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SYMBOLS AND DEFINITIONS

a. = incident wave amplitude

a = maximum wave amplitude
max ^

a .
= minimum wave amplitudemm ^

a = reflected wave amplitude (complex)

a = transmitted wave amplitude (complex)

a_^ = complex wave amplitude

a_ = complex wave amplitude

a = wave amplitude of equivalent incident wave

A = complex vertical amplitude of wave motion on slope
at Stillwater level

A, = wave excursion amplitude

C
^

= friction factor

d = average stone diameter

d = reference stone diameter
r

d = stone size as defined in Section III

e = 2.71

E = average rate of energy dissipation

E = energy flux

f = nondimensional friction factor

f|^ = linearized bottom friction factor

f = wave friction factorw

Fj = volume force

F = pressure force

F = inertia force



F = slope friction constant
s

g
= acceleration due to gravity

h = water depth along sloping breakwater face

h = constant water depth seaward of breakwater

H. = incident wave height

H = maximum wave height
max

H .

= minimum wave heightmm
Ah. = horizontal slice thickness

]

AH = head difference for equivalent breakwater
e

AH = head loss in material n
n

AIL = head difference for trapezoidal breakwater

k = wave number

k = wave number corresponding to constant depth region

k. = imaginary part of wave number

k = real part of wave number
r ^

K = momentum coefficient
m

Si = length of crib-style breakwater

a = equivalent length of crib-style breakwater

a = length of porous material n

a = submerged horizontal length of impermeable slope

L = wavelength

L = distance parameter used in permeameter tests

M„ = momentum flux
r

n = porosity



N = number of experiments performed

p
= pressure

n = pressure of water surface

Q = discharge per unit length

AQ. = discharge associated with slice j

R = reflection coefficient

R = critical Reynolds number
c

R, = particle Reynolds number

R, = particle Reynolds number of model
dm ^

R = measured reflection coefficient
m

R = predicted reflection coefficient
P

R = predicted reflection coefficient (simplified formula)
ps ^

R = ratio of runup to incident wave height

R = reflection coefficient determined in Section II

R = reflection coefficient determined in Section III

S = parameter defined by equation (5)

Sj^ = parameter defined by equation (28)

t = time

T = transmission coefficient

T = wave period

T = transmission coefficient calculated in Section II

u = complex horizontal velocity component

U = horizontal velocity component

U, = horizontal velocity component at the bottom

U. = horizontal discharge velocity component through a slice



U = horizontal seepage velocity

U = average horizontal velocity component

U = horizontal velocity component at the free surface

w = complex vertical velocity component

W = vertical velocity component

W, = vertical velocity component at the bottom

W = vertical seepage velocity

W = vertical velocity component at the free surface

X = horizontal coordinate

y = parameter defined by equation (103)

z = vertical coordinate

a. = laminar resistance coefficient

a = constant associated with empirical formula for a

3 = turbulent resistance coefficient

6 = constant associated with empirical formula for S
o ^

6 = hydrodynamic characteristic of reference material

3 = angle of impermeable slope

6 = arbitrary phase angle

£ = parameter as defined by equation (18)

C = complex free surface elevation

C = maximum free surface elevation in front of breakwater
'

'

jCpl = maximum free surface elevation behind breakwater

n = time-dependent free surface elevation

K = added mass coefficient

A = parameter as defined by equation (34)



V = kinematic viscosity

p = density

(jj
= radian frequency, —

(j)
= friction angle

({),
= bottom friction angle

T = shear stress

T, = bottom shear stress
b

y = parameter as defined by equation (28)

A = measurement error

V- = volume

V- = volume of solids
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REFLECTION AND TRANSMISSION CHARACTERISTICS

OF POROUS RUBBLE-MOUND BREAKWATERS

by

Ole Seahev Madsen and Stanley M. White

I . INTRODUCTION

Porous structures consisting of quarry stones of various sizes

often offer an excellent solution to the problem of protecting a harbor
against the action of incident waves. When used for this purpose it is

important that the coastal engineer is able to assess the effectiveness
of a given breakwater design by predicting the amount of wave energy

that will transmit through the breakwater.

Both the transmission and the reflection characteristics of a

porous structure are important. Thus, the severity of the wave motion
resulting from the partially standing wave system on the seaward side

of a breakwater will determine the accessibility of the harbor during

storm conditions. This wave motion outside the harbor will determine
the sediment transport patterns near the structure, and will also affect
the wave motion within the breakwater enclosure by governing the wave

motion at the harbor entrance. Therefore, the ability to predict the

reflection and transmission characteristics of a porous structure is

of utmost importance to an overall sound engineering design.

The interaction of incident waves with a porous sturcture is a

rather complex problem, one which probably will defy an accurate
analytical solution for the foreseeable future. With incident waves of
various frequencies and the possible occurrence of wave breaking on

the seaward slope of the structure, the problem is amenable to an

analytical solution only by the adoption of a set of simplifying
assumptions. With the addition of the energy dissipation associated
with frictional effects on the seaward slope as well as with the flow

within the porous structure, it appears the only possible solution is

to perform scale-model tests.

Performing a scale-model test for the interaction of waves with a

porous structure is, however, not a simple matter, and it presents a

separate set of problems even when tests are limited to normally inci-

dent v^7aves . It has recently been possible to perform tests for inci-

dent waves composed of several frequencies by using programmable wave

generators. However, some difficulties are associated with this type

of testing procedure. Thus, it is possible to perform tests corre-
sponding to a given incident wave spectrum only by trial and error.

Even limiting testing conditions to periodic incident waves leaves some



unresolved questions regarding the influence of scale effects. Thus,

the Reynolds number is modeled by the length scale l^/^J in a Froude

model; this lack of Reynolds similarity may affect the energy dissipa-

tion on the seaward slope of the structure as well as the dissipation

within the structure. These problems associated with scale-model tests

should not be interpreted to mean that model tests are of no value.

They are mentioned here merely to point out that even accurately con-

ducted model tests have their sources of errors which should be consid-

ered in the interpretation of the test results.

Although scale-model tests have weaknesses, model tests are believed

to present the best solution to the problem of wave interaction with

porous structures. However, a simple analytical model, although approx-

imate, does offer possibilities for performing a reasonably sound preliminary

design which may then be subjected to a model study to add the final

touch to the design. This procedure will reduce the significant cost

associated with the performance of model tests. For this reason this

investigation approaches the problem of wave transmission through and

reflection from a porous structure on an analytical basis. An analytical
treatment of this complex problem must be based on several simplifying

assumptions. The basic assumptions are:

(a) Incident waves are periodic, relatively long, and normally
incident

.

(b) Fluid motion is adequately described by the linearized
governing equations.

(c) Waves do not break on the seaward slope of the structure.

Since the design wave conditions for most breakwaters correspond to

relatively long waves, i.e., waves of a length exceeding say ten times
the depth of water, the first assumption is physically reasonable with
the assumption of normal incidence being made for simplicity. From the
assumption of linearized governing equations, it is, in principle,
possible to generalize the solution to cover the conditions corresponding
to incident waves prescribed by their amplitude spectrum. With the
present lack of knowledge about the mechanics of wave breaking the third
assumption is dictated by necessity. This third assumption may seem
unrealistic. However, most porous structures have steep seaward slopes
on which relatively long incident waves may remain stable.

With these assumptions, an analytical solution to the problem of
wave transmission through and reflection from a porous structure is

sought. The solution technique is based on the fundamental argument
that the problem of reflection from and transmission through a structure
may be regarded as one of determining tlie partition of incident wave
energy among reflected, transmitted, and dissipated energy. The problem
is in accounting for this partition and, in particular, in evaluating
the energy dissipation associated with the wave structure interaction.

12



This energy dissipation consists of two separate components; one is

associated with the flow within the porous structure (the internal
energy dissipation) , and the other is associated with the energy dissi-
pation on the seaward slope (the external energy dissipation)

.

Section II of this report discusses, in an idealized manner, the
internal energy dissipation by considering the problem of the interaction
of waves and a homogeneous porous structure of rectangular cross section.
This problem was treated by Sollitt and Cross (1972) who presented a

review of previously published analytical studies of the problem. The
present approach, which was published by Madsen (1974), follows the
approach of Sollitt and Cross (1972) but arrives at an explicit analyt-
ical solution for the linearized flow resistance of the porous medium,
thus circumventing Sollitt 's and Cross' tedious iterative procedure
which involved the use of high speed computers. Furthermore, empirical
relationships relating the flow resistance of a porous medium to stone
size and porosity are suggested and the final result is an explicit
analytical solution for the reflection and transmission coefficients
of rectangular breakwaters. This solution is tested against the experi-
mental observations of Wilson (1971) and Keulegan (1973), and found to

yield quite accurate results. The explicit solution may also be used
to assess the severity of scale effects in model tests with porous
structures.

Section III of this report discusses the problem of the energy
dissipation on the seaward slope of a porous breakwater by considering
the associated problem of energy dissipation on a rough impermeable
slope. Since the stone size below the cover layer of a trapezoidal,
raultilayered breakwater is generally quite small, the seaward slope
will essentially act as an impermeable rough slope. With the assumption
of nonbreaking waves the energy dissipation on the rough slope is

expressed by accounting for the bottom frictional effects. An analytical
solution for the reflection coefficient is obtained and the bottom fric-
tion, which is linearized, is related to a wave friction factor by
invoking Lorentz' principle of equivalent work. To evaluate this solu-
tion it is necessary to have an empirical relationship for this wave
friction factor. Such an empirical relationship is established experi-
mentally for rough slopes whose roughness is adequately modeled by
gravel, i.e., natural stones. The experiments reveal the need for an
accurate method for the determination of reflection coefficients from
experimental data. Such a method is developed and the semiempirical
procedure for estimating the reflection coefficient of rough impermeable
slopes is tested against a separate set of experiments. The procedure
yields accurate results and is believed to present a physically more
realistic approach to this problem than the semiempirical method
presented by Miche (1951).

Section IV of the report synthesizes the results obtained in

Sections II and III into a rational procedure for the estimate of reflec-
•''"'on and transmission coefficients of trapezoidal, multilayered break-



waters. The procedure accounts for the external energy dissipation by
considering the seaward slope to be essentially impermeable. Subtracting
the externally dissipated energy the partition of the remaining energy
among reflected, transmitted, and internally dissipated energy is deter-
mined by considering the interaction of an equivalent incident wave
(representing the remaining wave energy), with a homogeneous rectangular
breakwater which is hydraulically equivalent to the trapezoidal, multi-
layered breakwater. This procedure which attempts to account for the
energy dissipation where it takes place, in contrast to the procedure
developed by Sollitt and Cross (1972), yields excellent predictions of
the reflection and transmission coefficients obtained experimentally by
Sollitt and Cross.



II. TRANSMISSION AND REFLECTION CHARACTERISTICS

OF RECTANGULAR CRIB-STYLE BREAKWATERS

1. Preliminary Remarks.

This section presents a theoretical treatment of the problem of
wave transmission through and reflection from a porous structure of
rectangular cross section. The basic assumptions are:

(a) Relatively long normally incident waves which are considered to be
adequately described by linear long wave theory.

(b) The porous structure is homogeneous and of rectangular cross
section.

(c) The flow resistance within the porous structure is linear in the
velocity, i.e., of the Darcy-type.

The essential features of the derivation and mathematical manipu-
lation of the governing equations are presented in Appendix A to enable
the treatment to be relatively brief and to the point. The theoretical
solution for the transmission and reflection coefficient is obtained
based on the above assumptions and results in a solution which depends
on the friction factor arising from the linearization of the resistance
law, which for prototype conditions may be expected to be quadratic
rather than linear in the velocity.

A flow resistance of the Dupuit-Forchheimer type (Bear, et al.,

1968) is assumed, and an empirical relationship relating flow resistance
to stone size, porosity, and fluid viscosity gives a fair representation
of experimentally observed hydraulic properties of porous media.
Adopting this empirical formulation of the flow resistance for a porous
medium in conjunction with Lorentz' principle of equivalent work leads
to a determination of the linearized flow resistance factor in terms of
the characteristics of the porous material and the incident wave
characteristics. In this manner an explicit solution for the reflection
and transmission coefficients for a crib-style breakwater is obtained.

Knowledge of the incident wave characteristics, the breakwater
geometry, and the characteristics (stone size and porosity) of the
porous material is sufficient for the prediction of reflection and
transmission coefficients. The procedure was tested against experi-
mentally observed reflection and transmission coefficients (Keulegan,
1973; Wilson, 1971) and yielded accurate predictions of transmission
coefficients; the reflection coefficients are less accurately predicted.
The discrepancy between predicted and observed reflection coefficients
may be partly attributed to experimental errors in the determination of
reflection coefficients.



The flow resistance within the porous structure accounts for a

laminar and a turbulent contribution. Therefore, the theoretical

development may be used to shed some light on the important problem

of scale effects in hydraulic model tests with porous structures.

2. Analytical Solution for Transmission and Reflection Coefficients

of Crib-Style Breakwaters .

With the assumption of normally incident waves the problem to be

considered is illustrated in Figure 1.

X =

/ //////// v////////////// /

Figure 1. Definition sketch.

The rectangular porous structure is located between x=0 and x=S-j

i.e., the width of the breakwater is I. With the assumption of rela-

tively long incident waves described by linear long wave theory, the

equations governing the motion outside the structure are:

, 3U
h 77—
o 8x

(continuity) (1)

and

3U_

8t
^ = (conservation of momentum), (2)

in which n is the free surface elevation relative to the Stillwater
level, h is the constant depth outside the structure, U is the
horizontal water particle velocity, g is the acceleration due to

16



gravity, and the bottom shear stress term introduced in the derivation
of equations (A-24) and (A-25) in Appendix A has been omitted.

For the flow within the porous structure, the linearized governing
equations are derived in Appendix A, equations (A-74) and (A-75), and
may in the present context be written as:

n ^ + h ^ = (continuity) (3)
)t o 3x

and

~^rr+g^+ f— U= (conservation of momentum) , (4)
n 5t '^ 3x n ^ -^

in which co is the radian frequency, 27r/T, of the periodic wave motion,
n is the porosity of the porous medium, U is the horizontal discharge
velocity, i.e., equivalent to the velocity variable used in equations
(1) and (2) , S is a factor expressing formally the effect of unsteady
motion (see App. A)

S = 1 + k:(1 -n), (5)

where k is an added mass coefficient. With < expected to be of the
order <_ k ^ 0.5, equation (5) shows that 1 ^ S < 1.5. The nondimen-
sional friction factor, f, arising from the linearization of the flow
resistance is related to the flow resistance, which more realistically
is given by a Dupuit-Forchheimer relationship through

f - = a + b|u| (6)

in which the hydraulic properties of the porous medium are expressed
by the coefficients a and B. The coefficient a expresses the laminar
flow resistance, which is linear in the velocity. The turbulent flow
resistance which is quadratic in the velocity, is expressed by the
coefficient 8. The friction factor is regarded as constant, i.e.,
independent of x and t, in the following.

With the equations being linear, complex variables may be used.
Thus, looking for a periodic solution of radian frequency, to, we may
take

n - Real {c(x)e^'^^} (7)

and

U = Real {u(x)e^"^} (8)



in which i = /^ and the amplitude functions ? and u are functions of x

only. These amplitude functions will generally be complex, i.e., consist

of a real and an imaginary part. The magnitude of the amplitude function,

|c| or |u|, expresses the maximum value, i.e., the amplitude, of this

variable. Only the real part of the complex solutions for n and U

constitutes the physical solutions.

Introducing equations (7) and (8) in equations (1) and (2) the

general solution for the motion outside the porous structure may be ob-

tained as discussed in Appendix A

-ik X ik X
o

r - a. e + a e
1 r

J— -ik X ik X

u=/—-fa.e -ae J
J/hi r

o

a < (9)

ik (x-Jll
-'

u = /r a^e

ik (x-£)
o

> X > £ (10)

in which a. is the amplitude of the incident wave, which without loss

in generality may be taken as real. The reflected and transmitted
complex wave amplitudes are a^. and a^, respectively. The magnitudes

a^|, express the values of the physicalof a-p and a^, i.e.,
|
a^,

|
and

wave amplitudes. The wave number, k =2Tr/L, is given by the familiar
long wave expression

(11)

The preceding expressions show that we expect an incident wave,
a., propagating in the positive x-direction to coexist with a reflected
wave, a^., propagating in the negative x-direction in front of the
structure, x ^ 0. Behind the structure, x >_ £, only a transmitted wave,
a , is expected to propagate in the positive x-direction.

The general solution for the flow within the structure is found
(App. A), by introducing equations (7) and (8) in equations (3) and (4).

The solution, which consists of a wave propagating in the positive



x-direction, of complex amplitude a , and a wave propagating in the

negative x-direction, of complex amplitude a_, is given by

-ikx ikfx-Ji)
C = a e + a e

'o v^^If *
(a e -a e ^ '

)

y < X < I (12)

with the complex wave number, k, given by

k = /S=^ k /s^n (13)

Equation (13) shows the wave number to be complex, i.e., to have a real

as well as an imaginary part. The solution of equation (13) should be

chosen such that the imaginary part is negative since this will lead to

a wave motion exhibiting an exponentially decreasing amplitude in the

direction of propagation as discussed in Appendix A.

The general solutions for the motions in the three regions given

by equations (9) , (10) , and (12) show the problem to involve four unknown
quantities. These unknowns are the complex wave amplitudes a,,, a^, a+ , and
a_ and they may be determined by matching surface elevations and veloci-
ties at the common boundaries of the various solutions. Thus, we obtain
at x=0 from equations (9) and (12) :

ik£
(14)

and
n , -ik£,

(a^ -a e )
+ —

and at x=£ from equations (10) and (12)

(15)

ikl
(16)

19



and

To solve this set of equations we introduce the shorthand notation

s = -JL-
.

(183

Multiplying equation (16) by e and adding and subtracting equation (17)

result in

1 + e ikJ?- n Q-^
a = —V- e a^ (lyj
+ 2e t

and

a = - 2^ a, ,
(20)— 2e t

which may be introduced in equation (12) to yield the velocity within

the structure

/g~ rl + c -ikix-i) l-e ik(x-ii)i .„,.
" = /h ^ ^— ^ ^ — ^ ^ •

^21)

o

Adding equations (14) and (15) and introducing a and a_ from
equations (19) and (20) yield, after some simple algebraic manipulations,
an expression for the complex amplitude of the transmitted wave

^^
(22)

I. ,, .2 ik£ ,, ,2 -ikfi,
1 (1+e) e -(l-e) e

Similarly an expression for the complex amplitude of the reflected
wave is obtained by subtracting equation (15) from equation (16) and
introducing equations (19) and (20)

a ,, 2, , ik2, -ikii.

JL = (l-e ) (e -e )

a. ,, ,2 ik£ ,, ,2 -ikJl ' '^^-^

1 (1+e) e -(l-e) e

20



These expressions may easily be shown to be identical to those

given by Kondo (1975) when it is realized that the factor y used by

Kondo is related to e through y = 1/e.

To investigate the general behavior of the solution for the trans-

mission and the reflection coefficient as given by equations (22) and

(23) it is seen from equation (18) that

n n//S
^24)

Vs^lf y'l-i(f/S)

and that the wave number, k, given by equation (13) may be expressed as

k - k /S^ = nk i = nk ^^UnnK
. (25)

n/^

Thus, it is seen that the general solutions for the transmission
coefficient

T = —

^

(26)

and the reflection coefficient

(27)

may be regarded as functions of the variables n//S, f/S, and nk i,

i.e., the general solution for R and T may be presented as a series of

graphs, each graph corresponding to a particular value of n/v^ and
giving R or T as functions of nk I and f/S. An example of this solution
is presented in Figures 2 and 3 which correspond to a value of n//S =

0.45.

As previously mentioned, a series of graphs is needed for different
values of n/-/S. In fact such a series of graphs was developed corre-
sponding to values of n/TS = 0.35, 0.40, 0.45, and 0.50. If it is

assumed that the values of n, nk i, and f are known, the graph to be
used would depend on the value chosen for the coefficient S given by

equation (5) . As discussed in conjunction with the introduction of the
parameter S, its actual value is poorly understood except that it is

expected to take on values in the interval 1 < S < 1.5. Now, if taking
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Figure 2. Transmission coefficient for crib-style breakwaters. S^ de-

fined by equation (28). For nk £ < 0.1 use equation (35).
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Figure 3. Reflection coefficient for crib-style breakwaters. S^ de-

fined by equation (28). For nk £ < 0.1 use equation (36).
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n = 0.45, nk £ = 0.2, 0.4, 0.6, and 0.8, and f = 5, one possible choice

of S is to take it equal to unity, i.e., using the graphs corresponding

to n//s = 0.45 with nk I and £/S = f to obtain values of R and T. An

extreme alternate choice would be to assume S = 1.67, i.e., using the

graphs prepared for n/v^ = 0.45/ A. 67 = 0.35 with the values of nk^i

and f/S = f/1.67 = 3.0. It was found this way that the estimates of R

and T varied at most by 0.01 with the above choices of S. This may be

taken as an indication of the insignificant importance of the value

assigned to the coefficient S.

Thus, it is concluded that the value assigned to the coefficient S

is of little consequence and that we may safely take S = 1.0. However,

this result may be utilized to simplify the presentation of results.

Thus_, rather than presenting a series of graphs for different values of

n//S, one set of graphs, for ejcample corresponding to n/Zs^ = 0.45,

suffices. The factor S^ is without physical significance and is deter-

mined by requiring that the value of n/v^^ = 0.45 for a given structure

for which n, the porosity, is known. Thus, if n is known the value of

S^ is obtained from

2

S = r
"

1 (28)^* ^0.45^ '

and Figures 2 and 3 may be used with nk I and f/S^ to obtain estimates

of R and T.

a. Simplified Solution for Structures of Small Width . For many

breakwaters the width, I, is of the same order of magnitude as the

depth of water, h^. Thus, for relatively long incident waves, k^^
and consequently k^Jl may be assumed to be small. Thus, with the

assumption of k^jj, << 1, the general formulas for the reflection and

transmission coefficients given in the previous section may be simplified

considerably.

The nature of the simplification is expressed by expanding the

exponentials in terms of their Taylor series, i.e.,

e^^^^ = 1 +_ ik£ + 0(k£)^ (29)

2
and adopting 0(k£) as the degree of accuracy of the simplified expres-

Introducing the expansion given by equation (29) in equation (22)

yields :
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2.. . /! ., .2.. _. ' '^^'^' =
^

2
i (1 + e) (l + ikJl) -(1-e) (l-ik£) 1 + e

k Ji ,

1 + i -4- (S-if + n^3

2e

+ OCk£)^ C30)

2n

in which equations (13) and (18) have been introduced.

Similarly, equation (23) may be simplified to read

i
o

(S-if-n ) , , ,^ 2-=^B_ o(k.)2 = -^:i|:^^.o(k.)2 . (31)
t , . o ,„ .J, 2. S-if+n -1

^i
—T-

1 + 1^5—(S-if+n ) k i
2n o

Finally, the simplified expression for the horizontal velocity
amplitude within the structure is obtained from equation (21) as

1 + ink (l-x)

^= FT-^ + O(kiL)^ . (32)

To obtain the simplified formulas for the transmission and reflec-
tion coefficients from equations (30) and (31) the absolute value is

obtained under the assumption that k£ and k i << 1. From equation (30)
it is seen that the transmission coefficient to the adopted degree of
accuracy is given by

I

I

'tT-^- kV^ 0(k£)2 . (33)

2n

Introducing

k if

A = ~r (34)
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the transmission coefficient is therefore given by

T = -i- + 0(k£)^ . (35]

In obtaining the reflection coefficient from equation (31) it is

seen that the real part of the denominator, S+n^, may be neglected as

being small relative to the imaginary part -i (f + 2n/kQJl) since

k i << 1. In the numerator, however, the term S-n" must be retained

since it is of the same order as f unless it is assumed that f >> 1.

Thus, the simplified solution for the reflection coefficient is obtained

from equation (31) as

i / f

which shows that R = X/(l+A) if f > 1. Thus, for f > 1, which is

usually the case, the transmission and the reflection coefficient are

independent of the value of the coefficient S. This supports the finding
discussed in Section II. 1 where it was concluded that the value assigned
to S was of minor importance.

