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Abstract

Federated learning (FL) is a machine learning
paradigm where private datasets are distributed
among decentralized client devices and model up-
dates are communicated and aggregated to train
a shared global model. While providing privacy
and scalability benefits, FL systems also face chal-
lenges such as client and data heterogeneity, where
the training resources and different datasets are
non-Independent and Identically Distributed (non-
IID). When testing novel FL algorithms or config-
urations, simulators are used to create controlled
environments without needing costly deployments.
However, it is important to understand how repre-
sentative FL simulators are of real-world deploy-
ments, and what steps can be taken to bridge the
gap between theoretical results and practical im-
plementations. In this paper, we investigate the
effects of incorporating traces from a pseudo-real
heterogeneous FL deployment in simulated envi-
ronments. We compare four non-IID attributes,
including batch sizes, local epochs, data volume,
and data labels, to determine the most influential
factors for reproducing the deployment results in
simulations. We show that there is an inherent
difference between deployments and simulations,
despite incorporating identical non-IID conditions.
Furthermore, we show that including non-IID data
labels in simulations has the most significant im-
pact on recreating the deployment outcome. We
also demonstrate that incorporating the other men-
tioned factors has negligible impact, resulting in
similar training performance compared to fully IID
simulations. Our results are derived from a 20-
client single-server synchronous FL configuration,
and additional research is necessary to confirm our
findings for larger-scale systems.

1 Introduction
Federated learning (FL) is a machine learning technique
that enables multiple decentralized devices to collaboratively
learn a shared prediction model while keeping all training
data locally [18]. Formalized by a team of Google researchers
in 2016 [22], FL addresses significant challenges related to
data privacy and security by allowing data to remain on users’
devices while training a shared model. This approach is use-
ful in scenarios where data privacy is critical, such as in
healthcare or financial services [16]. Despite its benefits, de-
veloping FL systems can require more effort than centralized
machine learning, due to challenges such as client and data
heterogeneity [26].

To overcome these limitations, simulations provide a pow-
erful tool in the development and refinement of FL sys-
tems. FL simulation software offers a controlled environment
where researchers can experiment with different network con-
figurations and algorithms without the need for costly real-
world deployments [24]. For example, simulations help

in understanding how novel algorithms and client selection
methods affect model performance [2; 13]. This controlled,
cost-effective, and scalable testing method plays an important
role in advancing FL research and development.

However, the effectiveness of simulations in FL is inher-
ently tied to their fidelity, realism, and scalability [25]. En-
suring that simulations accurately reflect real-world condi-
tions is crucial, as inaccuracies can lead to flawed predic-
tions about the system’s actual performance [3]. Challenges
include replicating the complex network dynamics, diverse
device capabilities, and varied data distributions that charac-
terize real-world deployments [5]. As the scale of FL appli-
cations grows, so does the difficulty in simulating these envi-
ronments effectively.
Contribution In this paper, we explore how the realism of
FL simulations can be significantly enhanced by incorporat-
ing system traces from deployments. By utilizing detailed
system traces, we aim to replicate the nuanced and dynamic
behaviors of deployment environments within our simula-
tions, thereby bridging the gap between theoretical perfor-
mance and practical application. Our approach involves inte-
grating factors such as client and data distribution heterogene-
ity into simulation environments. Through rigorous experi-
mentation, we demonstrate that simulations augmented with
system traces provide a more accurate and reliable prediction
of FL performance. This not only aids in the design and opti-
mization of FL algorithms but also reduces the risk of unfore-
seen issues during actual deployment, ultimately contribut-
ing to the robustness and scalability of FL systems in practi-
cal scenarios. Specifically, we address the research question:
”How can traces in federated learning deployments be used
to improve the accuracy of simulations, and what factors have
the most significant impact?”

To address this question, the paper is structured as follows.
In section 2, we provide an overview of FL systems and dis-
cuss the importance of simulations in their development. Sec-
tion 3 presents related work on using traces in FL systems
and the effect of non-IID factors in simulations. In section
4, we describe our approach to designing and running the ex-
periments. Section 5 presents the results of our experiments,
followed by a discussion of limitations and future work in
section 6. In section 7 we highlight the ethical considerations
and responsible research practices involved in our study. Fi-
nally, we conclude the paper in section 8 by summarizing our
findings and highlighting the contributions in this field.

2 Background
2.1 Federated Learning
Since its introduction in 2016 [22], FL has become a pop-
ular machine learning technique for decentralized learning.
FL systems provide a solution to several centralized machine
learning issues, such as privacy concerns and scalability is-
sues [30]. In practice, these benefits are achieved by train-
ing a shared model across multiple decentralized devices,
each with its local dataset, and aggregating the model updates
without sharing the raw data [11].

There exist many configurations of FL systems. These can
be categorized based on various factors, such as the feature set
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of the data, the topology of the system, and the aggregation
method used.

Feature set: The feature set of the clients’ data can be cat-
egorized as either horizontal or vertical [16]. In horizontal
FL, all clients have different datasets, but with the same fea-
ture space. In contrast, vertical FL involves clients having
different datasets with different feature spaces. Vertical FL
therefore aims to combine features from multiple clients and
leverage complementary information to train a shared model.

