the system. Another possible cause is flight envelope violation. To prevent
this from happening, a more sophisticated FDD system is required, which can also predict the proximity
of the UAV to the boundaries of the envelope and take timely actions.

The remainder of this chapter will elaborate upon this aspect of UAV safety enhancement. First, more
detail will be given about the flight envelope. After that, one of the possible consequences of flight
envelope violation, loss-of-control, will be introduced, which is the key topic of this research.

3.2. Flight Envelope 8

3.2. Flight Envelope

During flight, aircraft and UAVs must limit themselves in terms of operating conditions, states and man-
oeuvres combinations. Certain combinations lead to damage or even loss-of-control. The boundaries
in which these systems can operate safely define the flight envelope. Traditionally, the flight envelope
is defined as "the area of altitude and airspeed where an airplane is constrained to operate” [16]. An
example of such a flight envelope is show in Figure 3.2a. However, this definition is limited to normal
operation, not including dynamic behaviour of the aircraft or environmental conditions. An extended
definition is known as the Safe Flight Envelope (SFE), which is defined as "the part of the state space
for which safe operation of the aircraft and safety of its cargo can be guaranteed and externally posed
constraints will not be violated” [36]. Manoeuvring within the limits of the safe flight envelope is one
of the key criteria to ensure safe flight. The technique used to remain within these boundaries is Safe
Flight Envelope Protection (SFEP).

Structural Failure
! Safe Flight Envelope
1 Backward Reachable Set Forward Reachable Set
, A\
S Stall i
5] I
3] |
~ 1
- |
g 1 Va Vb
3 - &
Airspeed
Stall
(a) Traditional flight envelope (b) SFE as intersection of forward and backward reachable set

Figure 3.2: Two possible ways to visualise the flight envelope [29]

3.2.1. Safe Flight Envelope Protection

To ensure safety in-flight, it is necessary to manoeuvre within the limits of the safe flight envelope.
Safe flight envelope protection is the convenient name for ensuring that an (unmanned) aerial vehicle
operates within these boundaries. This task can be divided into two parts. First, the SFE must be
determined. Second, it must be guaranteed that the vehicle operates within the limits of the SFE. The
second part has been researched extensively for aircraft and can be incorporated in different ways. A
first approach is to directly incorporate a protection mechanism in the control design, such that the pilot
cannot manoeuvre the aircraft outside its safe flight conditions. A second approach gives a timely warn-
ing to the pilot that the aircraft is in the proximity of the boundaries of the flight envelope [36]. Similar
approaches can be applied to UAVs.

The challenge of SFEP is the first part: identifying the safe flight envelope, especially determining the
limits of the dynamic behaviour of an aircraft or UAV. This is because the envelope is not only depend-
ent on the dynamics of the aircraft, but also on operating conditions it is flying in. Each combination
of both has slightly different boundaries, which should be known exactly for successful SFEP. In the
past, significant research has been executed to determine this dynamic flight envelope of aircraft [36].
It started with regular wind tunnel testing and CFD analysis, from which the results were validated by
expensive flight tests. Due to increasing computing power, analytical methods using aircraft models
gained more interest. Another important tool is bifurcation analysis, which allows for computing of an
entire set of steady state solutions. More recently, database-driven approach towards SFE determina-
tion have been explored. Zhang et al. [41] proposed a closed loop envelope protection system, where
aircraft damage identification is used for online flight envelope retrieval from a large database. Lastly,
a promising technique for flight envelope determination of UAVs is based upon reachability analysis.

The reachable set for an aircraft or UAV are all states that can be reached within a certain time window

3.3. Loss-of-Control 9

given an initial condition. A forward and backward reachable set can be determined, where the safe
flight envelope is regarded as the intersection between both [34]. This is visualised in Figure 3.2b.
Reachable sets can be determined by solving Equation 3.1 over a predefined time window. A larger
time window implies a larger reachable set.

z(t) = f(t,x(t),u(t)) zeR", uelU (3.1)

The forward reachable set is determined by solving Equation 3.1 forward in time. The result is a set of
all states « € R™ for which there exists an input « € U such that « can be reached from an initial con-
dition z(0). On the other hand, the backward reachable set is calculated through solving Equation 3.1
backwards. It spans the set & € R™ for which an input u € U exists such that the initial condition x(0)
can be reached from these states. The intersection of both defines the safe flight envelope. Within this
envelope trajectories from an initial condition to a state and back exist for all states.

The reachable set theory has been used in the past for determination of the SFE for different aircraft
types. Van Oort [36] used this theory to identify the longitudinal SFE for an F-16 aircraft for different
aircraft configurations and flight conditions. In 2015, Lombaerts et al. [25] proposed an online SFE
determination approach for impaired aircraft using the robust reachable set, which does take uncer-
tainties in the aircraft model into account. More recently, this theory has been applied to quadcopter
SFE determination. Sun and de Visser [34] used Monte-Carlo trajectory simulations to determine the
forward and backward reachable set of a quadcopter during high-speed flight.

Determining the SFE of a UAV in real-time is not a straightforward process. It demands continuous high
computing power, which is often not available on UAVs. Beside this, current flight envelope estimation
techniques depend heavily on the time window used for calculations, which raises questions about
the usability of the envelopes. Therefore, other possibilities towards boundary exceeding prevention
should be explored. One option is to predict when loss-of-control (LOC) will occur, such that timely
actions can be taken to prevent this from happening. LOC is one of the possible consequences of safe
flight envelope violation, meaning that when an upcoming LOC is identified, the UAV is flying close to
the envelope boundaries. LOC prediction and prevention is therefore a technique that can supplement
safe flight envelope protection in case the latter fails.

3.3. Loss-of-Control

Exceeding the boundaries of the safe flight envelope can have disastrous consequences, such as
loss-of-control. LOC is responsible for the majority of (fatal) accidents in aviation. In December 2020,
Boeing published the annual Statistical Summary of Commercial Jet Airplane Accidents in which acci-
dents in commercial aviation from 1959 until 2019 were analysed [7]. Between 2010 and 2019, 22%
of all fatal accidents resulted from loss-of-control, which makes it the largest occurrence category for
fatal accidents.

Not only commercial aircraft are subject to loss-of-control; UAVs can also suffer from LOC. In a 2017
study, Belcastro et al. [6] analysed 100 reported small UAV (sUAV) (lighter than 25 kg) mishaps between
2010 and 2015, where 34 were caused by loss-of-control, making it the largest shareholder in sUAV
mishap causes. These numbers confirm the need for extensive research in loss-of-control events
in (unmanned) aerial vehicles, by looking into its primary causal and contributing factors, as well as
prevention, mitigation and recovery methods. This section first provides an overview of the current
status of loss-of-control research. To allow for an unbiased experiment for quadcopter loss-of-control
prediction, a quantifiable LOC definition should be identified. This section therefore ends with possible
definitions and identification of the most suitable one.

3.3.1. LOC research

Loss-of-control gained a lot of interest at the beginning of this millennium. In 2000, the Commercial
Aviation Safety Team (CAST) founded the Joint Safety Analysis Team (JSAT). Their aim was to study
data on loss-of-control events and recommend interventions that could lead to a reduction in fatal acci-
dent rate of 80% by 2007 [32]. JSAT defined LOC as a "significant, unintended departure of the aircraft
from controlled flight, the operational flight envelope, or usual flight attitudes, including ground events”,

3.3. Loss-of-Control 10

where significant refers to events resulting in an incident or accident [32]. This definition has two main
drawbacks.

A first drawback is that there are no quantifiable guidelines, which makes it complicated to consistently
identify events as loss-of-control. To provide these guidelines, Boeing Company and NASA Langley
Research Center cooperated to develop measurable criteria, known as Quantitative Loss-of-Control
Criteria (QLC) [38]. To do so, they described LOC ”as motion that is:

+ outside the normal operating flight envelopes
+ not predictably altered by pilot control inputs

« characterized by nonlinear effects, such as kinematic/inertial coupling, disproportionately large
responses to small state variable changes, or oscillatory/divergent behavior

* likely to result in high angular rates and displacements
« characterized by the inability to maintain heading, altitude, and wings-level flight”

Flight dynamic parameters, such as angle of attack («), sideslip angle (3), bank (¢) and pitch angle
(9) and pitch (¢) and roll rate (p), that can be related to this LOC definition were identified and trans-
lated to five flight envelopes: Adverse Aerodynamic envelope, Unusual Attitude envelope, Structural
Integrity envelope, Dynamic Pitch Control envelope and Dynamic Roll Control envelope. When com-
paring these envelopes to flight test data, it can be concluded that "the excursion of three envelopes
is a clear indication of LOC” [38]. In 2014, Chongvisal et al. [12] used this definition for aircraft LOC
prediction and prevention. For LOC prediction, the aircraft state is constantly monitored with respect to
these five flight envelopes. For LOC prevention, information from this monitoring will be translated to a
control law limiting the pilot commands to maintain states that are within the boundaries of the envelope.

A second drawback of the loss-of-control definition stated by JSAT is that according to this definition,
LOC events will result in incidents or accidents. However, as noticed by Bromfield and Landry [8],
this definition excludes events where airplane control was recovered. During such events, the aircraft
or UAV is in an upset condition. An upset condition is defined as "any uncommanded or inadvertent
event with an abnormal aircraft attitude, rate of change of aircraft attitude, acceleration, airspeed, or
flight trajectory”, where abnormal should be defined relative to the flight phase and type of aircraft [23].
Bromfield and Landry identified several recovery factors based upon non-fatal LOC events that should
all be satisfied to recover from loss-of-control resulting form an upset condition. UAVs can also recover
from upset conditions, as was proven by Baert [1], who created a recovery algorithm for a quadcopter
with single rotor failure (SRF).

Other major contributions to LOC research were done by the National Aeronautics and Space Adminis-
tration (NASA). Since 1999, NASA has conducting detailed research to address both aircraft and UAV
loss-of-control and by creating and testing technologies for LOC prevention, detection, mitigation and
recovery [4]. In 2010, Belcastro and Jacobson [3] proposed a holistic approach for aircraft LOC preven-
tion called ’Aircraft Integrated Resilient Safety Assurance & Failsafe Enhancement (AIRSAFE)’, which
includes advanced modelling and simulation of vehicle dynamics in off-nominal conditions, continuous
vehicle health management, flight safety assurance technologies, crew interface management and veri-
fication and validation techniques for evaluation of all these technologies. Furthermore, Belcastro et al.
[5] identified the key characteristics of LOC, primary causes and causal and contributing factors, based
upon analysis of aircraft LOC accident analysis. This resulted in a list of potential future LOC risks and
follow-up activities for LOC prevention and recovery.

A research group from the University of Michigan, directed by Prof. Ella Atkins, investigated LOC
prevention methods according to the AIRSAFE approach. Atkins proposed an Envelope-Aware Flight
Management System (EA-FMS), which combines flight safety assessment and management (FSAM),
envelope estimation, adaptive flight planning, system identification and adaptive control in one system
to enable prevention and recovery of LOC events [13]. The system is able to warn the pilot and over-
ride commands just in time to recover from a LOC scenario. The system however depends on offline
simulation of nominal and anomaly cases and therefore on an accurate model of the desired aircraft.

3.4. Conclusion 11

Most research mentioned previously has focused on LOC prevention. Few literary references discuss
active, on-board LOC prediction methods. As mentioned earlier, Chongyvisal [12] proposed a prediction
method that monitors the state of the aircraft with respect to the five flight envelopes. More recently, van
der Pluijm [29] proposed to use a data-driven approach towards LOC prediction. In this context, LOC
was identified by a critical state in the measurement data, which could be visualised in the measurement
data by a sudden change of almost all variables. Van der Pluijm proposed Critical Slowing Down (CSD)
to identify Early Warning Signals (EWS) of a critical transition in complex systems. The method was
tested on a quadcopter subject to single rotor failure. However, as noted by the author, CSD requires
slow and monotonic change to observe EWS properly. Quadcopters and other aerial vehicles are
usually subject to sudden changes close to the flight envelope boundaries, which leads to questions
on the suitability of CSD for LOC prediction.

3.3.2. Quadcopter LOC Definition

Previous LOC research status review shows that an unambiguous, quantifiable LOC definition is not
straightforward to determine. This is however important for predicting loss-of-control for a UAV. An
unambiguous definition of the point in time where LOC occurs allows for consistent labelling among
all failure runs. Based upon analysis in this and previous section, several possible definitions can be
deduced:

1. Loss-of-control is quantified by the position of the state vector relative to the safe envelope, which
is the intersection of the forward and backward reachable sets. If this vector is outside this envel-
ope, the system is in LOC condition for the time horizon used to compute these sets. The moment
in time where the boundaries of the SFE are exceeded, LOC begins. Although this definition is
the only true theoretical definition, it has some practical issues. The reachability analysis is sens-
itive to operating conditions and the time horizon necessary to compute the sets is case sensitive.
In addition, computing the SFE requires a high fidelity model which is currently not trivial for all
aircraft. Therefore other, more practical definitions must be used.

2. Loss-of-control is quantified by monitoring its position relative to the five envelopes as described
by the QLC, as proposed by Chongvisal et al. [12] in 2014. However, as noted by Sun and de
Visser [34], this approach is not suitable for a quadcopter due to its different behaviour compared
to a fixed-wing aircraft. As a quadcopter will be the test case for this research, this must be
considered. Apart from that, similar issues arise as mentioned for previous definition. Flight
envelopes are case depended, making this definition unsuitable.

3. Loss-of-control is quantified by detection of an upset condition, to ensure events where control
was regained are included as well. The beginning of the upset condition can be used as LOC
indication. When looking at the definition of upset condition proposed by Lambregts et al. [23]
stated earlier, it can be concluded that upset conditions are context dependent. Therefore, the
downside of using this LOC quantification is that a second definition ambiguity arises, as this
definition is not clearly quantifiable as well. Therefore, this definition is not suitable either.

4. Loss-of-control is quantified by a critical state, depending on what type of LOC is assessed, as
proposed by van der Pluijm [29]. For example, for pitch rate limits, this is denoted as q.,iticais
which is the pitch rate where it is expected that LOC occurs. This moment in time is identified in
the sensor data by a sharp change of almost all variables. LOC is initiated by the state prior to this
critical state. It is however not known precisely when LOC occurs, meaning that a possible range
should be defined (eg between qroc,1 = Yeritical — land qroc,2 = Yeritical — 05) The downside
is that this is less accurate than some of the previous definitions, however it is not flight condition
dependent as opposed to previous definitions. Only the sensor data should be observed, making
it the most accessible definition. Therefore, this will be the definition used for the remainder of
this research.

3.4. Conclusion

Extensive research has been conducted for loss-of-control prevention, detection, mitigation and recov-
ery. Only little research focuses on LOC prediction. This is however an important tool in aircraft and
UAV safety enhancement. From data related to aircraft and UAV incidents and accidents it can be

3.4. Conclusion 12

concluded that loss-of-control is still the cause for the majority of these events, despite all effort put in
LOC prevention. An on-board, real-time LOC prediction system that can send timely warnings to the
pilot or overrule pilot commands to remain within the SFE boundaries will result in less LOC events.
Not only from a safety perspective is LOC prediction useful, also when looking from a sustainability
point of view LOC prediction can be utilised. When a reliable LOC prediction system can be installed
on-board and deployed in real-time, aircraft and UAV can fly closer to the boundaries of the envelope.
This reduces safety margins that must be applied during design, making the system lighter, thus more
sustainable. Due to its potential consequences, it is worth investigating new techniques suitable for
LOC prediction.

Data-Driven Prediction Techniques

Although loss-of-control prediction of UAVs is becoming more urgent due to the increasing availability
of these vehicles for a larger audience, it has not been widely researched yet. Due to this lack of in-
formation on LOC prediction, different areas in which prediction using time-series generated by multiple
sensors is required should be explored. To this end, this chapter first discusses the field of prognostics
and health management. After this, an introduction to data preprocessing techniques is provided. This
chapter ends with a section on deep learning methods and a conclusion providing the most promising
LOC prediction techniques.

4.1. Prognostics and Health Management

One of these fields is Prognostics and Health Management (PHM), which is occupied with monitoring
the health condition of complex systems by utilising large amounts of data coming from sensors [30]. A
prognostic framework detects and classifies anomalies or faults, and analyses the degradation of the
system with this anomaly present [2]. However, the main concern of PHM is predicting the Remaining
Useful Life (RUL). The goal of RUL prediction is to estimate the time left before failure of a system
component or complete system. RUL prediction is a regression problem, which is the same type of
problem as loss-of-control prediction, meaning that similar methods can be used for both. PHM is thus
an interesting framework to utilise for enhancing quadcopter safety, as both anomaly detection and
LOC prediction are relevant.

Prognostics and
Health Management
(PHM)

Physics-Based Data-Driven Knowledge-Based
Approach Approach Approach
Maching Learning
Stochastic Approach ‘Approach Statistical Approach

Classical Machine
peeprm

¥ 2 L 2 ¥ ¥ ¥

[Supervised } Semi-Supervised {Unsupemsed] [Supervised } Semi-Supervised {Unsupemsed]

Anomaly
Detection

Anomaly
Detection

Support Vector Machine Support Vector Regression = K-Means Algorithm Clustering-based algorithms Multi-Layer Perceptron Gated Recurrent Unit tneen Auto-Encoder
K-Nearest Neighbor Bayesian Network Density Based Clustering [~ Spectral-based algorithms Long Short-Term Memory [~ Bidirectional LSTM Deep Belief Network

Random Forest ‘Random Forest Regression = Self-Organizing Maps Nearest-Neighbor algorithms Convolutional NN CNN-based LSTM

Classification Regression Clustering Classification Regression Clustering

Figure 4.1: Categorical breakdown of PHM methods [30] [40] [43]

13

4.1. Prognostics and Health Management 14

Prognostic methods can be categorised into three domains: model-based, knowledge-based and data-
driven approaches [2]. The model-based approach requires a mathematical model describing the dy-
namics of a system. For simple systems, this approach usually achieves high prediction accuracy.
However, for more complex and highly dynamic systems like aircraft and quadcopters detailed models
that describe the complete motion perfectly are not available. This makes a model-based approach
unsuitable for LOC prediction. A knowledge-based approach uses the experiences from past failures
to estimate when new failures will occur by comparing the current condition with previous failure events.
This is again an approach that can achieve high accuracy, however it is limited to failure events experi-
enced before, meaning that it is not a robust method. Data-driven approaches utilise data coming from
sensors within the system and automatically learn features from this, which determine the current con-
dition of the system. The advantage compared to the other two approaches is that it is not necessary to
understand the exact dynamics of the system and knowledge from previous runs does not have to be
translated into a prediction algorithm manually. Data-driven approaches can be divided into stochastic
algorithms, statistical algorithms and machine learning methods [2]. The first two approaches use tradi-
tional methods like Bayesian-based approaches, Hidden Markov Models and regression. This research
will focus on the last type of data-driven approaches: machine learning methods.

Originally, machine learning (ML) was defined in 1959 by Arthur Samuel as "the field of study that
gives computers the ability to learn without being explicitly programmed”. The key point is its ability to
learn patterns from data automatically, without explicit guidelines on how to do this. Machine learning
techniques can be categorised in several ways based on their characteristics. A first approach to do
this is based on classical machine learning and deep learning (DL). Classical machine learning tech-
niques are already used for decades and include techniques such as Support Vector Machines (SVMs),
nearest neighbour, decision trees, naive Bayes classifier and k-means clustering. It is closely related
to the stochastic and statistical data-driven approaches. Deep learning on the other hand uses Artificial
Neural Networks (ANN) consisting of more than one hidden layer. This method has gained increased
popularity since the introduction of backpropagation for neural network training by David Rumelhart,
Geoffrey Hinton and Ronald Williams in 1986 [31]. Since then, the performance of these approaches
improved massively, and nowadays deep learning methods achieve superior performances compared
to classical machine learning methods for PHM applications [10] [43].

Another way to categorise machine learning techniques is supervised or unsupervised approaches.
Supervised learning algorithms learn to represent a function that maps inputs to outputs based on ex-
ample input-output pairs (z,y) [14]. The expected output related to an input is called a label, which
can be e.g. a specific fault type, health indicator or RUL estimation. Supervised methods are used
for classification and regression problems. Unsupervised methods, on the other hand, do not have
access to labels. An unsupervised model therefore learns features based upon similarity. It can group
similar data points, which is clustering, or it can compare input data to nominal, known data to identify
off-nominal conditions, which is anomaly detection.