For later use, the simplified expression for the horizontal velocity
within the structure is found from equation (32) to be

'^' ^ 0(k£)^ , (37)/— 1+A

a /^

i.e, the velocity within the structure is identical to the velocity
associated with the transmitted wave.

The simplified formulas derived here are limited to small values
of nk^l by virtue of the nature of the approximation. The equations
for T and R (eqs. 35 and 36) may be shown to be in good agreement with
the general solutions presented in Figures 2 and 3 for values of
nk £ < 0.2.

o

The simplified formulas for the transmission and reflection
coefficient may be derived from very simple considerations. Thus, if
an incident long wave of amplitude, a^, is considered normally incident
on a structure the maximum free surface elevation in front of the
structure may be taken as

k^l = ^l^R)
^i (38)
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with a .velocity

lu
I

= (1-R) a. /|^ . (39)

o

Behind the structure the maximum surface elevation is given by

kJ=Ta. (40)

with the horizontal velocity being

|uj = T a. /^ (41)

The above formulas disregard any phase difference between the re-
flected, incident, and transmitted waves and are therefore limited to
extremely narrow structures.

Disregarding storage within the structure the velocities, |u
|
and

|u I, must be equal which leads to

1 -R -T = . (42)

To obtain an additional equation it is realized that the resistance
to the flow through the structure is balancing the pressure force on the
structure. This leads, with the linearized flow resistance introduced
previously, to

f
n ^'"J = ga + R -T) a. , (43)

which for long waves, u = k i^gh and u. given by equation (41) lead to

k Zf

-^ 2T = 2XT = 1 + R -T , (44)

in which A, as given by equation (34), has been introduced. Solving
equations (42) and (44) for T and R gives

T = A_
1+A (45)

and

R = UX C46)
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thus showing that the preceding simple analysis has reproduced the

essential features of the simplified solutions for the transmission and

reflection coefficients.

b. Explicit Determination of the Linearized Friction Factor . The

general graphical solution for R and T (Figs. 2 and 3) and the simpli-

fied solutions (eqs. 35 and 36) require knowledge of the linearized

friction factor, f, to be of use. This friction factor which was

formally introduced by equation (6) may be determined by invoking

Lorentz' principle of equivalent work. This principle, whose use and

application are discussed in detail in Appendix A, is particularly
appropriate for use in the present context, since the flow resistance
within the structure contributes to the problem as a dissipator of

energy. Hence, invoking Lorentz' principle, which states that the

average rate of energy dissipation should be identical whether evaluated
using the true nonlinear resistance law or its linearized equivalent,

yields :

r ,-T

^ 1 f ,,, 4 f . 1^ ,,2
E, =J)^d^[^J^ pf^U dtj

1 „, rl r . ,,2 „|,,1„2,
„

I

d^ [^ \

p(aU" + B|U|r)dtj (47)

in which V- is the volume per unit length occupied by the porous structure,
T is the wave period, and E^ is the spatial and temporal average rate of
energy dissipation per unit volume.

The value of U to be used in equation (47) should correspond to the
general solution given by equation (21). However, keeping in mind the
approximate nature of Lorentz' principle as well as the uncertainties
involved in assessing the values of a and B, the simple solution, valid
only for nk^Jl < 0.2 (eq, 37) is used. Equation (37) shows |u| and hence

U, as given by equation (8) to be independent of location within the
porous structure. Since U is necessarily periodic, with period T, the
averaging process indicated by equation (47) is readily performed and
leads to the following relationship:

f ^ = a + B |- |u| . (48)n 3tt '
' ^ -^

With |u| given by equation (37) this is seen to be a quadratic
equation in f
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1 +
o , o

2n

which has the solution

Cso)

Thus, an explicit solution for the linearized friction factor in
terms of the breakwater geometry, the incident wave characteristics
and the hydraulic properties of the porous medium (a and 6), has been
obtained.

The problem of determining f and hence the reflection and trans-
mission coefficients of a rectangular crib-style breakwater has there-
fore been reduced to the problem of determining the appropriate values
of the constants a and 3 in the Dupuit-Forchheimer relationship for
flow resistance in a porous medium. Engelund (1953) suggested the
following empirical formulas based on a review of several investigations
involving porous media characterized as sands.

(51)

and

1-n ^
3 d

(52)

in which v is the kinematic viscosity of the pore fluid and d is a
characteristic diameter of the porous material.. These relationships
are essentially of the type also suggested by Bear, et al. (1968).
Engelund (1953) proposed the values of the constants ex and S to be

780 < a < 1,500 or more— o —

1.8 < B < 3.6 or more . (53)— o — ^ '

The constant a which is associated with a flow resistance linear
with velocity expresses a Darcy-type resistance, i.e., laminar, whereas
3 is associated with a turbulent resistance. Introducing equations
(51) and (52) in equation (48), this may be written:
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in which the "particle Reynolds number" R^ is given by

R - iiili.
"^d

" ^r ' C553

and the "critical Reynolds number" R is given by

OL.
377 ., .2

Q

R^ = |i Cl-n) n ^ . 0.17 ^ , C56)

as discussed in Appendix A. With a and 3 chosen to correspond to the

mean values of the ranges indicated in equation (53) , the value of the

critical Reynolds number is expected to be of the order 70. Thus, for

small values of Rj, i.e., R(i 1_ IOj the flow and the resistance are

purely laminar;for large values of R^^, as will be the case for most

prototype conditions, i.e., R, >_ 1,000, the flow will be turbulent in

nature.

Rather than using equation (50) directly with the empirical

formulas suggested by equations (51) and (52) it is illustrative to

take the relationship for f as given by equation (54) and treating R^,

depending upon the solution through its dependence on |u|, as a known
quantity. Introducing |u| from equation (37) leads to an implicit

expression for f.

^-^TI/^*(l^fe^^^^-lJ (57,do
which may also be interpreted as an implicit formula for the factor
X = k Jif/ (2n) . This formula clearly reveals the possible scale effects

associated with hydraulic modeling of porous structures to be an increase
in the value of f, since R^ would be lower in the model than in the

prototype if a Froude model criterion is used.

With the empirical formulas for the hydraulic properties of a

porous medium given, a completely explicit procedure for determining
the transmission and reflection characteristics of a rectangular
crib-style breakwater has been developed.
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3. Comparison with Experimental Results .

a. Empirical Formulas for Flow Resistance of a Porous Medium. The
procedure developed in Section 11.2 for the prediction of transmission
and reflection coefficients of porous breakwaters involves the use of
empirical relationships for the hydraulic properties of a porous medium.
Thus, only if these empirical relationships may be applied with confid-
ence can the procedure itself be regarded as accurate.

For steady flow the Dupuit-Forchheimer resistance law reads

- It = 7- (<^ + BU)U , (58)

in which H is the piezometric head.

In permeameter tests it is customary to measure the head loss, AH,
over a distance, Lp^, for various values of the discharge velocity U.

Rearranging equation (58) in a manner similar to that introduced in
Section II. 2 this may be written

H n d

in which R^ and R^, are given by equations (55) and (56), respectively
and 6 has been introduced according to equation (52). Realizing that
the porosity, n, of the porous material tested may vary it is convenient
to introduce a reference porosity, n , and to write equation (58) in
the form

. J ... 1-n , 1-n „ R„* gd AH , r. ,n .3 . r ,, 8 c. ,^„^
^f = ^2 L- f-r^^ ^JT^ = ^0 — 3 ^^ " 37 rT^

f^O^
U H r n d

r

*

From experiments the value of C£ may be evaluated and plotted
against Rj = Ud/v. The results obtained by Sollitt and Cross (1972,
Tables F-1 through F-6) are presented in this manner in Figure 4 with
the grain diameter, d, being chosen as the median diameter of the
gravel tested and taking n^ = 0.46 as the reference porosity. The data
exhibit a remarkably low degree of scatter and are well represented by
the relationship suggested by equation (59) with Pq = 2.7 and R^, = 170.
For comparison, the curve corresponding to g^ = 2.7 and R^, = 70, which
correspond to the mean values of the ranges suggested by Engelund's
(1953) analysis, equation (53) is shown. Although inferior to the curve
corresponding to R,, = 170, this curve provides a fair representation of
the data.
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An additional set of data is provided by Keulegan (1973, Table 20).

Again the reference porosity is taken as n^ = 0.46 and the diameter, d,

as the median diameter of the gravel tested. These data are plotted in

Figure 5 and exhibit considerably more scatter than that of Sollitt and
Cross (1972). The data are fairly well represented by the curve given

by equation (59) corresponding to Bg = 2.2 and R^, = 70 whereas the
curve corresponding to 6q = 2.7 gives values of Cf slightly on the
high side. It should be noted that the data used in Figure 5 are the

uncorrected data as obtained by Keulegan (1973). The scatter exhibited
in Figure 5 may therefore partly be attributed to the effect of shape
of the granular material.

All in all the comparison of the empirical formulas with the
experimental data is quite good when considering that the formulas
originally were derived from experiments with sand whereas here they
are compared with experiments performed with gravel, i.e., of diameters
an order of magnitude larger. Whether or not the same formulas may be
extended further to prototype scales (rubble) with complete confidence
is a question which remains to be answered. However, at present it

does seem that a value of 6 - 2.7 may be used as a reasonable first
o

approximation.

b. Comparison between Predicted and Observed Reflection and
Transmission Coefficients of Rectangular Breakwaters . The

empirical formulas for the hydraulic properties of a porous medium
were shown to be reasonably satisfactory in reproducing observed
characteristics of porous media in steady flow. The ultimate test of
these formulas is, however, their use as part of the entire procedure
developed in Section II. 2 for the prediction of transmission and
reflection coefficients of crib-style breakwaters. Two sets of experi-
mental data on reflection and transmission characteristics of porous
rectangular breakwaters are available for this purpose (Wilson, 1971;
Keulegan, 1973). '^

The experiments by Wilson (1971, Tables 5,6, and 7) were performed
on three different scales, and for the present purpose only, the experi-

mental data corresponding to relatively long waves, k^hg^^ 0.5, are
utilized. Wilson's experimental data for R and T are plotted in

Figures 6,7, and 8 as functions of the incident wave steepness, Hj^/L.

The predicted variation of R and T with H^/L following the procedure
developed in Section 1 1. 2 is shown based on the assumption of

Bq = 2.7, R(, - 170, and R^ = 70. In view of the results presented in

Figure 4 it is hardly surprising that the experimental data are
represented better by the curves corresponding to R^, = 170 than by the
choice Rj. = 70. The predicted values of the transmission coefficient,
T, are seen to be in excellent agreement with experimental values
whereas the agreement between reflection coefficients leaves something
to be desired.
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Figure 6: Comparison between Predicted and Experimental Transmission, T,
and Reflection Coefficients, R. Wilson's (1973, Table 5) data
with k h = 0.482, d = 0.031 ft, £ = h = 0.432 ft; : Reflec-
tion Coefficient; • : Transmission CoePficient. Predicted value

: 6„ = 2.7, R = 170; : B = 2.7, R = 70.
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The experimental values of the reflection coefficient were obtained

from Healy's formula (Eagleson and Dean, 1966}

IT - H
_ mag " min (-61)

^ " H + H .
'

max mm

where H is the maximum wave height (measured at the antinode) and

H . is^the minimum wave height (measured at the node) of the wave

envelope in the reflected wave region. Equation (61) shows that H^j^^

is considerably smaller than Hj^^ when the reflection coefficient

approaches unity. If it is assumed that Hj^a.x ^^ correctly determined

but the value obtained for the minimum wave height incorporates an

error, A, equation (61) may be written

H - H .
-^ H - H .^

max mm max mm
H + H . , A
max mm 1 +

(62)

H + H .

max mm

in which Hj^^^ and* H^^j^ are assumed to be the true values. The error,

A, in the experimental determination of iiff^in ^^^^ generally be positive

due to nonlinear effects. Equation (62) therefore shows that the

experimentally determined reflection coefficient will be lower than the

true reflection coefficient due to the measurement error, A. This

problem is addressed in detail in Section III. 3; here it is just pointed

out to illustrate that one must pay special attention to minimizing the

experimental error in the determination of Hj^j^j^. No particular
attention was paid to this problem by Wilson (1971) who applied
equation (61) directly. It is clear from equation (62) that with the

error A increasing with increasing nonlinearity of the incident waves,

i.e., with increasing Hj^/L, a trend of determining an experimental
reflection coefficient which decreases with incident wave height results,

This may partly explain the behavior of the experimentally determined
reflection coefficients in Figures 6,7, and 8 as being nearly constant

with H-j^/L whereas the predicted reflection coefficients show R to

increase with increasing values of Hj^/L.

Since Wilson's (1971) experiments essentially correspond to scale

models of the same structure, performed for different length scales,

these experiments give an excellent exposition of the scale effects
associated with hydraulic-model tests of porous structures. It is seen

from the generally good agreement between predicted and observed
transmission coefficients that the present analytical procedure may be

used with confidence in assessing the influence of scale effects on

experiments of this type. The Froude model criterion applies only so

long as the flow resistance is predominantly turbulent, i.e., f is
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given by equation (57) with Rc/R^j^*^ 1- The scale effect is accounted
for in the present analysis by the inclusion of the effect of the ratio
R(,/Rj which in a Froude model will be greater in the model than in the

prototype.

An additional set of experiments is reported by Keulegan (1973).

These experiments were performed for rectangular breakwaters of different
materials and widths £ = 0.253 0.5, and 1 foot. As an example the
experimental data corresponding to relatively long waves, hg/L = 0.1,

as reported by Keulegan (1973, Table 12) are plotted in Figures 9, 10,

and 11 versus Hj^/L. For comparison the predictions afforded by the

procedure developed in Section II. 2 are also shown. The choice of
parameters 6q = 2.2, R,, - 70 yields a slightly better representation
of the experimental data as could be expected from the comparison made
in Figure 5. However, the predictions obtained from Sq = 2.7, R^, = 70

are fairly good. The discrepancy between observed and predicted
reflection coefficients is of the type noted in conjunction with the
comparison with Wilson's (1971) data and may again partially be
attributed to experimental errors in the determination of R. Keulegan 's

(1973) and Wilson's data on the reflection coefficient show the tendency
of decreasing slightly with increasing height of the incident waves.
However, it is noted that the experimental reflection coefficient (Fig. 9)

increases slightly with Hj^/L. Since the' reflection coefficient for this
set of experiments is relatively small, R - 0.3, the error in the
experimental determination of H^i^i "^^y ^® expected to be rather small,
thus essentially substantiating the previous hypothesis for the nature
of the discrepancy.

As a final comparison between the experimental data presented by
Keulegan (1973) and the analytical procedure developed in this study.
Figures 12 and 13 show a comparison between observed and predicted
transmission and reflection coefficients for all the experiments
reported by Keulegan corresponding to hQ/L ==0.1 and Hj^/hQ = 0.1. With
the generally good agreement between the experimental and predicted
transmission coefficients exhibited in Figures 9,10, and 11, the
comparison given in Figure 12 shows the general applicability of the
present procedure to predict transmission coefficients. The comparison
of reflection coefficients given in Figure 13 is quite encouraging.
However, it should be recalled that the predicted trend of increasing R

with Hj/L was not observed in the experimental data.

4. Discussion and Application of Results.

A theoretical solution for the transmission and reflection
characteristics of a homogeneous breakwater of rectangular cross section
was obtained. The main assumptions were that the incident waves should
be normal to the breakwater and that the motion should be adequately
described by linear long wave theory. The general solution for the
transmission coefficient, T, and the reflection coefficient, R, is

presented in graphical form in Figures 2 and 3. For small values of
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Figure 8; Comparison between Predicted and Experimental Transmission, T,

and Reflection Coefficients, R. Wilson's (1973, Table 7) data
with k h = 0.503, d = 0.125 ft, l = h = 1.81 ft; : Reflection
Coefficient; • : Transmission Coefficient. Predicted values;

; e = 2.7, R - 170; : i = 2.7, R = 70.

Figure 9: Comparison between Predicted and Experimental Transmission, T,
and Reflection Coefficients, R. Keulegan's (1973, Table 12)
data for h /L = 0.1, d = 0.078 ft, h =1 ft, t = 0.25 ft; :

Reflection Coefficient; • : Transmission Coefficient. Predicted
values; : £^ = 2.2, R =70;

: .; = 2.7, R = 70.
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Figure 10: Comparison between Predicted and Experimental Transmission, T,
and Reflection Coefficients, R. Keulegan's (1973, Table 12)
data with h /L = 0.1, d = 0.078 ft., h = 1 ft, d = 0.5 ft; :

Reflection Coefficient; • : Transmission Coefficient. Predicted
values; : B = 2.2, R = 70; : 3 = 2.7, R = 70.

Figure 11: Comparison between Predicted and Experimental Transmission, T,
and Reflection Coefficients, R. Keulegan's (1973, Table 12) data
with h^/L = 0.1, d = 0.078 ft, h^ = 1 f t , £ = 1.0 ft; : Reflec-
tion Coefficient; • : Transmission Coefficient. Predicted values;

: B^ = 2.2, R = 70; : 6 = 2.7, R =70.
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the width of the breakwater, I, relative to the incident wavelength, L,

a set of simple formulas was derived for T and R, equations (35) and

(36].

From equations (35) and (36) as well as from Figures 2 and 3 it is

seen that the transmission coefficient increases and the reflection
coefficient decreases with decreasing values of nkoJ?-. This is in agree-
ment with expectations since low values of k^Ji indicate a long wave
relative to the width of the structure thus essentially making the
structure transparent to the incident waves. An increase in frictional
effects, which are accounted for by the linearized friction factor, f,

is seen to cause an increase in the reflection coefficient and a

decrease in the transmission coefficient. In this respect it is seen
from equation (57), which is the explicit solution for the linearized
friction factor, f, that the frictional effects increase with increasing
amplitude of the incident waves, thus reflecting the nonlinear nature
of the flow resistance of the porous structure.

The procedure developed is, through the adoption of empirical
relationships for the hydraulic properties of the porous medium,
entirely explicit. The required information is the incident wave
characteristics (a^^ and L) , the breakwater geometry (£ and \\q) , and the

characteristics of the porous material Cstone size, d, and porosity, n)

.

The ability of the procedure to predict experimentally observed trans-
mission and reflection characteristics of crib-style breakwaters was
demonstrated. It was found that the procedure yields excellent predic-
tions of the transmission coefficient whereas some discrepancy between
observed and predicted reflection coefficients was noted. This
discrepancy may be partly attributed to experimental error in the

determination of the reflection coefficient.

Numerical Example . The following numerical example is included
to illustrate the application of the procedure developed for the
prediction of transmission and reflection coefficients of a porous
rectangular breakwater. The information which is assumed available is

listed in Table 1. To illustrate the assessment of scale effects the

problem is considered both for a prototype and for a Froude model with
length scale 1 to 25.

As discussed in Section I the procedure developed in this Section
of the report accounts for the partition of incident wave energy among
reflected, transmitted, and internally dissipated energy. Thus, the

present Section forms part of the ultimate procedure for the prediction
of reflection and transmission characteristics of trapezoidal, multi-
layered breakwaters. The energy dissipation taking place on the seaward
slope of a trapezoidal breakwater is discussed in Section III which
also includes a numerical example. The incident wave characteristics
listed in Table 1 correspond to the incident wave assumed in the
numerical example presented in Section III, Table 4, after subtracting
the amount of energy dissipated on the seaward slope of a trapezoidal
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Table 1. Information used in numerical sample calculations.

Prototype

Froude Model

length scale 1 :25

Incident Wave Amplitude
a in feet

1.45 0.058

Wave Period
T in seconds 12.5 2.5

Water Depth
h in feet
Q

29.2 1.167

Incident Wavelength
L in feet

366.0 14.56

Breakwater Width
I in feet 63.0 2.52

Stone Diameter
d= 1/2 (d + d . ) in feet

max ram-^
1.56 0.0625

Porosity
n 0.435 0.435

L may be obtained from linear wave theory using h and T.

2 °
The porosity is assumed. Sensitivity of results to this assumption
should be investigated.

breakwater. The present numerical example together with the numerical
example presented in Section III therefore illustrate the detailed
calculations involved in the procedure for the prediction of reflection
and transmission coefficients of trapezoidal, multilayered breakwaters
which is developed in Section IV. The model breakwater characteristics
listed in Table 1 correspond to the characteristics of the crib-style
breakwater which is hydraulically equivalent to the breakwater config-
uration tested by Sollitt and Cross (1972). The determination of the
hydraulically equivalent breakwater is discussed in detail in Section
IV. 3.
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Tq use the general solution presented graphically in Figures 2 and
3 the value of S^ is obtained from equation C28)

The value of the parameter nko^^ may also be determined directly
from the information contained in Table 1

nk £ - C0.435)(2tt) ^= (0.435) C2Tr) ||^ = 0.47 , [64)

which is valid for the prototype as well as for the Froude model. It

is noticed that the value of nkQJi is sufficiently large for Figures 2

and 3 to be used. If nkgii had been below 0.1 the simplified formulas,
equations (35) and (36), should be used with S = 1.0.

The remaining task is the determination of the friction factor, f,

from equation (57) . For the prototype conditions it is expected that
turbulent flow resistance dominates so that the factor Rc/Rj may be
neglected in equation (57). Therefore the remaining expression becomes:

^ = FT V 1 ^ ^ Mr- ^J
• (65)

In this expression the value of 3 is taken according to equation
(52) with 6 = 2.7, a reasonable estimate as discussed in Section II. 3.

Thus,

/ 16B , a^
„

-P ^
r / 1

1-n I £ TT
^ = FT V 1 "-3^ TTd- h-- ^J

o / n

0.435 . /~ 16 ^ ^ 0.565 1.45 63 _

2v 63/366 V -^ ^ 3^ •

,q ^^^ 3 1.56 29.2 ^^

0.4 fv^I + 63 -1] = 2.8 . (66)

This value of f is obtained for the prototype conditions assuming
Rd » Re where Rj is the particle Reynolds number defined by equation
(55) with |u| given by equation (37). To check this assumption the
value of X is obtained from equations (34) and (66) as
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A = ^o'^^ (2tt 63/366)2.8 _ _ .

-iT^ 0787 -^-^ '
(67)

and therefore from equation (37)

o

This gives a value of the particle Reynolds number

(68)

10
-5

(69)

-5 2
where the kinematic viscosity has been assumed given by v = 10 ft /sec.

This value is clearly much greater than the value of the critical

Reynolds number, R^, which is of the order 100. Thus, the value of f

determined by equation (66) holds for the prototype condition and the

necessary parameters for use in conjunction with Figures 2 and 3 may

be determined for the prototype

nk Ji = 0.47
o

S^ = 0.935

f/S. = 2.8/0.935 = 3.0

> Prototype (70)

and Figures 2 and 3 yield for the prototype:

Transmission coefficient = T = 0.22

Reflection coefficient = R = 0.71 . (71)

For the Froude model one may as a first approximation adopt the

assumption that Rj >> R^, in which case the estimate of f obtained for

the prototype still holds, i.e., f = 2.8 is a first estimate. To

evaluate the value of the particle Reynolds number, R^^, the procedure

is as previously outlined and from the well-known scaling of Reynolds

numbers in a Froude model,

(Reynolds number scale) = (length scale)
3/2

(72)
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it follows from the length scale of 1:25 and from equation (69) that

3/2

^dm=^^-^ flO'^ ^25^
-'^'' ^''^

This is not a value much greater than R^ and it is therefore necessary
to incorporate the Reynolds number effect in equation (57) when evalu-
ating f. For this purpose it is assumed that a simple test has shown
that

R =170 ; B =2.7 , (74)CO -^

for the material used in the model.

Taking R, as given by equation (.73) the expression for f (eq. 57)
reads:

£ n
r / 1 16e ,, Cs Z ,-.