Topology: FL systems can be categorized based on their
topology and can be deployed with a single-server, multi-
server, or fully decentralized topology [27]. Single-server
FL systems have a central server that coordinates the training
process, while multi-server systems distribute the training co-
ordination process across multiple servers, often in a hierar-
chical structure. Fully decentralized systems have no central
server, and the clients communicate directly with each other.

Aggregation Method: After individual models are trained
by the clients, they must be aggregated to create a shared
global model. The aggregation method used in FL systems
can vary, with several algorithms available. Notable exam-
ples include FedAvg [22], FedProx [19], and FedDyn [1].

Despite the privacy and scalability advantages, FL systems
face several challenges, many of which have been heavily ex-
amined in recent literature [28; 5; 26; 14]. Frequently dis-
cussed challenges include security concerns, privacy consid-
erations, and system heterogeneity. While each influences
FL systems in different ways, we have chosen to focus on the
non-Independent and Identically Distributed (non-IID) nature
of clients and data in this paper.

Client Heterogeneity: Clients in an FL system can have
vastly different computational capabilities, memory limita-
tions, energy resources, and storage capacities [14]. Some
clients may be powerful servers, while others might be
resource-constrained mobile devices or Internet of Things
(IoT) sensors. Moreover, the client-side training can be de-
signed to run at times when the device is idle or unused. Vary-
ing hardware capabilities, combined with fluctuating device
usage, result in differences in how much computation each
client contributes to the training process.

Data Heterogeneity: Data heterogeneity refers to the non-
IID nature of data across different clients [12]. In FL, clients
often collect data in diverse environments, leading to varia-
tions in data distributions. In practice, the data often varies in
volume and label distribution between clients, partly because
clients generate data at different rates [18]. As a result, the
global model can converge more slowly and perform poorly
on some clients’ data [20].

There exist many additional factors influencing FL sys-
tems. For example, network conditions can play a significant
role in multi-server or asynchronous configurations, impact-
ing the overall efficiency and reliability of the system. How-
ever, due to the limited timespan of our research, we have
chosen to narrow our scope to a single-server synchronous
setup and disregard networking limitations for this study.
Therefore, we focus on the client and data heterogeneity as
the primary factors influencing the FL system performance.

2.2 FL Simulators

FL simulators are software tools and frameworks designed to
emulate the FL process. Generally, such simulators can run
on a single machine or a cluster of machines, without needing
to interact with decentralized devices [7]. To accomplish this,
simulators can mock and replicate the behavior of multiple
clients and the central server while using synthetic or proxy
datasets [6]. Significant effort has been invested into mak-
ing the upfront cost and effort of developing and deploying
real FL systems more manageable, a task in which simula-
tors play an important role. Several novel frameworks have
been developed in recent years, of which FedML Parrot [25],
PySyft [31], FLUTE [8] and Flower [4] are among the most
well established. In the context of this paper, we focus on
Flower, a lightweight and flexible open-source FL framework
that offers both a deployment and simulation API.

Existing papers on FL simulators have had a strong focus
on improving the usefulness of such systems. Three main
commonly discussed areas can be identified:

• Flexibility: Supporting a wide range of existing FL
algorithms, enabling easy benchmarking as done by
Baumgart et al. [2]. In addition, easy integration of novel
algorithms and configurations by building an extensible
framework API has been a key focus of most industry-
standard simulators [8; 4; 7; 25; 31].

• Performance: While frequently mentioned by papers
initially introducing new simulation frameworks, FL
simulator performance optimization is also continually
being improved by third-party extensions. For exam-
ple, Protea [29] and Pollen [24] successfully optimize
Flower simulations by making the simulations aware of
client resources, resulting in faster and more efficient
simulations.

• Ease of Deployment: In recent years, there has been
a greater focus on closing the gap between FL simula-
tion and deployments. An important goal has been to
reduce the effort needed for moving an FL configuration
from a simulation environment to a real-world deploy-
ment. Efforts have been made to enable the migration
without laborious code changes, and this has become a
key feature of specific FL frameworks such as FedML
Parrot [25], NVIDIA FLARE [23] and Flower [4]

However, little effort has been put into understanding if
the simulations are accurate representations of real-world de-
ployments. Specifically, there exists a gap in current research
in understanding how factors influencing real-world FL de-
ployments, such as data and client heterogeneity, should be
reflected in simulations. This involves understanding how the
usage of simulators can be improved to better represent real-
world conditions, including which system attributes have the
most significant impact on the simulator’s fidelity and real-
ism. This paper aims to address this gap by identifying key
factors present in real-world FL systems that can significantly
improve the fidelity of simulations in replicating deployment
results.
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3 Related Work
While our research topic has not been directly addressed in
the literature, several studies have explored related aspects of
FL simulations and tracing. In this section, we review the ex-
isting work related to our research question and discuss how
our study contributes to the current body of knowledge.

Many studies [17; 12; 14; 21; 10] have explored difficul-
ties related to non-IID conditions in FL systems. These stud-
ies have shown that the heterogeneous nature of real-world
deployments can lead to slower convergence and poor model
performance. In the context of these works, two challenges
overlapping with our work can be identified: client and data
heterogeneity, and the following paragraphs will discuss how
our work is unique.