Lastly, machine learning techniques can be distinguished between generative and discriminative mod-
els. Generative models learn the joint probability distribution, whereas discriminative models learn the
conditional probability density function, which can be interpreted as the probability of output y given
input x. An application of this is classification, where input x is identified as belonging to class y. Gen-
erative models attempt to generate new instances based upon the underlying data distribution [30]. In
PHM applications, generative models learn to reconstruct normal system behaviour. This expected nor-
mal state is compared with the true state to identify faulty conditions, which is called anomaly detection.
Discriminative models can have different purposes, such as directly identifying a condition as healthy or
faulty (binary classification), identifying the type of fault (multiclass classification) or predicting the RUL
(regression). A categorical breakdown of the PHM approaches including example techniques found in
literature is visualised in Figure 4.1.

The complete data-driven PHM cycle including a classical and deep learning path is visualised in Fig-
ure 4.2. Two approaches can be taken in order to predict remaining useful life [27]. The first approach
starts with manual feature extraction and selection, followed by detection and classification of an anom-
aly, after which a degradation model that captures the evolution of this anomaly is applied recursively

4.2. Data Analysis 15

Environment PHM Framework

Feature Anomaly

Multiple Sensors Extraction | |Feature Selection Detecion | Classification —» Prognostics RUL prediction J
Data Pre-
Processing —
! i
Operating Automated Feature Extraction Automated RUL pradiction Control "a”“”[-’J

Conditions Signal

Data Analysis RUL prediction

Figure 4.2: Modules of classical data-driven and deep learning Prognostics and Health Management cycle

to propagate this in time. Once it surpasses a predefined threshold, failure is said to occur. The time
between measurements and failure is defined as the RUL. Both phases use classical machine learning
methods. A second approach directly estimates RUL from the measurement data, where both feature
extraction and RUL prediction are done automatically using deep learning algorithms.

The remainder of this chapter will evaluate the data-driven PHM cycle in more detail. First, data analysis
will be discussed, which includes data preprocessing techniques to improve RUL prediction accuracy.
Second, state-of-the-art deep learning prediction methods will be explored.

4.2. Data Analysis

Conventional data-driven health monitoring approaches, like classical machine learning, require extens-
ive, manual data preprocessing. To ensure optimal performance of the prediction model, informative
features should be extracted from the measurements. There are several ways to do this. Usually, only
data coming from sensors showing a clear degradation trend are used. Next, features are manually ex-
tracted. Time domain features include statistical features such as the mean and variance. Frequency
domain features can be extracted after Fourier analysis, where a time signal is converted into a fre-
quency signal. Similar features that were extracted in the time-domain can be extracted in frequency
domain. Combined time-frequency features are also used, which can be extracted after e.g. wavelet
transform [43]. Lastly, as classical data-driven techniques cannot deal with large-scale data, data com-
pression techniques are applied, such as Principle Component Analysis. The main idea behind this
technique is to find correlations between data coming from several sensors and only continue with data
showing the strongest trend. These preprocessing steps require expert knowledge as well as extensive
human labour, which is undesirable.

Deep learning techniques, on the other hand, require less data preprocessing in comparison to clas-
sical machine learning methods. These techniques can deal with large-scale data and are able to ex-
tract features automatically, decreasing the amount of human work involved. However, preprocessing
techniques can still boost performance of the automatic feature extraction. Often used preprocessing
techniques are selection of specific sensors and time-domain feature extraction. Furthermore, data is
normalised and a sliding window technique is used.

Sensor selection

Not all sensors show a clear positive or negative trend over time which point towards degradation or
potential loss-of-control. To reduce dimensionality and with that decrease training and inference time,
only those sensors that show a clear trend should be chosen. Sensors are selected through visual
inspection.

Normalisation

Data coming from various sensors monitor system health while being subject to many operating condi-
tions. The measurements taken from these sensors work on different scales. When feeding the data
directly into a DL network, excessive weights and biases will appear, which slows down training or even
results in failed training due to exploding gradients. To prevent this from happening, data should be
normalised. Most commonly used normalisation methods are the z-score and min-max normalisation,
given by Equation 4.1 and Equation 4.2 respectively [37].

4.3. Deep Learning Methods 16

o) =TT H (4.1)
oi

r; —minx;
A (4.2)
max x; — min z;
In these equations, x; denotes the raw data from sensor J, u; denotes the mean of the raw sensor data
of sensor i and o; denotes the standard deviation of sensor i. 2 represents the normalised data.

Sliding Time Window

The sliding time window technique is commonly applied to time-series data to achieve data segment-
ation. The core idea behind this is to create more data samples, which has positive effects on RUL
prediction performance. A visual explanation on how to apply this technique on measurement data is
shown in Figure 4.3.

RUL T-s-p g

Step size p RUL T-s >
n
(]
3
(7]
(]
@

4Wmdow size s Total cycle T >

Figure 4.3: A window with size s slides over the measurement data to create small samples of data [10]

The total time from beginning of the experiment to failure (or loss-of-control) is 7. A window with size
set to s is sliding over the measurement data of all n sensors, with a step size of p, leading to I number
of samples. Each sample will thus have a size of s x n. The time to failure, here the RUL, is defined
as the time from the last sample present in the chunk until failure, T — s — p - (i — 1), with ¢ the sample
number, i € I. The window size s has a large influence on the performance of the model, and should
therefore be tuned together with other hyperparameters.

4.3. Deep Learning Methods

Over the past decade, deep learning as a tool for health monitoring of complex systems has gained
increasing interest. In a 2020 review on deep learning for PHM applications, Rezaeianjouybari and
Shang analysed 137 unique studies that apply a deep learning approach for health monitoring published
between 2013 and September 2019 [30], proving the increased popularity. One of the reasons for
this is that a tremendous amount of deep learning models exist. This is because they have many
characteristics, such as network type, amount of layers and nodes, activation functions of the nodes,
objective or loss functions and optimisation algorithms [39], which can all take on many forms and
shapes. However, some architectures, which is the combination of all these characteristics, are more
suitable for a specific problem than others. Network type has the largest influence on this, as this defines
the mathematical operations that are being executed on the data and in what order. Five base deep
learning architectures can be identified: Restricted Boltzmann Machines (RBM), Auto-Encoders (AE),
Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) and Generative Adversarial
Networks (GAN). An overview of their variants and characteristics is given in Table 4.1.

4.3. Deep Learning Methods 17

Table 4.1: Characteristics of the standard deep learning architectures and their most important variants [30] [40] [43]

Network Type Variants Goal (Un)supervised

Auto-Encoder Generative Unsupervised
Sparse Auto-Encoder
Denoising Auto-Encoder

Restricted Boltzmann Machine Generative Unsupervised
Deep Belief Network
Deep Boltzmann Machine Supervised
Convolutional Neural Network Discriminative Supervised
Recurrent Neural Network Discriminative Supervised

Long Short-Term Memory
Gated Recurrent Unit

Generative Adversarial Network Generative Unsupervised

An auto-encoder network consists of an encoder part and a decoder part. The goal of this network
is to construct new representations of the input dataset, meaning that it is a generative type of neural
network. A standard auto-encoder consists of three layers, and the model is optimised such that the
reconstruction error is minimal. Auto-encoders thus do not require labels, making it an unsupervised
technique. A drawback of the standard auto-encoder is that it tends to learn the identity transforma-
tion, failing to create new representations. To prevent this, a sparsity constraint can be added to the
cost function, leading to the Sparse Auto-Encoder (SPA). Another common AE variant is the Denoising
Auto-Encoder (DAE). As opposed to the standard auto-encoder, this network corrupts the input data
by adding noise and its purpose is to reconstruct the clean input data. The denoising auto-encoder is
therefore robust for small perturbations in the input data. The hidden layer of the auto-encoder repres-
ents features of the input data. To learn more complex features, multiple auto-encoders can be stacked
together, leading to a stacked auto-encoder. The layers are added and trained one-by-one, allowing for
layer-wise training. As this network can learn features in an unsupervised fashion, the hidden layer’s
weights and biases are often used as pretrained parameters of deep neural networks, which ensures
better convergence in comparison to random initialisation. The standard and stacked auto-encoder are
drawn on the first row in Figure 4.4.

Restricted Boltzmann Machines are two-layer neural networks that form a bipartite graph. This is a
graph consisting of two groups of nodes, visible and hidden nodes, which are fully interconnected,
however nodes within a group are not connected. All connections are undirected, meaning that inform-
ation can flow both directions. The purpose of the RBM is again signal reconstruction, which means
that it is a generative model. An RBM is trained using the Contrastive Divergence (CD) algorithm and
the purpose is to optimise the log likelihood. By stacking multiple RBMs, a Deep Belief Network (DBN)
is created, where all layers are directed, except the top layer, which makes them closely related to
a conventional artificial neural network. This network parameters can be trained per layer using the
CD algorithm, which can again be used as pretrained initialisation for Deep Neural Networks (DNN). A
second RBM variant is the Deep Boltzmann Machine (DBM), where additional undirected layers are
added to the standard RBM. Due to the undirected connections, the layers must be trained jointly in
a supervised fashion, which is computationally more expensive. A standard RBM, DBM and DBN are
shown on the second row in Figure 4.4.

Convolutional Neural Networks have two layer types alternating each other: convolutional layers and
pooling layers. Convolutional layers apply the convolution operation to subsets of the input data. By
sliding a so called filter or kernel over the complete input set (either 1D or 2D), local features are iden-
tified. The pooling layer is a dimensionality reduction layer, which picks the most significant features
outputted by the convolutional layer. This layer applies non-linear functions like max. By stacking mul-
tiple convolutional and pooling layers behind each other, more abstract features can be extracted. The
CNN is followed by some fully connected layers and a final layer responsible for regression or classi-

4.3. Deep Learning Methods 18

fication, making it a discriminative technique. CNN are typically used for image processing, like object
detection problems. Figure 4.4 shows a CNN with one convolutional and pooling layer on the third row.

Stacklng n AEs % % %

Autoencoder (AE) Stacked Autoencoder

B 5

Multi Layer Perceptron | Restricted Boltzmann Deep Boltzmann Machine Deep Belief Network
' Machine

{_1_\{_1_\

Encoder Decoder

b'e Y | X

. Fully - :
C lut : Classification
Input onv:o uuon Pooling Flatten connfcted . (Softmax)
L [O7 :
\
Convolutional Neural Network
Real data sample Real or

Noise T
Syﬂmctlc D (X)
: data sample @ g
xt :-

69 @ —> X

XX

S U S r>r
X2 X3 - - X X1 e

. .

Recurrent Neural Network Recurrent Neural Network

(Unidirectional) (Bidirectional) 5 Generative Adversarial Network

Figure 4.4: Base deep learning architectures for PHM purposes [30]

Opposed to conventional deep neural networks, Recurrent Neural Networks contain recurrent nodes,
which allow for a memory. Recurrent nodes have a feedback loop, meaning that at time ¢, this node
receives the input of the network together with its own output of time t - 7. This makes RNN archi-
tectures most suitable for analysing sequential data, like language processing. An RNN can also be
bidirectional, where data processed in both a forward and backward manner. When long-term depend-
encies need to be captured, the network may suffer from the vanishing or exploding gradient problem.
To overcome this problem, recurrent nodes are replaced by Long-Short Term Memory (LSTM) cells or
Gated Recurrent Unit (GRU) cells. Both cells have a similar working principle. Gates are introduced
that allow for long term features to be maintained for longer period of time. RNN are discriminative
models. A standard RNN and bidirectional RNN are shown on the left on the lowest row in Figure 4.4.
The square blocks can be conventional recurrent cells, as well as LSTM or GRU cells.

Finally, Generative Adversarial Networks are a relative new type of network, introduced only in 2014
by Goodfellow [18]. This is a generative model consisting of two networks: a generator and a discrim-
inator. The generator creates fake input data based on the original dataset. The discriminator receives

4.3. Deep Learning Methods 19

both real and fake data and attempts to identify the real data. Although the sample generation is very
realistic, these type of models suffer from mode collapse, which means that the reconstructed data
show limited variety, meaning that the model can not generalise well. More research is required before
it can be widely applied in PHM applications. The working principle of the GAN is shown on the right
on the lowest row of Figure 4.4.

Advantages and disadvantages of previously mentioned network types are summarised in Table 4.2.
The problem of predicting an upcoming loss-of-control is essentially a regression problem utilising time-
series data. Based upon this and previous discussion of network types, it can be concluded that a
recurrent structure is the most promising approach. This is the most suited network for time-series
analysis. However, the basic recurrent neural network suffers from vanishing or exploding gradient
issues. This means that the weights of nodes go to zero or plus or minus infinity respectively, resulting
in bad performance. LSTM and GRU cells solve this problem. Therefore, the working principles of
these variants should be investigated in more detail.

Table 4.2: Advantages and disadvantages for different deep learning architectures

Network Type Advantages Disadvantages

Auto-Encoder - Unsupervised

- No faulty data necessary

- Layer-by-layer pretraining
can serve as initialization for
DNN

Restricted Boltzmann Machine - Unsupervised
DBM)
- No faulty data necessary
- Layer-by-layer pretraining
can serve as initialization for
DNN

- Only anomaly detection

(except - Only anomaly detection

Convolutional Neural Network

- Can learn more complex
features than AE and RBM

- Most suitable for image pro-
cessing

- Supervised

- (Manual) hyperparameter
fine-tuning required for op-
timal result

Recurrent Neural Network

- Can learn more complex
features than AE and RBM

- Most suitable for sequential
and time-series data

- Supervised

- (Manual) hyperparameter
fine-tuning required for op-
timal result

Generative Adversarial Network - Unsupervised - Only anomaly detection
- Realistic input reconstruc- - Mode collapse
tions

4.3.1. Long Short-Term Memory

Long Short-Term Memory networks are widely used within the field of prognostics and health manage-
ment. They are used for both classification and regression, the latter being RUL prediction. Chen et al.
[10] created an attention-based LSTM RUL prediction network, which is able to identify more relevant
features and time steps. An additional feature fusion includes both automatic extracted features and
handcrafted features, to boost performance. Next to this, LSTM networks come in various shapes and
combinations. They are stacked or used in parallel with regular DNNs or CNNs for additional feature
extraction. In 2019, Li et al. [24] proposed parallel analysis of raw sensor data by an LSTM and CNN
network, after which a second LSTM network merges features extracted by both, leading to a RUL
estimation. Bidirectional LSTM (BiLSTM) structures are used to account for future states as well. In

4.3. Deep Learning Methods 20

a paper written by Huang et al. [21], two BiLSTM architectures are stacked, where the first one is
responsible for feature extraction on normalised raw sensor data and the second one for higher-level
feature extraction of these learned features as well as feature extraction from normalised operational
conditions. A final part with fully connected layers results in a RUL estimation.

Performance of LSTM architectures compared to classical machine learning methods, auto-encoders
and restricted Boltzmann machines is similar or higher even without hyperparameter fine-tuning, as
proven by [43]. In an experiment for tool wear prediction, BiLSTM outperformed classical ML methods,
a standard auto-encoder, a DBN, an LSTM and a CNN network. Only a denoising auto-encoder per-
formed better. However, considering the complexity of an (Bi)LSTM, hyperparameter tuning will boost
performance of these methods, whereas this is not the case for AE or RBM variants. This confirms that
LSTM architectures are most suitable for time-series analysis.

Ce—2 Cr+1
LSTM LSTM
he_ | | hess
=1 Xe+1

Figure 4.5: Sketch of internal flow of an LSTM cell [30]

Although various LSTM cell architectures exist, one of the most popular types was proposed by Gers,
Schmidhuber and Cummins in 2000 [17]. Three gates, input gate, forget gate and output gate, regulate
the flow into and out of the cell. This is shown in Figure 4.5. At each time step ¢, the hidden state h; is
updated using the input data at this time step ¢, x;, the hidden state of the previous time step ¢-71, h;_1,
and network parameters ©,sty. The updating equations are as follows:

F)t =f (Yt,ﬁhl; —>9LSTM)

?t = tanh (V_\LYt + ﬁzﬁt_l + E)Z)

o \T)VZYt + ﬁiﬁtq + B)z)

=0 Wf?t—i-ﬁfﬁtfl -‘rB)f) (4.3)
_ - = ?

“Fe T TaeT

t=20 (WOYt"’_ﬁohtfl + bo)

h,; =tanh (E)t) ® 6>t

t

-~

o~

Lolol = =

= o o —
Wz, W;, W, and W, are input weights and therefore related to x;. ﬁz, ﬁi, ﬁf and HO are recurrent

- = -
weights and therefore related to h,_;. Furthermore, bz, b;, b and b, are biases. o is the logistic
sigmoid activation function and tanh is the hyperbolic tangent activation function. Lastly, © denotes
element wise multiplication. The weights and biases are learned during model training.

In case of a Bidirectional LSTM network, an additional layer is added where data is passed through
from the newest state x, to the oldest state x;, as opposed to a standard LSTM, where data is passed
through from oldest state x; to the newest state x;. This is visualised on the lowest row on the left in
Figure 4.4. This backward pass has its own set of equations, similar to the forward pass equations:

4.3. Deep Learning Methods 21

ﬁt =f (Yty F7:-4-1; 6LSTM)

Yt = tanh (Wzyt + Fzﬁt—&-l + %z)
<i—t g Wiyt —|— Eiﬁt-i-l + %1)
o (W%, + Ry hp + %f) (4.4)
S AR \ry
tO T+ €10 fy
O0;=o0 (Woyt + ﬁort_H + §O>
ﬁt = tanh (%t) ®%,

When looking at Equation 4.3 and Equation 4.4 it can be observed that they are almost identical, except
for the — and <, which represent the forward pass and backward pass respectively. The complete out-
put at time step ¢ of a BILSTM network is the element-wise summation of the outputs of both processes,
which is represented by Equation 4.5.

t

T of =
Il

%
h,=h,ah, (4.5)

4.3.2. Gated Recurrent Unit

The Gated Recurrent Unit is a relatively new kind of RNN type. It was introduced in 2014 by Cho et al.
[11], whereas LSTM was already introduced in 2000. Due to this, less PHM applications using GRU
architectures exist. In 2018, Zhao et al. [44] proposed a local feature-based GRU network, where
first features are extracted from data manually, after which these features are fed into a bidirectional
GRU network. A final fully connected regression part is added to obtain a RUL prediction. As for the
LSTM methods, GRU can also be combined with other deep learning structures. Lai et al. [22] placed
a CNN and GRU network in series for to detect both short-term local features and long-term pattern for
time-series trends.

h,_,) .
-2 o - £ —
e;Eﬂ 0] tan

_

Xt
Xt-1 Xt+1

Figure 4.6: Sketch of internal flow of a GRU cell [30]

As opposed to the LSTM cell, the GRU cell only contains two gates, making training computationally
less demanding and therefore faster. The input and output gate are combined into one update gate
and the forget gate is renamed to reset gate. The flow through a GRU cell is shown in Figure 4.6. The
flow through the GRU cell can be defined in a similar fashion as the flow through an LSTM cell. At
time step t, the hidden state h, is updated using the input data at time step {, x;, the hidden state at
the previous time step {-1, h;_; and the network parameters, Ogry. The GRU can again be used in a
bidirectional manner. The updating equation for the forward process is given by Equation 4.6, and the
updating equation for the backward process is given by Equation 4.7. The output of the bidirectional
GRU is the same as for the bidirectional LSTM, given by Equation 4.5.

4.4. Conclusion 22

E)t =f (Yt, Wt—l; 8GRU)
?t =0 WZYt + ﬁzﬁ>t71 + B>2:
Y=o (WX, + RN+ b, (4.6)
h t = tanh (W’hYt + ﬁh <?t © ht—l) + E)h)

— e
h, = (1_?t)® ht71+?t® h,
Ft =f (Yt,ﬁtq;(@GRu)

|
J

] =

Y25 = Wzyt + Ezﬁt—l + %z
<?t =0 W'Pyt + Erﬁtfl + %7’ (47)
= <

h, = tanh (Vvh?t + R, (?t ® ﬁt,l) T %h)
ﬁt= (1—§t)®rt—1+§t®<ﬁ_t

4.4. Conclusion

Deep learning methods perform well in RUL prediction applications. Due to similarities between a RUL
prediction problem and LOC prediction problem it is expected that similar results can be achieved for
the latter using the same techniques. Important similarities are that both issues aim to predict when a
complex system operating in dynamic conditions fails and both problems have only limited and noisy
sensor data available to train a data-driven model. The model that is most accurate in predicting RUL is
a recurrent neural network. More specifically, long short-term memory and gated recurrent unit meth-
ods perform best, due to their capability of identifying long-term dependencies in time-series. The
LSTM network has more gates to process information, which makes this model more accurate than
GRU, especially if longer sequences of data must be analysed. However, the GRU cell can be optim-
ised easier, due to which training time is reduced.