^ ^ FT V 1 " -37 ^1 " rT^ ^i ir - 1^

o do
0.4 [ /l + (1 + ig-)63 -1] = 3.4 , (75)

in which the analogy with the manipulations performed in equation (66)
has been utilized. From this result an updated value of A is obtained
since X = f/0.8 = 4.25. This value of A is different from the value.
A = 3.5, used in determining the particle Reynolds number Rj used in
the evaluation of equation (75). With this new value of A, equations
(37) and (55) may be used to obtain a new value of Rj. This in turn
may be introduced in equation (75) to get a new value of f and the
procedure may be continued until convergence is achieved. It may be
shown that

UA
^d,2 =

•^d.l ITa; ' f76)

in which R^ 2 is the new estimate of R^^, whereas Rj • is the previous
estimate ana A and A^ are the old and new estimates of A, respectively.

This procedure is generally rapidly converging. Thus, the next
iteration outlined above yields f = 3.46 which is reasonably close to
the initial estimate obtained in equation (75).

For the Froude scale model the parameters therefore become
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nk £ = 0.47
o

S^ = 0.935

f/S. = 3.46/0.935 = 3.7

Model (77)

and Figures 2 and 3 yield:

Transmission coefficient = T = 0.19

Reflection coefficient = R = 0.73 (783

By comparing the predicted results for the model (eq. 78}, and
for the prototype (eq. 71), it is seen that the scale effect has

increased the reflection coefficient, whereas the transmission coeffic-
ient is decreased. For the present example the scale effects are not
pronounced, but in other situations it may be a very important factor
to consider (Figs. 6, 1 , and 8)
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III. REFLECTION COEFFICIENTS OF ROUGH IMPERMEABLE SLOPES

1 . Preliminary Remarks .

In the previous section of this report an analytical solution for
the idealized problem of wave transmission through and reflection from
rectangular breakwaters was obtained. Since most breakwaters are of
trapezoidal, rather than rectangular cross section, a considerable amount
of energy may be dissipated on the seaward slope of the breakwater.
This external dissipation of energy is not accounted for in the analysis
of porous crib-style breakwaters. To account for the external dissipation
of energy on the seaward slope of a trapezoidal breakwater the associated
problem of energy dissipation on a rough impermeable slope is considered
both theoretically and experimentally.

A theoretical analysis of this problem is based on the following
assumptions

:

(a) Relatively long normally incident waves which may be considered
to be adequately described by linear long wave theory.

(b) Energy dissipation on the rough impermeable slope may be
represented as the energy dissipation due to bottom frictional
effects

.

The first assumption is identical to the assumption made in
Section II of this report. The second assumption presumes that the
effect of energy dissipation due to wave breaking is minor. This may
seem to be a restrictive assumption. When realizing that the seaward
slopes of breakwaters are generally steep, this assumption is quite
reasonable. At any rate, the main purpose of the theoretical analysis
is to produce a rational framework within which the experimental results
for reflection coefficients of rough impermeable slopes may be
analyzed.

The essential features of the mathematical manipulations and the
derivation of the governing equations are presented in Appendix A to
enable the treatment to be relatively brief and to the point. The
frictional effects on the rough slope are accounted for by introducing
a term relating the bottom shear stress to the square of the horizontal
orbital velocity through the use of a wave friction factor, f^,
analogous to that introduced by Jonsson (1966). The bottom shear stress
is linearized and a theoretical solution for the reflection coefficient
of rough impermeable slopes is obtained in terms of a linearized slope
friction factor. By using Lorentz' principle of equivalent work an
implicit solution for the reflection coefficient of rough impermeable
slopes is obtained in terms of incident wave characteristics, slope
geometry, and the wave friction factor, f , which expresses the effect
of slope roughness.
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An extensive experimental investigation is performed to establish

an empirical relationship for the wave friction factor. The experimental

investigation utilizes measured reflection coefficients of rough

impermeable slopes in conjunction with the theoretical results to obtain

values of the wave friction factor. The experimental investigation
shows the need for a method for obtaining accurate estimates of reflection

coefficients from experimental data. Such a method is developed and the

end product of the experimental investigation is empirical relationships
for the wave friction factor. The experiments are performed with slope

roughnesses modeled by gravel and are therefore applicable only when the

slope roughness elements consist of natural stones. Separate experimental
investigations should be carried out to establish empirical relationships
for f^^, corresponding to other surface roughness elements, e.g., concrete
armor units.

The result of the combined use of the empirical relationship for f

and the theoretical developments is a "semiempirical" procedure for
estimating the reflection coefficient and hence the energy dissipation
of rough slopes. The procedure requires knowledge of the incident wave
characteristics (amplitude and wavelength) and the slope characteristics
(slope angle and stone size). The procedure was tested against a

separate set of experiments and yielded quite accurate results.

2. Theoretical Solution for the Reflection Coefficient of Rough
Impermeable Slopes .

The problem to be considered is illustrated in Figure 14.

Figure 14. Definition sketch.

With the assumption of relatively long incident waves the governing
equations for arbitrary bottom topography are derived in Appendix A,
equations (A-20) and (A-21). The linearized forms of these equations
are given by equations (A-24) and (A-25)
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W ' 37 (^^^ - (79)

and

H*gg.f^„U=0
, (80)

in which r\ is the surface elevation relative to the Stillwater level,
U is the horizontal velocity component, h is the local depth, g is the
acceleration due to gravity, oj is the radian frequency, oj = 2tt/T, of
the incident waves and f, is a linearized friction factor defined by
equation (A-23)

if |U|
^ 2 w' '

,V = h
(^^^

in which f^ is a wave friction factor relating bottom shear stress,
T, , fluid density p, and the velocity, i.e.,

T, = i pf lulu . (82)
b 2 w' '

The linearized equations (eqs. 79 and 80), are solved by assuming
a periodic solution of radian frequency, to, and introducing complex
variables defined by

n = Real{?(x)e^'^'^} (83)

and

U = Real{u(x)e^'^''^} , (84)

in which the amplitude functions ? and u are functions of x only,
i =/^, and only the real part of the complex solution constitutes the

physical solution.

In the constant depth region, h = h , in front of the slope, bottom
friction is neglected (i . e. , f^^ = f^j = for x > i^) and the general
solution reduces to the solution given in Section II. 2 for x < 0. With
the change of the orientation of the x-axis (positive away from the

slope as seen from Figure 14) the general solution for x > I is
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ik X -ik X

5 = a.e + a e
X > i— s

(85)

i— ik X -ik X

'f- (a.e -a e )

where a^ is the amplitude of the incident wave, which without loss o£

generality may be taken to be real, and a^. is the complex amplitude of

the reflected wave. The wave number, k^ = 2it/L, where L is the_ wave-

length of the incident wave, is given by

(863

w.

On the rough impermeable slope, <_x <_ i^, the effect of bottom

friction is retained and equation (80) may be written

8?

ia)(l-if ) 8x '

< X < (87)

when equations (83) and (84) are introduced.

Multiplying equation (87) by h to obtain an expression for 9(uh)/Sx

and introducing this in equation (79) yield the governing equation

^^^W
^ a-i%)

C = < X < £— — s
(88)

With the depth varying linearly on the slope, i.e..

h = X tan^ < X < a— — s
(89)

equation (88) is seen to be a special form of the Bessel Equation

(Hildebrand, 1965) with the solution

C = A J (2
t

(l-if^)x

g tanB
< X < £ (90)
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in which J is the Bessel function of the first kind of order zero. The
general solution includes also the Bessel function of the second kind,
Y . However, this solution blows up at the origin, x = 0, and for the

solution to remain finite at x = this part of the general solution is

omitted. For x ^ 0, Jq approaches unity so that the arbitrary constant
A in equation (90) is the complex vertical amplitude of the wave motion
at the intersection of the Stillwater level and the slope, i.e., |a|

may be interpreted as a measure of the runup on the slope. It should
be realized that the linearized solution, as discussed in Appendix A,

is based on the assumption that |ri,| << h. Thus, since h = at x =

the solution given by equation (90) cannot be considered valid near
x = 0. However, Meyer and Taylor (1972) have shown that a linear
solution gives essentially the same value of the runup as does the more
realistic solution based on the nonlinear shallow-water wave equations.
Thus, some physical significance may be attached to the magnitude of A,

|A|, as being an approximate value of the runup on the slope.

With ? given by equation (90) the horizontal velocity is evaluated
from equation (87)

CO (1-if, )x

,, .r: ,^ ,—^ J, (2 7 —;:

—

^— ); < X < I , (91)
(1-if, )x tanB IV g tan6 — — s

in which J is the Bessel function of the first kind of order one.

With the general solution given by equations (85), (90), and (91)

the complex amplitude of the reflected wave, aj,j and the complex
runup amplitude, A, are determined by matching the solutions for c and
u at their common boundary, x = Jl . Thus, at x = Jl

a. e

ik £ -ik I
°^ + ae °^ = AJ(2kJ2, /T^IfT) (92)

i r o s b

and

ik £ ik £ .

°^-ae °^ = A —

i

J, (2k I /1-if^) (93)
r n r-j— 1 ^ O S b-' ^ '

b

in which h = £ tang and equation (86) have been introduced.OSS ^

These equations are readily solved to give the complex amplitude
of the reflected wave.



^ J C2k £ /T^ifT) + ^— J, (2k ii, A-if, )0^ O S b r-i r-j— 1^ o s b
/ 1-lf,

b

and the complex runup amplitude

ik i

_X e ° ^
. (95)

2a.
^ J (2k £ /l-i£, ) + i— J, (2k a /1-if, )o^ o s b-^ n—rf- 1 s h-'

b

It can be seen from equation (94) that [a^,], which is the physical
amplitude of the reflected wave, is equal, to a^ for f-^ = 0. Since
f|2 = expresses the condition that the energy dissipation on the slope
is zero, this is to be expected.

Equations (94) and (95) show that the important parameters in

determining the reflected wave amplitude and the runup amplitude are
the length of the slope relative to the length of the incident waves
in front of the slope, £.3/1, and the friction factor, f^, arising from
the linearization of the bottom frict ion t erm. Since the linearized
friction factor appears in the form vlTTf^ it is expedient to introduce
the friction angle 4) defined by

tan2(i) = f^ ; <_2<^ <_j , (96)

/rif^ = (1 + tan^2*)^/'^ e"^* . (97)

In terms of the relative slope length, l^/L, and the friction angle,
(\> , the reflection coefficient, R = |a |/a., may be determined from
equation (94) . This solution is presented in graphical form in
Figure 15.

Similarly the nondimensional runup amplitude.

2a. (98)
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is obtained from equation (95) and is presented in graphical form in

Figure 16.

The solutions for R and R^ were obtained through the use of complex

computer programs for Bessel functions with complex arguments which are
part of the Massachusetts Institute of Technology (MIT) Information
Processing Center's IBM System 370 computer library routines.

With the solution for R as presented graphically in Figure 15 it

is seen that knowledge oi^ilg/L and
(f)

enables one to determine the value
of R or conversely, if R and l^/L were known Figure 15 may be used to
obtain the corresponding value of .

a. Determination of the Friction Angle, j) . The value of the
linearized friction factor, f^, or the friction angle, <j) , was considered
constant (i.e., independent of jc and t) in the analysis presented in the
preceding section. This friction factor was introduced through
equation (81) and corresponds to a linearized bottom shear stress as

given by equation (82)

T^ = pfj^whU = pwhU tan2(}) . (99)

With the rate of energy dissipation per unit area of the slope
given by Eq = t^^U, as discussed in Appendix A, the average rate of
energy dissipation per unit area of the slope is given by

s -' s -^0

in which U is the real part of the solution given by equation (84) with
u given by equation (91). Since U is necessarily periodic the time
averaging in equation (100) is readily performed so that

= 1 ^^"^s f ^s 2
Ej^ = J poj tan24) ——^ ^ ^ |u| dx . (101)

From equation (91) it is seen that

J, (2k J, /1-i tan2d) y^'^^)

u = -iA ^ °
^ -1 1

/1-i tan2<J>/-^ y^/2

(102)
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in which

y = 7- (103)

Introducing equation (86) this may be written

U = A C0£ :;

' '
'

' s h

1/2
Jj(2Vy'^^)

f y
1/2

(104)

in which

"V = k a A-i tan2(|)OS (105)

Inserting equation (104) in equation (101) the average rate of
energy dissipation per unit surface area of the rough slope may be
written

:

2

^n " h P-^9 ^ ^c tan3 y
^ h " ^ ^0

1/2
J^(24'y'/^)

Ty
1/2

dy} tan2(|) . (106)

If the average rate of energy dissipation is evaluated using the
nonlinear expression for the bottom shear stress (eq. 82) one obtains

, COsB rl
F 1 -c

s s
E^ = TT pf —.
D 2 w £ cos

T
'^"~ d |u|u2 dt} ,

s ^0
(107)

where U again is periodic and given by equation (84) with u given by
equation (91). Performing the time averaging and introducing |u| as
given by equation (104) the average rate of energy dissipation per unit
area pf the slope becomes

F - 2 . IaI^ 3„ 3
^^

D 5-n w , 3 s
I ^

h '

J^(2fy^/2)|
^

'i'y
1/2

dy (108)

Using Lorentz' principle of equivalent work by equating equations
(106) and (108) results in the following expression for the friction
angle (j)

:
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tan2c = f M
w h tang

o s

(109)

in which F is a slope friction constant given by

1 J^{2^Y^^^)\ ^

S 3t7

>? y
172

1

y

1/2

•^ y
1/2

dy

(110)

dy

With "V given by equation (105) it is seen that the slope friction
constant, as given by equation (110) is a function of the relative slope
length, i^g/L, and of the friction angle, <}) . The evaluation of the

integrals and hence F = F (£ /L, (()) is performed numerically using the

IBM System 370 computer library routines previously mentioned and F is

presented in graphical form in Figure 17.

b. Methodology for the Determination of the Reflection Coefficient
of Rough Slopes . It is clear from Figures 16 and 17 that

equation (109) is an implicit relationship for the friction angle, i), since

|a| as well as Fg are functions of (j) . If it is assumed that the wave
friction factor, f^^, in equation (109) is known for given incident wave

(aj^, L, hg) and slope (£3) characteristics, equation (109) may be solved
in an iterative manner. For an assumed value of <^ and knowing H^/L,

Figures 16 and 17 may be used to obtain values of |a| = R^ 2aj^ and F3.

With these values introduced in equation (109) a new value of ^ is

obtained and the procedure is continued until convergence is achieved.

Once the value of the friction angle is determined, the reflection
coefficient, R, is readily obtained from Figure 15.

The preceding methodology for obtaining the reflection coefficient
of rough slopes is straightforward. However, it does rest on one very
important assumption--that the value of the wave friction factor, f ,

is known. Although similar to Jonsson's (1966) wave friction factor
his expressions for f^^ are not expected to hold in the present context
which justifies asking: What has been gained by the theoretical
development presented in the previous sections?

To answer this question imagine that the problem had been approached
on a purely empirical basis. Then, the effects of slope geometry and

incident wave characterisitcs in addition to the slope roughness would
have had to have been considered. The present theoretical development
has circumvented such an extensive experimental investigation by

establishing an analytical model, which essentially accounts for the
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effects of slope geometry and incident wave characteristics leaving

the burden of expressing the influence of slope roughness on the wave

friction factor, f^^. This considerable reduction in experimental effort

is the reason for the theoretical development. Thus, the theoretical

analysis has identified the fundamental unknown parameter as the wave
friction factor, f^. For the method to be applicable an empirical
relationship for f^^ must be established and here the physical interpre-

tation of f as a wave friction factor may be used as a guide.

For fully rough turbulent flow conditions, Jonsson (1966) found for

waves over a rough boundary that his wave friction factor is a function
of the boundary roughness, d, relative to the excursion amplitude, A^,

of the orbital particle motions above the bed, i.e.,

W W A,

For fully developed steady flow over a rough boundary, the

characteristic length scale is the water depth and the friction factor
corresponding to fully rough turbulent flow conditions is a function
of the boundary roughness, d, relative to the depth of flow,

f = f 4) • (112)
w w ^h^

In the present context it is expected that the flow is a mixture
of a boundary layer-type flow (eq. Ill) and a fully developed flow
(eq. 112), and it may therefore be expected that the empirical formula
for the wave friction factor, f , in equation (110) is of the form:

f = f (^ , ^) . (113)
w w ^A, ' h-^

b

As a representative value of the excursion amplitude. A, , the

value obtained from the theoretical solution (eq. 91) evaluated at

X = is taken, i.e.,

s

and h = h,-, is taken as a representative value of the depth. Thus, it

is anticipated that an empirical relationship

d tang ,

f = f (—n^T-^ , J-) , (115)
w w ^ A ' h -^ ' ^ ^

' ' o

for the wave friction factor exists. To determine this empirical rela-
tionship is the purpose of the experimental investigation described in

Section III. 3.
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3. Experimental Investigation .

The theoretical analysis of the reflection coefficient of rough

impermeable slopes described in Section III. 2 suggests a rather simple^

experimental procedure for the determination of the value of f^^. Imagine

that an experiment is performed in which the reflection coefficient, R,

is determined for given slope (d and £5) ^"<^ incident wave characteristics

(a^ and L) . With l^/L and R known. Figure 15 may be used to obtain the

the corresponding value of cf.. |a| = R^ la.^ and Fg may then be obtained

from Figures 16 and 17 and equation (109) written in the form:

h

f = tan3 TTT F- tan2<J) , (116)
w s |A| F^

may be used to obtain the value of f .

Performing a series of experiments for various slope and incident

wave characteristics and analyzing the results as outlined above will

produce a number of values of f^^ from which an empirical relationship

of the type suggested by equation (115) may be established.

It should be pointed out that this procedure for the analysis of

experimental data relies heavily on the theoretical development
presented in Section III. 2. The resulting empirical relationship for

f^^ therefore incorporates not only the true physical dependency of f^^

on the relative roughness, but reflects also inadequacies of the

theoretical development. This is important to keep in mind, since it

means that the resulting relationship for f^^ becomes an integral part

of the entire procedure for the determination of reflection coefficients
of rough impermeable slopes.

From the preceding the aim of the experimental investigation is to

determine accurately the reflection coefficient of rough impermeable
slopes for a variety of slope and incident wave characteristics.

a. Experimental Setup and Procedures . The experiments were
performed in a wave flume at the Ralph M. Parsons Laboratory at MIT.

This flume is glass walled and is 80 feet (24.4 meters) long, 15 inches
(0.38 meter) wide, and the constant water depth in front of the slope

was for the major part of the experiments kept at h =1 foot (0.305

meter). A piston-type wavemaker capable of producing periodic waves
of periods within the range of 0.6 second < T < 2.2 seconds is

located at one end of the flume. Experiments were performed for three

wave periods T = 2.0, 1.8, and 1.6 seconds which with h = 1 foot

correspond to depth to length ratios of the incident waves h /L=0.092,

0.105, and 0.12, respectively.

A variable slope of rigid construction was installed approximately
60 feet (18 meters) from the generator. Care was taken to completely
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seal the gaps between the variable slope, the glass-side walls, and
bottom for each slope angle tested to eliminate the effect of leakage
around the slope and ensure that the slope was truly impermeable. To
develop various slope roughnesses plywood boards with glued-on roughness
elements, gravel of diameter d = 0.5, 1, 1.5, and 2 inches (1.25, 2.5,
3.8, and 5 centimeters) were attached to the slope. In this manner
experiments for various slope roughnesses were readily performed for a

given value of the slope angle, tan3s- Photos of the various roughness
boards are shown in Figure 18.

Each experiment for a given value of T, d, and tang^ was performed
by running the wavemaker continuously. After approximately 2 minutes,
a quasi-steady condition was established in which the wave motion at any
point along the flume was periodic with period T equal to that of the
wavemaker. When this quasi-steady state was established the free
surface variation with time was recorded at 4-inch [10 centimeters)
intervals along the flume over a distance of approximately 10 feet
(3 meters) of the constant depth region of the flume. The free surface
variation was measured by a parallel wire-resistance wave gage and was
recorded on a two-channel recorder (Sanborn) . The slope and the
instrumentation are shown in Figure 19. From the measurements the
incident wave height and the reflection coefficient are determined as
discussed in Section 3.b. This procedure was repeated for four values
of the incident wave height by changing the wavemaker stroke with
everything else being unchanged.

It was found that a quasi-steady state could be achieved only for
wavemaker strokes below a certain value. Therefore, experiments are
limited to values of the incident wave heights below approximately
2 inches (5 centimeters). This, in turn, means that the incident
waves do not break on the slopes tested, thus corresponding to the
assumption of nonbreaking waves made in the theoretical analysis.

From the preceding discussion of the experimental setup and testing
procedures it is seen that a total of 48 experimental runs were
performed for each value of the slope angle, (four different wave
heights times three different wave periods times four different slope
roughnesses) . An additional 12 experiments were performed for a
smooth slope for each value of the slope angle. For a smooth slope,
which corresponds to d

^l 0, the relationship suggested by equation (115)
is unrealistic. For a smooth slope a dependency of the wave friction
factor on a Reynolds number can be expected. The experimental results
for smooth slopes were analyzed without resulting in a useable
relationship for f^^. All the data, including the data obtained for
smooth slopes, collected in the experimental investigation are presented
in Appendix B.

b. Accurate Determination of Experimental Reflection Coefficients.
Since the reflection coefficient obtained from each experimental run is

used directly in conjunction with Figure 15 to obtain a corresponding
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value of the friction angle, <J), it is of extreme importance that the

reflection coefficient be accurately determined from the experimental

data.

According to linear wave theory the wave motion in the constant

depth region in front of the slope is given by equation (85).

Introducing the expression:

I 1

i5
a e

I -pi
(117)

for the reflected wave amplitude in equation (85), where 6 is an

arbitrary phase angle, the resulting wave amplitude, \t,\, may be

expressed as

a(x) = Ul = (a.^ + la^I^ + 2a.|a^| cos(2k^x + 6))^^^
, (118)

which shows the wave amplitude to vary with distance along the constant

depth part of the flume in a periodic manner. For values of

2k X + 6 = 0, + 2tt, etc. (i.e., at the antinodes) the resulting

amplitude is a maximum,

a = a. + la
I

= a. (1 + R)
,

(119)
max 1 ' r ' i

and for values of 2koX + 6 = +_ tj , etc. (i.e., at the nodes) the resulting

amplitude is a minimum,

a . = a. - la
I

= a.(l - R) . (120)mm 1 ' r' i

Since the wave height, H, according to linear wave theory is twice

the amplitude the preceding formulas show it, in principle, to be

possible to determine the reflection coefficient, R, and the incident

wave height, Hj^ = 2aj^, by merely seeking out a node and an antinode along

the flume. Thus,

H - H .

max mm
H + H .

max min
(121)

and

H. = 2a. = ^ (H + H . ) . (122)
1 1 2 max mm

As discussed by Ursell, et al
. , (1960) the above formulas are valid

also when the wave motion is weakly nonlinear, i.e., consists of a small

second harmonic motion in addition to the primary first harmonic motion
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of period equal to that of the wavemaker.

The simple method for obtaining the reflection coefficient from an

experiment, i.e., simply seeking out a node and an antinode, and using
equations C121) and (122) appears to be the method used by Wilson (1971)
and Keulegan (1973) as discussed in Section II. 3. b. However, this may
be a dangerous procedure to use when the reflection coefficient is

large and nonlinear effects are pronounced as is often the case in

experiments involving relatively long waves.

To illustrate this, the theoretical variation of the wave amplitude
relative to the maximum wave amplitude is found from equation (118) to
be

fW - ^lii^ = (1 . -^ (cos(2k^x . 6) -l))'/2 ^^23)
max max (1+R)

Iflien the raw data for the wave height variation along the flume is

plotted in this fashion versus x/L, the experimentally observed
variation (open circles) in Figure 20 is seen to be somewhat erratic and
not resembling the variation predicted by an equation such as equation
(123). If one, in spite of this discrepancy between theory and
observations, evaluates the reflection coefficient directly from the
raw data shown in Figure 20 one finds 0.59 < R < 0.65 with the estimate
depending on which node and antinode are chosen. This may not seem to
be an alarming variation, but a critical inspection of the surface
profile recorded near a node (Fig. 21), reveals that the wave height
observed at a node is practically entirely due to a second harmonic
motion whose presence manifests itself clearly because of the near
vanishing to the first harmonic motion at the nodes.