A noteworthy study by Li et al. [17] investigated the im-
pact of non-IID data on FL model performance. This study
focused on how volume and label distributions affected the
performance of different FL algorithms. While Li et al. ex-
amined the impact of these individual non-IID factors in com-
parison to a fully IID scenario, our research extends this ap-
proach in three ways. First, we consider client heterogeneity,
which is not accounted for in their study. Second, we com-
pare simulation scenarios with a single non-IID attribute to
a pseudo-real deployment with all non-IID factors, providing
insight into which factors influence deployments the most.
Lastly, Li et al. primarily focus on final performance metrics,
while our work critically examines training progressions and
convergence.

Regarding client heterogeneity, Gouissem et al. [10] sur-
veyed existing work on incorporating client information into
the FL training process. The study highlighted existing tech-
niques for client selection and resource-aware algorithms to
optimize performance and convergence speeds. While not di-
rectly related to our work, this study provides valuable in-
sights into incorporating client information into FL systems,
which is relevant considering our approach to system tracing.

Many tools have been introduced to incorporate informa-
tion on clients to optimize performance. Of these, Fed-
Trace [30] and Protea [29] are notable examples, each collect-
ing information on factors influencing the clients and intro-
ducing algorithms for more effective client selection. While
our work similarly examines the effect of non-IID client at-
tributes, we do so in an abstract manner, only exploring
higher-level privacy-preserving attributes such as batch size
and local epochs, as opposed to their collection of CPU and
memory capabilities. Additionally, these tools only aim to
improve FL efficiency, not improve the simulation realism
compared to deployments.

Lastly, the conceptual idea introduced with FedDebug [9]
shares multiple similarities with our work. FedDebug is a
debugging tool that ”selectively records an FL application’s
telemetry data” [9] to mirror a real FL system. Similar to our
work, FedDebug aims to bridge the gap between simulations
and real-world deployments by providing a detailed view of
the training process, accomplished by collecting both train-
ing hyperparameters and individual client models. However,
while FedDebug focuses on creating a fully replayable envi-
ronment and is primarily intended to identify faulty clients,

our work focuses on what information is the most important
to enhance the accuracy of FL simulations. Therefore, while
both explore the use of system traces, the goals and outcomes
of the two studies differ significantly.

In summary, most existing work on complementing FL
simulations with real-world information has been perfor-
mance and efficiency-focused. The novelty of our work is
therefore in exploring the potential for improving the real-
ism and fidelity when using information from deployments in
simulations, and to what extent adding more layers of infor-
mation benefits that goal.

4 Methodology
This section outlines the methodology of our study, encom-
passing the systematic approach we take to answer our re-
search question. Section 4.1 describes the reasoning behind
the overarching experiment design, while section 4.2 provides
a detailed overview of the implementation of the experiment.
Following, section 4.3 outlines the independent and depen-
dent variables, and section 4.4 describes the characteristics
of the chosen dataset. Lastly, 4.5 outlines the hardware and
software components used to run the experiment.

4.1 Experiment Rationale and Goals
To answer our research question, we first make assumptions
about the non-IID attributes of clients and data in a deploy-
ment. Subsequently, while running the deployment, we cap-
ture these distributions and general performance metrics to
establish a benchmark for comparison. Establishing a base-
line is crucial because we aim to understand how simula-
tors compare to the deployment when additional information
about the deployment is gradually included in the simulated
environment. In essence, our goal is to investigate which
characteristics of the deployment are most useful to harness
in simulators to make them more representative of the real
world. We believe it is impactful to investigate how simula-
tors can perform more like the deployment, by examining the
following simulation configurations:

• Simulating blindly: This configuration assumes all
client and data attributes are IID, with no specific infor-
mation from the real deployment. It serves as a baseline
to compare against simulations with more detailed de-
ployment data.

• Simulating with 1 non-IID factor: Here, the simula-
tion includes one specific non-IID attribute from the de-
ployment, such as non-IID data labels, while other fac-
tors remain IID. This isolates the impact of each non-IID
factor on the simulation’s performance.

• Simulating with real conditions: This simulation uses
the actual non-IID distributions for all relevant factors
observed in the deployment, aiming to replicate the real
conditions closely and evaluate the simulator’s perfor-
mance when fully informed about the deployment’s het-
erogeneity.

In summary, these simulations allow us to systematically
explore the importance of different non-IID factors in achiev-
ing realistic performance outcomes. By incrementally adding
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deployment-specific information, we aim to identify the most
critical attributes that enhance the accuracy and reliability of
FL simulations.

4.2 Experiment Structure and Implementation

Following the established experiment rationale, we now de-
tail how the experiments are implemented and conducted.
Overall, the experiment is structured into several components.

First, we run a pseudo-real FL deployment using Flower’s
deployment API, where the server and clients are executed
in separate subprocesses with communication taking place
over the localhost network. In the deployment, clients are
randomly initialized with heterogeneous properties (detailed
in section 4.3) which are saved to disk after training. These
properties are then used to replicate the clients in subsequent
simulations. The deployment is run for 100 communication
rounds, during which centralized (i.e., server-side) metrics
are continuously collected to monitor the training process.
Additionally, 20 clients are used with a sampling rate of 50%
for each round. Communication rounds, number of clients,
and sampling rate remain identical for all simulations as well.