In addition to this, variants of these methods, such as bidirectional LSTM or GRU and combinations with
other deep learning architectures have proven to be even more accurate than standard architectures.
These architectures perform more data processing, due to which more low-level failure features can
be identified. If more failure features can be assessed, prediction accuracy improves. Therefore, the
following four architectures have been identified as most promising to investigate their capabilities in
LOC prediction:

* LSTM

* CNN-LSTM
* BIiLSTM

+ GRU

It is expected that the more complex architectures, CNN-LSTM and BiLSTM, are more accurate as they
can extract more complex features. However, more fine-tuning of hyperparameters is required before
this is achieved. The standard GRU and LSTM have a similar lay-out, but the GRU is less complex
due to the use of two gates instead of three. Therefore, the training time for this model will be less,
however accuracy can be lower than for the LSTM structure.

Methodology

This chapter provides an overview of the project methodology. The research procedure is elaborated
upon, where the different phases of the project and the desired aim of each phase are described in detail.
Furthermore, the experimental set-up is described, where details about the simulation environment
and flight tests that will be conducted are provided. Lastly, possible risks that could appear during the
research or the experiment are identified and mitigated.

5.1. Research Procedure

The research consists of several phases, where the main goal of each phase is to answer parts of the
research question. The different phases and their key aspects are visualised in Figure 5.1.

i
i Sensor Data Loss-of-Control i
; Prediction definition i
i |
i I i
| . v |
i . Data-Driven |
i Data-Preprocessing Techniques :
[]
[]
[]
| i
L4 ¥ v i
Preprocessing Recurrent Neuwral ||, .| Single Simulated i
CQptions Network Architectures|[| LOC experiment |
]
]
Ld h i
[]
| Optimal Data Best RNM | Multiple Simulated i
i Preprocessing Architecture N LOC experiments i
: i
] [
] 1
(] y i
]
[]
! :)) |
! Validation with real- - M“""é{iﬁgg&g:am'c Multiple Operational Multiple LOC :
| life experiments Configurations Conditions scenarios |
] [
] [
] [
] [

Figure 5.1: Proposed research plan

Four phases can be distinguished, which all have the aim to answer parts of the research questions.
The four phases are as follows:

23

5.2. Tools 24

» P1 (Literature Review): Literature study is conducted after which current state of loss-of-control
prediction is defined. Data-driven methods that can be used for prediction on sensor data are
assessed and compared to identify the most promising approaches. The aim is to answer the
first and second research subquestion and part of the third research subquestion. As shown in
Figure 5.1, the desired output of this phase are several promising deep learning architectures
that can be tested in the second phase.

P2 (Model Selection): Simulation of loss-of-control for a quadcopter is done using an existing
quadcopter simulator. Run-to-failure data is generated for a nominal quadcopter configuration in
single operating condition settings and one LOC scenario. Several RNN architectures are trained
to predict LOC using the generated data. This data is preprocessed using different techniques to
determine the optimal preprocessing procedure, which leads to the best LOC prediction accuracy.
Furthermore, the most accurate architecture is identified. During this phase, the remainder of
research subquestion three will be answered.

P3 (Simulation test case): Using the simulator, run-to-failure data is generated for various quad-
copter configurations, operational conditions and LOC scenarios. Still using the model trained
on the baseline experiment as used in phase two, the accuracy of the model’s predictions is as-
sessed, to determine how well the model can generalise LOC prediction. The aim of this research
phase is to answer research subquestions four, five and six.

» P4 (Quadcopter test case): Real-life experiments using the Parrot Bebop 2 quadcopter are con-
ducted to validate the results emerging from the simulation test cases in phase three. This phase
will contribute to answering research subquestions four, five and six and will be a key phase for
answering the main research question.

5.2. Tools

The main purpose of the thesis research is to investigate if deep learning methods can be used for
prediction of loss-of-control. This research is only meant as a proof-of-concept, meaning that LOC
prediction does not have to take place on-board, within a closed control loop. This provides the oppor-
tunity to use several different specialised tools. For model creation TensorFlow will be used, whereas
run-to-failure simulations of the quadcopter will be conducted in a dedicated Bebop simulator.

5.2.1. TensorFlow

TensorFlow is one of most widely used free, open source platforms for machine learning applications.
It offers many built-in functions and libraries which can be used to easily create, train and deploy ma-
chine learning solutions. For this, it uses Keras, which is an intuitive machine learning API (Application
Programming Interface), written in Python. Python is often used in the scientific community due to its
huge variety of (mathematical) toolboxes, libraries and extensions, making coding in Python straightfor-
ward and easy without requiring an extensive background in software engineering. These advantages
of Python can be utilised when using TensorFlow.

TensorFlow and Keras include many functions and properties that can be used to build neural networks
layer per layer, initialise weights and biases in different ways, apply various cost functions and optim-
isation algorithms and tune different hyperparameters. Apart from this, various built-in functions exist
to preprocesses data and to assess the accuracy of a network. Due to these advantages, TensorFlow
will be used to create the models used for LOC prediction.

5.2.2. Bebop Simulator

The behaviour of the Parrot Bebop 2 will be simulated in a Bebop simulator created by the Control
& Simulation department of the Aerospace Engineering Faculty of the Delft University of Technology.
The simulator is built in Simulink, which is a MATLAB based programming environment to graphically
create and test models of dynamical systems. The simulator replicates the behaviour of the quadcopter
for inputs working on the system and operating conditions in which it flies, and simulates the sensor
outputs. The sensor outputs will be saved and used for training of a neural network in TensorFlow.

5.3. Experimental Set-Up 25

The advantages of using a quadcopter simulator compared to a real-life quadcopter is that a large
amount of runs can be done, including failure runs, which is necessary as a neural network requires
many failure runs in the training set to optimally learn failure features. Above this, quadcopter para-
meters, operating conditions and initial conditions can be set exactly as desired. This results in many
perfect data sets which is ideal for network training. The downside is that this does not resemble real-
life perfectly, as real experiments do not allow for complete control over all parameters and conditions
and show flaws in the measurement data.

5.3. Experimental Set-Up

To validate the results from phase three, real-life experiments will be conducted. It is required to de-
scribe these in detail and state assumptions that are made during execution, such that they can be
used for this purpose.

Assumptions

Most important for predicting LOC is a quantifiable definition of the moment in time where the quad-
copter enters a LOC condition which enables consistent labelling among all failure runs. As there is
no one clear definition, an assumption for this should be made. From literature review it became clear
that there are several possibilities, described in Chapter 3. To determine the instant in time where LOC
occurs, the method as proposed by van der Pluijm [29] will be used. He proposed to identify a critical
state where it is expected that LOC is present. The exact moment in time where LOC occurs is the
moment prior to this critical state. This is not as exact as other proposed methods, but it is independent
on flight conditions and computationally less demanding.

A second assumption that must be made is when the LOC prediction is sufficient, as stated in some of
the research subquestions. This will depend on the performance achieved by the model on the baseline
experiment. To assess performance, different metrics are used. For prediction problems, often used
metrics are the root mean square error and the scoring function.

* Root Mean Square Error: one of the most widely used metric is the Root Mean Square Error
(RMSE), which can be calculated using Equation 5.1.

n

RMSE:\J:LZ(YQ—YZ-Y (5.1)

i=1

Here, Y; is the estimated output value and Y; is the true output value, where the output value for
the given problem is the time to LOC. n is the total number of data samples.

» Scoring Function: often used in combination with the RMSE. The scoring function penalises
late predictions and can be calculated according to Equation 5.2.

h;

moletm —1 , h; <0

R CEED 52)
S (e -1), hiz0

In this equation, h; = Y; — Y;, where Y;, Y; and n have the same definition as for the RMSE. The
difference between RMSE and the scoring function is shown in Figure 5.2.

Before flight tests with different configurations, operating conditions and LOC scenarios will be conduc-
ted, an exact definition of sufficient will be determined.

Logistics

The experiments will be executed in the Cyberzoo of the Control & Simulation department of the faculty
of Aerospace Engineering of the Delft University of Technology. In this arena, safe UAV flight tests
can be conducted as it is surrounded by a net. However, due to limited space, the Cyberzoo has some
limitations. The flight tests are designed such that they can be executed in this arena given these limita-
tions, which influences e.g. the LOC scenario. A fan can be used to introduce wind. The Parrot Bebop

5.3. Experimental Set-Up 26

160

1 —— RULScore
1401 - - RMSE

120

100

Value

80

Figure 5.2: Differences between RMSE and Scoring Function [37]

2 quadcopter will be used during the flight tests. An image of the quadcopter, including the definition
of the body frame and numbering of the rotors, can be found in Figure 5.3.

Figure 5.3: Definition of the body frame of the tested quadcopter, the Parrot Bebop 2 [34]

The manoeuvre that the drone must perform is a flip in pitch, while pitch rate is increased over time.
Eventually, actuators will saturate, which results in loss-of-control. The challenge during this man-
oeuvre is the loss of height during the flip. Although this problem cannot be overcome, varying thrust
during the manoeuvre will slow down the falling process. When the drone is oriented upwards, thrust is
increased, whereas during a downward orientation, thrust is decreased. In order to perform this com-
plicated manoeuvre consistently, the drone will be controlled automatically by an autopilot programmed
in the open-source autopilot software PX4, which is written in C++.

Experiments
In the fourth phase, the results emerging from the simulations should be validated using a real-life test

case. Different experiments will be conducted, which will all attempt to validate different results of the
simulation. To this end, several types of experiments can be distinguished:

1. Baseline experiment: several runs will be executed to generate data that will be used to train
the neural network. The quadcopter is in basic configuration (no additional weights, CG location
as intended) and no wind is present. Pitch rate limit is violated to enter LOC condition.

2. Verification experiment: several runs will be conducted to verify the working of the trained model.
The same quadcopter configuration will be used, as well as the same operating conditions. Again,
the pitch rate limit is violated

5.4. Planning 27

3. Sensitivity experiments: different runs will be executed, with slight changes in:

» Quadcopter weight and CG location
* Wind speed
* LOC scenario

The goal is to identify how well the model can generalise for different configurations, operational
conditions and LOC types.

During testing, it is key to create a data set that is as clean as possible, as this is required by the
neural network to be able to learn failure features from data. A clean data set shows limited outliers
and no gaps. The quadcopter should be fully loaded, such that it can deliver optimal performance,
which stimulates obtaining clean data. Furthermore, during experiments data does not only come from
on-board measurements, but also from a drone tracking system present in the Cyberzoo: OptiTrack. A
set of cameras captures the motion of the UAV using reflection markers on the vehicle. During extreme
motion, tracking can get lost, which poses additional challenges in obtaining a clean data set.

5.4. Planning

The first phase of this thesis project, the literature study including research methodologies, last approx-
imately 10 weeks, ending on the 25" of May. After this, phase two starts. The second, third and fourth
phase of the project last for approximately 30 weeks, excluding holidays. This means that the green
light meeting will take place halfway through December, and graduation will be at the end of January.
Taking holidays into account, a preliminary planning is drafted and shown in Figure 5.4.

Thesis Gantt Chart

%, %, B, % G, %
o, %o, 2, B2, %, % %,
N Y
A A I

ooooooooooo

Defence.]

Figure 5.4: Proposed planning for the research project

5.5. Risk Identification 28

It should be noted that phase three and four are performed simultaneously. During this period of time,
four subphases can be identified that have a similar structure. During each subphase, one experiment
is the central point of attention. The layout of each subphase is as follows:

» Simulate experiments in Bebop simulator (4 days)
+ Train and evaluate model with this data (2 days)

» Prepare experiments (2 days)

» Execute experiments (5 days)

* Process results from experiments (5 days)

5.5. Risk Identification

During each research, risks are present which can have a bad influence on the results. When risks
are identified beforehand, a mitigation approach can be determined to reduce either the probability or
the impact. Risks that are identified specifically relating this research and a mitigation plan are the
following:

* Risk: The planning is too ambitious.
Mitigation: The research subquestions are defined in a modular fashion. The main goal of this
research is to investigate if LOC can be predicted using a data-driven approach. Identifying
whether such a model can generalise LOC prediction is a valuable addition, but not the main
purpose of this research. When enough time is available, this part of the research question
will be assessed, otherwise phase three and four will only focus on the baseline and validation
experiment.

* Risk: The experiments cannot be executed as planned. Possible redesign on the experiments
iS necessary.
Mitigation: In the planning, phase three and four are combined and divided into four subphases,
which all contain one week of experimenting. Spreading out the experiments over several, non-
consecutive weeks allows for technical issues during the experiments, as well as possible re-
design.

» Risk: Data obtained from experiments is not clean enough or not enough failure runs can be
executed for the neural network to learn failure features.
Mitigation: Simulations will be done using an existing Bebop 2 simulator, which resembles reality
as closely as possible. The amount of runs in a simulator is not limited to availability and less
prone to risks. Based upon the results from this, already several research subquestions can
be answered. Furthermore, weights of the neural network used in experiments can be initialised
using weights from the neural network trained on simulation data. This form of knowledge transfer
ensures faster convergence with less data required.

» Risk: The drone is not able to perform the desired manoeuvre.
Mitigation: The Cyberzoo has a wide variety of drones. If the Parrot Bebop 2 is not able to
perform the desired manoeuvre, other drones can be chosen. From a safety perspective it is
even advised to start with smaller drones, to see if it shows the desired behaviour at the edge of
the flight envelope.

Conclusion Preliminary

The popularity of Unmanned Aerial Vehicles (UAVs) has grown extensively over the past decade. Due
to decreasing prices and extreme manoeuvrability, these vehicles are used in many civil and military
applications, as well as for recreational purposes. This increase raises safety concerns, which should
be tackled by on-board safety enhancement systems. One solution that will stimulate safe flight is a
loss-of-control prediction algorithm.

The goal of this thesis research is to develop a data-driven algorithm that can predict loss-of-control for
a quadcopter operating in different conditions, different configurations and for several LOC scenarios.
The aim of this report is to answer the first and second research subquestion and the first part of the
third research subquestion.

The first question aims at defining loss-of-control for a quadcopter operating nominally. Only one the-
oretically correct definition exists, however this depends on real-time calculation of the safe flight en-
velope, which is not possible given the current knowledge. Therefore, for the remainder of this thesis
project, loss-of-control is defined by a critical state where it is expected that LOC is present. The mo-
ment in time where LOC occurs is the moment prior to this state, which can be observed in sensor data
by a sudden change in almost all parameters.

The second question concentrates on identifying data-driven technique which can predict LOC and
determine which techniques would be most suitable. As the LOC prediction problem is a regression
problem, where large amount of time-series data coming from different sensors will be utilized, recur-
rent neural network (RNN) is the most suitable model. This is because RNN architectures contain
memory cells allowing for identification of time dependent features.

The third research subquestion aims at identifying which NN architecture achieves the highest accuracy
for LOC prediction. This can only be answered after testing, however first an overview of the state-
of-the-art should be established, as described by question 2a. Literature showed that there are two
promising types of RNN networks: long short-term memory (LSTM) and gated recurrent unit (GRU).
Apart from these two main variants, more advanced architectures exist, such as a bidirectional LSTM
network, where data is processed in both a forward and backward manner. Combinations with other
neural network types are also possible, such as an LSTM with a convolutional neural network (CNN).
From literature study, it can be concluded that the most promising RNN architectures are:

+ LSTM

* CNN-LSTM
* BILSTM

*+ GRU

In the next phase of the thesis research, the accuracy of these models will be tested using data from
a quadcopter simulator. Once the most accurate model is identified, the remaining research questions
can be assessed using the simulator and real-life quadcopter flight tests.

29

Part Il

Thesis Paper

30

Loss-of-Control Prediction of a Quadcopter using Recurrent
Neural Networks

A.V.N. Altena
Graduate Student, Control and Simulation Section
Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands

C.C. de Visser
Assistant Professor, Control and Simulation Section
Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands

Abstract - Loss-of-control (LOC) is the main cause
of crashes for drones. On-board prevention systems
should be designed that require low computing power
and memory. Data-driven techniques serve as a
solution. This study proposes the use of recurrent
neural networks (RNN) for LOC prediction. The aim
is to identify which RNN model is most suitable and
if this model can predict loss-of-control for changing
aerodynamic characteristics, wind conditions, quad-
copter types and LOC events. Real-life flight tests
using a Tiny Whoop quadcopter were performed
where LOC was initiated by demanding a too high yaw
rate of +2000 deg/s. Using data from these failure runs,
four RNN networks were trained: long short-term
memory (LSTM), bidirectional LSTM (BiLSTM),
LSTM preceded by a convolutional neural network
(CNN-LSTM) and gated recurrent unit (GRU).

Only on-board sensor measurements are necessary
for LOC prediction. The commanded rotor values
provide clearest early warning signals for loss-of-
control, as these values show saturation before LOC.
Beside this, for optimal performance, an additional
parameter should be used as well, which is either the
gyroscopic measurement or acceleration. All networks
could predict LOC correctly and equally well, leading
to no preference for one specific model type. Next to
this, when compensating for expected deviations in the
prediction, the models can still be used for change in
mass and different propellers. To draw conclusions
for flying in wind conditions and using different
quadcopters, more research is necessary. Finally, the
models can only be used to predict loss-of-control
due to a too high yaw rate and the time to loss-of-
control should be similar to those from the training set.

Index Terms - Loss-of-control, quadcopter, recurrent
neural network

1. Introduction

UNMANNED aerial vehicles (UAVs), better known
as drones, are used for a variety of applications,
such as aerial observation, package delivery, military
applications and entertainment. The increasing use
raises safety concerns. The extreme agility of UAVs
can initiate unsafe situations, leading to damage of
the vehicle, or even a loss-of-control (LOC) event,
resulting in a crash if left unaddressed. A 2017 study
showed that out of 100 reported UAV mishaps, 34
could be categorised as loss-of-control, making it the
largest occurrence category of UAV mishaps [1].

Loss-of-control is not only dangerous for UAVs.
Between 2011 and 2020, 20.5% of all fatal accidents
in commercial aviation resulted from a loss-of-control
event [2]. This emphasises the importance of more
research on new LOC prevention techniques.

One of the leading studies on loss-of-control pre-
vention was part of NASA’s Aviation Safety Program.
Belcastro et al. [3] proposed a holistic LOC preven-
tion approach, which points out the value of on-board
integrated systems that help avoiding, detecting, miti-
gating and recovering loss-of-control. A direct result
from this proposal is the Envelope-Aware Flight Man-
agement System (EA-FMS) designed by Di Donato et
al. [4]. The authors present integrated flight envelope
estimation, flight planning and flight safety assess-
ment and management to diagnose high-risk events
possibly leading to loss-of-control. To prevent this,
the system overrides pilot commands just-in-time.

Currently, LOC prevention techniques rely on
knowledge about the safe flight envelope (SFE). Espe-
cially for quadcopter UAVs it is not straightforward to

determine the exact shape of the SFE, as they manoeu-
vre differently from traditional fixed-wing aircraft.
Sun and De Visser [5] applied a Monte Carlo sim-
ulation in combination with reachable set theory to
determine the set of states in which a quadcopter can
manoeuvre freely and return to safe conditions within
a predefined period of time, leading to an accurate
estimation of the SFE.

However, there still remain drawbacks about this
approach. The flight envelope changes over time due
to changing aerodynamic characteristics and operat-
ing conditions. Continuous, online recalculation of
the SFE is necessary, which implies availability of
high computing power. Quadcopters do not have this
required power available [6]. Therefore new LOC pre-
vention methods should be designed that do not require
high computing power or information from external
tracking systems or sensors, but can still deal with
varying operating and aerodynamic characteristics.
Data-driven techniques can fit these requirements.

Data from on-board sensors can give information
about an upcoming LOC event. Van der Pluijm [7]
proposed to use critical slowing down (CSD) to iden-
tify a tipping point to an alternate state of a quadcoptor
suffering from single rotor failure. However, as noted
by the author, CSD requires slow and monotonic
transitions, whereas damaged quadcopters usually are
subject to sudden changes close to tipping points,
leading to questions about the suitability of CSD for
LOC prediction. Other techniques should be tested
that can find patterns from data automatically.

The objective of the presented study is to compare
different data-driven techniques for loss-of-control
prediction on quadcopter flight data and their ability
to generalise LOC prediction for different operating
and aerodynamic characteristics. In particular, various
recurrent neural network architectures are analysed
and compared. Furthermore, different on-board pa-
rameters will be used to identify the best early warning
signals for LOC, giving more insight in the loss-of-
control problem itself.

The remainder of this paper is structured as follows.
First, an introduction to recurrent neural networks is
provided in section II. Information about the flight
tests and data processing is described in section III.
Section IV continues with the results, after which
they are discussed in section V. The conclusion is
presented in section VI.

II. Recurrent Neural Networks

EURAL networks have the ability to detect pat-

terns from large amounts of data automatically.
This is a favourable characteristic for the loss-of-
control prediction problem, as it is unknown what
exact combination of aerodynamic characteristics of
the quadcopter, operating conditions and vehicle be-
haviour lead to a LOC event.

Recurrent neural networks (RNN) are in particu-
lar suitable for analysis of time-series data and data
obtained from sensors fall within this category. In a
classical RNN layer, nodes are replaced by memory
cells which receive at time 7 not only the input data, but
also its own output produced at time ¢ — 1 [8]. Due to
these cells, RNNs can identify temporal dependencies
in sequential data.