Since the theoretically predicted wave amplitude variation along
the flume is based on linear theory, it applies only to the fundamental
motion which has a period equal to that of the wavemaker. At each
station along the flume where the free surface variation with time was
recorded, the amplitude of the motion with a period equal to that of the
wavemaker was extracted from the wave record by means of a Fourier series
analysis. The Fourier series analysis is performed on the Ralph M.

Parsons Laboratory Hewlett-Packard computer; the program is presented
in Appendix C.

When plotting the variation of the amplitude of the first harmonic
motion with distance along the constant depth part of the flume (full
circles in Figure 20), apparent disorder becomes extremely organized
and the observed variation of the amplitude of the first harmonic motion
is in excellent agreement with the theoretical prediction afforded by
equation (123) with R = 0.88.

The surprising thing to note from the data presented in Figure 20
is the drastically different reflection coefficient obtained from the
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Figure 20. Wave amplitude variation along constant depth part of the

flume. T = 2.0 sec, Tan 3^ = 1/1.5. Curve corresponds to

theoretical variation, equation (123), with R = 0.88.
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Figure 21. Wave record showing pronounced second harmonics at a node
for experiments presented in Figure 20.
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raw data (R '^ 0.62) and from the corrected data (R = 0.88). By using

this procedure it was found that reflection coefficients determined

from the variation of the amplitude of the first harmonic motion
generally were within a range of +_ 0.02 whereas a variation as large

as 0.45 < R< 0.75 was found for a single experimental run when the raw

data were used directly. With the intended use of the data in mind, it

is quite obvious that the accurate, although tedious, procedure of

subjecting the wave records to a Fourier analysis had to be used

throughout this study.

The pronounced effect of second or higher harmonic motions on the

accurate determination of the reflection coefficients from experimental

data is closely related to high values of the reflection coefficient

since this entails the near vanishing of the first harmonic motion near

the nodes. However, it should be noted that the decision of whether or

not to use the time-consuming Fourier series procedure cannot be based
solely on the magnitude of the reflection coefficient. Test number 33

(App. B) showed pronounced higher harmonic effects with a reflection
coefficient of R = 0.60 whereas test number 62 exhibited only insignifi-

cant higher harmonics although the reflection coefficient for this test

was 0.80. A visual inspection of the recorded wave profile at each

station generally led to an accurate assessment of whether or not the

Fourier series analysis was called for.

c . Empirical Relationship for the Wave Friction Factor, f . To

establish a sufficient data base from which an empirical relationship

for the wave friction factor, f^, may be obtained, two series of

experiments were performed for values of the slope (tanBg) = 1/2.0 and

1/3.0, respectively. For each slope a total of 48 experiments were

performed as discussed in Section III. 3. a. The data were analyzed in

the manner described in Section II1.3.b to yield values of the reflection

coefficient, R. With the value of R determined for each experimental

run and the value of Hs/L known. Figure 15 wds used to obtain (}> and the

corresponding value of f was obtained from equation (116).

Anticipating an empirical relationship for f^^ of the type suggested
by equation (115) the semiempirical values of f^ are plotted against the

the value of |A|/(d tangg) in Figure 22. Although exhibiting a consid-

erable amount of scatter the data do form four reasonably well-defined
bands depending on the relative roughness, d/hg, in conformance with
the anticipated behavior. The experimental data and the details of the

analysis leading to Figure 22 are presented in Appendix B.

Two families of straight-line approximations of the data are shown

in Figure 22. One, the dashlines, has a 1 on 1 slope and leads to an

extremely convenient empirical relationship for the wave friction factor

, -0.74 d tan3

fw= 0-25 (^ -fAT^ • ^^24)
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The other, the full lines, has a 1 on 0.7 slope, (Fig. 22) and

corresponds to an empirical relationship for the wave friction factor,

-0.5 d tang 0.7

f^=0.29(^) i-^xr-) (125)

o '

'

The second relationship, equation (125), is superior to equation
(124) in representing the data from single subsets of the experiments
in which only the amplitude of the incident waves varied. One such
typical subset of data points, corresponding to d = 2 inches

(5 centimeters), T = 1.8 seconds and tan $g = 1/2.0, is indicated by
full circles with arrows in Figure 22. The slope of a line connecting
these data points is approximately 1 on 0.7; this slope reflects the

experimental observation that the reflection coefficient generally
decreased with increasing height of the incident waves. This is a

consequence of the nonlinear nature of the energy dissipation on the
rough slope and equation (125) is therefore to be considered superior
to equation (124) which is included primarily because it possesses some
convenient features.

4. Comparison of Predicted and Observed Reflection Coefficients
of Rough Impermeable Slopes .

With the empirical relationships for f^, (eqs. 124 or 125), the
semiempirical procedure discussed in Section III.2.b for the prediction
of the reflection coefficient of rough impermeable slopes is now
complete. UTiereas the theoretical analysis identified the wave friction
factor as the physically fundamental parameter, the friction angle, <i>,

is the important parameter for the use of Figure 15. However, by merely
introducing the empirical relationship for f^^ in equation (109) an

implicit equation for
(J)
may be obtained.

By introducing equation (124) in equation (109) the following
equation for <() is obtained:

, 0.26
tan2(t) = 0.25(^) F . (126)

This equation is in principle implicit, since the slope friction constant
Fg, as seen from Figure 17 is a function of <)). However, for small values

of Jig/L (£5 /L < 0.3), Fg is only a weak function of ^ and equation (126)

may therefore be regarded as an explicit equation for (ji requiring
knowledge of only the relative slope roughness, d/h^. This may be a

somewhat surprising result since it means that the value of the slope
friction angle, 4), and hence the reflection coefficient obtained from
Figure 15 is independent of the amplitude of the incident waves. As
mentioned previously the main part of the experiments presented in
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Figure 22 exhibited a slightly decreasing reflection coefficient with

increasing incident wave amplitude which is not reproduced by this

simple relationship for the slope friction angle. However, the feature

of (j) being independent of aj^, when equation C126) is adopted, is

extremely convenient for use in problems where the incident wave is

given in terms of its amplitude spectrum rather than as a monochromatic

wave. This is the reason for including equation (126) in the present

report and it leads to reasonably accurate results.

Upon substituting the relationship for f^^, given by equation (125)

in equation (109) a less convenient but more accurate implicit equation

for
<J)

is obtained.

tan2* - 0.29(^)°-'(^JM_^)°-%^ . (127)

O s

This equation may be solved iteratively by assuming a value of <j)

and evaluating |a| = R^ 2a£ and F^ from Figures 16 and 17, respectively.

With these values a new value of i> may be obtained from equation (127)

and the iteration may be continued until convergence is achieved. Since

|a| is a function of a^^, the incident wave amplitude, cj), is a function

of aj^; the use of equation (127) will therefore reflect the observed
decrease in reflection coefficient with increasing incident wave
amplitude. Although seemingly more cumbersome, it should be mentioned
that equation (127) is solved after a limited number of iterations (two

iterations generally suffice)

.

For given incident wave and slope characteristics, a^^ , L, h^, i^,

and d, either of the relationships for ^ may be solved; the reflection
coefficient is then obtained from Figure 15. To use this procedure to

"predict" the reflection coefficients observed for the slope angles

tanBs = 1/2.0 and 1/3.0 does not constitute a test of the procedure since

these data were used in establishing the empirical relationships for f^^

and hence the procedure. However, with the degree of scatter exhibited
in Figure 22 this may be a meaningful comparison in that it will indicate
the ability of the procedure to reproduce the experimentally observed
reflection coefficients.

To perform a more meaningful test of the procedure two separate
sets of experiments were performed as previously described in
Section III.3.b but for values of the slope angle tan3 = 1/1.5 and
1/2.5; each of these tests consisted of 48 individual experiments.
From knowledge of the incident wave and slope characteristics the
procedure was used to predict the reflection coefficient of the slope.
For each experiment two predicted values of the reflection coefficient,
Rp3 and Rp, were obtained depending on whether the slope friction

angle <^ was obtained from equation (126) (Rpg) or from equation (127)

(Rp) . The predicted reflection coefficients were compared with the
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measured reflection coefficient, R,^. The comparison was performed

by evaluating the mean value of the quantity.

R T.(R /R )

P
N

and its standard deviation,

R

otjf) = (

N-1

(128)

2 1/2
E(<R /R > - R /R )

^^^
^ m p m p -,

(129)

in which N is the number of experiments performed for a given value of
the slope.

The data used for this comparison are presented in Appendix B,

and the results are presented in Table 2.

Table 2. Comparison of measured and predicted reflection coefficients
of rough slopes.

Slope ip from equation (126) (() from equation (127)

tan 3
s

<R /R >
ra ps

o(R /R )
^ m ps-^

<R /R >
m p

a(R /R )^ m p-^

1 on 1.5 0.92 0.051 0.89 0.041

1 on 2.0 1.03 0.059 0.99 0.053

1 on 2.5 1.06 0.084 1.05 0.059

1 on 3.0 1.01 0.083 1.02 0.064

As is evident from the comparison in Table 2, the procedure is

quite accurate in reproducing the reflection coefficients obtained for
tanBg = 1/2.0 and 1/3.0 in spite of the scatter exhibited in Figure 22.

The procedure also predicts the reflection coefficients obtained for
tangg = 1/2.5 with a comparable degree of accuracy. Thus, for slopes
1/3.0 < tanBg < 1/2.0 the procedure is quite accurate in predicting

the reflection coefficient of rough slopes. The more elaborate
empirical formula (eq. 127) for the slope friction angle, c() , is

superior to the simpler formula (eq. 126) as could be expected. Howeverj
it is noted that even the simple formula leads to reasonably accurate
estimates of R.



For the steepest slope tested, tangg = 1/1.5, the procedure

leads to consistent estimates o£ the reflection coefficient as

evidenced by the low value of the standard deviation. However, the

mean value of Rjn/'^p' "^^Z^^' ^^ somewhat different from unity.

Basically the measured reflection coefficients are on the average only

about 90 percent of the values predicted by the semiempirical procedure

developed here. The reason for this discrepancy may be sought in the

steep slope angle which violates the basic assumption made in the

theoretical analysis that the slope be relatively gentle. This

assumption, which is discussed in Appendix A, means that the horizontal
velocity is taken to be representative of the velocity parallel to the

bottom. For smaller slopes this is a fairly good assumption, but as

the slope becomes steeper the velocity parallel to the bottom may
approach U/cosBs where U is the horizontal velocity. This increase in

near bottom velocity will increase the energy dissipation due to bottom
friction and hence lead to smaller values of the reflection coefficient.
Since the details of the wave motion on a steep slope are not known, the
above discussion is only to be taken as a tentative explanation of the

discrepancy between observed and predicted reflection coefficients for

steep slopes.

For steep slopes the reflection coefficient is generally close to

unity so this discrepancy may not be of a severe nature. It is

recommended that the procedure developed here be used also for steep
slopes with 1/2.0 < tanBg < 1/1.5 with a correction factor being applied
to the predicted reflection coefficient. For a slope of 1 on 1 . 5 this
correction factor is taken as <R^/Rp> (Table 23;for slopes between 1 on
1.5 and 1 on 2 an appropriate correction factor, smaller than unity,
may be chosen corresponding to a linear interpolation between the values
of <R /R >.

m p

All experiments discussed so far were performed for a water depth,
hg = 1 foot (0-305 meter), in the constant depth part of the flume. A
separate short series of tests was performed with h^ = 16 inches
(0.41 meter) for a value of tang^ = 1/3.0 and a surface roughness
d = 2 inches (5 centimeters) . The results of these tests are shown in
Table 3.

The comparison between predicted and measured reflection coefficients
presented in Table 3 shows an excellent agreement. It is of particular
interest to note that a reflection coefficient as low as 0.42 was
observed and predicted. Since the average rate of energy dissipation on
the slope is obtained from

Ep = (1-R^) Ep , (130)

in which Ep is the energy flux asscoiated with the incident waves, this
means that 80 percent of the incident wave energy is dissipated on the
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Table 3. Comparison of measured and predicted reflection coefficients
(h = 16 inches (0.41 meter).

Incident R R

Wave Period Wave Height in R Predicted Predicted
[in seconds) centimeters Measured [eq. 127) (eq. 126)

2.0 1.86 0.49 0.50

2.0 2.65 0.47 0.48
0.46

2.0 3.50 0.45 0.46

2.0 4.05 0.43 0.45

1.8 1.74 0.47 0.47

1.8 2.47 0.45 0.46
0.43

1.8 3.10 0.43 0.44

1.8 3.63 0.42 0.42

slope. This is a surprisingly large energy dissipation, particularly
when it is realized that the incident waves showed no sign of breaking
on the slope. This considerable energy dissipation is therefore due
mainly to bottom friction.

The procedure enables one to determine the wave runup in addition
to the reflection coefficient. The determination of the wave runup,
|a|, is an integral part of the procedure itself. Figure 16 is used
both in establishing values of f from the experimental values of R,

and in solving the empirical relationship (eq. 127) for the slope
friction angle, 4). Thus, although not explicitly appearing in the final
result, the procedure for the prediction of reflection coefficients of
rough slopes relies implicitly on the runup prediction afforded by
Figure 16. Therefore, it would be somewhat disturbing if the runup
predicted by Figure 16 was drastically different from the runup occurring
in the experiments. For this reason a simple observation was made of
the runup in the experiments used in establishing the empirical
relationships for f^, and the observed runup was compared with the runup

predicted from Figure 16. This comparison, involving the 96 experiments
listed in Appendix B, shows a mean value of R^ (predicted) /R,j (observed)
to be 1.15 with a standard deviation of 0.28. This agreement is not

sufficient for the runup predictions afforded by Figure 16 to be used
in actual design, but it does show that its use as part of the procedure
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for predicting the reflection coefficient of rough impermeable slopes

is warranted. This comparison of predicted and observed runup, which

is independent of the determination of the reflection coefficient, may

also be taken as an independent check of the soundness of the procedure

and the theoretical analysis developed here.

a. Limitations of the Procedure . The preceding comparison of

measured and predicted values of the reflection coefficient of rough

impermeable slopes has shown the semiempirical procedure to yield quite

accurate results. However, it is important to realize that the

significance of this favorable comparison is limited by the range of the

independent variables tested here. Therefore, it should be used with

caution whenever the values of d tanBg/JAl and d/h^ are outside the

range indicated by the experimental data in Figure 22.

Furthermore, the procedure relies on an experimentally established

empirical relationship for the wave friction factor, f^^. In this

investigation the empirical relationship was established from experiments

in which the slope roughness elements were modeled by gravel. The

procedure as it appears here is therefore applicable only for slopes whose
roughness may be considered adequately modeled by gravel, i.e., natural

stones, quarry stones, etc. To utilize the procedure for slopes

protected by concrete armor units, an empirical relationship for f^^,

representative of these armor units, should be established in a manner
similar to that presented in Section III. 3. It is beyond the scope of

the present research to establish more general relationships for f .

Finally, the manner in which the theoretical results were used in

the analysis of the experimental data to obtain values of f^^ makes the

resulting empirical relationships for f^^ part of the procedure itself,
i.e., the empirical relationships for f^^ can be used with confidence
only in conjunction with the present procedure for estimating the
reflection coefficient of rough slopes.

As mentioned in Section Ill.S.b, experiments were performed also for
smooth slopes. For smooth slopes the roughness is negligible and the
empirical relationships for <}) (eqs. 126 and 127) are invalid. The type
of empirical formula anticipated for f^^ was based on an assumption of
fully rough turbulent flow conditions. To investigate if the experiments
performed with rough slopes in this study do correspond to fully rough
turbulent flow, the criterion established by Jonsson (1966) may be
examined. For the present experiment the maximum value of |A|/(d tang^)
is seen from Figure 22 to be of the order 20. Since this value
corresponds to the parameter a^^j^/k used by Jonsson (1966, Fig. 6) it is

seen that fully rough turbulent flow should exist for values of the
Reynolds number

I i2

Re = -^—^— > 10 , (131)
V tan 3
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with V = 10 ft /sec. It is readily shown that the major part of the
experimental data presented in Appendix B satisfy this criterion. The
experiments and the empirical formulas developed for the wave friction
factor, f , therefore correspond to fully rough turbulent flow conditions.

When fully rough turbulent flow conditions exist in the model a

Froude model will correctly reproduce the prototype conditions. A check
of whether or not fully rough turbulent flow conditions may be expected
in a particular model test may be performed in a manner similar to that
described above, using Jonsson's (1966, Fig. 6) wave friction factor
diagram.

5. Discussion and Application of Results .

A theoretical analysis of the reflection of water waves from rough
impermeable slopes was performed based on the assumptions of relatively
long, nonbreaking, and normally incident waves. The general solution
for the reflection coefficient is presented in graphical form in
Figure 15 which gives R as a function of the horizontal extent of the
slope relative to the incident wavelength, I /L, and a slope friction
angle, 4>

.

^

The theoretical analysis accounts for the energy dissipation on the
rough slope by including a term expressing the bottom shear stress.
Therefore, the analysis introduces and identifies the physically
fundamental parameter of the problem as a wave friction factor, f^^. This
wave friction factor expresses the effect of slope roughness and is
related to the slope friction angle, (j), through the use of Lorentz'
principle of equivalent work. A series of experiments was performed in
which an accurate determination of the reflection coefficient of rough
impermeable slopes was used in conjunction with the theoretical analysis
to evaluate the magnitude of the wave friction factor, f^^. From these
experimental values of f^^, two empirical relationships for f^^ as a

function of the relative slope roughness were obtained. One of these
relationships (eq. 124) leads to a simple expression for the slope
friction angle (eq. 126) which shows the value of (}) to be independent of
the incident wave amplitude. Therefore, equation (126) is particularly
convenient for use when the incident wave is given in terms of its
amplitude spectrum. The other empirical relationship for f^^ (eq. 125)
leads to a more elaborate and accurate relationsliip for (j)(eq. 127).
With this relationship the reflection coefficient of rough slopes
decreases slightly with increasing incident wave amplitude, thus
reflecting the nonlinear nature of the energy dissipation on the slope.

The resulting semiempirical procedure for the prediction of
reflection coefficients of rough impermeable slopes was tested against
a separate set of experiments and yielded excellent results for values
of the slope angle 1/3.0 <_ tanBg 1_ 1/2.0. For slopes steeper than
corresponding to tanBs = 1/2.0 the procedure overestimates the reflection
coefficient and a correction factor varying from 1.0 for tang = 1/2.0
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to approjcimately 0.9 for tanB = 1/1.5 should be applied to the predicted

results.

It is important to realize that the procedure is empirical and

therefore is limited by the range of the independent variables used in

the experiments establishing the procedure. These limitations of the

procedure are discussed in Section III. 4. a.

Numerical Example . To illustrate the application of the procedure

for prediction of reflection coefficients for rough impermeable slopes

consider the following example specified in Table 4.

Table 4. Information used in numerical sample calculations.

Prototype Froude Model

length scale 1 :25

Incident wave amplitude
a. in feet
1

1.75 0.069

Wave period
T in seconds 12.5 2.5

Water depth
h in feet
o

29.2 1.167

Incident wavelength^
L in feet 366.0 14.56

Slope angle
tang (1 on 1.5) 0.667 0.667

Surface stone size
d =1/2 (d +d . ) in feet

max mm 3.12 0.125

^L obtained from linear wave theory using h and T.

Since a Froude model scales the slope frictional effects correctly
for fully rough turbulent flow conditions, either the prototype or the
model may be taken as the basis for the following numerical calculations,
Choosing the model it is seen from the information presented in Table 4

that
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_L = o =
^-16/ =0 12 ri321

L L tane 14.56(0.667) ^'-^^ •
^^^^>

Taking first the simple expression for the slope friction angle
(eq. 126)

0.26
tan2(|) = 0.25 {—) F^ , (133)

o

in which F is obtained directly from Figure 17

Fg = 0.83 , (134)

since Fg is not a function of (j) for this low value of l^/L. For higher
values of ^^/L a value of F^ corresponding to an assumed value of <}> is

obtained from Figure 17 and substituted into the right-hand side of
equation (133) to obtain a new value of <(> . With this new value of (j) a

better estimate of Fg is obtained from Figure 17 and the procedure is

continued until convergence is achieved.

In the present case equation (133) may be evaluated directly to

give

0.26

•1.167^tan2(J> = 0.25 (
"'j^^ ) 0.83 = 0. 25 (0. 56) (0. 83) = 0.116 , (135)

and the value of <^ is obtained

^ = 6^= 3.3° . (136)

With £g/L given by equation (132) and
(f)

= 3.3 , Figure 15 gives
the predicted value of the reflection coefficient

R = 0.94 . (137)
ps ^

The present calculation corresponds to a steep slope, tanSg = 1/1.5,
and as discussed in Section III. 4 the estimate given by equation (137)
should be corrected by the factor < R^/Rp> given in Table 2 corresponding
to <^ obtained from equation (126) and tanBg = 1/1.5. The estimate of the

reflection coefficient therefore becomes

R = <R /R > 0.94 = 0.92(0.94) = 0.86 . (138)
ps m p
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If choosing the more elaborate expression for <^ given by equation

(127) the implicit relationship for i>
becomes

tan2, = 0.29 (^] (^J^L,) F^ . (139)OS
The preceding calculation based on the simple formula for

i> , may be used

as a first guess for the value of <}> . Therefore, with
<t>

= 3.3° and

Si /L = 0.12, Figure 16 gives:

R = 1AL= 1.3 (140)
u 2a.

or
2.6a. = 2.6(0.069) = 0.138 foot , (141)

and Figure 17 gives F =0.83 as before. Equation (139) therefore

becomes

2 3

tan2* = 0.29 (^) CrnFTlVw^ O-^^ =

0.29 (0.64) (0.64) (0.83) = 0.099 (142)

or

^ = ^-^y = 2.8° . (143)

One should now return to Figures 16 and 17 with this new value of (j>

to reevaluate the values of R^ and F3. In the present example the values
corresponding to this new estimate of ^ (eq. 139) are practically
identical to those obtained for

<i>
= 3.3° so convergence is, in this

example, rapidly achieved.

With cj) = 2.8° and £ /L = 0.12, Figure IS yields a reflection
coefficient of

R = 0.95 . (144)
P

Due to the steep 1 on 1.5 slope this estimate should be corrected
by the factor < Rj^/Rp> in Table 2, corresponding to <}> obtained from
equation (127), i.e., the best estimate of the reflection coefficient
becomes
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R = <R /R > 0.95 = 0.89 (0.95) = 0.84 . (145)
P m p

The two estimates for the reflection coefficient (eqs. 138 and 145)

are in close agreement and they may be considered quite accurate since
they correspond to values of |A|/(d tang ) = 1.6 and d/h = 0.107 which
are within the range of the data presented in Figure 22. The value of
the Reynolds number defined by equation (131) is 1.1 X 10*+. This
demonstrates that the flow in the model and therefore also in the
prototype is fully rough turbulent and indicates that a Froude model will
reproduce the energy dissipation on the rough impermeable slope correctly.

As discussed in conjunction with the numerical example presented in

Section II, the numerical example in this section accounts for the
external energy dissipation whereas the numerical example in Section II

accounts for the partition of the remaining energy among reflected,
transmitted and internally dissipated energy. Subtracting the energy
dissipated on the rough slope (the external energy dissipation) from
that of the incident wave assumed in Table 4 shows that the remaining
energy may be regarded as the energy associated with an equivalent
incident wave of amplitude aj = Ra^. With a^ = 0.069 foot, as specified
in Table 4, and R = 0.84, from equation (145), the amplitude of the
equivalent incident wave is a^ = 0.84 (0.069) = 0.058 foot. This is seen

to be the incident wave amplitude assumed in the numerical example in
Section II, Table 1. The two numerical examples are therefore closely
related and illustrate the details of the calculations involved in the
procedure for the prediction of reflection and transmission coefficients
of trapezoidal breakwaters, which is discussed in Section IV.
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IV. AN APPROXIMATE METHOD FOR THE PREDICTION OF REFLECTION

AND TRANSMISSION COEFFICIENTS OF TRAPEZOIDAL, MULTILAYERED BREAKWATERS

1 . Description of the Approximate Approach .