Following the deployment, several simulation scenarios are
run using Flower’s simulation API. Unless explicitly stated,
client and data properties are IID for every simulation. Ini-
tially, one baseline simulation is run with these purely IID
properties, referred to as a ’blind’ configuration. Further-
more, as previously outlined, simulations are run with a single
non-IID property. Lastly, all non-IID properties are applied to
a ’real’ simulation.

A full overview of the experiment structure is provided in
Table 1. To reduce random noise, all configurations are run
5 times with unique fixed seeds for generating the non-IID
client and data distributions.

Experiment BS LE DV DL

Deployment Non-IID Non-IID Non-IID Non-IID
Sim. real Non-IID Non-IID Non-IID Non-IID
Sim. with BS Non-IID IID IID IID
Sim. with LE IID Non-IID IID IID
Sim. with DV IID IID Non-IID IID
Sim. with DL IID IID IID Non-IID
Sim. blind IID IID IID IID

Table 1: Comparison of the deployment and simulations.
BS: Batch size, LE: Local epochs, DV: Data volume, DL: Data la-
bels.

An arbitrary convolutional neural network (CNN) is used
as the model to train. The CNN architecture consists of two
convolutional layers, two max-pooling layers, and three fully
connected layers. The full architecture is detailed in Ap-
pendix A, Table A1. We use stochastic gradient descent to
update the model weights with a learning rate of 0.001 and
momentum of 0.9. To aggregate the models, we use the Fe-
dAvg [22] algorithm, as this is the most commonly used in
recent literature.

4.3 Variables and Evaluation Metrics
The independent variables are categorized into two main
groups: training resources and data diversity, intended to re-
flect the client and data heterogeneity of the system, respec-
tively. Each group consists of two variables that can be ad-
justed to test different conditions within the FL environment.

Training resources This category focuses on the resources
available to each client in the training process. In a deploy-
ment, resources can include memory and computing power,
each impacting the system in different ways. The follow-
ing variables are considered as an abstraction of the hardware
conditions of the clients and are useful for understanding how
non-IID resources affect the training process. The variables
include:

• Batch size: The number of data samples processed be-
fore the model is updated. Varying batch sizes can influ-
ence the speed and stability of the training process.

• Local epochs: The number of times the model is trained
on the entire local dataset before updating the global
model. This can affect the convergence rate and accu-
racy of the model.

In an IID setting, all clients have a default equal batch size
of 32 and local epochs of 4. In a non-IID setting, the batch
size is randomly chosen from 16, 32, 64, and 128, and the
local epochs are randomly chosen from 1, 3, 5, and 7. The
non-IID client distributions are visualized in Figure 1.
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Figure 1: Uniform distribution for non-IID client attribute hetero-
geneity in a 20-client setting, showing the average and standard de-
viation over 5-client configurations. Left: Batch size distribution.
Right: Local epochs distribution.

Data diversity Data diversity relates to how data is dis-
tributed across clients in the FL system, reflecting the hetero-
geneity of the data each client possesses. Data heterogene-
ity can include both statistical skewness (i.e., number of data
points) and volumetric skewness (i.e., number of labels). The
variables include:

• Data volume: The number of data points each client has
and uses for training. This can affect the model’s ability
to generalize and learn from different amounts of data.

• Data labels: The distribution of data labels across
clients. This can impact the model’s ability to learn from
different classes and generalize to unseen data.
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In an IID setting, all clients have an equal amount of data
with all labels present. In a non-IID setting, the data volume
and labels are sampled from a Dirichlet distribution with an
alpha value of 0.5, established to be representative of a real-
world distribution [17]. The non-IID data distributions are
visualized in Figure 2.
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Figure 2: The Dirichlet distribution used for non-IID data hetero-
geneity in a 20-client setting. Values averaged over 5 configurations.
Left: Data volume distribution. Right: Data label distribution.

While generating a Dirichlet distribution, both the data vol-
ume and labels are non-IID. However, to isolate the effect of
each variable, one must recreate the data volume and labels
separately in simulations. In other words, we must be able to
have IID volumes with non-IID labels, and vice-versa. This
allows for examining how each property influences the simu-
lation independently. To accomplish this, we use the follow-
ing algorithm (full description can be found in Appendix B,
Algorithm 1).

In the replicate client distributions algorithm,
the main objective is to allocate data points and labels to mul-
tiple clients, given individual distributions of either an IID or
non-IID nature. The process begins by creating a mapping of
each label to its corresponding data indices, which are then
shuffled to ensure randomness. For each client, a target num-
ber of data samples and labels are given. The algorithm en-
sures that the selected labels are distributed across the client’s
data points. If the data points are insufficient, additional in-
dices are assigned from a pool of remaining indices. This
approach effectively replicates the distribution of data among
clients, maintaining the desired IID/non-IID characteristics.

By manipulating these independent variables, we aim to
comprehensively assess the accuracy of FL simulations in
comparison to actual deployments, providing insights into
how different factors influence the performance of FL sys-
tems.