When long-term dependencies must be identified,
traditional RNNs suffer from vanishing or exploding
gradient issues during the training process. To solve
this issue, other types of memory cells can be used,
where the long short-term memory (LSTM) [9] and
gated recurrent unit (GRU) [10] are most common.
The idea behind these variants is that the flow of
data is handled differently within the memory cell
by introducing gates. These ensure that long-term
features are maintained for a longer series of steps
instead of being overwritten each time-step. GRU has
less gates compared to the LSTM network, making it
less complex. This means that this network type is
computationally more efficient during training while
hardly losing performance. On the other hand, for
large data sets, LSTM might be better in capturing the
longer temporal features [11].

Besides replacing traditional memory cells with
more advanced cells, there are two more options to
improve the performance of a recurrent neural net-
work. The first option is using a bidirectional network,
where a data sequence is analysed both forward and
backward, meaning that it extracts features from both
past and future states [12]. A final option is to precede
the RNN with other types of neural networks, such
as a convolutional neural network (CNN) [13]. This
additional network extracts high-level features from
data, after which the RNN extracts more complex
features. However, these advanced RNN structures re-
quire more fine-tuning to achieve better performance
than its less complex variants. Training also takes
longer for these networks.

Table 1. Tiny Whoop characteristics

Characteristic Details | Characteristic Details

Mass including batteries 56g Motor TC0803 15000kV

Axis to axis diameter 75mm | Batteries 2x BETAFPV 4.35V 300mAh 1S
4-blade Propeller diameter | 40mm | Flight Controller | JHEMCU SH50 F4 25, 8.0MB black box
3-blade Propeller diameter | 35mm | FC Software Betaflight 4.2

Several studies have already proven the power of
algorithms containing RNN structures applied on
UAV sensor data. Sadhu et al. [14] proposed a
complex CNN-BiLSTM network to detect anomalous
behaviour of a quadcopter, after which a traditional
fully connected neural network classifies the cause or
fault leading to this behaviour. Another application
of LSTM networks was investigated by Wang et al.
[15]. The authors used a long short-term memory
network to create an estimation of gyroscope sensor
data and used this to detect gyroscope drift and bias.
The residuals between the true and estimated data are
smoothed to mitigate effects of noise. Once drifted
or biased sensor data is detected, the estimated sensor
data is used to replace this.

For the studied loss-of-control prediction problem,
little information is available about the data obtained
from flight tests. It is unknown how obvious the failure
features are or how long the temporal dependencies
are. Therefore, four network architectures will be
tested to identify the complexity of the problem and
determine which network deals best with this. These
networks are an LSTM network, bidirectional LSTM
(BiLSTM) network, LSTM network preceded by a
CNN (CNN-LSTM) and a GRU network.

II1. Methodology

Y analysing sensor data obtained during various

flight tests, similar behaviour is observed pre-
ceding the start of a loss-of-control event. However,
the exact moment where the LOC event starts varies
per run. This indicates that there are complex con-
tributions to loss-of-control that are not observable
visually. Therefore, recurrent neural networks are
used to identify failure features and predict the time
to loss-of-control.

Figure 1. The black box equipped 75mm, 56g Tiny
Whoop used during experiments

A. Flight tests

Data used for this research is obtained during flight
tests using an Eachine Trashcan Tiny Whoop 75mm,
56g quadcopter equipped with a JHEMCU SH50 flight
controller with 8.0MB black box to store flight logs.
The logs contain sensor data, rotor commands and true
rotor outputs calculated using bidirectional DShot600.
The logging rate is 1 kHz. The maximum power out-
put is limited to 50% of the nominal output, to ensure
that a loss-of-control event can occur. Figure 1 shows
an image of the Tiny Whoop and Table 1 tabulates its
characteristics.

During the experiments, the quadcopter is deliber-
ately crashed by demanding a high yaw rate of +2000
deg/s. While at first the vehicle can rotate around its
z-axis as desired, quickly it starts oscillating where
the amplitude of the roll and pitch angle show sinu-
soidal behaviour. Once these oscillations become too
much, which is the moment where either the pitch or
roll angle becomes larger than 90°, the quadcopter
makes a turn around one of the other axes. The crux
for correct loss-of-control prediction is to label the

Table 2.

URUAYV UZS8S5 characteristics

Characteristic Details Characteristic Details

Mass including batteries | 73g Motor 1102 10000kV

Axis to axis diameter 85mm Batteries 2x BETAFPV 4.35V 300mAh 1S

Propeller diameter 52.17mm | Flight Controller | JHEMCU SH50 F4 2S, 8.0MB black box
FC Software Betaflight 4.2

moment in time where LOC starts consistently. From
both visual inspection and inspection of the failure
data, this moment is identified as the moment where
the quadcopter cannot continue rotating purely around
its z-axis and roll or pitch takes over. Therefore, the
starting point of loss-of-control is defined as the mo-
ment where the absolute value of either pitch or roll
angle is equal to 90° and only becomes larger after
this starting point.

Apart from identifying the best performing recur-
rent neural network architecture for the LOC predic-
tion problem, it is also opportune to investigate their
generalisation capabilities. For this purpose, different
flight tests are performed:

Test 1: The majority of the executed flights is
part of the first test, where sufficient data must be
obtained to train neural networks to predict LOC.
The test is executed in a windless environment and
the quadcopter is in nominal conditions, meaning
that no weight is added and four blade propellers
are used. 75 Runs leading to a loss-of-control event
are performed during this test.
Test 2: The second test consists of flights where
the quadcopter mass is altered. Five flights are
executed with different masses compared to the
nominal quadcopter. The total mass of the quad-
copter per run is summarised in Table 3. The LOC
scenario remains unchanged.

Table 3. Total quadcopter mass per run

\ Nominal \ Runl Run2 Run3 Run4 Run5
Mass ‘ 56g ‘ 62¢g 66g 72¢g 76¢g 82g

Test 3: Another way to change aerodynamic char-
acteristics of the quadcopter is by replacing the
propellers by other types. Six flights are performed
using 35mm three blade propellers instead of 40mm
four blade propellers.

Test 4: The next flights are executed to investigate
if networks trained on LOC due to high yaw rate
can generalise to other LOC events. 53 Flights
are performed leading to a loss-of-control event by
demanding a high pitch rate of +2000 deg/s. The
longest two runs are chosen to check the generali-
sation capabilities.
Test S: To investigate generalisation performance
for different operating conditions, five flights are
performed during which the quadcopter flies in a
wind stream. Loss-of-control is again achieved by
demanding an excessive yaw rate.
Test 6: Lastly, to test to what extent the algorithm
can be transferred from one vehicle to another, four
flights are executed with a different quadcopter.
During this test, a URUAV UZS8S5 is used. Details
of this quadcopter are depicted in Table 2.
All networks are trained using the data obtained during
test 1 and after training, data from other tests are fed
into the networks to identify which network is best in
generalisation for different conditions.

B. Neural Network Architecture

The main goal of the neural networks is to predict the
amount of time in seconds left until the LOC event
starts. However, to avoid false predictions during
nominal flight, another branch is added to the network
that detects dangerous manoeuvres. This leads to the
architecture shown in Figure 2.

In this figure, the four different architectures that
are tested in this research are visualised. For the
LSTM, BiLSTM and GRU network, the first three
layers are not used. Their first two layers consist of
LSTM, BiLSTM and GRU cells respectively. For the
CNN-LSTM network, the first three layers are used
and the following two layers consist of LSTM cells.
For all architectures, the first and second RNN layer
contain 50 and 100 neurons respectively. All networks

Time A

»

N
Features
1 Instance of normalized input data

XX N-1

CNN
layer

CNN
layer

Optional: Optional: Opticnal:

Detection

»
>

Y

EEES I == —
Prediction
> >
Max |] | || L |
Pooling | qmy LsTM Drosout o 5
BILSTM BiLSTM -ToPoU ense ense
GRU GRU

Figure 2. Architecture of the different recurrent neural networks used in this research

1.0

—— Detection —— Prediction

1.5

0.8 4
1.0 4

0.6 0.54

0.4 0.0 1

LOC Detected [-]

0.2 1 —0.5 4

Predicted Time to LOC [s]

0.0

-1.0

| — Detection
—— Prediction

=
wn

0.8 4

=
o

0.6 4

T
=
i

ime to LOC [s]

0.4

LOC Detected [-]
-
o
o

0.2 1

|
=
n

Predicted

0.0 1

I
-
o

0 2 4 6 0 2
Time to LOC [s]

(a) Detection branch output

Time to LOC [s]

(b) Prediction branch output

3 6 0 2 4 6
Time to LOC [s]

(c) Combined network output

Figure 3. Output of the two network branches and combined output. The first 5 seconds are nominal
flight, after which a dangerous manoeuvre leads to loss-of-control after 1.7s

are followed by a dropout layer with a dropout rate of
0.1, which is a method to prevent overfitting on the
training set, allowing for better generalisation [16].

Finally, the networks are split into two branches,
both containing two dense layers where the last layer
outputs a floating-point value. For the detection
branch, the label is either 0’ or ’1’: 0’ means that
the quadcopter is in nominal flight and *1° means that
a dangerous manoeuvre is flown which ends in a LOC
event, shown in Figure 3a. For the prediction branch,
the label is ’-1° before the start of the dangerous ma-
noeuvre. Once this manoeuvre has started, the label
changes to the time in seconds left until the LOC event
starts, shown in Figure 3b. The output of this branch
only becomes relevant once the detection branch de-
tects a dangerous manoeuvre. The combined output is
visualised in Figure 3c, where the left y-axis belongs
to the detection branch and the right y-axis belongs to
the prediction branch.

The primary focus of this research is to identify
whether RNNs can predict loss-of-control and if they

can do this for various scenarios. Optimising the
network architectures, such as the amount of layers
and neurons, the activation functions and batch size,
is outside the scope of this study.

To finalize, the performance of the trained networks
is assessed using the root mean squared error (RMSE).
This metric represents the average error between the
model’s predicted and true time to LOC. Thus, the
lower the RMSE value, the better the network perfor-
mance. The benefit of using this metric is that the
unit is the same as the quantity that is being estimated,
which is time in seconds for the LOC prediction
problem. The RMSE value is calculated by

ey

where Y; represents the model’s estimated time to
LOC and Y; the actual time to LOC. Furthermore, 7 is
the total number of time steps, or data points, present
in a failure run.

Rotor command 1

Rotor output 1

T
15

=
o

0.0 05
Time [s]
Rotor command 2

T
15

=
o

0.0 05
Time [s]
Rotor output 2

T
1.5

=
o

0.0 05
Time [s]
Rotor command 3

T
15

=
o

T
0.5

o]
o

Time [s]
Rotor output 3

Accelerometer x

Accelerometer y

Accelerometer z

T T T

0.0 0.5 1.0 15
Time [s]

Gyroscope Roll

0.0 0s 10 15
Time [s]
Gyroscope Pitch

T

0.0 0.5 1.0 15
Time [s]

Gyroscope Yaw

T
0.0 0.5 10 15

T
0.0 0.5 1.0 15

T
0.0 0.5 1.0 15

Time [s] Time [s] Time [s]
Heading Roll Heading Pitch Heading Yaw
0.0 05 10 15 0.0 05 10 15
Time [s] Time [s]
Rotor command 4 Rotor output 4
00 05 10 15 00 05 10 15 0.0 05 10 15
Time [s] Time [s] Time [s]
0.0 05 10 15 0.0 05 10 15
Time [s] Time [s]

Figure 4. Parameters that show a trend before loss-of-control. The red line indicates the time where

the LOC event starts

C. Data processing

Data obtained during the experiment must be pro-
cessed before it is fed into the networks to improve
prediction performance and to reduce training and
inference time as much as possible. Inference means
using a trained neural network on a new, unknown
data set to get a prediction [16].

To prevent high training time, the data of each fail-
ure run is stripped. The moment where the dangerous
manoeuvre starts is identified by observing the stick
input of the pilot and the 5 seconds before this moment
are preserved. All data points before this are deleted,
as well as all data points after LOC has started. These
5 seconds are visible in Figure 3.

Another way to reduce training and inference time
is selecting only sensor measurements that provide
early warning signals for loss-of-control. To do so, all
parameters that are logged during flight are plotted
and those showing a trend before loss-of-control are
considered, which are:

¢ Rotor commands for each of the four rotors:
wlemd, W2emad> W3ema and w4ema

* True rotor outputs for each of the four rotors:
wlIrME’ U—)zlrue, w3true and w4lrue

* Smoothed accelerometer measurements: ay, a
and a,

* Measurements from the gyroscope: roll rate p,
pitch rate g and yaw rate r

* Heading in roll, pitch and yaw direction

Figure 4 provides plots of these variables from the
start of the dangerous manoeuvre until the LOC event
starts for one of the failure runs. The difference in
behaviour between the rotor command and true rotor
output is due to the electronic speed controller (ESC).
This device adjusts the rotor commands, which are
outputted by the controller using the PID gains, to
the true revolutions per minute (RPM) of the rotors.
To investigate which parameters show the clearest
early warning signals for loss-of-control, a variety
of combinations is used during the training phase to
find the most optimal mix of parameters. In case of
no clear preference for specific combinations, lower
amount of parameters are preferred as this results in
less processing and inference time.

Next to this, an issue that occurs when input data
from different sensors are in different ranges is that
neural networks can suffer from the exploding gradient
problem during training [16]. To overcome this, the
input data is standardised using the Z-Score, which is
calculated according to:

Xl ==)

where u represents the mean and o the standard de-
viation. To ensure that the proposed algorithm can
run in real-time, these values are determined using all
failure runs obtained during test 1.

Apart from using advanced memory cells, there
is another way to stimulate the network to identify
time-dependent features. The data is cut into chunks
of window size M with a step size of 1. This means
that the first chunk contains all data points of all used
parameters from time ¢ = 1 until # = M, whereas the
second chunk contains all data points from time ¢ = 2
until # = M + 1. The associated time to loss-of-control
is defined as the time from the last data point present
in the chunk until LOC. The window size is set to 20.

Finally, as can be observed from the failure data
and as is noted by Van der Pluijm [7], rotor satura-
tion happens for most flights prior to loss-of-control.
It is therefore hypothesised that including informa-
tion about rotor saturation improves prediction perfor-
mance. An additional feature is designed that counts
the amount of saturated rotors at each moment in time,
using the rotor commands. This is done as follows:

4
NumSat = Z Zi
i=1
165 < wicma < 1000

3)
0

Z; =

' { 1 Wiemg < 165V Wigma > 1000

where the mentioned values are based upon the out-
put range of the rotor commands, which lies between
118 and 1048. A value of 118 means 0% throttle and
a value of 1048 means 100% throttle. A margin is
included in case the commands remain close to these
values but are not exactly equal to them, leading to a
saturated rotor in case the command is lower than 165
or higher than 1000.

Beside preprocessing data, results outputted by the
networks are post-processed to improve performance.
The detection branch outputs a value in the range

(—o0, +00), where a negative value represents nom-
inal flight and positive value represents dangerous
flight. This output is mapped to ’0’ or *1°. By default,
this value is mapped to *0’. Once the output of this
branch is a positive value for 20 consecutive time
steps, equalling 20ms, the output is mapped to ’1°.
This is switched back to *0’ if the output of the branch
is a negative value for 20 time steps in a row. These
20ms are chosen such that it equals the window size.

The output of the prediction branch is based upon
the output of the detection branch according to:

Yprea = {

where Yp,.q equals ’-1’ in case nominal flight is
detected and equals the output of the prediction branch
otherwise.

-1 YDe,=0

Prediction Yp. =1

“

IV. Results

LL four network types are trained ten times using

different combinations of parameters enumerated
in subsection II1.C, leading to 40 trained models in
total. However, as random processes are involved
in training, this is done three times, leading to 120
models. The performance of each model is assessed
using one validation failure run that was not part of
the training set. This run was performed with the
same conditions as the runs from test 1 as described
in subsection III.A. During this validation run, the
loss-of-control event began 1.7s after the dangerous
manoeuvre initiated.

The performance of the models are grouped in
several ways to compare them based on different
characteristics. Firstly, they are grouped by model
type, to identify which type performs best. Secondly,
they are grouped by parameter combination used for
training to investigate which parameters show the best
early warning signals for loss-of-control. Lastly, the
results of the generalisation scenarios are presented to
identify generalisation capabilities of different types
and parameter combinations.

A. Model Performance
For network type comparison, boxplots are created
per type, presented in Figure 5. The values used in

0.55 - L4
@ o
o @
E (]
= 0.50
[=]
g e
T 4
o
g
2 0.45 -
w
5 o
= 8
S 0.40 ~
[=]
o
0.35 -
T T T T
LSTM BILSTM CNN-LSTM GRU

Figure 5. RMSE values in seconds for different
model types

this plot are the root mean squared error values in
seconds, achieved on the validation failure run. Each
model type has 30 data points, due to ten parameter
combinations for three trials.

Each model shows a few extreme outliers that are
high. These are all related to one specific parameter
combination, which will be addressed in the subse-
quent subsection. Beside this, the GRU model shows
more extreme outliers with high values, but these have
an RMSE value comparable to the weak outliers of
the other models. All other values are within the
boundaries of the box or within the weak outliers,
which is 1.5 times the interquartile range, defined as
the range from the lower boundary of the box to the
upper boundary of the box.

Beside this it is noted that all median values, which
are the green lines in the boxplots, lie close to each
other and are all within each others interquartile range.
Furthermore, the spread around this value is compara-
ble for different model types. From this, it becomes
clear that the results are inconclusive on which model
performs best on the validation run. As a result, all
types will be checked for their generalisation capabili-
ties to identify if one type is preferred above another.

Apart from comparing the performances, the gen-
eral prediction capabilities must be assessed as well.

To get an impression of the average prediction perfor-
mance, for each model the run resulting in the median
RMSE value or closest to this value is plotted in Fig-
ure 6. The parameter combination used for these runs
are reported as well. First it is noted that all model
types detect the manoeuvre leading to loss-of-control
correctly. Furthermore, although the time to LOC is
overestimated at the beginning of the manoeuvre for
all models, all predictions show a downward trend
indicating that they observe stronger failure features
closer to the loss-of-control event.

Finally, the models can be compared based upon
training time, where a lower time is preferred. The
average training time per model is depicted in Table 4.

Table 4. Average training time for the different
model types trained on 75 failure runs

Time [hh:mm:ss]
LSTM 01:08:00
BiLSTM 01:46:49
CNN-LSTM | 01:15:02
GRU 01:04:54

The BiLSTM network has the longest training time,
followed by the CNN-LSTM network, which is caused
by the complexity of these networks. The GRU model
can be trained faster than the LSTM network, which
is in line with the expectation due to the lower amount
of gates in a GRU cell compared to an LSTM cell.

B. Parameter Performance

Comparing the results for different parameter combi-
nations is done in a similar fashion as for model type
comparison. A boxplot is generated for each combi-
nation of parameters used during training, visualised
in Figure 7. Each combination has twelve data points,
which are the RMSE values for the four model types
and three random training processes. This is the same
data as is used to create the model type comparison
boxplots, however grouped differently.

Opposed to the model type comparison, it is possi-
ble to observe preferences for specific parameters. By
comparing the first three runs it is clear that includ-
ing the commanded rotor values boosts performance.
However, when looking at the fourth run, only us-

104

0.8 4

0.6 1

0.4 4

LOC Detected [-]

0.2 4

Predicted Time to LOC [s]

0.0 1

Time to LOC [s]

(a) LSTM, 0.406s
Wemd
104 __ pet
----- True
0.8{ — Pred o
—_— @]
= 5]
-)
2 0.6 - 2
g 2
g =
S 04 =
=} 5
0.2 4 f
0.0 1
; ; : : : : T
0 1 2 3 4 5 6

Time to LOC [s]

(c) CNN-LSTM, 0.396s
wWema & Accelerations

LO9 — pet
----- True
0.8 — Pred o)
— o
o Q
- i
o 0.6 A 8
o £
g .|:
o %47 T
9 £
0.2 @
F-05%
0.0 F-1.0
T T T T T T T
] 1 2 3 4 5 6
Time to LOC [s]
(b) BiLSTM, 0.407s

Wemd & Wirue & Accelerations

1.0+

0.8

0.6

0.4

LOC Detected [-]

0.24

Predicted Time to LOC [s]

0.01

Time to LOC [s]

(d) GRU, 0.399s
Wemd & wirye & Heading

Figure 6. Best performance for each model on the validation run including RMSE value and used parameters

ing these values is not powerful. When trying the
remaining two parameters that show trends before
LOC, acceleration and heading, it is observed that the
heading does not contain early warning signals and
counters the signals present in the commanded rotor
values. These RMSE values are the ones that caused
the extreme outliers in Figure 5. Combining the rotor
command, true rotor output and the heading validate
the negative impact of the heading on performance.
Next to this, from the other runs with three or four
parameters, it is seen that combining more parameters
does not improve performance, as the medians are
similar to those with two parameters. This leads to
preference for models that use two parameters, which
are the commanded rotor values and either the true ro-
tor outputs, gyro measurements or accelerations. The
average RMSE value of the run including true rotor
outputs is the lowest and therefore this combination
will be used for generalisation performance analysis.