In Section II an explicit solution for the transmission and reflection

coefficients of homogeneous rectangular crib-style breakwaters was

developed. In Section III a semiempirical procedure for the prediction
of reflection coefficients of rough impermeable plane sloped structures

was developed. When viewing the interaction of incident waves with a

trapezoidal, multilayered breakwater as a problem of energy dissipation
the problem treated in Section II may be regarded as an idealized analysis
accounting for the internal dissipation of energy within the structure,
Eq

j^j^^ , whereas Section III may be regarded as an idealized analysis
of'the energy dissipation on the seaward face of the breakwater, i.e.,

the external energy dissipation, E^^g^^. This section presents a

synthesis of the results obtained in Sections II and III into an

approximate procedure for the prediction of wave reflection from and
transmission through trapezoidal, multilayered breakwaters.

The basic assumptions of this approximate procedure are those
inherent in the analyses and procedures developed in Sections II and III:

(a) Relatively long normally incident waves which may be considered
adequately described by linear long wave theory.

[b) Incident waves do not break on the seaward slope of the
breakwater, so that the external energy dissipation may be
considered mainly due to bottom frictional effects.

(cj The cover layer on the seaward slope of the breakwater consists
of natural stones, so that the empirical relationships for the
wave friction factor developed in Section III.3.C may be
considered valid.

With these assumptions stated, the following procedure is suggested
as being physically realistic although approximate in nature.

For most trapezoidal, multilayered breakwaters, the stone size in
the layer under the cover layer of the seaward slope is small relative
to the stone size of the cover layer. As a first approximation the
structure may therefore be regarded as resembling an impermeable rough
slope. Thus, with the incident wave characteristics and the stone
size, djj, of the cover layer as well as the seaward slope of the
trapezoidal breakwater, tanB^, specified, the procedure developed in
Section III may be used to approximately account for the energy
dissipation on the seaward slope, i.e., the external energy dissipation
may be estimated. This energy dissipation approximately accounts for
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the dissipation of energy associated with the top layer of stones in the
cover layer. The reamining wave energy may be expressed as the energy
associated with a progressive wave of amplitude,

aj = Rjj a. , (146)

in which a. is the amplitude of the actual incident wave, and Ry-, is the

reflection coefficient determined by the procedure developed in
Section III.

With the energy dissipated on the seaward slope accounted for, the
remaining energy is partitioned betweeen reflected, transmitted, and
internally dissipated energy. This partition of energy is the problem
dealt with in Section II of this report,. and it is evaluated by regarding
the remaining energy as an equivalent wave of amplitude, a^, normally
incident on an equivalent homogeneous rectangular breakwater. The role
of this homogeneous rectangular breakwater is to reproduce the internal
energy dissipation associated with the trapezoidal, multilayered
breakwater, i.e., the two breakwaters should be hydraulically equivalent.
A rational method for obtaining a homogeneous rectangular breakwater
which is hydraulically equivalent to a trapezoidal, multilayered
breakwater is developed in Section IV. 2, based on steady flow consider-
ations. By using the procedure developed in Section II, the partition
of the remaining wave energy among reflected, transmitted, and
internally dissipated energy is therefore approximately evaluated by
determining the reflection coefficient, Rj , and the transmission
coefficient, Tj, of the hydraulically equivalent homogeneous rectangular
breakwater subject to an equivalent incident wave of amplitude, a,.

Having now accounted for the external as well as the internal
energy dissipation the amplitude of the reflected wave is found to be

l\l = ^I^I = ^I^^II^ '
^'''^

and the transmitted wave amplitude is

1^1 =
-^I^I

= ^I^II^i
^'''^

The approximate values of the reflection and transmission
coefficients, R and T, of a trapezoidal, multilayered breakwater are

therefore

RjRjj (149)
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and
|a

I

T = —^ = T R,, . (150)
a. Ill

The approximate procedure described above is used to predict the

reflection and transmission coefficients corresponding to the laboratory

experiments performed by Sollitt and Cross (.1972). When considering

that the predicted results are obtained without any attempt being made

to fit the experimentally obtained reflection and transmission

coefficients from Sollitt and Cross, the comparison between predictions

and experiments is favorable.

2. Determination of the Equivalent Rectangular Breakwater .

From the description given of the approximate method for obtaining

the reflection and transmission coefficients of a trapezoidal,
multilayered breakwater, the missing link for carrying out this analysis

is the determination of the hydraulically equivalent homogeneous
rectangular breakwater.

In Section II. 2. a it was shown that a simple analysis, which
essentially neglected unsteady effects, gave transmission and reflection
coefficients (eqs. 45 and 46) equal to those obtained from the more
complete analysis for structures of small width relative to the incident
wavelength (eqs. 35 and 36). This observation suggests that a rational

and reasonably simple determination of the hydraulically equivalent
breakwater may be based on steady flow considerations. Therefore, a

hydraulically equivalent breakwater is taken as the homogeneous
rectangular breakwater which gives the same discharge, Q, as the

discharge through the trapezoidal, multilayered breakwater. This
definition will, according to the simple analysis presented in
Section II. 2. a, preserve the equality of transmission coefficients for
the two structures and hence essentially give the same internal
dissipation. This definition of the equivalent breakwater is illustrated
schematically in Figure 23.

Figure 23 shows schematically a trapezoidal, multilayered breakwater
consisting of several different porous materials. These porous materials
are identified by their stone size, d , and their hydraulic character-
istics, 3 , in the flow resistance formula (eq. 6). To keep the
following determination of the equivalent breakwater reasonably simple,
the flow resistance is assumed to be purely turbulent although in
principle it is possible to perform the determination of the equivalent
breakwater based on the more general form of the Dupuit-Forchheimer
resistance formula. Since the energy dissipation associated with the
top layer of stones on the seaward slope has been accounted for, the
rectangular homogeneous breakwater which accounts approximately for the
internal dissipation should be hydraulically equivalent to the trapezoidal,
multilayered breakwater with the top layer of cover stones removed.
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TOP LAYER

/////////
TRAPEZOIDAL BREAKWATER

///////////////////////////////
EQUIVALENT RECTANGULAR BREAKWATER

Figure 23. Definition sketch of trapezoidal, multilayered breakwater
and its hydraulically equivalent rectangular breakwater.
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The homogeneous rectangular breakwater consists of a reference

material of stone size, d^, and hydraulic characteristics, 3^.. The

reference material should be taken to be representative of the porous

materials of the multilayered breakwater. To find the discharge per

unit length of the rectangular breakwater, the flow is assumed to be

essentially horizontal and one obtains

AH

Pg Pg^ U C151)

in which l^ is the width of the equivalent breakwater and AH^ is the

head difference defined in Figure 23. The discharge per unit length is

therefore obtained from equation (151) to be

gAH 1/2 h

Q = Uh = i—^} -^ (152)

To evaluate the discharge per unit length of the trapezoidal,

Llayered breakwater a \

schematically in Figure 24.

multilayered breakwater a horizontal slice of height, Ahj , is shown

P/yog

T
Ahi

Figure 24. Horizontal slice of thickness. Ah., of multilayered
breakwater.

This horizontal slice consists of segments of the different porous
materials of lengths ly^. From an assumption of purely horizontal flow
it follows that the discharge velocity of the slice considered, U., must
be the same in all segments and the total head loss across the breakwater
must be equal to AH^, the head difference shown in Figure 23. From this
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It IS seen

AH^ = E(AH^)
, (153)

n

in which AH is the head loss associated with the segment of length, I

and hydraulic characteristics, 3 . From equation (151) it is seen that

2 2
U. U. B

AH =3£ ^-= 6 -^ [~ i ) , (154)
n n n g r g 'B^ n '

in which 6^, is the hydraulic characteristic o£ the reference material.
Equation (153) may therefore be written:

^ n r

in which the summation is carried out over the n different porous
materials of the horizontal slice of thickness. Ah..

J

From equation (155) the discharge associated with the slice of
thickness Ah. is found to be

J

1/2
gAH ^ Ah.

AQ. = U.Ah. = (^-)
B

' ,12 ' ^156)

n r

and by adding the contributions from all horizontal slices of the
trapezoidal breakwater one obtains

gAH„
^/^

, Ah

Q = ^A Q = {-^) h^ E C_g_ -^) . (157)

n r

Thus, requiring that the discharges per unit length given by
equations (152) and (157) be identical, the width, I , of the equivalent
rectangular breakwater is

85



1 ^N -2 ^e
e -

.
^ e 1/2 h "' 'AV
^2C^ ^J>

This equation shows that the width o£ the equivalent breakwater may

be determined from knowledge of the configuration of the trapezoidal,
multilayered breakwater and the corresponding head differences, AH and

AHj,.

As described in Section IV. 1 the equivalent breakwater is subject
to an equivalent incident wave of amplitude aj given by equation (146).

A simplified analysis of the interaction of incident waves and a

rectangular homogeneous breakwater of small width relative to the length
of the incident waves was presented in Section II. 2. a. This simplified
analysis essentially neglected unsteady effects and any phase difference
between the incident, reflected, and transmitted waves. The runup on

the seaward slope is for this analysis given by equation (38) and this
runup is taken as a representative value of the head difference, AH ,

across the equivalent breakwater. With this assumption, which neglects
the influence of a transmitted wave of small amplitude, one obtains

AH = (1 + RJ a^ = (1 + RJ R^^ a. , (159)
e ^ I^ I ^ I II 1 ^ -^

in which R. is the reflection coefficient of the equivalent breakwater.

The value of the head difference across the trapezoidal breakwater,
AH-p, is in accordance with the argument presented for the equivalent
rectangular breakwater taken as the runup on the seaward slope of the
trapezoidal breakwater. This runup may in principle be determined by
the procedure developed in Section III of this report. However, there
is reason to believe that such an estimate, which would correspond to
an impermeable slope, would be somewhat on the high side. In general
one may, however, take

AH^ = 2R^ a. , (160)

where R^ is the best estimate available for the ratio of the runup to
the incident wave height H. = 2a. for given slope characteristics. If

R^ is taken as determined from Figure 16 the estimate of AH-p is expected
to be conservative.

Equations (159) and (160) show that the ratio

AH^ (1 . Rj)Rjj

\Hj, 2R
u

(161)
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is a function of the reflection coefficient, R^ , of the equivalent

breakwater. Since this reflection coefficient cannot be determined
until the width of the equivalent breakwater, i^ , is known one is

faced with a tedious iterative procedure. However, in most cases a

sufficiently accurate estimate of Rj may be obtained by assuming
initially that AHg/AH-p is unity and use this estimate along with the
best estimate of R to obtain a new value of AHg/AHj from equation C161).

Numerical Example of the Determination of the Equivalent
Rectangular Breakwater . To illustrate the procedure for the

determination of the equivalent rectangular breakwater the trapezoidal,
multilayered breakwater configuration tested experimentally by Sollitt
and Cross (1972) and shown in Figure 25 is considered. The breakwater
is divided into five horizontal slices, I-V (Fig. 25), and the
reference material is chosen as the material with stone size ^2 = 0.75
inch (1.9 centimeters]. Since the porosities of the three porous
materials were reported to be essentially equal by Sollitt and Cross

(1972) , the porosity of all materials as well as the reference material
is assumed to be 0.435. This in turn means that the ratio of the
hydraulic characteristics of the various porous materials, 6j^, according

to equation (52) with Bq = 2.7 reduces to the inverse of the ratios of
the stone sizes, i.e.,

^1 ^2 ^3 ^2

r = ^= '^•^
' r= d^= 2-°

•
^1^2)

^2 1 ^2 3

From the geometry of the breakwater shown in Figure 25, with the
top layer of cover stones removed, the equivalent breakwater width is
readily calculated as shown in Table 5.

Introducing the numerical result obtained in Table 5 in equation
(158) , the equivalent breakwater width, I , is obtained as

e

_ AH AH
I = (0.1819) jrf- inches = 2.52 —^ feet . (163)

Thus, the homogeneous rectangular breakwater which is hydraulically
equivalent to the trapezoidal, multilayered breakwater (Fig. 25)
consists of material of stone size d = d2 = 0.0625 foot (1.9 centimeters)
and porosity n = 0.435. The equivalent width, £g, is given by equation
(163) and a first approximation may be obtained by taking AHg/AHj = 1,
i.e., £,g = 2.52 feet (0.77 centimeter).

It should be noted that the homogeneous rectangular breakwater
assumed in the numerical example presented in Section II, Table 1, has
the characteristics of the hydraulically equivalent breakwater given
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Table 5. Evaluation of equivalent rectangular breakwater.

Layer, j

Ah.
,-1

h inches inches

^3

inches inches

Ah.

^° 6„ 1/2

n "^r

^- u .-1/2
(mchesj

I
1

14
16.7 8.35 0.0247

0.0700

0.0376

0.0366

0.0130

II
4

14
15.0 9.2 16.7

III
3

14
15.1 13.8 5.6 32.6

IV
4

14
29.7 15.6 60.9

V
2

14
60.7 121.4

E 0.1819

J

by equation (163) for the choice AHg/AH-p = 1. Furthermore, the
trapezoidal breakwater shown in Figure 25 has a seaward slope of
1 on 1.5 (tanSg = 0.667) which for the most part consists of stones of
d = djj = 1.5 inches (3.8 centimeters). These slope characteristics
correspond to those assumed in the numerical example presented in
Section III, Table 4.

The present numerical example of the determination of the
hydraulically equivalent breakwater together with the numerical examples
presented in Sections II and III therefore constitute an example of the
computations involved in the procedure described in Section IV

. 1 for
the determination of the reflection and transmission coefficients of
the trapezoidal, multilayered breakwater shown in Figure 25.
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3, Computation of Transmission and Reflection Coefficients for

Trapezoidal, Multilayered Breakwaters .

Sollitt and Cross (1972, App. G) presented the results of a

laboratory investigation of reflection and transmission characteristics

of their model breakwater (Fig. 25). For the present purpose of

comparison with predicted reflection and transmission coefficients

only the tests performed by Sollitt and Cross (1972) with relatively

long waves will be used.

Thus, the wave conditions to be used in the following for the

purpose of demonstrating the computational aspects of the approximate

method described in Section IV. 1 are

h =1.167 feet : T = 2.5 seconds ; L = 14.56 feet , (164)

and the breakwater configuration is that shown in Figure 25.

a. Determination of the External Energy Dissipation . As discussed

in Section IV. 1 the first step in the approocimate procedure for

evaluating the reflection and transmission coefficients of a

trapezoidal, multilayered breakwater is to estimate the external energy

dissipation on the seaward slope using the procedure developed in

Section III.

From the breakwater characteristics shown in Figure 25 it is seen

that the seaward slope consists of various stone sizes. Since the

main part of the front face consists of stones of diameter
djj = dj = 0.125 foot (3.8 centimeters) it is reasonable to adopt this

stone size as the roughness of the slope. This is further justified
by the fact that this stone size is the size in the cover layer near
the Stillwater level, where one would expect the major part of the
external energy dissipation to take place. Hence, for the purpose of
estimating the external energy dissipation the slope characteristics
are taken as

:

Roughness = d^^ = 0.125 foot ; tan$^ = 1/1.5 = 0.667 . (165)

This information in addition to the incident wave characteristics
specified by equation (164) is sufficient to use the procedure developed
in Section III for the prediction of the reflection coefficient, Rttj of

rough slopes when the incident wave amplitude, a j , is specified.

Comparison of the incident wave characteristics (eq. 164) and the
slope characteristics (eq. 165) with the corresponding values for the
Froude model characteristics given in the numerical example presented
in Table 4 show that the calculations presented there correspond to the
conditions being considered here. The numerical example presented in
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Section III may therefore be taken directly as an illustration of

the computational aspects involved in the determination of the
reflection coefficient of the seaward slope, R .

Thus, with the detailed computational aspects given in Section III

the computations corresponding to the incident wave amplitudes reported
by Sollitt and Cross (1972, App. G) are summarized in Table 6.

Table 6. Summary of calculations of external energy dissipation on

seaward slope for experiments by Sollitt and Cross (1972,
App. G).

H.
1

* R
u

F
s

R
P

•^11
=

Run
Degrees

0.89 R
No. feet (eq. 127J (Fig. 16} (Fig. 17) (Fig. 15) P

428 0.0355 1.8 0.83 1.3 0.97 0.86

429 0.0365 1.85 0,83 1.3 0.97 0.86

472 0.0405 1.9 0.83 1.3 0.97 0.86

430 0.0474 2.0 0.83 1.3 0.97 0.86

427 0.056 2.2 0.83 1.3 0.96 0.85

471 0.075 2.3 0.83 1.3 0.96 0.85

470 0.115 2.6 0.83 1.3 0.96 0.85

469 0.162 2.9 0.83 1.3 0.95 0.84

465 0.202 3.1 0.83 1.3 0.95 0.84

466 0.260 3.3 0.83 1.3 0.94 0.84

467 0.310 3.5 0.83 1.3 0.94 0.84

468 0.374 3.7 0.83 1.3 0.94 0.84

As found in Section III the important parameters are:

L tanf
0.12

II
= 0.107 (166)

and the best estimate of the reflection coefficient, Rtt, is obtained

by multiplying the predicted value, R , by the correction factor 0.89

associated with the steep slope, tanS = 1/1.5.



For comparison the numerical example carried out in Section III

is seen to correspond to an incident wave amplitude between the

incident wave amplitudes of Run Numbers 470 and 469 in Table 6.

b. Determination of the Internal Energy Dissipation . Having

determined the energy dissipation on the seaward slope, the next step

is to determine the internal energy dissipation. To perform this

analysis one must first determine the characteristics of the rectangular

breakwater which is hydraulically equivalent to the trapezoidal,

multilayered breakwater shown in Figure 25. As an example of the

computations involved, the homogeneous rectangular breakwater which is

hydraulically equivalent to the breakwater configuration shown in

Figure 25 was determined in Section IV. 2. Thus, the equivalent

rectangular breakwater has the characteristics obtained in Section IV. 2,

i.e..

Stone size = d = 0.0625 foot ; Porosity = n = 0.435 , (167)

and a width I given by equation (163)

AH

i = 2.52 —T^ feet , (168)
e AH^

in which AHg and AH-p are the runup on the equivalent rectangular and

on the trapezoidal breakwater, given by equations (159) and (160),

respectively.

As discussed in Section IV. 2, the determination of £g from

equation (168) involves a tedious iterative procedure. A fairly good
first guess for the value of the reflection coefficient, Rj , involved

in determining the ratio AHg/AH-p from equation (161) may, however, be

obtained by taking AHg/AH-p equal to unity. Hence, a preliminary
solution is obtained by taking

£ = 2.52 feet . (169)

The equivalent rectangular breakwater characteristics are therefore
given by equations (167) and (169). The incident wave characteristics
are given by equation (164) with an equivalent incident wave amplitude,
aj, given by equation (146). The computations involved in determining
the partition of the energy associated with the equivalent incident
wave among reflected, transmitted, and internally dissipated energy is

therefore carried out according to the procedure developed in Section II

of this report. In Section II, the details of this computation were
presented in the form of a numerical example. By inspection of the
incident wave and breakwater characteristics used in the numerical
example in Section II, these characteristics for the Froude model listed
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in Table 1 are identical to those given by equations (164), (167),
and (169). The numerical example may therefore be consulted for the
details of the computational aspects involved in the determination of
the transmission and reflection coefficient of the equivalent breakwater,
T and R , subject to incident waves of amplitude a .

The important parameters involved in the use of Figures 2 and 3

for this purpose were obtained in Section II

2tt
n k I =0.435 (, , ^.

o e U4.56
-) 2.52 = 0.47 (170)

and the porosity correction factor (eq. 28),

S = (-i^)^ =
f

O-435 2

0.45' '0.45 (171)

The computations corresponding to the equivalent incident wave
amplitudes, a-r, determined from the results obtained in Table 6 are
summarized in Table 7.

Table 7. Summary of calculations of reflection and transmission
coefficients of equivalent rectangular breakwater based on
AH /AH„ - 1.

e T

Run
No.

H.
1

feet

^11

(Table 6)

RjjH./2

feet

f

(eq. 57)

f/s.

(Fig. 2) (Fig. 3)

428 0.0355 0.86 0.015 1.92 2.1 0.30 0.66

429 0.0365 0.86 0.016 1.97 2.1 0.30 0.67

472 0.0405 0.86 0.0175 2.06 2.2 0.29 0.67

430 0.0474 0.86 0.020 2.16 2.3 0.28 0.68

427 0.056 0.85 0.024 2.34 2.5 0.27 0.68

471 0.075 0.85 0.032 2.62 2.8 0.24 0.70

470 0.115 0.85 0.049 3.17 3.4 0.20 0.72

469 0.162 0.84 0.069 3.70 4.0 0.17 0.74

465 0.202 0.84 0.085 4.10 4.4 0.15 0.75

466 0.260 0.84 0.109 4.63 5.0 0.13 0.76

467 0.310 0.84 0.130 5.02 5.4 0.12 0.77

468 0.374 0.84 0.157 5.50 5.9 O.Il 0.77
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For comparison the example calculation presented in Section II.

4

corresponds to an equivalent incident wave amplitude between Run

Numbers 470 and 469 and the transmission and reflection coefficients,

(eq. 78), correspondingly fall between the results of Run Numbers 470

and 469 listed in Table 7.

The results obtained in Table 7 correspond, as previously stated,

to the simplifying assumption that the magnitude of AHg/AH-j- is unity.

This simplifying assumption enabled a direct determination of the width

of the equivalent breakwater, £g. With the ratios of runup on the

equivalent rectangular breakwater to runup on the trapezoidal breakwater

given by equation [161) the equivalent rectangular breakwater width may
be obtained from equation (163)

,

(1 + RJRtt
i =2.52 ^^

^ ^^ feet . (172)
e ZR

u

Adopting as a preliminary value of Rj the value obtained in Table 7

and the value of Rjj given in Table 6 for a given experimental run, a

better estimate of the equivalent breakwater width may be obtained
from equation (172) provided a reasonable estimate of the runup to

incident wave height ratio, R^, is available. As previously mentioned
the runup prediction afforded by the semiempirical procedure developed
in Section III of this report and carried out in Section IV. 3 may be

expected to yield a conservative, i.e., too large, value of R^. However,

if this value of R^ (Table 6) is adopted the procedure developed here
is entirely self-contained and although slightly conservative this
choice of R^ is made here. Thus, with Rjj and R^ obtained from
Table 6 and Rj obtained from Table 7 the equivalent breakwater width
may now be obtained from equation (172) for each experimental run
performed by Sollitt and Cross (1972).

For each experimental run listed in Tables 6 and 7 the equivalent
rectangular breakwater width, £g, is obtained from equation (172) and
the corresponding value of the linearized friction factor, f, is obtained
from equation (57) with I = Iq. This procedure is identical to the
procedure illustrated in the numerical example. Section 1 1. 4, and with
f obtained the values of Tj and Rj are obtained from Figures 2 and 3

using the appropriate value of nk £ and S^ given by equation (171).

The computations are summarized in Table 8. By comparison with
the results listed in Table 7, the reflection coefficients are practically
identical, thus justifying the use of Rj as obtained in Table 7 in
equation (172) for the purpose of determining the width of the equivalent
breakwater. Had the values of Rj obtained in Table 8 been drastically
different from those given in Table 7 the computations should have been
repeated using the updated values of R in equation (172)

.
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Table 8. Summary of calculations of reflection and transmission
coefficients of equivalent rectangular breakwater based on
AH /AH_ given by equation C161).

^I
AH /AH„

e 1 e
f -^1

^I

Run
Table 7 Ceq. 172) f/s.