Evaluation metrics Several key metrics are employed to
evaluate the accuracy of the simulations. These include cen-
tralized accuracy, which measures the overall performance of
the model on a central test dataset, and cross-entropy loss,
which represents the model’s error rate. These attributes are
gathered throughout the training to assess how quickly the
model converges and reaches its optimal performance. Cal-
culating the pair-wise Mean Squared Error (MSE) of the ac-
curacy progression is helpful in quantifying differences be-
tween configurations in convergence and performance over

time. Combined, these metrics can provide a comprehensive
understanding of the fidelity and reliability of FL simulations.

4.4 Dataset

The dataset used in this study is the CIFAR-10 dataset [15],
a collection of 60,000 32x32 RGB images in ten classes,
with 6,000 images per class. The dataset is divided into
50,000 training images and 10,000 test images. The CIFAR-
10 dataset is commonly used in machine learning research
and provides a challenging benchmark for image classifica-
tion tasks. Examples of labels include ’airplane’, ’truck’,
’bird’, and ’cat’.

4.5 Hardware and Software

The deployments were run on a MacBook Pro with an M2
Pro chip (10 cores) and 16GB of memory, running MacOS
Sonoma 14.5. All simulations were run on a cloud-based
virtual machine instance hosted by Hetzner Cloud1. The in-
stance configuration is called CPX51, with 16 vCPUs, 32GB
of memory, and running Ubuntu 24.04.

For the software stack, the experiments were run using
Python 3.9.13, PyTorch 2.2.2, TorchVision 0.17.2, and the
Flwr 1.8.0 library for FL deployments and simulations. The
code repository can be found on GitHub2, including the full
list of Python packages used.

5 Results

The experiment results reveal several key findings regarding
the performance of FL simulations under varying non-IID
conditions when compared to the deployment. Following, we
highlight the most relevant observations and discuss their sig-
nificance.

In general, the simulations consistently outperformed the
deployment scenario. This aligns with expectations for the
simulations with the majority IID conditions, as the non-IID
nature of the deployment introduces a level of complexity and
variability not present in the more controlled simulation en-
vironments. However, a surprising finding was the difference
between the deployment and ’real’ simulation. Despite both
having identical fully non-IID attributes, Table 2 reveals the
deployment reached a best accuracy of 53.77% and loss of
1.28, compared to the better 57.12% accuracy and loss of 1.20
for the ’real’ simulation. While Figure 3 illustrates that the
’real’ simulation had one of the lowest MSE of all configura-
tions relative to the deployment with a value of 21.1, Figure 4
reveals an increasing separation in their performance after the
20th communication round. This contradicts our expectations
of simulations and deployments with identical conditions per-
forming similarly. The difference in model convergence high-
lights a fundamental disconnect between the environment in
a simulator and a pseudo-real deployment, and more investi-
gation is needed to further understand this discrepancy.

1https://www.hetzner.com/cloud/
2https://github.com/Alex-Nygaard/research-project
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Configuration Accuracy Loss
Deployment 53.77% ± 2.43% 1.28 ± 0.06
Sim. Real 57.12% ± 2.48% 1.20 ± 0.07
Sim. Batch Size 59.09% ± 1.58% 1.15 ± 0.04
Sim. Local Epochs 59.17% ± 2.23% 1.15 ± 0.06
Sim. Data Volume 60.26% ± 0.96% 1.12 ± 0.03
Sim. Data Labels 57.12% ± 1.27% 1.21 ± 0.03
Sim. Blind 59.92% ± 1.42% 1.13 ± 0.05

Table 2: Best model performance metrics for each configuration,
averaged over 5 runs.

From Table 2, the ’blind’ simulation, with only IID at-
tributes, achieved an accuracy of 59.92% and a loss of 1.13.
While among the best-performing configurations, the ’blind’
simulation is surprisingly not the best in either metric. In-
stead, the simulation with non-IID data volumes performed
slightly better, with a best accuracy of 60.26% and a loss of
1.12. Several reasons could explain this, such as non-IID data
volumes helping prevent overfitting the model. Alternatively,
one could argue that the relatively small difference in per-
formance (<1% for accuracy and 0.01 for loss) could be at-
tributed to random noise, with non-IID data volumes playing
an insignificant role.
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Figure 3: Mean squared error (MSE) between accuracy progressions
for each experiment configuration. Accuracies have been scaled
from [0,1] to [0,100] during calculation, for readability. Low val-
ues mean similar training progression, while higher values indicate
larger differences. BS: Batch size, LE: Local epochs, DV: Data vol-
ume, DL: Data labels.

Another interesting observation is in the similarity between
the ’blind’ simulation and the simulations with non-IID batch
sizes, local epochs, and data volume. As shown in Figure 3,
these four simulation configurations progress almost identi-
cally, with the highest MSE value of 3.0 between them. Ad-
ditionally, their best accuracies are all within 1.2% of each
other, and losses within 0.03. These metrics could indicate
that incorporating non-IID batch sizes, local epochs, and data
volume has an insignificant impact on replicating the condi-
tions of the deployment, as the fully IID ’blind’ simulation
performed very similarly. While Figure 4 reveals that the
simulation with non-IID local epochs converged the fastest

in the first 40 communication rounds, the performance trends
become more uniform after this point.
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Figure 4: Experiment results showing the centralized accuracy pro-
gression over 100 rounds for each of the configurations. Results are
averaged over 5 runs, each run with unique seeds for attribute gen-
eration.