C. Generalisation Performance

Five different scenarios are tested where one condi-
tion is changed compared to the flights from test 1.
To identify the generalisation capabilities, only the
performance of the networks trained on commanded
rotor values and true rotor outputs will be assessed.
However, for those scenarios where there is a clear dif-
ference between used parameters, this will be pointed
out as well.

1. Changing mass

The nominal mass of the Tiny Whoop including bat-
teries is 56g. Five flights are performed where mass
is added to the quadcopter by attaching coins to the
frame. As it is assumed that the centre of mass is in
the middle of the quadcopter, the coins are attached to
this point to change the moment of inertia as little as
possible. The resulting RMSE values for the different
models and masses are presented in Figure 8. As

0.55
“
§ 0.50
=
w
h-)
= * o
t (2]
L%- 0.45 A o

(<]
= (<]
[1F)
=
8 0.40 %
-4
(9]
0.35 A
T T T T T T T T T T
Wrue Wemd Wemd Wemd Wemd Wemd Wemd Wemd Wemd Wemd
Gyro Weue Gyro Acceleration Heading Wiue Woue Wiue Wue
Heading Acceleration Gyro Acceleration

Figure 7. RMSE values in seconds for different parameter combinations

0.60 LSTM

BILSTM
—— CNN-LSTM
— GRU

=4
wn
v}

0.50 4

Average Root Mean Squared Error [s]
o
B
o
|

0.40

!
769 82g
+35.7% +46.4%

!] !
629 669 729
+10.7% +17.9% +28.6%

569

Figure 8. Average RMSE values in seconds for
different quadcopter masses

each model is trained three times to cancel out the
randomness of the training process, the presented
RMSE values are the averages per model per mass.
The average RMSE values achieved on the validation
run for the nominal quadcopter of 56g are depicted as
well.

It is expected that for increasing mass, the predic-
tion will be less accurate as higher mass differences
change the dynamic behaviour of the quadcopter more.
This trend is observed for all models, except for the
run with a mass of 76g. This can be explained by
looking at the time between the start of the dangerous

Gyro
L0 — Det 2.0
----- True N
0.8 — Pred L1s =
o !
T 0.6 ! r0 g
S o4 IWI. T E
(S Y]
=] r00 %5
0.2 1 2
__0.5 [=1
0.0 1 t-1.0

Time to LOC [s]

Figure 9. Prediction of the BiLSTM network on
the heaviest quadcopter run

manoeuvre and loss-of-control. This is between 2.1
and 2.4s for all runs, however only 1.67s for the run
with a mass of 76g. This lower time to LOC leads to
a lower RMSE score.

To investigate the suitability of these models as
LOC predictor when mass changes relative to the
nominal case, it is necessary to look at the prediction
plots. For this, the heaviest run is assessed and the
prediction with the median performance is chosen,
which is the BILSTM model with an RMSE value of
0.501s. Figure 9 shows this plot.

It is observed that the detection of the dangerous
manoeuvre still works as desired. Furthermore, the

10

o]

1.8
@ Q
g
= 16+ g 8
h-)
= ° ©
s Q
Z 14
c (o]
b o
z 0 S —,B,—Q
o 1.2
o
- 55 = £

1.0 @ @

T T T T T T T T T T
Wtrie Wemd Wemd Wemd Wemd Wemd Wemd Wemd Wemd Wemd
Gyro Woue Gyro Acceleration Heading Wiue Waue Waye Wiye
Heading Acceleration Gyro Acceleration

Gyro

Figure 10. RMSE values in seconds for different parameter combinations on the first run with three

blade propellers

prediction is lower than the true time to loss-of-control
for the majority of the run, however, there still is a
downward trend ending close to Os at the start of the
loss-of-control event.

2. Different propellers

In nominal condition, the Tiny Whoop has 40mm four
blade propellers. To investigate if different propellers
influence prediction capabilities, these were replaced

by 30mm three blade propellers. For high speed flights,

less blades are preferred as less drag is generated. This
leads to the expectation that the quadcopter is able to
perform the desired manoeuvre for a longer period
of time, meaning that the time to loss-of-control
is longer. In total, six flights are performed with
these propellers. A first observation is that there is
a clear difference in RMSE values between different
parameter combinations. Figure 10 visualises this in
boxplots, where the RMSE values for the first run
with three blade propellers are used.

The runs where the true rotor output is used show
higher RMSE values than other runs.
to assess the suitability of the networks for LOC
prediction with different propellers, the models trained
on the commanded rotor values and true rotor outputs
will not be used. The models trained on commanded
values only will be used instead, as these show the best
performance on the first propeller run. The average

Therefore,

11

RMSE values for the different propeller runs and
different models trained on commanded rotor values
only are tabulated in Table 5.

Table 5. Average RMSE values in seconds on dif-
ferent propeller runs using models trained on com-
manded rotor values

‘ Nominal ‘ Props 1 Props2 Props3 Props4 Props5 Props6
LSTM 0,369 1,043 1,637 0,466 1,260 0,560 0,567
BiLSTM 0,392 1,044 1,670 0,475 1,262 0,549 0,576
CNN-LSTM | 0,432 1,239 2,375 0,514 1,516 0,611 0,653
GRU 0,368 1,028 1,642 0,562 0,921 0,527 0,634

Table 6. Time to loss-of-control in seconds

‘ Nominal ‘ Propl Prop2 Prop3 Prop4 Prop5 Prop6
Time to LOC ‘ 1.700 ‘ 4.007 5507 2142 4721 2.645 2.027

There is a large difference between the six runs.
This can be explained by looking at the time between
the start of the dangerous manoeuvre and loss-of-
control, summarised in Table 6. As expected, the
time before the start of the loss-of-control event is
longer than the time to LOC in the validation run.
Furthermore, the longer the time to LOC, the higher
the RMSE score.

To investigate why this happens, the prediction of
one of the models on the second and worst propeller
run is analysed. Figure 11 shows the prediction of
the BiLSTM model, which scored the median RMSE

Iy
[=]
I

—— Det ™|
—-—-- True
—— Pred

o
(=]
L

Q
=]
|
T
w

ime to LOC [s]

o
iy
1

LOC Detected [-]

M@im;uw :

Predicted

o
]
1

0.0 4

0 2 4 6 8 10
Time to LOC [s]

Figure 11. Prediction of the BiLSTM network on
the second propeller run

value on this run, which is 1.660s. Once the dangerous
manoeuvre is detected correctly, the prediction time
starts at around 2s, after which oscillating or downward
prediction behaviour is visible. The reason for this is
the average time to loss-of-control in the training set,
which is 1.980s. The trained networks are not familiar
with runs that take much longer and can therefore not
produce correct prediction results for these runs. A
longer time to LOC leads to a higher RMSE value
because the difference between the prediction and
the true time to LOC can be higher in comparison to
shorter runs.

3. LOC due to high pitch rate

Another tested scenario is whether the models can
generalise for different LOC events. Instead of creat-
ing loss-of-control by demanding a high yaw rate, it
is created by demanding a high pitch rate. For this
event, loss-of-control is defined similarly as for the
nominal scenario. It is set to the moment in time
where, after an initial small increase, the roll or yaw
rate starts to show a linear increase. At this point, the
quadcopter is not able to keep performing flips and
starts to rotate around all its axes. This happens faster
than for the flights from test 1: on average the time to
LOC for the pitch runs is 0.470s. To aid the prediction
of the models, the two runs with the longest time to
loss-of-control are chosen, with a time to LOC of
1.1s for both runs. Even though these runs are used,
all networks already fail in detecting the dangerous
manoeuvre correctly.

0.9 4 l
0.8 4

o
~
00 ©

e
o
L

o
v
(o]

Root Mean Squared Error [s]

o
ES
L

i
1
+ +

Wind 1 Wind 2 Wwind 3 Wwind 4 wind 5

Figure 12. RMSE values in seconds for different
runs in wind. Run 1, 2 and 3 represent constant
wind, run 4 and 5 represent wind gusts

4. Flying in wind

To create wind, the Master DF 30P fan is used, which
has a constant airflow of 10200m>/h, which equals
an air velocity of 6.25m/s given the fan diameter of
760mm. Five flights are performed where wind is
blowing on the quadcopter from the back left. During
the first three flights, the quadcopter is flown into the
stream before the manoeuvre starts, which can be seen
as flying in constant wind conditions. During these
flights, it is noted that the quadcopter is pushed away
and upward by the stream. For the last two flights, the
manoeuvre is started before it is flown in the stream,
which can be seen as a wind gust working on the quad-
copter. The vehicle is again pushed away by the wind,
however it influences its behaviour a shorter period of
time before the LOC event starts. It is expected that
the wind gust influences the performance less, as the
wind works on the quadcopter for a shorter period of
time and for both cases the wind speed is the same.
To investigate this, the RMSE values are plotted per
run in boxplots, visualised in Figure 12.

Although the fifth run shows the lowest RMSE
values, the second run performs much better than the
fourth run. The prediction performances vary heavily
and do not depend on specific wind conditions. The
limited amount of tests in these conditions makes it
therefore not possible to draw conclusions based upon
specific wind conditions.

To explore the suitability of the models for LOC
prediction in windy conditions, the prediction plots

12

109 — Det ra
————— True
0.8 — Pred Ly =
= 3
— —
o 0.6 F2 2
:
E : .I:
9 0.4 4 | rloo
=] ; . S
0.2 i Ylo L
0.0 1 : F-1
T T T T T T T
0 1 2 3 4 5 6
Time to LOC [s]

Figure 13. Prediction of the GRU network on the
third run in windy conditions

are assessed. The worst condition is chosen, which
occurred during the third run, as this one has the
highest RMSE values. Figure 13 shows the prediction
of the GRU network on this run, which scored the
median RMSE value of 0.745s. The detection shows
an error after 2s, which is caused by turbulent flight
due to the presence of wind. The true dangerous ma-
noeuvre is detected correctly. The prediction branch
is primarily overestimating the time to loss-of-control
and oscillates more compared to the nominal case,
however a downward trend is still visible.

5. Different quadcopter

The final test consists of four runs where a different
quadcopter is used: the URUAV UZ85. This quad-
copter has a diagonal of 85mm, which is larger than
the 75mm of the Tiny Whoop and weighs 73g at take-
off compared to 56g for the Whoop. The quadcopter
is crashed similarly to the runs from test 1 as described
in subsection III.A. It is interesting to look at the
scores from models trained on different parameter
combinations, as large differences are observed.

The reason for this is the standardisation step that
is taken as preprocessing method. For this, a mean
and standard deviation are determined using data from
the flights performed during test 1. When looking at
the scores for all different combinations, as is done
for the first flight with this quadcopter in Figure 14,
it can be seen that the runs including the true rotor
outputs perform worse than those without. The range
of true rotor outputs is thus different for the URUAV

UZ85 than for the Tiny Whoop.

To identify if the models are suitable for LOC pre-
diction on different quadcopters, the models trained
on commanded rotor values only are assessed. The
run with the worst RMSE values is the second run.
The GRU model scored the median RMSE value of
0.492s. The prediction plot of this model is shown
in Figure 15. There are two short wrong detections,
caused by the incorrect standardisation process. Apart
from this, the detection branch works as desired. The
prediction shows an initial downward trend, however,
towards the end the network is overestimating the time
to loss-of-control.

V. Discussion

OMBINING the outputs presented in previous sec-

tion leads to new findings about early warning
signals, the suitability of recurrent neural networks
for loss-of-control prediction and the application of
these models.

A. Loss-of-Control Early Warning Signals

The commanded rotor values show the clearest signals
of an upcoming loss-of-control event, as noticed in
Figure 7. This is an interesting result, as it implies
that loss-of-control is driven by a desired behaviour
instead of the true behaviour of the quadcopter.

An explanation for this can be found when compar-
ing the commanded rotor values and true rotor outputs
in Figure 4. The commanded rotor values show a
minimum and maximum value, whereas the true rotor
outputs do not hit their minimum or maximum value.
Thus, only the commanded values show saturation
during this manoeuvre. This validates the hypothesis
stated in subsection III.C that rotor command satura-
tion is a clear early warning signal for loss-of-control
which can be detected easily by the networks.

Apart from identifying a clear early warning signal,
it is also possible to exclude parameters. For the
nominal case, including heading reduces the predic-
tion performance of all network types, as shown in
Figure 7, making the heading not suitable for LOC
prediction. Next to this, for the different propellers
and different quadcopter scenarios, models trained on
the true rotor outputs show worse performance than
other models, which can be seen in Figure 10 and

13

o
2.00 H
o
o 1.75 1
g
5 150)
9 [0}
T 1.25 A
z
w
£ 1.00 4
s °
° s
S 0.75 @ %
-] Q
& @ § %
0.50 4 % —é—
0.25 1
Wtrue Wemd Wemd Wemd Wemd Wemd Wemd Wemd Wemd Wemd
Gyro Weue Gyro Acceleration Heading Wiue Woue Wiue Wue
Heading Acceleration Gyro Acceleration
Gyro
Figure 14. The boxplots are created using the RMSE values of UZ85 run 1
o leading to loss-of-control correctly for scenarios it
U —— Det F2.0 . . -
_____ True t is trained on. Furthermore, the prediction branch
0.8{ — Pred | '\\‘_ r15 2 overestimates the time to loss-of-control at the begin-
= § 1 |, & ning of the manoeuvre, but a clear downward trend
g %7 1 PR l S can be observed, following the slope of the true time
2 i Ay os £ .
g o [% £ toloss-of-control. Next to this, all networks show
O B “ = . .
3 “ oo £ an average prediction error close to 0.400s. When
0.2 i o £ using this RMSE value as an uncertainty margin for
§ ' the output of the network, the prediction provides
0.01 5 F-Lo sufficient information for an (auto)pilot to understand

0 1 2 3 4 5
Time to LOC [s]

o
~

Figure 15. Prediction of the GRU network on the
second UZ8S run

Figure 14 respectively. Although the combination
of commanded rotor values and true rotor outputs
perform best on the nominal run, other parameter
combinations follow closely, making this combination
not superior to other combinations.

Following this analysis, two combinations turn out
to be most useful for loss-of-control prediction: com-
manded rotor values together with either gyroscopic
measurements or the accelerations.

B. RNN:s for Loss-of-Control Prediction

Based upon Figure 6, it can be concluded that recur-
rent neural networks can detect dangerous manoeuvres

that a loss-of-control event is coming closer and at
what pace this is happening. This means that RNNs
cannot only be used to detect a dangerous manoeuvre,
but also to predict an upcoming loss-of-control event
for scenarios it is trained on.

These results can be used for loss-of-control pre-
vention of quadcopters. Especially autopilots serve
arole here. The average time to LOC in the training
set is almost 2s. Human pilots need time to process a
received warning signal and to take action to recover
to safe flight. Two seconds can be too short to do
this. Therefore, in further research, the usage of a
trained model in a closed-loop control system should
be investigated. Combining the outputs of both the
detection and prediction branch is most useful, to
create an algorithm that can override pilot commands
just-in-time.

The results on what model type can be used best in
this system are inconclusive. All model types show a
median RMSE value close to 0.400s on the validation

14

run and for the different generalisation scenarios the
median values of the different models were also com-
parable to each other. This gives useful insight about
the causes of loss-of-control. As both simple and com-
plex RNNs perform similar, the failure features are
less time-dependent than expected beforehand. This
means that loss-of-control is caused by short-term,
more instantaneous behaviour of the quadcopter. To
confirm these findings, simple RNN structures or even
traditional fully connected neural networks should be
tested to see if they can still predict loss-of-control
correctly.

C. Applications

For both changing mass and different propellers, the
detection and prediction behaviour are similar. Even
for the worst run encountered for both scenarios, the
detection branch still detects the dangerous manoeu-
vre correctly, as depicted in Figure 9 and Figure 11 for
changing mass and different propellers respectively.

For both scenarios, the prediction branch is under-
estimating the time to loss-of-control. For changing
mass, this can be explained by looking into the con-
sequences of the additional mass. To keep a heavier
quadcopter in the air, higher thrust should be gener-
ated. The commanded and true rotor outputs will
thus be higher, which for the nominal case happens
closer to the loss-of-control event, leading to an un-
derestimation. For different propellers, this can be
explained by looking at the time to loss-of-control. As
was already expected beforehand, the time between
the dangerous manoeuvre and LOC is longer for the
shorter 35mm, three blade propellers. As the average
time to loss-of-control in the training set is only 2s, the
outputted sensor values are associated with a shorter
time to loss-of-control by the trained models, leading
to an underestimation.

Another observation that can be done based upon
the results from these two scenarios is that the time
to loss-of-control influences the RMSE values. For
changing mass, the run with a time to LOC 0.5 sec-
onds lower than the other runs in this test resulted in
a lower RMSE value than was expected. For different
propellers, all runs were longer than the ones from
the training set, which lead to higher RMSE values.
These results imply that the application of the trained
models is limited to failure runs with similar time to

LOC as it is trained for.

On the other hand, for the presented scenarios the
incorrect prediction behaviour can be explained and
therefore accounted for. When investigating the usage
of these models in a closed-loop system, it is advised
to incorporate information about the aerodynamic
characteristics of the quadcopter and the associated
expected deviations of the prediction to the true time
to loss-of-control. When these characteristics are
changed, the output of the prediction branch can be
adjusted according to the expected deviations, which
would make these models suitable for LOC prediction
for different aerodynamic characteristics.

When looking at the application of the trained mod-
els on different loss-of-control scenarios, which is
done for the pitch runs in this research, it can be con-
cluded that it is limited to known LOC scenarios. This
can be explained by looking at how different scenar-
ios alter the sensor outputs of the quadcopter. Other
generalisation scenarios do not lead to complete new
sensor outputs. Parameters show similar trends, only
with different values. A new LOC scenario shows
completely new, unknown behaviour and therefore
unknown sensor outputs. One option to overcome
this is to create a model for each LOC event, but for
the sake of available memory on the quadcopter it is
worth investigating if one model can be trained on
different failure scenarios.

When flying in wind, the dynamic behaviour of the
quadcopter is changed more than for different aero-
dynamic characteristics. When looking at Figure 13,
false detections can be observed, as well as large
differences between predicted and true time to LOC.
Beside this, the predicted time oscillates with high
amplitudes compared to the other scenarios, leading
to unreliable predictions. This is due to turbulence
caused by wind, which makes the movements of the
quadcopter unpredictable. However, the dangerous
manoeuvre is detected correctly and the prediction
still shows a downward trend. It is therefore expected
that for low wind speeds, the prediction will fall within
the error margin of the nominal predictions, which
makes these models suitable for LOC prediction only
for limited wind conditions. To confirm this, more
flights in windy conditions should be executed.

Last of all, when flying a different quadcopter,
the detection branch can still detect the dangerous
manoeuvre correctly, as shown in Figure 15. False

15

detections are done as well, however these only have
a short duration. Initially, the predicted time to loss-
of-control follows the true time to loss-of-control,
however towards the end of the manoeuvre, the model
overestimates the time to LOC. From this result it be-
comes clear that both quadcopters move similarly and
show the same failure features during the dangerous
manoeuvre. However, the exact output values of the
sensors vary too much to give a correct prediction.
The standardisation step taken when preparing the
data before it is fed into the networks can serve as a so-
lution for this issue. It is recommended to investigate
if it is possible to get mean and standard deviation
values for the new quadcopter from only a few failure
runs, such that the sensor values are mapped to the
same range as for the first quadcopter. When this
is possible, the same model can be used for correct
detection and prediction of loss-of-control for similar
quadcopters.

Finally, similar algorithms can be created for other
(autonomous) vehicles suffering from loss-of-control,
where one important requirement is that sufficient
failure runs can be performed such that the networks
can learn failure features. To reduce the amount of
necessary crashes, the use of data from simulators
or generative models that are capable of mimicking
failure data should be investigated. Only when these
techniques can create sufficient failure data will it be
possible to apply the proposed method on aircraft to
make aviation safer.

VI. Conclusion

oss-of-control remains the number one cause of
Lcrashes for both aircraft and drones. To decrease
the amount of LOC events, on-board systems that can
prevent this should be designed. Recurrent neural
networks can be used for loss-of-control prediction
in quadcopters using only on-board sensor measure-
ments. The commanded rotor values show best early
warning signals for loss-of-control and RNNs can pre-
dicta LOC best using these values in combination with
either the gyroscopic or accelerometer measurements.
However, the application is limited for scenarios that
show similar behaviour as the ones from the train-
ing set in terms of loss-of-control scenario and time
to loss-of-control. On the other side, for changing
aerodynamic characteristics, the model prediction can

still be used if the expected deviation in prediction
behaviour is compensated for. To draw conclusions
about the usability of the model in wind conditions
and on different quadcopters, additional research is
necessary.