No. feet Ceq. 161) feet Ceq. 57) (Fig. 2) (Fig. 3)

428 0.015 0.55 1.39 2.34 2.5 0.39 0.62

429 0.016 0.55 1.39 2.39 2.6 0.38 0.62

472 0.0175 0.55 1.39 2.53 2.7 0.38 0.63

430 0.020 0.55 1.39 2.64 2.8 0.36 0.64

427 0.024 0.55 1.39 2.85 3.1 0.34 0.66

471 0.032 0.56 1.41 3.24 3.5 0.32 0.68

470 0.049 0.56 1.41 3.87 4.2 0.28 0.72

469 0.069 0.57 1.44 4.55 4.9 0.24 0.74

465 0.085 0.57 1.44 5.08 5.5 0.22 0.76

466 0.109 0.57 1.44 5.73 6.2 0.20 0.78

467 0.130 0.57 1.44 6.27 6.7 0.18 0.79

468 0.157 0.57 1.44 6.87 7.4 0.17 0.80

IVhereas the reflection coefficient is essentially insensitive to
the value of Iq it is seen from Tables 7 and 8 that the transmission
coefficient shows a significant change with the value of the equivalent
breakwater width. The transmission coefficients obtained in Table 8

are considerably larger than the transmission coefficients obtained in
Table 7, thus reflecting the smaller equivalent breakwater width. Since
the equivalent breakwater width was obtained from equation (172) using
the slightly conservative value of R^ obtained in Table 6, it may be

anticipated that the equivalent breakwater width listed in Table 8 is on
the lower side. Consequently, one may anticipate that the estimates of
the transmission coefficients obtained in Table 8 are slightly on the
high side.

The preceding discussion essentially shows that the reflection
coefficient, Rj, may be regarded as relatively accurately determined
whereas the transmission coefficient, T , is bracketed by the results
listed in Tables 7 and 8.
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c. Det ermination of the Transmission and Reflection Coefficient

of Trapezoidal, Multilayered Breakwater s. From the results

obtained in Sections IV. 3. a and iy.3.b it is now possible to estimate

the transmission and reflection coefficient of the trapezoidal,

multilayered breakwater (Fig. 25) since the external as well as the

internal energy dissipation has been accounted for. From the description

of the procedure given in Section IV. 1 it follows that the transmitted

and reflected wave amplitudes, | a^ | and |a^l, are given by

l\l = Vi = Vii^i
^'''^

and
R^a^ = R^R^.a. . [174)
II I II 1

The transmission coefficient, T, and reflection coefficient, R, are

therefore obtained from the results listed in Tables 6, 7, and 8 since

T = —^ = T,R,, (175)
a. Ill
1

and

1

The resulting estimates are shown in Table 9.

4. Comparison Between Predicted and Observed Transmission and
Reflection Coefficients of a Trapezoidal, Multilayered Breakwater .

The preceding section has illustrated the use of the approximate
method for the determination of transmission and reflection coefficients
of trapezoidal, multilayered breakwaters described in Section IV. 1.

The breakwater characteristics as well as the characteristics of the
incident waves used in Section IV. 3 were chosen to correspond to the
experiments performed by Sollitt and Cross (1972), and the predictions
given in Table 9 may therefore be compared directly with the
experimentally observed values of the transmission and reflection
coefficients given by Sollitt and Cross (1972, App. G) . This comparison
between predicted and observed transmission and reflection coefficients
is shown in Figure 26, where the values of T and R are plotted against
the incident wave steepness, H./L.

From the comparison presented in Figure 26 the predicted reflection
coefficients are in excellent agreement with the observed reflection
coefficients for lower values of the incident wave steepness. For larger

values of the incident wave steepness the predicted reflection
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coefficient is seen to increase slightly whereas the observed

reflection coefficients exhibit a decreasing trend with increasing

wave steepness. As discussed previously this trend of the experimental
reflection coefficients is generally observed and may be partly due to

experimental errors in the determination of the reflection coefficient.
This was discussed briefly in Section II. 3. b and in detail in Section
III.3.b.

The transmission coefficients predicted based on the assumption
AHg/AHj = 1 are seen to be lower than the experimentally obtained
values. This, of course, is the expected type of discrepancy since
the runup on the seaward slope of the trapezoidal breakwater is almost
certain to exceed the runup on the equivalent rectangular breakwater.
Adopting the theoretical value of the runup, R^, on the trapezoidal
breakwater predicted by the procedure developed in Section III of this

report is expected to give transmission coefficients slightly on the
high side as discussed in Section IV. 3. c. This anticipated behavior is

not exhibited by the predicted transmission coefficients plotted in

Figure 26. In fact, the agreement between observed and predicted
transmission coefficients is excellent.

A slightly different estimate of the runup on the seaward slope of

a trapezoidal breakwater may be obtained by adopting, for example,
the results obtained by Jackson (1968), who reported values of R

approximately equal to unity for test conditions similar to those of
Sollitt and Cross (1972). In the present case this value of R^ would
result in a slightly lower prediction of the transmission coefficient
than the prediction indicated by the full line in Figure 26.

The procedure developed here for the prediction of transmission and
reflection coefficients of a trapezoidal, multilayered breakwater did
not rely on the experimental data shown in Figure 26 to obtain a "good
fit". The overall comparison between predicted and observed transmission
and reflection coefficients, which is analogous to the comparison given
by Sollitt and Cross (1972, Fig. 4-14), must therefore be considered
very good.
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V. SUMMARY AND CONCLUSIONS

This report presents the results of an analytical study of the

reflection and transmission characteristics of porous rubble-mound

breakwaters. An attempt was made at making the procedures entirely

self-contained by introducing empirical relationships for the hydraulic

characteristics of the porous material and by establishing experimentally

an empirical relationship for the friction factor that expresses energy

dissipation on the seaward slope of a breakwater.

The results are presented in graphical form and require no use of

computers, although the entire approach could be programmed. The

procedures were developed in such a manner that the information required

to carry out the computations can be expected to be available. Thus, for

a trapezoidal, multi layered breakwater subject to normally incident,

relatively long waves the information required is:

(a) Breakwater configuration: breakwater geometry and stone size and

porosity of the breakwater materials

(b) Incident wave characteristics; wave amplitude, period, and water

depth.

Only the porosity of the breakwater materials may be hard to come

by. It is recommended that the sensitivity of the results to the
estimate of the porosity, n, be investigated.

The hydraulic flow resistance in the porous medium is expressed by
a Dupuit-Forchheimer relationship and empirical formulas are adopted.
The investigation shows that reasonably accurate results are obtained
by taking

^o " ^-^
(177)

a = 1150
o

in equations (51) and (52). To estimate reflection and transmission
characteristics of a prototype structure only the value of Bq needs to be
known. For laboratory experiments the value of the ratio, Mq/Pq is

important in assessing the influence of scale effects. In a laboratory
setup it is possible to determine the best values of a^ and
simple experimental procedure used by Keulegan (1973). Thus, it was
found that the porous materials tested by Sollitt and Cross (1972)
showed a value of a^ = 2,700, a better value than that given by equation

(177). However, the important thing to note is that the analysis carried
out in Section II of this report presents a method for assessing the
severity of scale effects in hydraulic models of porous structures. The
empirical relationships for the flow resistance of porous materials have
been demonstrated to be fairly good for porous materials consisting of
gravel-size stones, diameter less than 2 inches (5 centimeters).
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The energy dissipation on a rough, imperjiieable slope was investi-
gated in Section III. The experimental investigation revealed the
need for an accurate method for the determination of reflection
coefficients from experimental data. The simple procedure of seeking
out the locations where the wave amplitudes are maximum and minimum,
respectively, may lead to reflection coefficients which are much too
low, unless the recorded surface elevation is analyzed and only the
amplitude of the first harmonic motion is used to determine the
reflection coefficient. Accurately determined reflection coefficients
for slopes with roughness elements consisting of gravel led to an

empirical determination of the friction factor (eqs. 124 and 125),
expressing the energy dissipation on a rough slope due to bottom
friction. Adopting this empirical relationship a procedure for
estimating the reflection coefficient of rough impermeable slopes was
developed. This procedure was quite accurate in reproducing the
experimentally obtained reflection coefficients in a separate set of
experiments. The procedure for the determination of the reflection
coefficient of rough impermeable slopes is limited to slopes having
roughness elements consisting of natural stones. To make the procedure
generally applicable, empirical relationships for the friction factor
should be determined for slopes whose roughness elements consist of
models of concrete armor units.

The synthesis of the investigation is the development of an

approximate procedure for the prediction of the reflection and transmission
characteristics of trapezoidal, multilayered breakwaters. This procedure
is entirely self-contained and yields excellent results when compared
with the model scale experimental results obtained by Sollitt and Cross

(1972).

It is emphasized that the analytical model for the reflection and

transmission characteristics of trapezoidal, multilayered breakwaters
developed here needs further verification before it can be used with
complete confidence. However, the good agreement between predictions
and observations exhibited in Figure 26 is encouraging and does indicate
that a simple analytical model which may be used for preliminary design
of rubble-mound breakwaters has been developed.
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APPENDIX A

GOVERNING EQUATIONS AND TILEIR SOLUTION

1 . Long Waves over a Rough Bottom.

To derive the approximate equations governing the propagation of
long waves over a rough bottom we take the basic equations expressing
conservation of mass and momentum for an incompressible fluid. In two
dimensions these equations read CSchlichting, 1960)

3U 8W

Sz
CA-1)

DU
Dt dx dz

(A-2)

DW
Dt

3£.
Pg (A-3]

in which U and W are the horizontal and vertical velocity components,
respectively; p is the fluid density, p is the pressure, and g is the
acceleration due to gravity. The coordinate system is defined in

Figure A-1 and only the horizontal shear stress, t, is retained in the
horizontal momentum equation.

7 / / / ^ ^ / ^ ^ ^ / / /

Figure A-1. Definition sketch.
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dz 8x

-h -h -h

The boundary conditions to be satisfied by these equations are

that the pressure be zero at the free surface, z = ri(x,t),

p = p =0 atz = n, CA-4)

and the kinematic boundary conditions

1^ . U^ 1^ -W^ = at z = n (A-5)

and „,

W, + a ^ = at z = -h , (A-6)
b b dx

where subscripts n and b refer to the conditions at the free surface
and at the bottom, respectively.

To derive the continuity equation in the form normally encountered
in work involving long waves, equation (A-1) is integrated over the
depth of water

dz + W -W, = , (A-?)

and the remaining integral is evaluated using Leibnitz' rule
(Hildebrand, 1965)

B(a)

|i dz = / f dz -f (B) |i + f (A) |A
, (A-8)

A(a) ^° ^'^
-'a

^ 3a ^ ^ 3a '

in order to obtain

3^ [ U dz + W -U |a _w R |ll = . CA-9)3x
J n n 3x b b 3x l" ^J .

-h

Introducing the concept of a mean velocity, U, defined by

- 1 r
^ -h
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and realizing that the boundary conditions (eqs . A-5 and A-6) may be
used to simplify equation (A-9) , the continuity equation becomes

1^-^ gl {uch+n)} = . (A-ii)

From the continuity equation in its basic form (eq. A-1),
introduction of the typical length scales, the wavelength, L, in the
horizontal direction and the water depth, h, in the vertical direction^
shows that the order of magnitude of the vertical velocity component
is given by

W = (^ U) . (A-1 2)

Thus, for long waves, h/L << 1, vje have that W « U. This observation
suggests that the vertical fluid accelerations, DW/Dt, in equation
(A-3) may be neglected. For long waves equation (A-3) therefore
simplifies to a statement of hydrostatic pressure distribution,

P = PgCn-z) , CA-13)

where the boundary condition (eq. A-4) has been invoked.

Introducing p as given by equation (A-13) and making use of
equation (A-1) the horizontal momentum equation may be written:

DU .iU ,
8U1

,
3UW.

= .g in . llZ£
. (A-14)

Dt ^8t 3x Sz -* ^ 8x Sz * '

This equation may be integrated over the depth to yield:

U dz + -^r^
I

U^ dz -U {-^ + U -^ -W }
St , 8x , n St n Sx n

-h ^ -h

By virtue of the boundary conditions (eqs. A-5 and A-6), the

bracketed terms vanish, and by introducing the concept of the momentum
coefficient.
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rn

u' dz
J-h

(h^-n)
0-2

K = -^^ ^ , CA-16)

the integrated momentum equation may be written:

3^ {(h.n) u} . ^ {(h.n) k/} = -ChH-n) g |^ - -^ ,
(A-17)

in which the shear stress on the free surface has been set equal to

zero.

Using the results from linear wave theory (Eagleson and Dean,

1966), it may be shown that the value of Km as given by equation CA-16)
is 1.01 corresponding to a wave having h/L = 0.1. Thus, it is a good

approximation to take K^ in equation (A-17) equal to unity as is

normally done in open channel flow calculations. With K^ equal to unity
and incorporating the continuity equation, equation (A-11), the
momentum equation becomes:

St * " 37= -g 57- ^Th^ • f^-^^^

The appropriate equations governing the propagation of long waves
over a rough bottom are therefore equations (A-11) and (A-18). However,
these equations cannot be solved until the shear stress in equation
(A-18) has been related to the kinematics of the problem. To this end
we may introduce the concept of the wave friction factor, f , as defined
by Jonsson (1966)

,

T^ = i
P fju|u , (A-19)

where |u| is the absolute value of the velocity. When this expression
is introduced in equation (A-18) the governing equations become:

^ + g| (h+n) U} = (A-20)

and

— f lulu
3U ,, 3U 3n 2 wl I

^. ^,^
3t ^ "J

37 = -g 37 -
(h.n) '

^^-21^

where the overbar notation has been dropped.
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a. Linearization and Solution Technique. To obtain closed form
analytical solutions to the equations derived in the previous section
it is necessary to linearize these equations. To justify a linearization
of equations CA-20) and (A-21) we must impose the condition that

|n| << h , CA-22]

in which case h+n may be replaced by h. This condition implies that
the term U8U/Sx also may be omitted. Hence, the final task is to
linearize the bottom friction term. Since we will be looking for
periodic solutions to the linearized equations this is conveniently
done by taking

V = -hT^ = —IT— '

.

^^-233

in which fj^ is treated formally as a constant and oj is the radian
frequency of the periodic motion.

Performing the above linearizations of the governing equations,
we obtain

It
- 37 ChU) - (A-24)

and

U' ^-^^ V" - ' (A-25)

To illustrate the solution of this set of equations we consider
the simple case of periodic waves of radian freqviency, to, propagating
over a horizontal bottom, i.e., h = hg = constant. To facilitate the
solution complex variables are introduced by defining

U = Real {u e^'^^}

n = Real { c e^*^^} , CA-26)

where i = /^ and the amplitude functions, u and c> are complex
functions of x. The physical solution is given by the real part of
the solution as indicated by the notation Real { }. Introducing
equation (A-26) in equations (A-24) and (A-25) , these may be written
in terms of the amplitude functions:

iwc + h 1^ = (A-27)
o 8x ^ -^
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and

icod-if,) u + g |^= . (A-28)
D oX

From equation CA-28) we obtain

u = -
, g. , ^ ,

(A-29)
iaj(l-if, J 3x

which may be substituted into equation CA-27) to yield the governing

equation

:

^2 gh b
8x ^ o

which simplifies to the usual wave equation for f, equal to zero.

The general solution of equation (A-30) is given by

-ikx +ikx ^. ^1-,
? = a e + a_e , (A-31J

in which a and a_ are complex amplitudes, whose magnitudes give the

physical wave amplitude, and k is the complex wave number defined by

^ o

which may be written in terms of the usual wave number,

k = -^^— (A-333
rrr'

(A-34)

and

/
e/-.^k = k /Tif, =

b

where

tan2(i)^ = f^
b b

CA-35)

Taking, for example, the wave solution of amplitude a in

equation (A-31), this reads:



4>

-ik A+^ ^
- X . f , (cos*. - sind), ) X

o b b b

^/ 2 V 2
-k / 1 + f, sinA, X -ik / 1+f, cos*, x

= a^ e ° ^ "^ e ° ^ 1^
, (A-36)

where a may be considered a real number. When this is introduced in

equation (A. 26) and only the real part is retained we obtain

4>V 2
-k / 1 + f, sintj), X 4a y

n = a e cos (ujt -k / l + f, cosd), x) , (A-S?)
+ + ^obb

which shows the solution to be that of a sinusoidal wave propagating
in the positive x-direction with an exponentially decreasing amplitude.

In the same manner the wave solution of amplitude a_ in equation
(A-31) may be shown to represent a wave propagating in the negative
x-direction with an exponentially decreasing amplitude in the direction

of propagation. Thus, we have obtained a formal solution to the problem
of a long wave propagating over a rough bed. However, the solution

must be considered formal since it depends on the value of the

linearization factor f^ introduced through equation (A-23) . To obtain

the appropriate value of the constant f^, it must be related to the

true friction factor, f^^, and the wave characteristics.

b. Application of Lorentz' Principle . To obtain an explicit
solution for the linearized friction factor, fj^, we use Lorentz'

principle of equivalent work. This principle is a useful tool for

obtaining approximate results from a set of linearized governing
equations in which the nonlinear term expressing the flow resistance
has been linearized. The principle (Ippen, 1966) states that the

average rate of energy dissipation calculated from the "true" nonlinear

friction term and that calculated from its linearized equivalent should

be the same. As shown by Kaj iura (1964), the instantaneous rate of

energy dissipation per unit bottom area may be approximated by

E^ ^ Ut, . (A-38)
u — b

For a given area. A, and assuming a periodic motion of period, T, the

average rate of energy dissipation becomes:

Ep = M dA {i
1^

Ut^ dt} , (A-39)



in which the double overbar signifies that spatial as well as temporal

average is to be taken.

In the present context use of equations CA-19) and (A-23) in

conjunction with Lorentz' principle yields:

i|^dA(i0pf^ lulU^dt)^

,1 dA {^ [ p f, toh U^ dt} , (A-403
A 1^ TJq b

which leads to a determination of f, in terms of known quantities.

As an illustration we take a progressive wave in a constant depth

of water, h = h , and equation (A-40) may be written:

^ f U U

+

in which U is given by equations (A-26) and (A-29) corresponding to

the surface profile given by equation (A-36) , i.e.,

""

6o/l-if,
b

-k.x

U e ^ cos(ojt -k X + (j) 3 ,
- (A-42)

in which <^, is given by equation (A-35) and

gk a

Oj/ 1 + f,
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and
/

2
ik. = k = k / 1+f, (cos<|) -i sincj) ) . (A-44)

Introducing these expressions in equation (A-41) and performing
the spatial average over an area of unit width and extending from
X = to X = £, the following equation is obtained:

. . -3k.il
4/ ^ . k a „ ^ 1

J- / -, j~ 2 4j, 0+ r2 1-e -, ., ,^^
f, / 1+f, = ^- f ^ {^ :5T

—7-} . (A-45)
b b 3Tr w -, , . 2 3 -2k. £ *-

^

(k h ) , 1
o o 1-e

Although not leading to an explicit equation for the friction
factor, f}^, this expression may be solved iteratively from knowledge
of f^^ and the wave characteristics. The bracketed term in equation
(A-45) arises from the spatial averaging process and becomes unity if
k.Jl << 1. Thus, in the immediate vicinity of x = we have

Ar TT k a

f, /l+f, = T- f ° ^
-, , (A-46)

b b 3Tr w ,, , ,2
(k h )

o

which may be shown to lead to the same rate of amplitude attenuation
as the formula suggested by Putnam and Johnson (1949).

c. Limitation of the Solution . To discuss the limitations of the
solutions obtained from the governing equations derived in the preceding
sections we consider the solution obtained for a progressive wave in

constant water depth, hQ, without bottom friction, i.e., f^^ = f, - <(>,= 0.

For this simple case we have from equations (A-37) and (A-42)

,

n = a cos (k x -wt)
+ + ^ o

U = T— v/ilT cos(k X -tot) . (A-47)
+ h ^ o ^

o

The basic assumption made in the derivation of the equations
leading to this solution was that the vertical accelerations were
negligible. We may now reexamine this assumption by obtaining the

expression for the vertical velocity, W , from equation (A-1),

W = a 0) (1 + r-^) sin(k X -tot) , (A-48)

and the leading term arising from the vertical fluid acceleration in

equation (A-3) is
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8W ^

p __1 = -pa_^aj (1 + ^) cos(k^x -wt) ,
(A-49)

o

which integrated over depth gives:

z 8W
^

p —^ dz = - 4 P a w h CI + €-3 cos(k X -wt) . (A-50)

_j^
8t 2 + h^ o

o

From the derivation of the pressure distribution (eq. A-13), the

term expressing the presence of the wave is

p = p ga cos (k X -tot) ,
(A-51)

and to justify the neglect of the term given by equation (A-50) we

must have that

1 2
^ p a U)''h << p ga , (A-52)
2 + o

f" 6 + '

which with the aid of equation (A-33) may be stated as

^ (k h )^ << 1 , (A-53)
2 o o

i.e., a requirement of long waves as previously stated.

Now, in the process of linearizing the governing equations it was

mentioned that this linearization was justified if

N.I a^
« 1 ,

' (A-54)
h h
o o

because the terms then omitted would be smaller than the terms retained
by the factor a /h. This in turn would be a consistent procedure only
if the pressure term given by equation (A-50) is greater than (a /h)

times the leading term given by equation (A-51), i.e., linearization
of the governing equations and taking the pressure distribution to be
hydrostatic is consistent only if

1 2 ^+

2 p a^o) h^ » p ga^ j^ , (A-55)

o
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which may be written as the requirement that the Stokes' parameter

2
a L
+

o

<< 2tt^ . (A-56)

Thus, the limitations on the solutions obtained from the linearized
set of governing equations are expressed as the inequalities given by
equations (A-53) , (A-54), and (A-56). For a derivation of the appropriate
governing equations when equation (A-56) is violated the reader is

referred to Peregrine (1972)

.

For a wave propagating over an uneven bottom a vertical velocity
may be imposed by the bottom boundary condition (eq. A-6) . So long as

the velocity obtained from this boundary condition is smaller than that
given by equation (A-48) the preceding limitations are applicable.
This in turn may be stated as a requirement that the bottom slope,

tanB = ll^l ,
(A-57)

s ' 9x' '

satisfy the inequality,

tanB^
"

< 1 . (A- 58)
kh

2. Long Waves in a Porous Medium .

To derive the equations governing the propagation of waves in a

porous medium we consider an element as sketched in Figure A-2.

In a porous medium of porosity, n, the discharge per unit area in

say the x-direction is given U = nUg where Ug is the seepage velocity,
i.e., the actual mean velocity of the pore fluid, and U is termed the
discharge velocity. With this definition it is seen that the discharge
velocity, (U,W), for an incompressible fluid and medium must satisfy
the continuity equation:

or for a homogeneous medium,

3U 8W

33^ . 3/ = . (A-60)
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A Ws, W

Us,U

Figure A-2. Definition sketch.

To derive the horizontal momentum equation we consider the

elementary control volume indicated in Figure A-2. The momentum
equation states that the sum of the forces acting on the fluid within

this element must equal the rate of increase in momentum plus the net

momentum flux out of this control volume. Of forces acting on the

fluid within the element we have the pressure force.

6F =

P

3p

8x
6x6z (A-61)

and a force resisting the fluid motion within the porous medium. In

an unsteady motion this force will consist of a drag force, 5F^, and

an inertia force, 6Fj. For steady flow the drag force component is

expressed as a volume force which may be taken as

6F -P (ex + 6/7 W^)U 6x5z CA-62)

where the hydraulic properties of the porous medium are given by the
coefficients a and B. The coefficient a expresses the laminar flow
resistance and S is associated with the turbulent flow resistance.

The inertial force, 6Fj, is associated with the fluid acceleration.
The fluid velocity, as seen by a solid particle in the porous medium,
is the seepage velocity and by analogy with inertia forces acting on a
single particle we may take
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DU DU
6Fj = -p(i + k) ^ 5¥-^ = -P(l + K) ^ (1-n) 6x6z , (A-63)

where SVjjj is the volume of solids within the control volume and k is

the added mass coefficient. Little information is available on the
magnitude of k for a closely packed ensemble of irregular grains. For
isolated spheres k = 0.5 may serve as an indication of the order of
magnitude.

The rate of change of momentum within the fixed control volume is

given by

3M 9 ^^c

and the momentum flux out of the control volume is given by

3U 3U

where the continuity equation has been invoked.