Furthermore, the simulation with non-IID data labels per-
formed the closest to the deployment in terms of the MSE
similarity measure, with an MSE value of 20, as shown in
Figure 3. Compared to the ’real’ simulation, which achieved
an MSE value of 21.1, it becomes clear that these configu-
rations progressed very similarly throughout training, as also
shown in Figures 4 and 5. Incorporating non-IID data labels
in the simulation also had a significant effect on the best ac-
curacy and loss values, achieving scores of 57.12% and 1.21,
respectively. Further comparison to the ’real’ simulation in
Table 2 shows an identical accuracy and a <1% difference in
loss.
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Figure 5: Experiment results showing the centralized loss progres-
sion over 100 rounds for each of the configurations. Results are
averaged over 5 runs, each run with unique seeds for attribute gen-
eration.

Moreover, Figures 4 and 5 illustrate a distinct difference
in noise between the training progressions of all configura-
tions including non-IID data labels, compared to the others
with IID data labels. This training instability is visible in
the deployment, ’real’ simulation, and the non-IID data la-
bel simulation. In comparison, the other simulations with IID
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data labels display smoother convergence curves. This obser-
vation implies the noise in the fully non-IID simulation and
deployment is a direct result of non-IID data labels, while the
other non-IID factors do not have a pronounced impact on the
instability of the system.

Summarizing the above insights, we can draw the conclu-
sion that non-IID data labels have the most significant im-
pact on how representative simulations are of deployments,
among the examined attributes. From the results of the ex-
periment, we see that the ’blind’ simulation performed almost
identically to the simulations with non-IID batch sizes, local
epochs, and data volumes. Simultaneously, the ’real’ simu-
lation performed very similarly to the simulation with non-
IID data labels. Combining these two observations, we con-
clude that incorporating non-IID data labels in simulations is
the only factor that improved the realism of the simulation
environment, compared to the deployment. Concretely, us-
ing non-IID data labels results in a 3.35% difference in accu-
racy compared to the deployment, a noticeably closer result
in comparison to the ’blind’ simulation’s 6.15% difference.
In contrast, the other factors appear to be insignificant in this
regard.

In summary, the results of the experiment highlight two
key insights. First, there is a noteworthy difference in FL de-
ployments and simulations while using identical client and
data configurations. As our experiment setup is insufficient
to explain this difference, further investigation is needed in
this area. Second, we note the sole impact of incorporating
non-IID data labels into simulations. Doing so is the only
configuration meaningfully approaching the deployment re-
sults, while other factors play a significantly less important
role in improving the simulation realism.

6 Discussion
This section critically examines the methodology and results
of the study, aiming to identify potential limitations and sug-
gest future work that could address these limitations.

6.1 Limitations
The primary limitation of the methodology lies in the framing
of the study’s core question, which involves using informa-
tion from a real FL deployment. Due to the challenges associ-
ated with accessing real-world client data, the study utilizes a
pseudo-real deployment with certain assumptions. While this
approach enables controlled experiments and a clear under-
standing of the system, it inherently limits the study’s applica-
bility to real-world scenarios. The pseudo-realness provides
a valuable sandbox environment but lacks the unpredictable
nature of actual deployments.

Another methodological constraint is the simplistic FL
topology and setup employed in the study. The single-server
synchronous model, while effective for controlled experi-
ments, does not reflect the more complex and varied topolo-
gies commonly used in the industry or actual FL deploy-
ments. Additionally, the limited number of clients sharply
contrasts with real-world deployments, which often involve
thousands of clients. During the experiment design phase,
we planned to include more clients to better represent real-
world scenarios. However, constraints related to available

computing resources and financial limitations prevented us
from scaling up. This discrepancy underscores the need for
more scalable experimental setups to better mimic real-world
conditions.

The results of the study also reveal several limitations. The
scope of independent variables is relatively narrow, which
could affect the generalizability of the simulation outcomes.
There are numerous other factors that could potentially in-
fluence the performance of FL systems, and excluding these
from the study represents a significant gap. Furthermore, the
dependent variables measured are not exhaustive. While the
study focuses on centralized accuracy and loss, other critical
metrics such as decentralized performance metrics, commu-
nication overhead, and convergence time, are not considered.
This limited view may overlook important aspects of FL sys-
tem performance.

6.2 Future Work
To address these limitations, future work should explore ex-
tending the configurations studied to include asynchronous
models and investigate the impact of network factors. Asyn-
chronous models are more reflective of real-world FL systems
and can provide insights into performance under varied net-
work conditions and client availability.

Additionally, developing more advanced techniques to col-
lect trace information in a privacy-preserving manner is cru-
cial. Such techniques would enable the gathering of more ac-
curate and granular data from real-world deployments with-
out compromising client privacy. This advancement could
significantly enhance the realism of simulators and the appli-
cability of FL research.