References
[1] Belcastro, C. M., Newman, R. L., Evans, J. K., Klyde,
D. H., Barr, L. C., and Ancel, E., “Hazards Identifi-
cation and Analysis for Unmanned Aircraft System
Operations,” 17th AIAA Aviation Technology, Inte-
gration, and Operations Conference, 2017.
Boeing Commercial Airplanes, “Statistical Sum-
mary of Commercial Jet Airplane Accidents,
Worldwide Operations | 1959 - 2020,” , 09
2021. URL http://www.boeing.com/news/
techissues/pdf/statsum.pdf.
Belcastro, C. M., and Jacobson, S. R., “Future In-
tegrated Systems Concept for Preventing Aircraft
Loss-of-Control Accidents,” AIAA Guidance, Navi-
gation, and Control Conference, 2010.
Di Donato, P. F., Balachandran, S., McDonough, K.,
Atkins, E., and Kolmanovsky, 1., “Envelope-aware
flight management for loss of control prevention
given rudder jam,” Journal of Guidance, Control,
and Dynamics, Vol. 40, No. 4, 2017, pp. 1027-1041.
Sun, S., and de Visser, C. C., “Quadrotor Safe Flight
Envelope Prediction in the High-Speed Regime: A
Monte-Carlo Approach,” AIAA Scitech 2019 Forum,
2019.
Zhang, Y., Huang, Y., Chu, Q., and de Visser, C.,
“Database-Driven Safe Flight-Envelope Protection for
Impaired Aircraft,” Journal of Aerospace Information
Systems, Vol. 18, No. 1, 2021, pp. 14-25.
van der Pluijm, A., “Early Warning Signals for Loss
of Control Prediction of a Damaged Quadcopter,”
Master’s Thesis, Delft University of Technology, The
Netherlands, 2020.
Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., and
Gao, R. X., “Deep learning and its applications to
machine health monitoring,” Mechanical Systems and
Signal Processing, Vol. 115, 2019, pp. 213-237.
Gers, F., Schmidhuber, J., and Cummins, F., “Learn-
ing to forget: Continual prediction with LSTM,” 1999
Ninth International Conference on Artificial Neural
Networks ICANN 99. (Conf. Publ. No. 470), Vol. 2,
1999, pp. 850-855.
Cho, K., Van Merriénboer, B., Gulcehre, C., Bah-
danau, D., Bougares, F., Schwenk, H., and Bengio,
Y., “Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation,”
Proceedings of the 2014 Conference on Empirical

(2]

(5]

(6]

(7]

(8]

[10]

16

[12]

[16]

Methods in Natural Language Processing (EMNLP),
2014, pp. 1724-1734.

Rezaeianjouybari, B., and Shang, Y., “Deep learning
for prognostics and health management: State of the
art, challenges, and opportunities,” Measurement,
Vol. 163, 2020, p. 107929.

Zhang, L., Lin, J., Liu, B., Zhang, Z., Yan, X., and
Wei, M., “Review on Deep Learning Applications in
Prognostics and Health Management,” IEEE Access,
Vol. 7, No. 1, 2019, pp. 162415-162438.

Fink, O., Wang, Q., Svensén, M., Dersin, P., Lee,
W. J., and Ducoffe, M., “Potential, challenges and
future directions for deep learning in prognostics
and health management applications,” Engineering
Applications of Artificial Intelligence, Vol. 92, 2020,
p- 103678.

Sadhu, V., Zonouz, S., and Pompili, D., “On-board
Deep-learning-based Unmanned Aerial Vehicle Fault
Cause Detection and Identification,” IEEE Inter-
national Conference on Robotics and Automation
(ICRA), 2020, pp. 5255-5261.

Wang, B., Liu, D., Peng, Y., and Peng, X., “Multivari-
ate Regression-Based Fault Detection and Recovery
of UAV Flight Data,” IEEE Transactions on Instru-
mentation and Measurement, Vol. 69, No. 6, 2020,
pp- 3527-3537.

Géron, A., Hands-on Machine Learning with Scikit-
Learn, Keras, and TensorFlow: Concepts, Tools,
and Techniques to Build Intelligent Systems, 2" ed.,
O’Reilly Media, Sebastopol, CA, 2019.

17

Part IlI

Discussion

48

Conclusion and Recommendations

The results presented in the paper together with the additional results presented in Part IV lead to
conclusions regarding the research question as stated in Chapter 2. Furthermore, the results raise
questions about loss-of-control prediction and prevention, which lead to a list of recommendations.
Both are presented below.

7.1. Conclusion

The objective of the thesis research was to determine whether data-driven algorithms can generalise
loss-of-control prediction of quadcopters for various scenarios. Neural networks were considered the
most suitable method for this, leading to the following research question:

Can a neural network generalise loss-of-control prediction of quadcopters with aerodynamic
characteristics, operational conditions and LOC scenarios representative for aircraft in nominal
condition?

From the results of the experimental phase it can be concluded that neural networks can general-
ise loss-of-control prediction only for varying aerodynamic characteristics. However, it is required to
compensate the output of the network for expected deviations in predicted time to loss-of-control. For
different wind conditions it is expected that a neural network can generalise LOC prediction for low wind
speeds only, but this should be investigated further. Neural networks cannot generalise LOC predic-
tion for different LOC scenarios. Lastly, it is expected that networks can generalise LOC prediction for
different quadcopter types, however some failure runs with the new quadcopter need to be performed
to obtain information for the standardisation step during data preprocessing. A critical note must be
made that although the networks can generalise LOC prediction for some different conditions, the time
to loss-of-control should be similar to the ones from the failure runs the network is trained on, which
puts a large limitation on the usability of this algorithm.

These conclusions are made using the answers to various subquestions that were drafted at the start
of the research. The conclusions will be summarised below.

Loss-of-control definition

Based upon literature review it was expected that loss-of-control can be defined by a sudden change in
sensor data. During the real-life flight tests, it became clear that this sudden change should be defined
for each loss-of-control scenario differently. When looking at sensor data, loss-of-control does not have
one general definition, but should be tailored to the specific LOC event. It can be concluded that as
long as the definition is applied consistently to all failure runs, the exact definition does not matter.

Data-driven methods and network architectures
Before the start of the research, it was expected that loss-of-control results from a series of actions that

49

7.2. Recommendations 50

build up to the moment in time where the LOC event starts. Therefore, time-dependent features should
be identified from sensor data in order to predict LOC correctly. When comparing data-driven tech-
niques presented in literature, it can be concluded that recurrent neural networks are best in detecting
these features in time-series data automatically. Both simple and complex RNN structures exist and
from literature the expectations are that complex structures perform better as they can identify more
complex failure features.

During the research, surprising results regarding the best architecture were discovered. All RNN struc-
tures performed equally well and as an additional test, a fully-connected network was trained on the
failure runs. This network performed better than the recurrent neural networks. With these results, it
is not possible to draw any conclusions on which architecture performs best in predicting loss-of-control.

However, these results make it possible to draw conclusions about the loss-of-control problem itself. It
can be concluded that the LOC prediction problem is less complicated than expected beforehand. Loss-
of-control is the result of short-term, instantaneous behaviour of the quadcopter instead of the result
of a set of consecutive manoeuvres. This is an important finding, as it implies that a dangerous man-
oeuvre can be interrupted only slightly before the start of loss-of-control to prevent this from happening.

Generalisation capabilities

Several conclusions can be drawn about the generalisation capabilities of the networks. For different
aerodynamic characteristics, the time to loss-of-control is underestimated. However, this deviation can
be explained when looking at the expected influence of the change on the behaviour of the quadcopter.
Therefore, this can be compensated for in the output of the network, from which it follows that the net-
work can be used for LOC prediction for different aerodynamic characteristics. Wind influences the
behaviour more and in an unpredictable way. It is expected that for low wind speeds the network can
still predict loss-of-control, however due to the limited amount of flights in wind no conclusions can be
draw about this. Considering different LOC events, the conclusion is clear: prediction is not possible
for events the network is not trained on.

Apart from these scenarios that were stated in the research subquestions, a final scenario was tested:
using a different quadcopter. The results showed that the models overestimated the time to loss-of-
control, however the reason for this is that a wrong mean and standard deviation value was used during
standardising the data. It is expected that the networks can generalise for different quadcopters if new
mean and standard deviation values are determined for new quadcopters, however further research is
required before conclusions can be drawn.

7.2. Recommendations

When considering the conclusions presented previously, a list of recommendations can be drafted to
help improve the prediction output of the models:

1. The result that the network can be used for events that have similar time to loss-of-control only

raises questions about the variation of the training set. This seems to be biased towards a very
specific loss-of-control event. It is therefore recommended to create a data set that contains fail-
ure runs that are more distinct from each other in terms of time to loss-of-control.
Furthermore, it should be investigated further if one model can be trained on multiple LOC events.
Based upon the results in Appendix B, where one network was trained on both a yaw and pitch
LOC event, it is expected that this must be possible. Beside this, it is advised to investigate if runs
with different aerodynamic characteristics and wind conditions can be included during training as
well, to improve the generalisation capabilities.

2. For the generalisation scenarios, only four to six flights per different condition were performed.
For different masses, only one flight per mass was flown and for wind conditions only one wind
direction was tested, whereas in real-life wind can come from all directions. For both different
propellers and quadcopter type the results among the different flights were inconsistent. Next
to this, these flights were performed after the flights necessary for the training set, due to which

7.2. Recommendations 51

the quadcopter was already damaged. It is recommended to execute more flights for the differ-
ent scenarios with a new quadcopter of the same type, to confirm the findings and expectations
presented in this research for these different scenarios.

3. Another surprising result was that all RNN architectures performed similar. However, as noted in
the preliminary study, more complex networks need more fine-tuning in order to perform better.
It is advised to try various settings of the networks to see if performance can be improved. It is
recommended to do this on a dedicated machine with high computing power, as optimising these
networks on a standard laptop takes too long. Apart from this, simpler networks should be tested
as well to identify if the LOC prediction problem is actually complicated enough for complex net-
works.

4. One result was that LOC is the result of instantaneous behaviour instead of the result of a series
of manoeuvres. This raises questions about the loss-of-control definition that is used. In this
research, LOC is defined as the moment in time where the desired manoeuvre cannot be per-
formed anymore as desired. It is recommended to investigate new definitions of loss-of-control
where LOC is defined as the moment in time after which recovery is not possible anymore.

Apart from improvements on the presented work, there are also recommendations about the usability
of this model:

1. Currently, the model is used off-board and not in real-time. In a closed-loop control system, this
model can be used on-board in real-time to help prevent loss-of-control. It is recommended to
investigate how this model would fit into this system, where control rules should be designed that
convert the output of the model to specific control actions. Possible actions are overwriting the
autopilot to recover from the manoeuvre or providing a warning signal to the pilot that the man-
oeuvre should be ceased. Beside this, the possibility to dampen the pilot input once a dangerous
manoeuvre is detected should be investigated as well.

2. It is expected that the presented algorithm cannot only be used for loss-of-control prediction on
quadcopters, but also on other vehicles suffering from loss-of-control. This is because the defin-
ition of loss-of-control can be tailored for the specific LOC event and therefore for the specific
vehicle. It is recommended to test this on different vehicles, such as (small) self-driving carts.
However, as it is not always possible to crash vehicles over and over again, techniques should
be researched that can create failure data, such as a simulator, or can create additional data from
a few known failure runs, such as generative neural networks. Only with working data augmenta-
tion techniques it will be possible to apply the created algorithm on aircraft to make aviation safer
and more sustainable.

Part IV

Appendices

52

Simulator Details

To prevent unnecessary quadcopter crashes, failure data will be created in a Parrot Bebop 2 simulator.
This data will be used to test the suitability of recurrent neural networks for loss-of-control prediction.
This appendix provides details about the simulator and the process applied to create the data. Further-
more, the method to preprocess the data is described. Information about the network architecture is
written down as well and results that were found using the simulated failure data is provided.

A.1. Data Generation and Processing

A high-level overview of the Bebop simulator is shown in Figure A.1. The quadcopter model is a gray-
box model based upon real-life flight test data, due to which complex aerodynamic effects are en-
capsulated in the behaviour of the quadcopter [35]. The model has been created to correctly predict
behaviour of the quadcopter in a speed regime from 0 to 14 m/s, however the pitch and roll angle were
limited during the tests, which makes the model less accurate for large pitch and roll angles. This is an
important limitation for this research as high angles are required.

y Y,

pos_cmd P pos_cmd w visualization

yaw_cmd P yaw_cmd

input command Controller

Py vy _measured

Quadrotor

measurements
wind

wind

Figure A.1: High-level Simulink model of the Parrot Bebop 2

To simulate increase in pitch rate, the commanded pitch acceleration ¢, calculated in the controller, is
overruled. To create a diverse set of failure runs, this value was altered each run by adding 1 rad/s?. A
failure run consists of an initial phase of 5 seconds, where the quadcopter is flying in nominal flight. A
diverse set of initial conditions was used, such as hovering, flying in circles or eclipses. After 5 seconds,
the dangerous pitch manoeuvre started and the pitch rate increased over time. The quadcopter reached
a LOC event once the model of the Bebop generated too much drag such that not enough thrust was
present to continue flipping. This is not representative for real-life flights, as in real-life the quadcopter
starts rotating around all its axes due to rotor saturation. This cannot be simulated, but the results ob-
tained from the simulations are still useful, as it gives a good indication about preprocessing methods
and whether these networks can deal with complex sensor data generated by a quadcopter.

53

A.2. Network Architecture 54

Before feeding the data into the networks, several preprocessing techniques were applied. First, only
specific parameters were picked, as these are available on-board during flight and these parameters
are most relevant for this type of loss-of-control. These are the vehicle rates, p, ¢ and r, and the
rotor outputs, wl, w2, w3 and w4. Furthermore, parameters were standardised. This helps to prevent
exploding gradients during training of the networks. Lastly, instead of inserting data points one-by-one,
clusters of 20 consecutive data points were used. This emphasises the time dependency of the data
points and improves network performance.

A.2. Network Architecture

Four RNN types are trained, which are a long short-term memory (LSTM) network, bidirectional LSTM
network (BiLSTM), LSTM network preceded by a convolutional network (CNN-LSTM) and gated re-
current unit (GRU) network. Neural networks have different characteristics which need to be chosen
upfront and need fine-tuning for optimal network performance. The different characteristics and their
default settings are presented in Table A.1. The main purpose of this phase of the research is to in-
vestigate if there are clear advantages for one or a few model types. Next to this, network settings are
altered to investigate which result in best performance. Due to long training time of the networks, this
is limited to a few characteristics only and for limited amount of settings.

Table A.1: Default network settings

Characteristic Setting
Hidden layers 2
Dimension hidden layers 100, 150
Dimension final layer 600
Dropout rate 0.1
Batch size 16
Training epochs 15
Window Size 20
101 __ Detection — _ 201 __ Prediction
. 08- 5 157
o S 10
Z 0.6 2
% £ 05-
=
g 0.4 - 3 00
= =
0.2 E 05 -
0.0 | -1.0 |
0 2 4 6 0 2 4 6
Time to LOC [s] Time to LOC [s]
(a) Detection of dangerous manoeuvre (b) Prediction to Loss-of-Control

Figure A.2: Outcome of the two different branches of the neural network

Last of all, the output of the networks should be determined in order to label the data. The desired
output is a prediction of the time to loss-of-control in seconds. However, to avoid false predictions during
nominal flight, the networks should be able to detect nominal and dangerous flight, where nominal flight
is represented by '0’ and dangerous flight by ’1’. This leads to a network with two output branches,
where the ideal output of the networks is as visualised in Figure A.2. The first 5 seconds are nominal
flight, after which a dangerous manoeuvre starts leading to a LOC event after 1.9 seconds. Figure A.2b
shows the output of the detection branch, whereas Figure A.2a shows the output of the prediction
branch.

A.3. Nominal Results 55

A.3. Nominal Results

In total, 50 failure runs were simulated where the quadcopter was in nominal condition, flying in a wind-
less environment. Each run has a unique combination of ¢ and initial condition setting. It should be
noted that for comparing different network characteristics, not always all default settings were used.
However, when testing different options of one characteristic, the remaining settings were kept un-
changed, which still allows for comparison of this characteristic. Only the characteristic that is changed
and what options are used will be mentioned in this section.

Amount of hidden nodes

The first characteristic that is tested is the amount of nodes in the hidden layers, as this influences
training time as well as the amount of memory that should be available on the quadcopter. The different
settings and associated RMSE values per model are plotted in Figure A.3. Except for one high outlier,
the LSTM and GRU network show an increase in RMSE value. The BiLSTM and CNN-LSTM perform
similar for all different settings, except for one low outlier for the CNN-LSTM network. From this it can
be concluded that a lower amount of nodes is preferred, as this also leads to less memory necessary
on the quadcopter. Therefore, for the experimental phase, tests will be performed with an even lower
amount of nodes of 50 and 100.

0.10 A
— LsTM

BILSTM
—— CNN-LSTM
| — GRu

0.09 -

o
=]
o

0.07 +

0.06

0.05 4

0.04

Root Mean Squared Error [s]

0.03

0.02 +

T T T T T T T T T T T T

100 150 200 250 300 350 400 450 500 550 600 650

150 200 250 300 350 400 450 500 550 600 650 700
Amount of nodes in hidden layers

Figure A.3: Root Mean Squared Error values in seconds for different amount of hidden nodes

Window size

Another characteristic that is tested is the window size, as this is problem dependent and can therefore
influence prediction performance significantly. Four settings are tested and the resulting RMSE values
are tabulated in Table A.2. A clear preference for a window size of 20 is shown, which will therefore be
the used setting for the experimental phase.

Table A.2: RMSE values in seconds for different window sizes

Network Type 15 20 25 30

LSTM 0.0433 0.0427 0.0891 0.0467
BiLSTM 0.0441 0.0381 0.0432 0.0396
CNN-LSTM 0.0644 0.0459 0.0581 0.0468
GRU 0.0376 0.0245 0.0305 0.0256

Final layer dimension

All networks consist of two RNN layers, which are LSTM, BiLSTM or GRU layers. The CNN-LSTM
network has three layers before these two layers, which are two convolutional layers and a pooling
layer. All networks end with two branches containing two dense layers, where the final layer has one

A.3. Nominal Results 56

node, such that only one value is outputted. The number of nodes in the other final layer can be tuned
for optimal performance. The RMSE values are plotted in Figure A.4 for different amount of nodes in
the final layer.

— LSTM

BILSTM
—— CNN-LSTM
— GRU

0.060 A

0.055

0.050 4

0.045 +

0.040 4 ///

0.035 4

Root Mean Squared Error [s]

0030 L T T T T T T
100 200 300 400 500 600
Amount of nodes in the final layer

Figure A.4: Root Mean Squared Error values in seconds for different amount of nodes in the final layer

From this figure it becomes clear that the amount of nodes in the final layer does not influence the pre-
diction performance massively, as all models show similar performance for different amount of nodes.
The only model that shows larger changes is the CNN-LSTM model. This model performs best with
400 nodes. Next to this, in Table A.3, the average RMSE value of all models for all amount of nodes is
tabulated, where 400 nodes also scores best. Therefore, the networks in the experimental phase will
have 400 nodes in the final layer.

Table A.3: Average RMSE values in seconds of all models for different amount of nodes in final layer

100 200 300 400 500 600
Average 0.0420 0.0406 0.0405 0.0400 0.0402 0.0432

Table A.4: RMSE values in seconds for a run with and without the additional feature

Network Type Without addi- With additional
tional feature feature

LSTM 0.0850 0.0379
BiLSTM 0.101 0.0420
CNN-LSTM 0.389 0.0482
GRU 0.146 0.0342

Handcrafted feature

To improve network performance, the influence of providing useful information to the neural network on
its performance is investigated. As mentioned by Van der Pluijm [29], rotor saturation occurs prior to
loss-of-control. It is expected that providing information about this boosts performance. An additional
feature is created which counts the amount of saturated rotors, which is fed into the network together
with the sensor data. RMSE values of a run with and without this feature are summarised in Table A.4.

The RMSE values are at least a factor 2 lower, and even go up to a factor of 8 lower for the CNN-LSTM

A.4. Generalisation Results 57

network when including this feature. These results validate that rotor saturation is a clear sign for loss-
of-control and will therefore be included during the experimental phase as well.