Now formulating the momentum equation,

6F + 6F^ + 6F^ = 1^ + M^ , CA-66)
p d 1 3t F

and introducing equations (A-61 through A-65) the horizontal momentum
equation is obtained as

DU y-^ J
p(l + K (1 - n)) jrr^ = - ^ - p(a + e/u + W ) U , (A-67)

Ut oX

which corresponds to the equation given by Polubarinova-Kochina (1962)

for unsteady flow in a porous medium with the resistance term expressed
by a Dupuit-Forchheimer type of formula. The coefficient attached to

the acceleration term is somewhat different from the expression given

by Sollitt and Cross (1972), but is believed to be correct in the
present derivation.
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A similar expression may be derived by considering the vertical

momentum thus leading to the momentum equations for a homogeneous,

imcompressible medium,

DU . /—

5

J
S T^ = - i^ -p{n(a + 3/u + W^) } U^ (A-68)

Dt 3x "^ ^ ^ s

and
DW /—2 o

pS p^= - |2- - Pg -plnCa + g/ U + W")} W^ ,
(A-69)

where

S = 1 + kCI - n] , CA-70)

is expected to take on values within the range 1 <_ S <_ 1.5.

The similarity of these governing equations and those given for

waves over a rough bottom (eqs. A-1 through A-3) should be noted.

Further development follows that given in Appendix A.l and the boundary
conditions to be satisfied are those previously given but now expressed
in terms of the seepage velocity. Hence, integration of the continuity
equation over depth gives:

and with the assumption of long waves, equation (A-69) yields a

hydrostatic pressure distribution,

p = pg(n + z) . (A-72)

The horizontal momentum equation then becomes

= JBF=-^£- («*B|ui)U ,
(A-73)

where U should be interpreted as the depth averaged discharge velocity.

a. Linearization and Solution Technique . The linearized version
of the governing equations may be taken as

'^ It ^ 37 fhU) = CA-74)
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and

n 3t ^ 8x n

where the flow resistance term has been linearized by introducing the

dimensionless factor, f, defined by

a + 6 U , (A-76)

in which w is the radian frequency of the wave motion, which is assumed
periodic.

The solution technique is that used in the solution of the
linearized equations governing the propagation of long waves over a rough
bottom, i.e., we take

n = Real ice }

U = Real {u e^"'''^} . [A-77)

For the case of constant depth h = h introducing equation (A-77) in

the governing equations leads to

u - - g". |1 , (A-78)
laj(S-if) 3x

and the equation governing the amplitude function

2 2

^+ ^ (S-if)c = CA-79]

8x ^ o

Both of these equations are seen to be similar to those discussed
in Appendix A.l.a and the results obtained there are readily generalized
to give the solution for a progressive wave in a porous medium. The

general solution consisting of waves propagating in the positive and

negative x-direction is found to be given by

C = a e"^^ + a e^^^ , (A-80)
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where

and

^r-^ T -M
k .^"^if = k /s^ + f^ e ^ (A-81)
o o

As was the case in the solution for long waves over a rough bottom,

the above solution is formal only, since the appropriate value to be

assigned to the linearized resistance coefficient f has not been

determined.

To obtain the appropriate value for f, Lorentz' principle is used

with the rate of dissipation per unit volume given by

^D " " ^^d • (A-83)

Thus, we obtain:

f ^ U^ = aU^+ b|u|u^ ,
(A-84)

where the spatial average is to be taken over the volume occupied by the

fluid.

As a simple example we consider the velocity given by

U = U cos ojt ,
(A-85)

for which equation (A-84) yields:

f = -(cc + I- 3 U ) . (A-86)
oj^ 3tt o-^

In the discussion of long waves propagating over a rough bottom the result
corresponding to equation (A-86) was given by equation (A-46) . However,
although the friction factor, f^^, in equation (A-46) may be considered
known by applying Jonsson's (1966) empirical results, we have not
established a similar empirical relationship for the hydraulic properties,
a and 3, of a porous medium.
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Engelund (1953) reviewed a number of empirical formulas for the
hydraulic properties of porous media consisting of sand. He recommended
the following empirical relationships:

Cl-n)^ ^ (A-87)

d

and ^i
, (A-88)

in which d is the grain size of the porous material ^ v is the kinematic
viscosity of the pore fluid, and Kq and Bq si's constants whose values
have been found to vary within the range,

780 < a < 1,500 or greater
o ' ^

1.8<6 < 3.6 or greater . (A-89)

The coefficient ct, which depends on the fluid viscosity, is expressing
the Darcy-type resistance associated with laminar flow of the pore fluid.
The flow resistance associated with the coefficient B is the velocity
square-type normally associated with turbulent flow. From equation CA-86)
it is seen that we may take

f = =— - 6U (1 + -^ -^TT-) , (A-90)
3tt CO o 8 SU

in anticipation of the domination of turbulent resistance in prototype
flow of water through breakwaters. Written in this form the degree to
which laminar resistance affects the results is given by

ct
3tt a 377 ^, ^ 2 , V . ,. „,.
-8 BIT = -^ f^-"^ " - ^dir^ '

f^-91^

where equations (A-87) and (A-88) have been introduced. This expression
may be written as:

3-n- g _ _
8 BU " R

(A-92)
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in which R, is a particle Reynolds number.

dU

and

R^ = -^ , (A-93)
d V

R^ = ^ (l-n)^n ^ - 0.17 / _
CA-94}

c
o

is a critical Reynolds number whose value is of the order 70 if the mean

values of the ranges indicated by equation (A-89) are taken. The fact

that the term (l-nj^n varies only slightly for 0.4 < n < 0.5 has been

used in establishing equation (A-94)

.

Thus, for values of Rj >> R^ the flow resistance is purely
turbulent and with 3 related to the physical characteristics of the

porous material through equation (A-88) with Sq taken as 2.7, the

problem of determining f may be considered resolved.

b. Limitation of the Solution . The basic assumption made in the
derivation of the equations for the propagation of long waves in a

porous medium was that the waves be long relative to the depth. Whereas

this assumption in the context of long waves over a rough bottom was
equivalent to the negligible effect of vertical fluid accelerations, the

important term to consider in the context of waves propagating in a

porous medium is the term expressing the resistance to vertical flow in

equation (A-69)

.

For the simple case of a progressive wave in a porous medium the
solution for the horizontal velocity component given by equation (A-78)

is

g n k a .,
+ -ikx ,. „p,

u = + — e , CA-95)
CO v^S-if

and from the continuity equation one may therefore obtain:

g n k a h .,
+ o ,, z, -ikx ^. „^.w+ = -1 ^^ "

F"^ ® '
^^-^^^

o

and the vertical resistance will contribute to the pressure distribution
by an amount
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pf ^ W^ dz = -i ^Cl + jp)^ Pf g(koV^ a^ e"^^""
, CA-97)

which is to be compared with the term retained, i.e., pg a .

Thus, for the term given by equation (A-97) to be negligible we
must require that

i- fCk h )^ << 1 , (A-98)

which for values of f greater than unity is a more severe requirement
than that given by equation (A-53) . Thus, for values of kghQ |^^ 0.5 and
f ^4, which are reasonable values, the inequality (eq. A-98) is only
approximately satisfied.

123



APPENDIX B

' EXPERIMENTAL DATA

This Appendix presents the experimental data obtained under the

present research program.

Tables B-1 and B-2 present the experimental data used in establishing

the empirical relationship for the wave friction factor, Figure 22,

and equations (124) and (125). Column 1 identifies the experimental run.

Columns 2 and 3 give the slope roughness, d, and the period of the

wavemaker, T, respectively. From the experimental data, when analyzed

as described in Section III. 3. a and Appendix C, the incident wave height,

H^, and the reflection coefficient, R^, are obtained as listed in

columns 4 and 7, respectively. The observed runup on the rough slope

is listed in column 6, and the value of the horizontal extent of the

slope relative to the incident wavelength obtained from linear wave
theory, JI5/L, is given in column 5. Thus, the first seven columns
constitute experimental data.

With the values of l^,/^^ and R^ from columns 5 and 7 the corresponding
value of (}) , the slope friction angle, is obtained from Figure 15. The
value of ^, listed in column 8, along with the value of J-s/L then enables
Figures 16 and 17 to be used to evaluate R^ and F^ as listed in columns 9

and 10, respectively. Finally, fg = tan2(j) is evaluated and the value of
f^^ for a given experimental condition is computed from equation (116),
using R^ as listed in column 9 from which column 13 is also obtained.

The values listed in columns 12 and 13 are those plotted in Figure 22

from which the empirical relationships, equations (124) and (125) were
obtained.

Columns 14 and 15 list the predicted values of the reflection
coefficient when the procedure is used in reverse, i.e., when the
empirical formulas (eqs. 124 and 125) are adopted for the value of f^^.

Column 14 gives the predicted reflection coefficient, Rp, using the
more elaborate empirical express! on for f^^, equations (125) or (127).

Column 15 gives the result, Rpg, obtained when the simple expressions,
(eqs. 124 or 126) are used.

Tables B-3 and B-4 list the experimental results obtained from the
separate set of experiments which were not involved in establishing
equations (124) and (125). From the experimental conditions the
reflection coefficients are predicted from equation (124), Rp, and from
equation (126), Rps> following the procedure described in Section III. 4.

The comparison between predicted and measured reflection coefficients,
R^, listed in Tables B-1 through B-4 is performed in Table 2.

124



Table B-1. Experimental results for 1:2.0 slope, h = 1 foot.
o

M
Run

N'o. (in) (sec) (ft)
i

(deg)
* tanB d p ps

1 0.0 2.0 0.06 0.19 1.39 0.84 2.4 1.70 0.88 0.085 0.48

2 0.0 2.0 0.05 0.19 1.53 82 2.9 1.67 0.88 0.103 0.69
3 0.0 2.0 0.07 0.19 1.69 84 2.3 1.71 0.88 0.079 0.39
4 0.0 2.0 0.08 0.19 2.02 89 1.6 1.76 0.88 0.054 0.22

5 0.0 1.8 0.06 0.21 1.33 86 1.5 1.96 0.92 0.052 0.26
6 0.0 1.8 0.06 0.21 1.38 85 1.5 1.96 0.92 0.053 0.23
7 0.0 1.8 0.07 0.21 1.66 82 1.9 1.92 0.92 0.065 0.27
8 0.0 1.8 0.08 0.21 1.85 85 1.5 1.96 0.92 0.064 0.19
9 0.0 1.6 0.05 0.24 1.35 82 1.7 2.10 1.03 0.060 0.26

10 0.0 1.6 0.06 0.24 1.37 85 1.2 2.16 1.03 0.043 0.16
11 0.0 1.6 0.07 0.24 1.44 86 1.1 2.18 1.03 0.039 0.13
12 0.0 1.6 0.09 0.24 1.51 87 1.0 2.19 1.03 0.035 0.09
13 0.5 2.0 0.08 0.19 1.50 76 3.8 1.62 0.88 0.133 0.59 6.22 0.83 0.83
14 0.5 2.0 0.09 0.19 1.61 77 3.7 1.63 0.88 0.129 0.47 7.59 82 0.83
15 0.5 2.0 0.10 0.19 1.62 76 3.8 1.62 0.88 0.134 0.53 7.00 83 0.83
16 0.5 2.0 0.11 0.19 1.69 76 3.8 1.62 0.88 0.132 0.45 8.17 82 0.83
17 0.5 1.8 0.05 0.21 1.63 73 2.9 1.83 0.92 0.101 0.59 4. 48 77 0.74
18 0.5 1.8 0.06 0.21 1.66 72 3.0 1.82 0.92 0.105 0.44 6.29 75 0. 74

19 0.5 1.8 0.07 0.21 1.78 73 2.8 1.83 0.92 0.098 0.35 7.20 74 0.74
20 0.5 1.8 0.08 0.21 1.82 72 3.0 1.82 0.92 0.103 0.49 5.50 76 0.74
21 0.5 1.6 0.04 0.24 1.62 72 2.4 2.02 1.03 0.082 0.44 4.36 70 0.64
22 0.5 1.6 0.05 0.24 1.63 69 2.6 1.98 1.03 0.093 0.44 4.85 69 0.64
23 0.5 1.6 0.06 0.24 1.71 69 2.6 1.99 1.03 0.091 0.40 5.25 68 0.64
24 0.5 1.6 0.06 0.24 1.71 68 2.8 1.96 1.03 0.098 0.39 5.74 68 0.64
25 1.0 2.0 0.06 0.19 1.79 78 3.5 1.64 0.88 0.123 0.67 2.52 82 0.79
26 1.0 2.0 0.07 0.19 1.87 77 3.6 1.63 0.88 0.128 0.67 2.62 82 0.79
27 1.0 2.0 0.05 0.19 1.93 78 3.4 1.64 0.88 0.119 0.77 2.13 83 0.79
28 1.0 2.0 0.04 0.19 1.97 80 3.1 1.65 0.88 0.109 0.83 1.78 83 0.79
29 1.0 1.8 0.06 0.21 1.74 73 2.9 1.83 0.92 0.102 0.48 2.77 73 0.69
30 1.0 1.8 0.07 0.21 1.74 75 2.7 1.85 0.92 0.095 0.41 3.06 72 0.69
31 1.0 1.8 0.07 0.21 1.81 72 3.0 1.82 0.92 0.104 0.43 3.15 72 0.69

32 1.0 1.8 0.05 0.21 2.00 75 2.7 1.85 0.92 0.094 0.59 2.09 75 0.69
33 1.0 1.6 0.12 0.24 0.93 61 3.4 1.89 1.03 0.121 0.26 5.35 58 0.59
34 1.0 1.6 0.11 0.24 1.62 62 3.4 1.89 1.03 0.119 0.28 4.81 59 0.59

35 1.0 1.6 0.08 0.24 1.80 61 3.5 1.89 1.03 0.121 0.38 3.67 61 0.59
36 1.0 1.6 0.05 0.24 1.95 64 3.2 1.92 1.03 0.133 0.59 2.21 66 0.59
37 1.5 2.0 0.08 0.19 1.74 73 4.2 1.66 0.88 0.149 0.62 2.29 79 0.77
38 1.5 2.0 0.18 0.19 1.81 79 3.4 1.70 0.88 0.118 0.22 5.01 75 0.77
39 1.5 2.0 0.16 0.19 1.86 73 4.3 1.66 0.88 0.150 0.34 4.17 76 0.77
40 1.5 2.0 0.11 0.19 2.21 79 3.2 1.71 0.88 0.114 0.35 3.10 78 0.77
41 1.5 1.8 0.05 0.21 1.68 69 3.2 1.80 0.92 0.113 0.56 1.77 71 0.67
42 1.5 1.8 0.10 0.21 1.70 71 3.1 1.81 0.92 0.109 0.63 1.51 68 0.67
43 1.5 1.8 0.06 0.21 1.77 67 3.6 1.76 0.92 0.127 0.39 2.82 71 0.67
44 1.5 1.8 0.09 0.21 1.81 67 3.7 1.76 0.92 0.129 0.43 2.59 68 0.67
45 1.5 1.6 0.05 0.24 1.46 62 3.4 1.90 1.03 0.118 0.53 1.73 62 0.55
46 1.5 1.6 0.08 0.24 1.61 56 4.1 1.82 1.03 0.143 0.47 2.34 59 0.55
47 1.5 1.6 0.14 0.24 1.69 59 3.7 1.86 1.03 0.129 0.24 4.05 52 0.55
48 1.5 1.6 0.12 0.24 1.72 59 3.7 1.86 1.03 0.129 0.28 3.60 55 0.55
49 2.0 2.0 0.17 0.19 1.76 73 4.0 1.82 0.88 0.141 0.34 3.39 74 0.76
50 2.0 2.0 0.12 0.19 1.76 76 3.9 1.83 0.88 0.137 0.41 2.50 76 0.76
51 2.0 2.0 0.08 0.19 2.07 73 3.8 1.85 0.88 0.133 0.61 1.53 78 0.76
52 2.0 2.0 0.17 0.19 2.15 71 3.9 1.83 0.88 0.137 0.28 3.23 75 0.76
53 2.0 1.8 0.13 0.21 1.74 58 4.8 1.66 0.92 0.171 0.44 2.51 64 0.65
54 2.0 1.8 0.10 0.21 1.79 61 4.5 1.68 0.92 0.160 0.51 2.05 66 0.65
55 2.0 1.8 0.04 0.21 1.97 66 3.8 1.74 0.92 0.134 0.83 1.05 72 0.65
56 2.0 1.8 0.05 0.21 2.03 66 3.8 1.74 0.92 0.134 1.01 0.86 72 0.65
57 2.0 1.6 0.11 0.24 1.61 57 4.0 1.82 1.03 0.141 0.34 2.39 54 0.53
58 2.0 1.6 0.12 0.24 1.70 & 57 3.9 1.83 1.03 0.137 0.28 2.82 52 0.53
59 2.0 1.6 0.09 0.24 1.89 57 3.9 1.83 1.03 0.137 0.41 1.93 56 0.53
60 2.0 1.6 0.05 0.24 2.01 58 3.8 1.85 1.03 0.133 0.61 1.27 60 0.53
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Table B-2. Experimental results for 1:3.0 slope, h = 1 foot.

/L R.= ¥

0.0

0.0

0.0
0.0

1.0

1.0
1.0

0.05 0.28 1.70 0.84 1.3

0.06 0.28 1.85 0.81 1.9

0.06 0.28 2.08 0.80 2.0

0.09 0.31 2.06 0.75 2.3
0.06 0.31 2.21 0.77 2.0
0.07 0.31 2.32 0.81 7. 7

0.05 0.31 2.50 0.80 1.8
0.09 0.36 1.13 0.80 1.8
0.09 0.36 1.99 0.79 2.0
0.07 0.36 2.08 0.78 2.1
0.09 0.36 2.42 0.79 1.9

0.08 0.28 1.72 0.59 3.7

0.07 0.28 1.77 0.57 3.9

0.08 0.28 1.83 0.54 4.1
0.11 0.28 1.93 0.51 4.5

0.07 0.31 1.31 0.56 4.6
0.09 0.31 1.68 0.56 4.6

0.05 0.31 1.72 0.59 4.2

0.10 0.31 1.72 0.55 4. 7

0.06 0.36 1.13 0.52 5.3
0.06 0.36 1.29 0.52 5.5
0.08 0.36 1.32 0.47 6.4
0.10 0.36 1.34 0.47 6.6

0.13 0.28 1.31 0.50 4.8

0.06 0.28 1.46 0.56 4.0
0.09 0.28 1.47 0.51 4. 7

0.06 0.28 1.71 0.53 4.4
0.07 0.31 I.IA 0.48 5.9

0. 12 0.31 1.23 0.44 6.8
0.10 0.31 1.25 0.49 5.7
0.11 0.31 1.33 0.49 5.8
0.06 0.36 0.72 0.49 6.1
0.10 0.36 0.90 0.46 6.8
0.13 0.36 0.99 0.46 6.7
0.14 0.36 0.06 0.41 7.9

0.06 0.28 1.03 0.52 4.6
0.12 0.28 1.34 0.43 5.7

0.14 0.28 1.39 0.46 5.1
0.10 0.28 1.54 0.47 5.0
0.07 0.31 0.95 0.53 5.1
0.07 0.31 1.17 0.52 5.2

0. 11 0.31 1.22 0.42 7.3

0.08 0.31 1.34 0.46 6.2
0.09 0.36 0.98 0.46 6.7
0.07 0.36 1.06 0.53 5.4
0.05 0.36 1.09 0.50 6.0
0.05 0.36 1.18 0.49 6.2
0. 11 0.28 1.34 0.45 5.5
0.14 0.28 1.52 0.94 5.6
0.08 0.28 1.75 0.48 5.0
0.06 0.28 2.12 0.52 4.5
0.11 0.31 1.10 0.41 7.5
0.08 0.31 1.37 0.45 6.5
0.10 0.31 1.60 0.43 7.0
0.06 0.31 1.83 0.49 5.9
0. 10 0.36 1.24 0.40 8.3
0.13 0.36 1.25 0.38 8.9
0.17 0.36 1.37 0.34 10.4
0.08 0.36 1.60 0.43 7.6

2.35
2.22

1.30 0.044 0.10
1.29 0.067 0.14
1.30 0.070 0.14
1.62 0.081 0.09
1.62 0.070 0. 11

1.63 0.060 0.08
1.62 0.063 0.12
1.88 0.062 0.05
1.94 0.069 0.06
2.03 0.073 0.08
1.91 0.068 0.09
1.28 0.129 0.23 10.51 0.55 0.57
1.28 0.135 0.29 8.89 0.56 0.57
1.24 0.145 0.26 10.69 0.54 0.57
1.25 0.158 0.21 14.22 0.51 0.57
1.59 0.162 0.27 9.09 0. 54 0.54
1.59 0.161 0.21 11.44 0.52 0.54
1.58 0.147 0.34 5.60 0.57 0.54
1.59 0.164 0.18 13.49 0.50 0.54
1.86 0.186 0.29 8.21 0.44 0.58
1.86 0.193 0.35 7.15 0.54 0.58
1.57 0.228 0.38 9.25 0.52 0.58
1.57 0.233 0.30 11.74 0.48 0.58
1.26 0.168 0.19 8.23 0.45 0.50
1.28 0.141 0.34 3.86 0.53 0.50
1.27 0.166 0.28 5.54 0.50 0.50
1.28 0.154 0.36 4.04 0.52 0.50
1.52 0.211 0.37 4.49 0.50 0.49
1.53 0.241 0.29 6.75 0.46 0.49
1.55 0.200 0.25 6.19 0.47 0.49
1.55 0.204 0.23 6.75 0.47 0.49
1. 79 0.215 0.41 3.54 0.48 0.47
1.81 0.243 0.27 5.92 0.45 0.47
1.79 0.239 0.22 7.21 0.44 0.47
1.73 0.282 0.27 7.30 0.43 0.47
1.28 0.165 0.39 2.67 0.50 0.47
1.27 0.200 0.25 5.03 0.43 0.47
1.29 0.179 0.19 5.74 0.43 0.47
1.27 0.176 0.31 3.61 0.46 0.47
1.57 0.178 0.32 2.82 0.49 0.47
1.57 0.182 0.31 3.03 0.48 0.47
1.52 0.259 0.33 4.05 0.44 0.47
1.50 0.219 0.37 3.15 0.47 0.47
1. 78 0.239 0.33 3.30 0.45 0.44
1.89 0. 189 0.27 3.02 0.46 0.44
1.83 0.218 0.48 1.94 0.49 0.44
1.83 0.219 0.45 2.15 0.48 0.44
1.28 0.194 0.27 3.41 0.43 0.45
1.27 0.196 0.22 4.75 0.41 0.45
1.27 0.175 0.24 2.45 0.46 0.45
1.28 0.160 0.34 1.93 0.48 0.45
1.50 0.267 0.34 3.11 0.43 0.45
1.50 0.231 0.41 2.22 0.46 0.45
1.51 0.249 0,34 2.93 0.44 0.45
1.54 0.209 0.46 1.76 0.48 0.45
1.67 0.297 0.41 2.61 0.42 0.43
1.65 0.320 0.35 3.28 0.41 0.43
1.48 0.512 0.56 3.69 0.40 0.43
1.73 0.271 0.45 2.11 0.44 0.43
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Table B-3. Experimental results for 1:2.5 slope, h = 1 foot,^ o

1 2 3 4 5 6 7 8

d T H. K =M R R R
1 u H. P ps

Run
Number (in) (sec) (ft)

175 0.0 2.0 0.07 1.64 0.84
176 0.0 2.0 0.06 1.39 0.83
177 0.0 2.0 0.05 1.56 0.82
178 0.0 2.0 0.08 2.02 0.89
179 0.0 1.8 0.08 1.82 0.85
180 0.0 1.8 0.07 1.64 0.82
181 0.0 1.8 0.06 1.48 0.85
182 0.0 1.8 0.05 1.46 0.86
183 0.0 1.6 0.09 1.51 0.87
18A 0.0 1.6 0.06 1.39 0.85
185 0.0 1.6 0.07 1.34 0.86
186 0.5 2.0 0.09 1.86 0.65 0.65 0.66
187 0.5 2.0 0.07 2.03 0.67 0.67 0.66
188 0.5 2.0 0.06 1.73 0.70 0.68 0.66
189 0.5 2.0 0.04 1.58 0.71 0.71 0.66
190 1.0 2.0 0.04 1.70 0.65 0.68 0.61
191 1.0 2.0 0.06 1.73 0.64 0.64 0.61
192 1.0 2.0 0.08 1.83 0.64 0.63 0.61
193 1.0 2.0 0.07 1.79 0.64 0.64 0.61
194 1.5 2.0 0.05 1.66 0.63 0.64 0.57
195 1.5 2.0 0.04 1.43 1.65 0.66 0.57

196 2.0 2.0 0.06 1.73 0.59 0.60 0.54

197 2.0 2.0 0.04 1.70 0.61 0.64 0.54
198 0.5 1.8 0.03 1.40 0.68 0.67 0.59
199 0.5 1.8 0.06 1.73 0.64 0.62 0.59

200 0.5 1.8 0.07 1.79 0.63 0.61 0.59
201 0.5 1.8 0.08 1.96 0.63 0.59 0.59

202 1.0 1.8 0.08 1.95 0.58 0.54 0.52

203 1.0 1.8 0.07 1.79 0.59 0.56 0.52

204 1.0 1.8 0.05 1.88 0.60 0.59 0.52

205 1.0 1.8 0.03 2.1 0.64 0.62 0.52

206 1.5 1.8 0.11 1.71 0.56 0.48 0.47

207 1.5 1.8 0.08 1.56 0.57 0.52 0.47

208 1.5 1.8 0.06 1.73 0.59 0.55 0.47

209 1.5 1.8 0.10 1.77 0.58 0.48 0.47

210 2.0 1.8 0.11 1.52 0.52 0.45 0.44

211 2.0 1.8 0.09 1.39 0.53 0.48 0.44

212 2.0 1.8 0.07 2.53 0.54 0.50 0.44

213 2.0 1.8 0.03 1.39 0.57 0.58 0.44

214 0.5 1.6 0.17 1.59 0.50 0.48 0.54

215 0.5 1.6 0.15 1.67 0.52 0.49 0.54

216 0.5 1.6 0.10 1.67 0.57 0.52 0.54

217 0.5 1.6 0.06 1.57 0.60 0.56 0.54

218 1.0 1.6 0.17 1.84 0.47 0.44 0.49

219 1.0 1.6 0.12 1.57 0.53 0.47 0.49

220 1.0 1.6 0.09 1.62 0.56 0.49 0.49

221 1.0 1.6 0.06 1.73 0.57 0.52 0.49

222 1.5 1.6 0.15 1.46 0.48 0.43 0.45

223 1.5 1.6 0.12 1.65 0.50 0.44 0.45

224 1.5 1.6 0.09 1.73 0.52 0.47 0.45

225 1.5 1.6 0.05 1.67 0.54 0.53 0.45

226 2.0 1.6 0.10 1.46 0.48 0.45 0.43

227 2.0 1.6 0.08 1.3 0.49 0.47 0.43

228 2.0 1.6 0.06 1.65 0.51 0.49 0.43
229 2.0 1.6 0.04 1.58 0.52 0.52 0.43
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Table B-4. Experimental results fc)r 1:1.5 s lope, h^
= 1 foot.