Future research should also aim to trace FL performance
in a real system or orchestrate more realistic pseudo-real ex-
periments involving actual edge devices, such as phones, IoT
devices, and servers. Additionally, exploring the creation and
use of proxy datasets to mirror real data trends would provide
significant value. By combining more representative client
configurations and proxy data, researchers can better validate
their findings and ensure that their models accurately reflect
real-world conditions. This approach would bridge the gap
between controlled experimental setups and the unpredictable
nature of real-world FL deployments, providing more robust
and generalizable insights into FL system performance.

Lastly, as previously mentioned, more investigation is also
needed to understand the discrepancy between simulations
and deployments with identical configurations.

7 Responsible Research
It is crucial to analyze and understand any potential ethical
implications of the research conducted. This section will dis-
cuss the potential risks and limitations of the research, as well
as the steps taken to mitigate these risks.

While FL is a highly privacy-oriented field of study, the
research conducted as a part of this paper does not involve any
sensitive real-world data. Instead, all data used is publicly
available and synthetic, and commonly used in the existing
literature. Therefore, no personal data is used in this research,
and the privacy of individuals is not at risk.
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Reproducibility is a key aspect of research, and we have
attempted to make our work as reproducible as possible.
All code used in the experiments is available on GitHub3,
and the data is publicly available. While seeds are used in
pseudo-random number generation (e.g., to generate client
configurations), due to inherent non-determinism in multi-
threaded/process code execution, it is possible that results
may vary slightly between runs. For example, the order in
which clients are sampled and updates are processed may
slightly affect the final model. However, the overall trends
and conclusions should remain consistent, especially when
averaging results.

Moreover, all non-cited concepts shared in this paper are
independently generated by the authors without external col-
laboration. While appendix section C outlines the use of
LLMs as brainstorming partners and writing assistants, all
generated ideas in this paper are products of the authors’ work
alone.

In conclusion, the research involves low risk, is highly re-
producible, and is independently conducted, satisfying TU
Delft’s ethical guidelines for research.

8 Conclusion
In this study, we have explored the potential of using real-
world FL deployment traces to improve the accuracy of sim-
ulation environments. This was accomplished by examining
the impact of non-IID conditions within an FL system, specif-
ically the attributes batch size, number of local epochs, data
volume, and data label distributions. By comparing the fully
non-IID pseudo-real deployment to varying simulations, each
incorporating different IID and non-IID attributes, we can
point to several key findings.

First, the results of the experiment indicate there is a fun-
damental difference in the performance of a non-IID deploy-
ment and an identical simulated system. The reasons for this
can be complex, and further investigation has been identi-
fied as a future direction to extend this study. Another key
insight is the significantly stronger influence that data label
distributions have on how accurately simulations recreate FL
deployment results when compared to the other examined at-
tributes. The experiment outcomes showed that simulations
incorporating non-IID labels for clients most closely match
the learning progression of deployments. Additionally, incor-
porating non-IID labels can be identified as the largest source
of noise in the learning progression, as all simulations with
non-IID labels undergo significantly more unstable training
when compared to IID label configurations. Moreover, the
results of the experiment also show that the outcome of the
simulations does not change significantly when introducing
non-IID batch sizes, number of local epochs, and data vol-
umes.

It is important to mention the limitations of the afore-
mentioned findings. The experiment structure and scope in-
herently introduce limitations, amongst which the scale and
pseudo-realness can be identified as the most impactful. First,
the experiments were run at a smaller scale compared to tra-
ditional FL system seen in commercial or academic environ-

3https://github.com/Alex-Nygaard/research-project

ments. Therefore, our findings can only be regarded as signif-
icant for small-scale FL systems, and future work is needed to
explore the impact of using more clients. Second, the pseudo-
real nature of the deployment is a limiting factor, as the sys-
tem configuration is based on assumptions about commercial
deployments, as opposed to actual live systems. Therefore,
our experiments have limited practical applications, as using
real-life system traces would provide better conclusions.

Regardless, the presented results are significant because
they can provide valuable insight into what improvements can
be made in the process of developing FL systems at scale. We
demonstrate the value that collecting and incorporating spe-
cific information from deployments into simulations can pro-
vide. These insights can have practical applications in both
academic and commercial settings. For academia, more real-
istic benchmarks can be created to represent the complexity
of the real world. For commercial applications, maximizing
the usefulness of client data collected from live FL systems
while minimizing the impact on user privacy is important,
and can be accomplished by only tracing the most influential
attributes. To this extent, building a better understanding of
how more realistic development environments can be created
is crucial, as it will improve the process of creating helpful
and safe decentralized machine learning systems.