Prediction performance

Once most of the settings have been determined, the general prediction performance can be assessed.
This will lead to a hypothesis about the suitability of recurrent neural networks for loss-of-control pre-
diction on quadcopters in real-life, which will be validated in the follow phase of the research. For this
assessment, a validation run is created where the quadcopter characteristics and operational condi-
tions are the same as the one from the training set, however a different initial condition was used. The
prediction plots for all four models and the achieved RMSE values are visualised in Figure A.5.

i WM rzo LO9_ pet }%— F2.0
—— True N\ﬂ ————— True
o L1s & ! Lae =

084 — Pred 5 @
\\N Lo

~ too

e

-

o

o

| L

)

a
_—
-

2 0.6
3

OC Detected [-]
o
s
T T T
o o =
o o
Time to LOC [
OC Detected [-]
o o
I [=)]
=
o
Time to LOC [

Predicted
Predicted

0.2+

o
[N
L

Fr—0.5

0.04 F-1.0 0.04 -1.0
o 1 2 3 4 5 6 71 o 1 2 3 4 5 & 71
Time to LOC [s] Time to LOC [s]
(a) LSTM, 0.0935s (b) BILSTM, 0.120s
109 Det r Lao 109 Det I vE— X
—— True “If ————— True "1\
084 — Pred ﬁ\ bis = 084 — Pred i 15

B oo
J

H
o

ime to LOC [s
-
o

ime to LOC [s]

OC Detected [-]
=)
s
T T T
o
OC Detected [-]
o)
I [=]]

=
o
Predicted
o
o
edicted

0.2+

o
[N
L

|
=
wn

I
=}
n
P

0.04

|
N
o
o
o
L
|
-
(=}

o 1 2 3 4 5 & 7 o 1 2z 3 4 5 6 71
Time to LOC [s] Time to LOC [s]
(c) CNN-LSTM, 0.104s (d) GRU, 0.0924s

Figure A.5: Performance of all networks on the validation run, including RMSE value in seconds

All models can detect the dangerous manoeuvre correctly and the prediction is also accurate. There is
a downward trend following the true time to loss-of-control. This prediction would be sufficient to serve
as a warning for an (auto)pilot to recover to safe flight on time. Furthermore, the two more complex
networks perform worse than the simpler networks, but the difference is not large. It is not possible to
exclude one of the models based upon these results. On a real-life flight data set, it is expected that
RNNs can detect a dangerous manoeuvre leading to loss-of-control correctly. The prediction will be
slightly off, however sufficient to warn the (auto)pilot on time to recover to safe flight.

A.4. Generalisation Results

Another key topic of this research is to identify whether recurrent neural networks can generalise LOC
prediction for various conditions. During the simulation phase, two cases were tested: changing mass
of the quadcopter and flying in windy conditions.

Changing mass
The nominal mass of the Bebop 2 is 0.51k¢ and a mass of 0.55kg, 0.60kg, 0.75kg and 0.80kg were
tested. The reason for the larger step between 0.60kg and 0.75kg is that the prediction was still almost

A.4. Generalisation Results 58

perfect for 0.60kg and therefore higher masses could be tried. The RMSE values for different mod-
els for different masses are visualised in Figure A.6. It can be observed that for increasing mass, the
RMSE values increase as well. To set an expectation for the generalisation capabilities of RNNs on
real-life quadcopter data, the prediction plots should be inspected. It is chosen to compare the ones
from the worst performing model to see the influence of changing mass best: CNN-LSTM. The plots
are visualised in Figure A.7.

— LSTM
BiLSTM

—— CNN-LSTM

0.20 4 —— GRU

0.15 4

0.10 +

Root Mean Squared Error [s]

0.05 4

Mass [kqg]

Figure A.6: Root Mean Squared Error values in seconds for different quadcopter masses and different model types

104 pet o 109 Det h
| F15 FLl5
_____ True ! ----- True
084 — Pred ! e 084 — Pred o
- ! 10 o - 10 o
[N Q o Q
= =1 = 2
< 0.6 8 T 0.6 < S
E o5 v E o5 v
& = a =
o %47 Loo 3 o %4 too g
= g E g
0.29 ——05,‘? 0.21 ——0‘5,’?
0.0 4 r—1.0 0.04 Fr-1.0
T T T T T T T T T T T T T T
0 1 2 3 4 5 6 o 1 2 3 4 5 6
Time to LOC [s] Time to LOC [s]
(a) 0.55kg, 0.0312s (b) 0.60kg, 0.103s
1094 __ pet ; L1s 104 __ pet i |20
————— True ; --—-- True
0.8 — Pred M w 0.8 — Pred 3)
_ o Lo o _ 9
= 3 S = 10 S
T 0.6 | I Los 2 B 064 g
¥ | o os
8 0.4 g 8 0.4 c
1 | Loo © .4 -)
g & g too £
S o =1 =
0.2 L o5 : 0.2 —05 :
0.0 4 r—1.0 0.0+ -1.0
T T T T T r r T T T T T T T T
0 1 2 3 4 5 6 0 1 2 3 4 5 6 7
Time to LOC [s] Time to LOC [s]
(c) 0.75kg, 0.132s (d) 0.80kg, 0.2265s

Figure A.7: Performance of the CNN-LSTM network on different masses, including RMSE values in seconds

From this figure it can be observed that changing mass influences the behaviour of the quadcopter
such that the prediction is too low for large changes in mass. This is shown for a mass of 0.80kg in
Figure A.7d. However, it should be noted that a mass of 0.80kg entails an increase in mass of 63.75%,
which is unlikely to happen during nominal flight of an aircraft. Next to this, the prediction behaviour

A.4. Generalisation Results 59

shown here is too optimistic compared to the real-life case, as this data will show more oscillations and
noise and therefore influence the prediction more. However, based upon the results here it is expected
that the RNN models can still detect a dangerous manoeuvre correctly and predict loss-of-control for
changing mass, however the networks will be underestimating the time to loss-of-control. This will be
validated during the real-life flight tests.

Wind conditions

The Bebop simulator can simulate a constant wind from different directions. Several wind speeds and
directions are tested to see if this results in differences in prediction performance. In total, six scenarios
are tested. Two tests are performed where wind blows from the y-direction with a speed of 4 and 6
m/s. The same tests are performed with wind blowing from the x-direction. During the final two tests,
wind blows from both x- and y-direction with a speed of 3 and 5 m/s. The achieved RMSE values per
model are depicted in Table A.5.

Table A.5: RMSE values in seconds for runs with different wind conditions

Network Type y-4m/s y-6m/s x-4m/s x-6m/s x&-3m/s x&-5m/s

LSTM 0.395 0.320 0.258 0.451 0.189 0.529
BiLSTM 0.437 0.289 0.122 0.446 0.207 0.748
CNN-LSTM 0.634 0.767 0.144 0.414 0.171 0.685
GRU 0.310 0.249 0.0909 0.283 0.161 0.230

First of all, it is observed that the values are higher than for the validation run or changing mass. Wind
influences the dynamic behaviour of the quadcopter more than change in mass, which does not benefit
the prediction performance of the RNNs. Second of all, it is not possible to draw conclusions for specific
wind conditions. When comparing the tests with wind from either x- or y-direction, they both perform
best for one of the two wind speeds. On the other side, when comparing the wind from both directions
to only one direction, it is noted that this reduces performance.

To construct a hypothesis about the suitability of these models for LOC prediction when flying in wind
conditions, the prediction plots should assessed. The prediction plots of the LSTM network for different
wind conditions are drawn up in Figure A.8. This figure makes clear that wind makes the behaviour
of the quadcopter unpredictable. The provided time to loss-of-control deviates from the true time in
different ways for all wind conditions, making it hard to use the predicted time to LOC in a loss-of-
control prevention system. On the other side, the detection of the dangerous manoeuvre still works as
desired, except for the conditions with most wind: 5 m/s from both x- and y-direction. The detection
is too late here. The hypothesis is therefore that the prediction cannot be used when applied to real-
life flight data, as wind is more unpredictable in real-life than in a simulator. However, due to correct
detection, for lower wind speeds the algorithm can still serve as an indication that there will be an
upcoming loss-of-control event.

A.4. Generalisation Results

60

LOC Detected [-]

LOC Detected [-]

LOC Detected [-]

Figure A.8:

1.0 4 Det F2.0
- True
0.8 — Pred F1s
FLo
0.6 A
Fos
0.4
Fo.o
0.2 4
F-05
0.04 F-1.0
0 1 2 3 4 5 6 7
Time to LOC [s]
(a)y -4m/s, 0.395s
104 pet ——— [15
-—--- True "
0.8{ — Pred FLo
0.6 1 H Fos
0.4 to.o
0.24 F-05
0.0 F-1.0
0 1 2 3 4 5 6
Time to LOC [s]
(c)x-4m/s, 0.258s
1.0 4 Det .
----- True :
084 — Pred
FLo
0.6 A
Fos
0.4 4 L oo
0.2 4 L o5
0.04 F-1.0
; T T T T T ,
0 1 2 3 4 5 [

Time to LOC [s]

(e) x&y - 3m/s, 0.189s

[s]

Predicted Time to LOC

[s]

Predicted Time to LOC

Predicted Time to LOC [s]

LOC Detected [-]

LOC Detected [-]

LOC Detected [-]

104

0.8 4

0.6 4

0.4+

0.2+

0.0+

[s]

Predicted Time to LOC

r—0.5

r-1.0

0 1 2 3 4 5 6
Time to LOC [s]

(b)y - 6m/s, 0.320s

1.0+

0.8 4

0.6

0.4+

0.2+

0.0+

2.0

FL15

[s]

F1o

F 0.5

r 0.0

Predicted Time to LOC

r—05

r-1.0

0 1 2 3 4 5 6
Time to LOC [s]

(d)x - 6m/s, 0.451s

1.0+

0.8 4

0.6

0.4+

0.2 4

0.04

' 00

FLl5

F1o

F 0.5

Predicted Time to LOC [s]

T T
I |
I o
=} n

0 1 2 3 4 5 6
Time to LOC [s]

() x&y - 5m /s, 0.529s

Performance of the LSTM network for different wind conditions, including RMSE values in seconds

Experiment Details

The final phase of the thesis research consists of validating results found in the simulator phase. To
confirm that recurrent neural networks can predict a loss-of-control event, a series of real-life flight tests
is conducted to collect failure data. This appendix provides the validation of the simulation phase and
additional results that were not written down in the thesis paper.

The aim was to fly with the Bebop 2, however for the sake of safety and damage prevention a smaller
quadcopter was used: the Eachine Trashcan Tiny Whoop. Less damage occurs on this vehicle when it
is crashed into the ground hundreds of times compared to the larger and heavier Bebop 2. Furthermore,
the models that are used to produce the results shown in this appendix are trained on rotor commands
and accelerations, as this was one of the two combinations that turned out to perform best.

B.1. Validation of Simulation Results

From the simulation phase, hypotheses were formed about the suitability of the models for prediction
of LOC for changing mass and in wind conditions. The quadcopter used during experiments is not the
same as the one in the simulator, but as the dynamics of all quadcopters is the same, the expectation
is that the hypotheses are still valid. However, as the Tiny Whoop is lighter, the wind might have a
larger influence on this vehicle than on the Bebop 2. These expectations will be validated here.

Changing mass

The expectation for prediction of loss-of-control for changing masses of the quadcopter is that the RNNs
are still capable of doing this, however the prediction will be lower than the true time to LOC. To val-
idate this, the prediction plots for all mass configurations for the GRU model are presented in Figure B.1.

For all mass conditions, the model is detecting the dangerous manoeuvre correctly. The only incor-
rect behaviour that is visible is wrong detections of dangerous manoeuvres before the true manoeuvre,
which becomes more frequent for higher masses. The reason for this is that the larger the mass dif-
ference with the nominal condition, the more the dynamic behaviour of the quadcopter is influenced,
leading to sensor data which the network associates with dangerous manoeuvres. Beside this, for all
different masses the model shows the expected prediction behaviour, where the network is underestim-
ating the true time to loss-of-control. Both these observations are in line with the hypothesis, validating
the results obtained during the simulation phase.

Wind conditions

The results from previous phase indicated that wind influences the dynamic behaviour of the quad-
copter more than changing mass, leading to predictions that are more off compared to this scenario.
The expectation is therefore that the prediction branch of the networks is too unreliable to be used.
However, the detection branch should still be able to detect the dangerous manoeuvre correctly, such
that the networks can serve as an indication that a LOC event is upcoming. To validate this, the predic-
tion plots for the GRU model on the wind runs are provided in Figure B.2. During the first three runs,

61

B.1. Validation of Simulation Results 62

10 F2.5 1.0
— Det I el i 2.0
----- True 2.0 ----- True)

08] — Pred = 08 — Pred Y 15 =
— 15 W — \ 3]
= S = S
B o6 10 2 £ 061 10oe
3 g g i g
T L = @ Los E
S 041 05 8 0.4 \ s
9 @ o 7]
2 00 © S oo 3

J © 1 I3
0.2 . 0.2 | s 2
0.0 F-1.0 0.0 F-1.0

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Time to LOC [s] Time to LOC [s]
(a) 62g (+10.7%), 0.417s (b) 669 (+17.9%), 0.520s
104 pet — Lao 104 pet .
----- True i, -—--- True

084 — Pred E 0 L1s @ 0.84 — Pred w
— H Y o — |9}
= | L =] = rz g
g 061 : N - T 0.6 B f:
T ! s o B HII® o
¥ 5 . fos B & {3 g
O 0.4 H \i - 2 0.4 H (1. =
8 1 Loo & 8 | N 8
= | o = | g

0.24 | o5& 0.24 i Mo £

0.0 : F-1.0 0.0 : -1

0 1 2 3 4 5 6 7 0 1 2 3 4 5 [
Time to LOC [s] Time to LOC [s]
(c) 72g (+28.6%), 0.497s (d) 76g (+35.7%), 0.3825s
104 _ pet oo
----- True
08 — Pred F1s

Lo
0.6

0.4 4

LOC Detected [-]

o
o

0.2 4

(=]
N
Predicted Time to LOC [s]

|
=
n

0.0+

|
-
=}

T T T T T T T T
0 1 2 3 4 5 6 7
Time to LOC [s]

(e) 829 (+46.4%), 0.525s

Figure B.1: Performance of the GRU network for different masses, including RMSE values in seconds

the quadcopter flew in a wind stream before the dangerous manoeuvre started, which represents a
constant wind condition. During the last two runs, the quadcopter was flown into the wind stream after
the start of the manoeuvre, representing a wind gust.

The results vary among the different runs. Although the dangerous manoeuvres are detected correctly
for the majority of the time, there are also wrong detections, both false positives and false negatives.
These result from the turbulent behaviour of the quadcopter caused by the wind. Furthermore, once
the dangerous manoeuvre has started, the prediction shows fast oscillations with large amplitudes
around the true time to loss-of-control. The latter confirms that the prediction time is too unreliable to
be used. The detection branch however shows inconsistent behaviour with the hypothesis, which can
be attributed to the difference in quadcopter type in the simulator and in real-life. On the other side,
when looking at the difference between both vehicles, it was expected that the influence of wind is
larger than was hypothesised. In conclusion, the differences between the simulator and real-life are
too large to validate the simulator results.

B.2. Additional Results 63

109 __ peat (] |2 109 _ pet 20
----- True ----- True
084 — Pred .) 084 — Pred 15 &
. o - 9]
o =] o [s]
© 0.6 Lo 2 @ 0.6 2
5 o 5 w
% £ % 05 E
= F
2 0.4 f L1 © 2 0.4 o
I | @ g Foo 2
S : u 3 H
021 S to g 0.2 4 -05 &
0.0 { - F-1 0.0 : 1o
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Time to LOC [s] Time to LOC [s]
(a) Constant wind 1, 0.743s (b) Constant wind 2, 0.417s
109 __ peat S 104 o
----- True t2s
084 — Pred o) 0.8 t1s =
a F2.0 _ 9]
= S = S
= L = 1o
& 0.6 15 o @ 0.6 2
g F1o B 2 Los £
S 04 S a =
o ros g o 047 K
9 A] 9 [oo ¢
oo 5 g
0.2 g 0.2 o5 £
L-0.5 i
0.0 F-1.0 0.0+ -0
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Time to LOC [s] Time to LOC [s]
(c) Constant wind 3, 0.552s (d) Wind gust 1, 0.505s
109 — Det
----- True [2.0
0.8 — Pred o
. b1s o
- Q
= S
2 0.6]
g .. E
5 05 E
O 0.4
[N ®
] roo s
1 o
0.2 05 &
0.0 -1.0
.
0 1 2 3 4 5 6

Time to LOC [s]
(e) Wind gust 2, 0.382s

Figure B.2: Performance of the GRU network for different wind runs, including RMSE values in seconds

B.2. Additional Results

Apart from the results presented in the thesis paper, additional research was performed. These focused
on some of the findings and recommendations that were done in the paper.

Fully-connected neural network

Recurrent neural networks can be used for analysis of sequential data, as they are capable of detect-
ing time-dependent features. However, during the research it became clear that there is no difference
in performance between simple and complex RNNSs, indicating that failure features are less temporal
dependent than expected beforehand. To confirm this, one recommendation is to test simpler net-
works. Therefore, a fully-connected neural network is created, which has the same lay-out as the
RNNs, however the RNN layers are replaced by dense layers. The average RMSE values over three
random training processes for the five different networks achieved on the validation run are depicted
in Table B.1.

B.2. Additional Results 64

Table B.1: RMSE values in seconds on the validation run for a fully-connected neural network and four RNNs

Network Type Validation run
Normal Network 0.341

LSTM 0.374
BiLSTM 0.406
CNN-LSTM 0.409
GRU 0.399

The fully-connected network performs best on the validation run. This confirms that there are less
prominent time-dependent failure features than was anticipated before the start of this research. Loss-
of-control is thus the result of short-term, more instantaneous behaviour instead of induced by a series
of actions. However, it should be noted that the hyperparameters of the RNN models are not optimised.
Default network settings are used, whereas complex networks usually need more fine-tuning to detect
complex features and perform better than simpler networks. Before disregarding the RNNs, this should
be tried first.

Handcrafted feature

Based upon the research performed by Van der Pluijm [29], the results from the simulation phase and
the result that the commanded rotor values provide clearest early warning signals for loss-of-control,
it is expected that the additional feature counting the amount of saturated rotors improves prediction
performance. To confirm this, a run is performed where this feature was excluded. Table B.2 depicts
the RMSE values of this test run, as well as the average RMSE values over the three random runs
trained on commanded rotor values and accelerations including this feature.

Table B.2: RMSE values in seconds for a run with and without the additional feature

Network Type Without addi- With additional

tional feature feature
LSTM 0.389 0.374
BiLSTM 0.380 0.406
CNN-LSTM 0.393 0.409
GRU 0.379 0.399

The results are surprising, as the run without the additional feature performs better for three out of four
networks. It should be noted that this is only one run, whereas the RMSE values including the feature
are an average over three runs. However, the result raises questions about the additional value of
this feature, as they indicate that the quadcopter data already provides sufficient information about an
upcoming LOC event. More training runs should be executed to confirm this. Furthermore, the gener-
alisation performance should be assessed as well when the additional feature is excluded.

Pitch and yaw

One recommendation following from the research is to investigate if one model can be trained to pre-
dict loss-of-control correctly for multiple loss-of-control events. Beside 75 successful failure runs by
demanding a high yaw rate, 53 runs were executed where a LOC event was successfully initiated by
demanding a high pitch rate. This gives the opportunity to explore if a model can be trained to detect
two loss-of-control events. First, the performance on the yaw validation run will be compared for a
model trained on yaw runs only and a model trained on both yaw and pitch runs. The resulting RMSE
values for both are depicted in Table B.3.

B.2. Additional Results 65

Table B.3: RMSE values in seconds on the yaw validation run for a network trained on yaw runs only and trained on both yaw
and pitch runs

Network Type Only Yaw Yaw and Pitch
LSTM 0.389 0.429
BIiLSTM 0.380 0.394
CNN-LSTM 0.393 0.465
GRU 0.379 0.449

For all models, the one trained on yaw only performs better. The prediction performance is thus influ-
enced negatively by the additional data from the pitch runs. However, to draw conclusions about the
prediction performance, prediction plots should be assessed. The prediction on the yaw validation run,

pitch validation run and pitch generalisation run are shown in Figure B.3a, Figure B.3b and Figure B.3c
respectively for the GRU model.