1 2 3 4 5 6 7 8

Run

d T \ \ ' H.
1

R
m

R
P

R
ps

Number (in) (sec) (ft)

120 0.0 2.0 0.13 1.85 0.82
121 0.0 2.0 0.09 1.29 0.91
122 0.0 2.0 0.12 1.35 0.87
123 0.0 1.8 0.05 1.74 0.87
124 0.0 1.8 0.06 1.74 0.85
125 0.0 1.8 0.06 2.01 0.85
126 0.0 1.8 0.06 2.30 0.86
127 0.0 1.6 0.03 2.3 0.87
128 0.0 1.6 0.05 2.08 0.81
129 0.0 1.6 0.06 2.31 0.89
130 0.5 2.0 0.04 1.56 0.87 0.95 0.93
131 0.5 2.0 1.06 1.39 0.86 0.95 0.93
132 0.5 2.0 0.06 1.39 0.86 0.95 0.93
133 0.5 2.0 0.07 1.34 0.86 0.95 0.93
13A 1.0 2.0 0.11 1.43 0.81 0.93 0.92
135 1.0 2.0 0.14 1.33 O.Sii 0.92 0.92
136 1.0 2.0 0.10 2.46 0.81 0.93 0.92
137 1.5 2.0 0.05 1.16 0.84 0.94 0.87
138 1.5 2.0 0.07 1.32 0.79 0.93 0.87
139 1.5 2.0 0.07 1.49 0.81 0.93 0.87
140 1.5 2.0 0.09 1.29 0.81 0.93 0.87
141 2.0 2.0 0.11 2.65 0.83 0.92 0.82
142 2.0 2.0 0.09 1.29 0.84 0.92 0.82
143 2.0 2.0 0.07 1.49 0.85 0.93 0.82
144 2.0 2.0 0.05 0.43 0.85 0.93 0.82
145 0.5 1.8 0.04 1.56 0.81 0.92 0.89
146 0.5 1.8 0.02 1.56 0.84 0.93 0.89
147 0.5 1.8 0.04 1.56 0.80 0.92 0.89
148 0.5 1.8 0.05 1.46 0.81 0.92 0.89
149 1.0 1.8 0.08 1.30 0.80 0.89 0.91
150 1.0 1.8 0.07 1.24 0.78 0.89 0.91
151 1.0 1.8 0.07 1.11 0.79 0.89 0.91
152 1.5 1.8 0.05 1.03 0.87 0.89 0.86
153 1.5 1.8 0.08 0.97 0.78 0.89 0.86
154 1.5 1.8 0.10 0.87 0.77 0.88 0.86
155 1.5 1.8 0.10 1.04 0.78 0.88 0.86
156 2.0 1.8 0.11 0.95 0.72 0.87 0.79
157 2.0 1.8 0.08 1.08 0.74 0.88 0.79
158 2.0 1.8 0.07 1.74 0.74 0.89 0.79
159 2.0 1.8 0.06 1.74 0.74 0.89 0.79
160 0.5 1.6 0.07 1.49 0.79 0.86 0.84
161 0.5 1.6 0.06 1.39 0.77 0.87 0.84
162 0.5 1.6 0.04 1.56 0. 79 0.88 0.84
163 0.5 1.6 0.03 1.74 0.80 0.88 0.84
164 0.0 1.6 0.11 0.95 0.83 0.83 0.90
165 1.0 1.6 0.09 1.93 0.73 0.84 0.90
166 1.0 1.6 0.10 1.13 0.73 0.83 0.90
167 1.0 1.6 0.12 1.15 0.85 0.83 0.90
168 1.5 1.6 0.04 3.12 0.73 0.86 0.85
169 1.5 1.6 0.05 2.90 0.74 0.85 0.85
170 1.5 1.6 0.07 2.68 0.78 0.84 0.85
171 2.0 1.6 0.15 2.30 0.69 0.79 0.78
172 2.0 1.6 0.12 2.08 0. 71 0.80 0.78
173 2.0 1.6 0.08 2.08 0.71 0.80 0.78
174 2.0 1.6 0.06 2.08 0.68 0.83 0.78
230 1.0 2.0 0.12 1.91 0.88 0.92 0.90
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APPENDIX C

DETERMINATION OF REFLECTION COEFFICIENTS

During the preliminary experimental runs performed to determine the
reflection coefficients of steep, rough slopes it was observed that an
appreciable effect of second or higher harmonic motions was present in
the wave flume. It was also found that if one sought out the locations
along the constant depth part of the flume where the wave height, i.e.,
distance between crest and trough, was maximum and minimum, respectively,
the resulting estimate of the reflection coefficient could vary as much
as from 0.45 to 0.75 depending on the choice of maximum and minimum wave
height. With the intended use of the experiments such a variation of
the experimentally determined reflection coefficient is clearly
undesirable.

The theoretical foundation for using the formula for the experimental
determination of the reflection coefficient,

H - H .

max min

is based on an analysis assuming linear waves, i.e., the motion consists
of purely sinusoidal waves of one frequency. Hence, the appearance of
higher harmonics is an indication of the inapplicability of equation (C-1)

for the prediction of reflection coefficients. Furthermore, the physical
concept of a reflection coefficient really makes sense only if super-
position, i.e., linear waves, may be assumed.

If the motion in the wave flume was purely sinusoidal, the surface
variation should at any point vary sinusoidally with a period, T, equal

to that of the wavemaker. Since this was not the case it was decided
to extract from the measured surface variation at each station the
amplitude of the motion having a period equal to that of the wavemaker.
This amplitude of the first harmonic is the one which, according to

linear theory, should vary in such a manner that equation (C-l) provides
a determination of the reflection coefficient, R.

The experimental procedure used was the following. For a particular
experimental run the wave generator was started from rest. The wave
motion in the flume was allowed to reach a quasi-steady state in which
the motion at any point along the flume was periodic, i.e., the motion,

although not purely sinusoidal, repeated itself with a period equal to

that of the wavemaker. It generally took 2 to 3 minutes for this quasi-

steady state to be reached in the present experimental setup. As

mentioned in Section III of the report it was not possible to attain this

quasi-steady state for large amplitude incident waves, which limited the
test conditions for which reflection coefficients could be determined.
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After reaching the quasi-steady state the wave gage was positioned

at the first station. The motion was observed on the paper tape of the

Sanborn recorder and was visually determined to be periodic. With the

maximum paper speed, 100 millimeters per second, three to four wave periods

were recorded. The gage was moved to the next location, 10 centimeters

away, and the procedure was repeated. This was done over a distance of

approximately one wavelength of the incident waves so that at least two

maxima and minima were recorded.

Of the three to four wave periods recorded at a given station one

was chosen for analysis. This variation of the free surface during

one wave period was digitized manually at intervals of 1/20 the wave

period. Since the motion is assumed periodic the two end points of the

digitized data should be identical and the mean value of the two end

points was chosen whenever they were not exactly the same. This way

20 equally spaced (in time) values of the surface elevation were

obtained and these values were used as input to a simple computer
program which performed a Fourier series analysis of the data and gave

the amplitude of the first harmonic motion as output.

When realizing that each experimental run required the measurement
of the wave motion at some 30 stations it is quite obvious that the

manual procedure of digitizing the wave records means that it is an

extremely time-consuming effort to obtain the reflection coefficient.
However, the end result (Fig. 20) rewards the effort in producing
reflection coefficients which vary only within +_ 0.02 with choice of node
and antinode. The experimental data listed in Appendix B (Tables B-2

and B-4) were all obtained and analyzed in this manner.

Modifications of the Hewlett-Packard Computer System at the Ralph M.

Parsons Laboratory made it possible to interface this computer with the
wave tank experiments. This enabled the tedious manual reduction of the
data to be circumvented and to feed the experimental data directly into

the computer. A multifunction meter triggered the computer to start
taking data by imposing a high voltage. After being triggered the
computer starts taking data at the rate of 14.5 readings per second, i.e.,

a reading per At seconds, where:

At = 0.069 seconds. (C-2)

The computer program was designed to take a total of 50 readings,
i.e., cover a period of approximately 3.5 seconds, thus ensuring that an

entire wave period is recorded. Of these 50 equally spaced values the
first 15 are discarded to avoid transient effects and from the 16'*-"

reading on, the next Dl + 1 values are adopted for computations where Dl is

the integer most closely approximating

Dl = 1^ . (C-3)
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These Dl+1 values are treated as previously described for the
manually digitized data for which Dl=20. All this is done internally
in the computer and the output is the amplitude of the first harmonic
motion at consecutive measurement stations. A search routine was also
included in the computer program so that the maximum and minimum values
of the wave amplitude were determined and the resulting estimates of the
reflection coefficient were printed out for each experimental run.
Although the computerized procedure was thoroughly checked against the
manual procedure before the former was adopted for the experiments
listed in Appendix B, Tables B-1 and B-3, the procedure of obtaining a

paper tape wave record was continued to avoid possible loss of
experimental data.

An example of the added accuracy involved when a more exact method
is inacted is seen by examining the example described in Section lll.S.b,
Figure 20. From Figure 20, as previously noted, the raw data from the
ejcperiment (the open circles] do not reproduce a well-behaved wave ampli-
tude variation. Through the use of the Fourier series computer program,
the raw data were corrected, i.e., only the first-order wave amplitude
was retained, and the corrected data are seen in Figure 20 as the solid
circles. It is observed from studying the corrected data that the
minimum amplitude locations are not precise and one must fit a theoretical
curve to the corrected data to determine the minimum wave amplitude and
the resulting reflection coefficient. The theoretical curve with R=0.88
appears to fit the data presented in Figure 20 well, but as it will be

demonstrated, the wave amplitudes immediately surrounding a minimum have
to be determined at a much closer spacing than used in the experiments
presented in Figure 20 if the curve-fitting procedure is to be eliminated.

Figure C-1 is a graphical representation of equation (123) close to

a node location for various reflection coefficients. It is clearly seen

that, as the spacing between measurements becomes larger, one is able to

have relatively large errors in obtaining the minimum location especially

for high reflection coefficients. For example, a 4-inch (10 centimeters)

spacing corresponds to a measurement interval, Ax/L, of 0.03 for the 2-

second wave in the present experiment. The maximum deviation would occur

when the measurement locations were equally spaced around the minimum,

i.e., Ax/L equal to 0.015 on either side of the minimum. If one had an

actual reflection coefficient of R=0.88 one would obtain a value of

^/^ax 6<^ual to 0.115 for a maximum displacement from the actual minimum.

Therefore, if one assumed that the reading of a-fa-x^ax ~ 0.115 was the

correct minimum value, then the reflection coefficient would be determined

from Figure C-1 R=0.79 which is approximately a 10-percent error.

Similarly, if one has an actual reflection coefficient of R=0.60 and

collected data at the maximum deviation locations, the error incurred

would only be of the order 3 percent. It is apparent that the errorsrors

are most prevalent when one has high reflection coefficients. The

computer program described previously allows one to collect a large number

of data points and analyze them quickly so that the measurement interval

can be reduced in the vicinity of nodes, thus resulting in smaller errors.
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After observing how important it is to have the minimum amplitude
defined as accurately as possible, the experiment used in Section III.3.b
was repeated with the measurement interval surrounding the observed
minimum reduced to Ax/L equal to 0.39 inch (1 centimeter). Figure C-2
is a plot of the raw and corrected data for measurements taken in the
immediate vicinity of two node locations, L/2 apart. Two observations
can be made. First, the raw data show a slight discrepancy between the
minimum locations and, secondly, one cannot assume that the actual
minimum, i.e., the first harmonic amplitude, will fall where the raw
data minimum occurs. In order to ensure that the actual minimum loca-
tion is found, one must use the smaller measurement intervals for a

sufficient distance around the observed minimum to ensure the location
of the actual minimum to be occupied. By substituting the results obtained
from Figure C-2 into the calculations made in Section Ill.S.b, one will
calculate an average reflection coefficient of R = 0.90 which is much
larger than the reflection coefficient suggested by the raw data
(R - 0.62) and slightly higher than obtained from the corrected data
(R - 0.88) with a measurement interval of 4 inches (10 centimeters)
when the best fit value of R is chosen. The accuracy, using the more
refined acquisition system, does not produce, in this case, a far
superior product. To avoid the somewhat subjective and tedious curve
fitting procedure, the refined system of closely spaced measurements
near nodes is recommended. Figure C-2 shows how the amplitude at the

node as well as the location of the minimum amplitude itself is affected
by higher order wave harmonics.

Through the use of a high-speed computer, the data can be quickly
examined and the resolution required may easily be obtained. The

computer program which was used for the computerized procedure for

determining the reflection coefficient is listed on the following pages.

With the preceding description of the program and the extensive use of

comments in the program this should be self-explanatory.
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1 REM *** ANALYSIS OF A WAVE PROFILE ***
2 REM *** BY FOURIER SERIES APPROXIMATION ***
3 REM THIS PROGRAM MUST BE RUN FROM A POGITION A STATIO\ Plt^FORE
4 REM A MAXIMUM AMPLITUDE. CALCULATE THE NUMBER OF STATIONS TO BE
5 REM MEASURED (S) AND THE NUMBER OF POINTS TO BE USED IN THE

6 REM PROGRAM DEPENDING UPON FREQUENCY (Dl). SI>D1+15
7 REM T:PERI0D,D1:N0. OF PTS. USED, K U ORDER SOUGHT
8 REM Q:MAX VOLTAGE TO TRIGGER, Sr NO. OF STATIONS EXPECTED
9 REM S1:N0. OF DATA PTS.,T5:TEST NUMBER, C

1

=CONVERSION( FT. - V)
10 DIM A[101,B[10],C[50, 10],F[50],E[3,50],G[50,5«],R(4],Z[3]
11 READ T,D1,K1,Q,S,S1,T5,C1^
12 G0SU3 1000
13 PRINT
lA PRINT " *****=***** TEST NUNBER" , T5 ,

"**********"
15 PRINT
16 PRIMT " CORRECTION FACTOR r",Cl
17 PRINT
18 FOR NUl TO S

19 CALL (1 ,D,F)
20 IF D >3 THEN 22
21 GOTO 19
22 CALL (1,D,F)
23 IF D <: Q THEN 25
24 GOTO 22
25 FOR N2: 1 TO SI

26 CALL (1,D,F)
27 LET G[Nl,N2]rD
28 NEXT N2

31 FOR X: 1 TO Dl+1
55 LET F[X]: G[N1,X+15]
35 NEXT X

40 GOSUB 75

45 NEXT Nl

50 GOSUB 380
60 GOSUB 735
70 STOP
75 REM SUBPROGRAM TO CALCULATE MAXIMUM AMPLITUDE USING FOURIER
76 REM SERIES AT EACH STATION.
80 FOR X= 1 TO Dl+1
85 LET F[X]: Gt N1,X+15 ]

90 NEXT X
91 LET E:D1+1
92 LET G:K1
100 LET F[l ]: (F[l >t-FtEl)/2
102 LET F[E]=F[1 ]

1 1 1 LET A4=1/2*F[ 1 ]

1 12 LET H:T/D1
1 15 FOR J:2 TO Dl

1 16 LET A4:A4-t-F[ J]
1 18 NEXT J

120 LET A: 1/(2*3. 14I6)*H*(A4+l/2*F[Dl + n)
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124 FOR K: 1 TO Kl
13P1 LET Tl:f5

135 LET A0=(F[ n*C0S(Tl))*.5
141^ LET B0: (Fti ]*SIN(T1))*.5
150 FOR N:2 TO Dl

160 LET X= ((2*3. I41S)*(N-1)*H/T)*K
165 LET A0:A0+FtN]*COS(X)
17(3 LET B0:B0+F[N]*SIN(X)
180 NEXT N
19i;) LET T9:(2*3. 1416)*D1*H/T*K
195 LET A0= A0+(F[Dl + n*COS(T9))*.5
200 LET B0=B0+(F(Dl + n*SIN(T9))*.5
205 LET A[K]=2/D1*A0
210 LET B[K]:2/D1*B0
230 FOR M=l TO E
240 LET T5:(3. 1416*2)*((M-1)*H/T)*K
250 LET C[M,K ]: A+A[K]*C0S(T5) + B[K]*SU;(T5)
260 NEXT M

262 LET Z[K]:SQR(A(K]*A[K]4-B[K]*B[K])
263 PRINT "STATION NUfTBER: ", Nl

264 PRINT "H: ", H, "SECONDS'"
265 LET Z[K1=Z[K]/C1
266 PRINT " MAXIMUM AMPLITUDE :",Z[K1,"FT. FOR K -" ,K
267 LET E[K,N1 ]rZtKl
270 NEXT K

280 PRINT
281 PRINT
290 RETURN
380 REM SUBPROGRAM TO SEEK MAXIMUM AND MINIMUM LOCATIONS
381 REM AND CALCULATES REFLECTION COEFFICIENTS AND INCIDENT
383 REM WAVE HEIGHTS. CAN ONLY BE USED IF ATTENUATOR IS LEFT
384 REM AT ONE SETTING THROUGHOUT THE EXPERIMENT.
390 FOR Kr 1 TO Kl
395 LET Nl:l
400 LET A5r EtK, Nl ]

410 LET NUNl+I
420 IF N1>S THEN 599
430 IF E[K,N1 ] >- A5 THEN 400
440 LET A6:A5
445 LET A5:EtK,Nl ]

450 LET NUNl+l
455 IF N1>S THEN 600
460 IF E(K,N1 ] <= A5 THEN 445
465 LET R[l ]: (A6-A5)/(A6+A5)
470 LET A7=A5
480 LET A5:E[K,N1 ]

490 LET NUNl + 1

495 IF N1>S THEN 614
500 IF E[K,N1] >: A5 THEN 480
505 LET R[2]: (A5-A7)/(A5+A7)
510 LET A8=A5
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520 LET A5:EtK,Nl ]

530 LET NUNl + l

535 IF N1>S THEN 620
540 IF E[K,N1 ] <- A5 THEN 520
545 LET R[5]r (A8-A5)/(A8+A5)
550 LET A9rA5
560 LET A5=E[K,N1 )

570 LET N1=N1 + 1

580 IF N1>S THEN 595
590 IF E[K,N1] >= A5 THEN 560
595 LET R[4]:(A5-A9)/(A5+A9)
596 GOTO 640
599 LET A6=0
600 LET A7r0
602 LET R[l ]r0

603 LET R[2]:0
605 LET A8:0
608 LET R[3]:0
610 LET A9r0
61 1 LET R[4]r0
612 GOTO 640
613 LET R[2]r0
614 LET A9-0
615 LET R[3 ]=

616 LET A8=0
617 LET R[4]:0
618 GOTO 640
620 LET A9=0
621 LET R[3] = 3

622 LET R[4 ]r0
630 LE-T RC4]r0
640 LET R=(Rtl l+H[2]+Rt3] + R[4])/4
65 LET H5: (A5+A6+A8)/3+(A7+A9)/2
660 PRINT " REFLECTION COEFFICIENT:"
661 PRINT A6
662 PRINT " ",R[1 ]

663 PRINT A7
664 PRINT " ",R[2]
665 PRINT A8
666 PRINT " ",R[3]
667 PRINT A9
668 PRINT " ",R[4]
669 PRINT A5
670 PRINT
675 PRINT " P-'\R
677 PRINT
680 PRINT " INCni-:NT WAVE HEIGHT^" , H5 ,

" FT.

685 PRINT
690 PRINT
700 NEXT K

702 RETURN
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705 REM SUBPROGRAM TO PRINT OUT DATA USED IN THE CALCULATION
706 REM OF THE MAXIMUM WAVE AMPLITUDES AT EACH STATION.
710 FOR Y: 1 TO S
715 PRINT
720 PRINT " STATION NUMBER:", Y
730 FOR Yl=15 TO 15+Dl
732 DEF FNR(X)= INT(X*10C00+.5)/10000
740 PRINT FNR(G[Y,Y1 ]),
75 NEXT Yl

760 NEXT Y
770 RETURN
800 STOP
1000 REM SUBPROGRAM TO CALCULATE CONVERSION FACTOR FROM VOLTS
1001 REM TO FEET. START AT STILL WATER AND INCREASE THE DEPTH
1002 REM OF THE PROBES BY 0.05 FEET.
1010 LET YA-i)
1014 LET Y3r0
1016 FOR NUl TO 10
1018 CALL (1,D,F)
1020 IF D >= Q THEN 1040
1030 GOTO 1018
1040 CALL (1,D,F)
1050 IF D <: Q THEN 1070
1060 GOTO 1040
1070 FOR N2=l TO 50
1080 CALL (1,D,F)
1090 LET GtNl,N2]=D
1100 NEXT N2

I 105 LET Y=0
II 10 FOR X= 15 TO 50
1120 LET Y=Y+G[N1,X]
1 150 NEXT X
1140 LET Y3=Y/36+Y3
1 145 IF NUl THEN 1160
1150 LET Y4 = A3S(Y3) + Y4
11S0 NEXT Nl

1170 LET C1=(Y4/10)*2
1100 RETURN
1400 REM DATA
9999 END
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