104 pet LO9 _ pet !_
—- True N True w 0.2
084 — Pred e 084 — Pred by o
T 8 - L oo g
= 2 3 -
D 0.6 . 2 @ 0.6 Fr-02 2
g 0.4 1 Mt E g 0.4 _OJ”;
Y % i T i
g : g E oo
0.2 Fo o 0.2 i
a F-0.8¢%
0.0 1 1 0.01 F—1.0
o 1 2 3 4 5 & 0 1 2 3 3 5
Time to LOC [s] Time to LOC [s]
(a) Prediction on yaw validation run, 0.449s (b) Prediction on pitch validation run, 0.184s
1.0
—— Det L1io
----- True
0.8 — Pred)
= Fos g
2 0.6 2
[¥]) v
£ Voo E
& o4 o
]]
! —05%
0.2 £
0.0 A -1.0
0 1 2 é 4 5 6

Time to LOC [s]

(c) Prediction on pitch generalisation run,
0.618s

Figure B.3: Performance of the GRU network trained on both pitch and yaw runs, including RMSE values in
seconds

The RMSE value is higher on the yaw validation run when trained on both yaw and pitch runs than
trained on yaw only, but the detection is still correct and the prediction behaviour is identical to the one
observed in the thesis paper. As a result, this model is still suitable for LOC detection and prediction
on runs similar to the ones from the training set.

Beside this, for the pitch validation run, the network detects the dangerous manoeuvre correctly. The
short time between the start of the manoeuvre and loss-of-control makes it hard to draw conclusions
about the prediction performance. There is a downward trend visible, however it is overestimating the
true time to LOC. The output of the prediction branch can therefore not be used, as for such a short
time to LOC an overestimation will be fatal. On the other hand, for short manoeuvres between 0 and
1 seconds, a detection is already sufficient to serve as a warning that a LOC event is almost starting

B.2. Additional Results 66

and action must be taken, which means that this model can be used in an on-board loss-of-control
prevention system.

Finally, the most interesting plot is the last one. Models trained on yaw runs only cannot detect a dan-
gerous manoeuvre leading to loss-of-control due to high pitch rate. When trained on both runs, this is
different. A dangerous manoeuvre is detected, although too late and including a short false negative
detection. This can be explained by looking at one of the findings of the research. As concluded in
the paper, the networks can detect and predict loss-of-control correctly for scenarios that are similar to
the ones from the training set in terms of LOC event and time to loss-of-control. The average time to
loss-of-control in the training set of pitch runs is 0.470s. The detection of the dangerous manoeuvre
happens approximately half a second before loss-of-control and after the short false negative detection,
the prediction matches the true time to LOC correctly, meaning that it is overfitting the training set.

Although the output of the models are overfitting the training set, it becomes clear that a model trained
on two scenarios can correctly predict LOC for both. This is a promising result, as it means that not
every LOC scenario requires its own model.

Prediction bias

The results from the presented research show a bias in the predicted time to loss-of-control to the
average time to LOC of the training set, which is 2 seconds. However, this does not mean that the
created models always predict a time to loss-of-control of 2 seconds. A first reason for this is that the
detection and prediction branch are trained separately and the output of the prediction branch is thus
not influenced by the output of the detection branch. The prediction branch does not know when a
dangerous manoeuvre is detected and can therefore not associate the start of this manoeuvre with a
time to LOC of 2 seconds.

1000 +
800 +
600

T T T T
o 1 2 3 4

Validation Run

Propeller Run

1000 +

800+

600

400

0 1 2 3 4
Figure B.4: Rotor commands during the dangerous manoeuvre for the validation and propeller run

However, to confirm that the networks actually learned to associate specific states with a specific time
to loss-of-control, it is useful to compare the sensor data and predicted time for two runs: the validation
run and a run with different propeller. During the validation run, loss-of-control occurred 1.7s after start
of the dangerous manoeuvre, whereas for the propeller run this was 4.721s. The rotor commands

B.2. Additional Results 67

during this manoeuvre are shown in Figure B.4 for both runs.

Two parts can be distinguished in these runs. After an initial rise, the first part shows oscillating rotor
commands, which lasts about 0.8s for the validation run and 3.5s for the propeller run. The second
part shows increasing amplitude of these oscillations where rotors are saturated continuously. For the
validation run this lasts around 0.7s, whereas for the propeller run this lasts about 1.0s. From this it can
be observed that especially the first part is stretched for the propeller run compared to the validation
run. The rotor commands oscillate for a longer period of time before the quadcopter reaches the next
part where the oscillations lead to saturation. To see how the networks deal with this, the prediction of
the GRU model trained on rotor commands and accelerations is visualised in Figure B.5.

Prediction of GRU model on validation run

M

T T T T
0 1 2 3 4

Prediction of GRU model on propeller run

B Y Y Y STV Ty

o
L

0 1 2 3 2
Figure B.5: Predicted time to loss-of-control during the dangerous manoeuvre for the validation and propeller run

The prediction for both runs are similar. Once a dangerous manoeuvre is detected, the prediction shows
a downward trend. For the validation run, this continues until LOC starts. However, for the propeller
run, the prediction shows an oscillation around a predicted time of 0.5s, indicated by the horizontal red
line, starting 1 second after the beginning of the manoeuvre, indicated by the vertical red line, until the
start of the second part. This is as expected when comparing both the rotor commands in Figure B.4
and the predicted time in Figure B.5. For the validation run, the rotor command oscillations, especially
those with larger amplitude after 1 second and before the start of the second part, are associated with
a predicted time to LOC between 0 and 1 second. As these oscillations last longer in the propeller run,
it is expected that the predicted time to LOC will oscillate between 0 and 1 second during this part. This
proves that the networks have learned to associate specific states with specific time to LOC instead of
always predicting 2 seconds.

References

[1] Matthias Baert. ‘Quadrotor Upset Recovery after Rotor Failure’. MA thesis. The Netherlands: Delft
University of Technology, 2019.

[2] Oguz Bektas, Jane Marshall and Jeffrey A Jones. ‘Comparison of Computational Prognostic
Methods for Complex Systems Under Dynamic Regimes: A Review of Perspectives’. In: Archives
of Computational Methods in Engineering 27 (2020), pp. 999-1011. DOI: 10.1007/s11831-019-
09339-7.

[3] Christine M Belcastro and Steven R Jacobson. ‘Future Integrated Systems Concept for Prevent-
ing Aircraft Loss-of-Control Accidents’. In: AIAA Guidance, Navigation, and Control Conference.
2010. DOI: 10.2514/6.2010-8142.

[4] Christine M Belcastro et al. ‘Aircraft Loss of Control Problem Analysis and Research Toward a
Holistic Solution’. In: Journal of Guidance, Control, and Dynamics 40.4 (2017), pp. 733—-775. DOI:
10.2514/1.G002815.

[5] Christine M Belcastro et al. ‘Aircraft Loss of Control: Problem Analysis for the Development and
Validation of Technology Solutions’. In: AIAA Guidance, Navigation, and Control Conference.
2016. DOI: 10.2514/6.2016-0092.

[6] Christine M Belcastro et al. ‘Hazards Identification and Analysis for Unmanned Aircraft System
Operations’. In: 17th AIAA Aviation Technology, Integration, and Operations Conference. 2017.
DOI: 10.2514/6.2017-3269.

[71 Boeing Commercial Airplanes. Statistical Summary of Commercial Jet Airplane Accidents, World-
wide Operations | 1959 — 2019. Tech. rep. Seattle, Washington 98124-2207: Boeing, Dec. 2020.
URL: http://www.boeing.com/news/techissues/pdf/statsum.pdf.

[8] Michael A Bromfield and Steven J Landry. ‘Loss of Control In Flight-time to re-define?’ In: AIAA
Aviation 2019 Forum. 2019. DOI: 10.2514/6.2019-3612.

[9] MuratBronz et al. ‘Real-time Fault Detection on Small Fixed-Wing UAVs Using Machine Learning’.
In: 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC). 2020, pp. 1-10. ISBN:
9781728198255. DOI: 10.1109/DASC50938.2020.9256800.

[10] Zhenghua Chen et al. ‘Machine Remaining Useful Life Prediction via an Attention-Based Deep
Learning Approach’. In: IEEE Transactions on Industrial Electronics 68.3 (2021), pp. 2521-2531.
ISSN: 15579948. DOI: 10.1109/TIE.2020.2972443.

[11] Kyunghyun Cho et al. ‘Learning Phrase Representations using RNN Encoder-Decoder for Stat-
istical Machine Translation’. In: Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Doha, Qatar: Association for Computational Linguistics,
2014, pp. 1724-1734. DOI: 10.3115/v1/D14-1179.

[12] June Chongvisal et al. ‘Loss-of-Control Prediction and Prevention for NASA’'s Transport Class
Model’. In: AIAA Guidance, Navigation, and Control Conference. 2014. DOI: 10.2514/6.2014-
0784.

[13] Pedro F.A. Di Donato et al. ‘Envelope-aware flight management for loss of control prevention
given rudder jam'’. In: Journal of Guidance, Control, and Dynamics 40.4 (2017), pp. 1027-1041.
ISSN: 15333884. DOI: 10.2514/1.G000252.

[14] Olga Fink et al. ‘Potential, challenges and future directions for deep learning in prognostics and
health management applications’. In: Engineering Applications of Artificial Intelligence 92 (June
2020), p. 103678. ISSN: 09521976. DOI: 10.1016/j .engappai.2020.103678.

[15] Forecasts and Performance Analysis Division. FAA Aerospace Forecast Fiscal Years 2020 - 2040.
Tech. rep. Federal Aviation Administration, 2020. URL: https://www.faa.gov/data_research/
aviation/aerospace_forecasts/media/FY2020-40_FAA_Aerospace_Forecast.pdf.

[16] G.J.J.Ruijgrok. Elements of airplane performance. Delft University Press, 1996. ISBN: 9062756085.

68

https://doi.org/10.1007/s11831-019-09339-7
https://doi.org/10.1007/s11831-019-09339-7
https://doi.org/10.2514/6.2010-8142
https://doi.org/10.2514/1.G002815
https://doi.org/10.2514/6.2016-0092
https://doi.org/10.2514/6.2017-3269
http://www.boeing.com/news/techissues/pdf/statsum.pdf
https://doi.org/10.2514/6.2019-3612
https://doi.org/10.1109/DASC50938.2020.9256800
https://doi.org/10.1109/TIE.2020.2972443
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.2514/6.2014-0784
https://doi.org/10.2514/6.2014-0784
https://doi.org/10.2514/1.G000252
https://doi.org/10.1016/j.engappai.2020.103678
https://www.faa.gov/data_research/aviation/aerospace_forecasts/media/FY2020-40_FAA_Aerospace_Forecast.pdf
https://www.faa.gov/data_research/aviation/aerospace_forecasts/media/FY2020-40_FAA_Aerospace_Forecast.pdf

References 69

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

Felix A. Gers, Jirgen Schmidhuber and Fred Cummins. ‘Learning to forget: Continual prediction
with LSTM’. In: Neural Computation 12.10 (2000), pp. 2451-2471. ISSN: 08997667. DOI: 10.
1162/089976600300015015.

lan Goodfellow et al. ‘Generative Adversarial Networks’. In: Advances in Neural Information Pro-
cessing Systems 3 (June 2014). DOI: 10.1145/3422622.

Jarostaw Goslinski, Wojciech Giernacki and Andrzej Krolikowski. ‘A Nonlinear Filter for Efficient
Attitude Estimation of Unmanned Aerial Vehicle (UAV)'. In: Journal of Intelligent & Robotic Sys-
tems 95.3-4 (2019), pp. 1079-1095. DOI: 10.1007/s10846-018-0949-7.

Agus Hasan and Tor Arne Johansen. ‘Model-Based Actuator Fault Diagnosis in Multirotor UAVs'.
In: 2018 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2018, pp. 1017—-
1024. ISBN: 9781538613535. DOI: 10.1109/ICUAS.2018.8453420.

Cheng Geng Huang, Hong Zhong Huang and Yan Feng Li. ‘A Bidirectional LSTM Prognostics
Method Under Multiple Operational Conditions’. In: IEEE Transactions on Industrial Electronics
66.11 (2019), pp. 8792—8802. ISSN: 15579948. DOI: 10.1109/TIE.2019.2891463.

Guokun Lai et al. ‘Modeling Long-and Short-Term Temporal Patterns with Deep Neural Networks’.
In: The 41st International ACM SIGIR Conference on Research & Development in Information
Retrieval. Association for Computing Machinery, 2018, pp. 95-104. DOI: 10 . 1145 /3209978 .
3210006.

A A Lambregts et al. ‘Airplane Upsets: Old Problem, New Issues’. In: AIAA Modeling and Simu-
lation Technologies Conference and Exhibit. 2008. DOI: 10.2514/6.2008-6867.

Jialin Li, Xueyi Li and David He. ‘A Directed Acyclic Graph Network Combined With CNN and
LSTM for Remaining Useful Life Prediction’. In: JEEE Access 7 (2019), pp. 75464—75475. DOI:
10.1109/ACCESS.2019.2919566.

Thomas Lombaerts et al. ‘On-Line Safe Flight Envelope Determination for Impaired Aircraft’. In:
Advances in Aerospace Guidance, Navigation and Control. Springer International Publishing,
2015, pp. 263—-282. DOI: 10.1007/978-3-319-17518-8_16.

Seema Mallavalli and Afef Fekih. ‘A fault tolerant tracking control for a quadrotor UAV subject
to simultaneous actuator faults and exogenous disturbances’. In: International Journal of Control
93.3 (2020), pp. 655-668. ISSN: 1366-5820. DOI: 10.1080/00207179.2018.1484173.

Sina Sharif Mansouri et al. ‘Remaining Useful Battery Life Prediction for UAVs based on Machine
Learning'. In: IFAC-PapersOnLine 50.1 (2017), pp. 4727—4732. ISSN: 24058963. DOI: 10.1016/
j.ifacol.2017.08.863.

Anush Manukyan et al. ‘Real time degradation identification of UAV using machine learning
techniques’. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS). 2017,
pp. 1223-1230. ISBN: 9781509044948. DOI: 10.1109/ICUAS.2017.7991445.

Anthony van der Pluijm. ‘Early Warning Signals for Loss of Control Prediction of a Damaged
Quadcopter’. MA thesis. The Netherlands: Delft University of Technology, 2020.

Behnoush Rezaeianjouybari and Yi Shang. ‘Deep learning for prognostics and health manage-
ment: State of the art, challenges, and opportunities’. In: Measurement 163 (Oct. 2020), p. 107929.
ISSN: 02632241. DOI: 10.1016/j .measurement.2020.107929.

David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams. ‘Learning representations by
back-propagating errors’. In: Nature 323 (1986), pp. 533-536. DOI: 10.1038/323533a0.

Paul Russell and Jay Pardee. Joint Safety Analysis Team- CAST Approved Final Report Loss
of Control JSAT Results and Analysis. Tech. rep. Federal Aviation Administration: Commercial
Aviation Safety Team, Dec. 2000. URL: https: //www . cast - safety . org/pdf / jsat _loss-
control.pdf.

Vidyasagar Sadhu, Saman Zonouz and Dario Pompili. ‘On-board Deep-learning-based Unmanned
Aerial Vehicle Fault Cause Detection and ldentification’. In: IEEE International Conference on
Robotics and Automation (ICRA). May 2020, pp. 5255-5261. DOI: 10.1109/ICRA40945.2020.
9197071.

https://doi.org/10.1162/089976600300015015
https://doi.org/10.1162/089976600300015015
https://doi.org/10.1145/3422622
https://doi.org/10.1007/s10846-018-0949-7
https://doi.org/10.1109/ICUAS.2018.8453420
https://doi.org/10.1109/TIE.2019.2891463
https://doi.org/10.1145/3209978.3210006
https://doi.org/10.1145/3209978.3210006
https://doi.org/10.2514/6.2008-6867
https://doi.org/10.1109/ACCESS.2019.2919566
https://doi.org/10.1007/978-3-319-17518-8_16
https://doi.org/10.1080/00207179.2018.1484173
https://doi.org/10.1016/j.ifacol.2017.08.863
https://doi.org/10.1016/j.ifacol.2017.08.863
https://doi.org/10.1109/ICUAS.2017.7991445
https://doi.org/10.1016/j.measurement.2020.107929
https://doi.org/10.1038/323533a0
https://www.cast-safety.org/pdf/jsat_loss-control.pdf
https://www.cast-safety.org/pdf/jsat_loss-control.pdf
https://doi.org/10.1109/ICRA40945.2020.9197071
https://doi.org/10.1109/ICRA40945.2020.9197071

References 70

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

S. Sun and C. C. de Visser. ‘Quadrotor Safe Flight Envelope Prediction in the High-Speed Re-
gime: A Monte-Carlo Approach’. In: AIAA Scitech 2019 Forum. 2019. ISBN: 9781624105784.
DOI: 10.2514/6.2019-0948.

Sihao Sun, Coen C De Visser and Qiping Chu. ‘Quadrotor Gray-Box Model Identification from
High-Speed Flight Data’. In: Journal of Aircraft 56.2 (2019), pp. 645—661.

E.R. Van Oort. ‘Adaptive Backstepping Control and Safety Analysis for Modern Fighter Aircraft’.
PhD thesis. Delft University of Technology, 2011. ISBN: 9789085707356.

Jiujian Wang et al. ‘Remaining Useful Life Estimation in Prognostics Using Deep Bidirectional
LSTM Neural Network'. In: 2018 Prognostics and System Health Management Conference (PHM-
Chonggqing). IEEE, 2019, pp. 1037—-1042. ISBN: 9781538653791. DOI: 10.1109/PHM-Chongging.
2018.00184.

James E Wilborn and John V Foster. ‘Defining Commercial Transport Loss-of-Control: A Quant-
itative Approach’. In: AIAA Atmospheric Flight Mechanics Conference and Exhibit. 2004. DOI:
10.2514/6.2004-4811.

Zhaoyi Xu, Joseph Homer Saleh and J H Saleh. ‘Machine Learning for Reliability Engineering
and Safety Applications: Review of Current Status and Future Opportunities’. In: Reliability En-
gineering and System Safety 211 (2021), p. 107530. DOI: https://doi.org/10.1016/j.ress.
2021.107530

Liangwei Zhang et al. ‘Review on Deep Learning Applications in Prognostics and Health Manage-
ment’. In: [EEE Access 7.1 (2019), pp. 162415-162438. DOI: 10.1109/ACCESS.2019.2950985.
Ye Zhang et al. ‘Database-Driven Safe Flight-Envelope Protection for Impaired Aircraft’. In: Journal
of Aerospace Information Systems 18.1 (2020), pp. 14-25. DOI: 10.2514/1.1010846.

Youmin Zhang and Jin Jiang. ‘Bibliographical review on reconfigurable fault-tolerant control sys-
tems’. In: Annual Reviews in Control 32.2 (Dec. 2008), pp. 229-252. ISSN: 13675788. DOI:
10.1016/j.arcontrol.2008.03.008.

Rui Zhao et al. ‘Deep learning and its applications to machine health monitoring’. In: Mechanical
Systems and Signal Processing 115 (Jan. 2019), pp. 213-237. ISSN: 10961216. DOI: 10.1016/
j.ymssp.2018.05.050.

Rui Zhao et al. ‘Machine Health Monitoring Using Local Feature-Based Gated Recurrent Unit
Networks’. In: IEEE Transactions on Industrial Electronics 65.2 (2018), pp. 1539-1548. DOI: 10.
1109/TIE.2017.2733438.

https://doi.org/10.2514/6.2019-0948
https://doi.org/10.1109/PHM-Chongqing.2018.00184
https://doi.org/10.1109/PHM-Chongqing.2018.00184
https://doi.org/10.2514/6.2004-4811
https://doi.org/https://doi.org/10.1016/j.ress.2021.107530
https://doi.org/https://doi.org/10.1016/j.ress.2021.107530
https://doi.org/10.1109/ACCESS.2019.2950985
https://doi.org/10.2514/1.I010846
https://doi.org/10.1016/j.arcontrol.2008.03.008
https://doi.org/10.1016/j.ymssp.2018.05.050
https://doi.org/10.1016/j.ymssp.2018.05.050
https://doi.org/10.1109/TIE.2017.2733438
https://doi.org/10.1109/TIE.2017.2733438

	Abstract
	Preface
	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Thesis Project
	Research Motivation
	Research Question

	I Preliminary Thesis Report
	Unmanned Aerial Vehicle Safety
	Fault Tolerant Control System
	Flight Envelope
	Safe Flight Envelope Protection

	Loss-of-Control
	LOC research
	Quadcopter LOC Definition

	Conclusion

	Data-Driven Prediction Techniques
	Prognostics and Health Management
	Data Analysis
	Deep Learning Methods
	Long Short-Term Memory
	Gated Recurrent Unit

	Conclusion

	Methodology
	Research Procedure
	Tools
	TensorFlow
	Bebop Simulator

	Experimental Set-Up
	Planning
	Risk Identification

	Conclusion Preliminary

	II Thesis Paper
	III Discussion
	Conclusion and Recommendations
	Conclusion
	Recommendations

	IV Appendices
	Simulator Details
	Data Generation and Processing
	Network Architecture
	Nominal Results
	Generalisation Results

	Experiment Details
	Validation of Simulation Results
	Additional Results

	References