Appendix A Neural Network Architecture

Layer Type Input Size Output Size
Conv2d 3 x 32 x 32 6 x 28 x 28
ReLU 6 x 28 x 28 6 x 28 x 28

MaxPool2d 6 x 28 x 28 6 x 14 x 14
Conv2d 6 x 14 x 14 16 x 10 x 10
ReLU 16 x 10 x 10 16 x 10 x 10

MaxPool2d 16 x 10 x 10 16 x 5 x 5
Flatten 16 x 5 x 5 400
Linear 400 120
ReLU 120 120
Linear 120 84
ReLU 84 84
Linear 84 10

Table A1: Architecture of the CNN to be used in the experiments.
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Appendix B Algorithms

Algorithm 1 replicate client distributions - Given data vol-
ume and label counts for clients, replicate the distributions
with different dataset indices.
Require: datapoints per client, labels per client
Ensure: idx clients

1: prng ← np.random.default RNG(SEED)
2: Create label-to-indices mapping label indices
3: for each indices in label indices do
4: Shuffle indices using prng
5: end for
6: Initialize empty client indices idx clients
7: for each client id, (num samples, num labels) do
8: Select num labels random labels
9: client indices← empty list

10: for each label do
11: Calculate required samples count needed
12: count assigned← 0
13: while indices available and count assigned <

count needed do
14: Assign indices to client
15: Increment count assigned
16: end while
17: end for
18: Shuffle client indices and assign to

idx clients[client id]
19: end for
20: Collect remaining indices and shuffle
21: for each client id do
22: if client needs more indices then
23: Assign from remaining indices
24: end if
25: end for
26: return idx clients

Appendix C Use of LLMs
In conducting this research, we utilized OpenAI’s ChatGPT,
a large language model (LLM), to facilitate various aspects of
the research process. The primary functions of ChatGPT in
this research included idea discussion and writing assistance.
Specifically, ChatGPT was used in the following ways:
Idea Discussion: To enhance the depth and breadth of the
research, I engaged ChatGPT in brainstorming sessions to
generate and refine ideas. This involved posing questions
about potential research directions, exploring various hy-
potheses, and discussing theoretical frameworks. For in-
stance, questions such as “What are the potential impacts of
X on Y?” and “How can theory Z be applied to this research
context?” were used to stimulate and broaden the scope of the
research inquiry.
Grammatical Writing Assistance: ChatGPT was also em-
ployed to improve the clarity and coherence of the written
content. This included proofreading drafts, suggesting alter-
native phrasings for complex ideas, and ensuring grammatical
accuracy throughout the manuscript. Queries like “Can you

rephrase this paragraph for better clarity?” and “Is this sen-
tence grammatically correct?” were typical examples of how
ChatGPT was used to enhance the quality of writing.

It is important to note that while ChatGPT provided sig-
nificant support in these areas, all final decisions regarding
the content and direction of the research were made inde-
pendently by the author. The use of ChatGPT was supple-
mentary, aimed at improving the efficiency and quality of the
research process without compromising the originality and
integrity of the work.
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Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang
Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances
and open problems in federated learning. Foundations
and Trends® in Machine Learning, 14(1–2):1–210,
2021.

[15] Alex Krizhevsky. Learning multiple layers of features
from tiny images. University of Toronto, 05 2012.

[16] Li Li, Yuxi Fan, Mike Tse, and Kuo-Yi Lin. A review
of applications in federated learning. Computers and
Industrial Engineering, 149:106854, 2020.

[17] Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He.
Federated learning on non-iid data silos: An experimen-
tal study. In 2022 IEEE 38th International Conference
on Data Engineering (ICDE), pages 965–978, 2022.

[18] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Vir-
ginia Smith. Federated learning: Challenges, methods,
and future directions. IEEE Signal Processing Maga-
zine, 37(3):50–60, 2020.

[19] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar San-
jabi, Ameet Talwalkar, and Virginia Smith. Federated

optimization in heterogeneous networks. In I. Dhillon,
D. Papailiopoulos, and V. Sze, editors, Proceedings of
Machine Learning and Systems, volume 2, pages 429–
450, 2020.

[20] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen
Wang, and Zhihua Zhang. On the convergence of fe-
davg on non-iid data. arXiv preprint arXiv:1907.02189,
2019.

[21] Ibrahim Abdul Majeed, Hwang-Ki Min, Venkata Siva
Kumar Tadi, Sagar Kaushik, Aniruddha Bardhan,
Karthikeyan Kumaraguru, and Rajasekhara Reddy
Duvvuru Muni. Factors influencing cost and perfor-
mance of federated and centralized machine learning.
In 2022 IEEE 19th India Council International Confer-
ence (INDICON), pages 1–6, 2022.

[22] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
Efficient Learning of Deep Networks from Decentral-
ized Data. In Aarti Singh and Jerry Zhu, editors, Pro-
ceedings of the 20th International Conference on Artifi-
cial Intelligence and Statistics, volume 54 of Proceed-
ings of Machine Learning Research, pages 1273–1282.
PMLR, 20–22 Apr 2017.

[23] Holger R. Roth, Yan Cheng, Yuhong Wen, Isaac
Yang, Ziyue Xu, Yuan-Ting Hsieh, Kristopher Kersten,
Ahmed Harouni, Can Zhao, Kevin Lu, Zhihong Zhang,
Wenqi Li, Andriy Myronenko, Dong Yang, Sean Yang,
Nicola Rieke, Abood Quraini, Chester Chen, Daguang
Xu, Nic Ma, Prerna Dogra, Mona Flores, and Andrew
Feng. Nvidia flare: Federated learning from simulation
to real-world. 2022.

[24] Lorenzo Sani, Pedro Porto Buarque de Gusmão,
Alex Iacob, Wanru Zhao, Xinchi Qiu, Yan Gao,
Javier Fernandez-Marques, and Nicholas Donald Lane.
Pollen: High-throughput simulation of federated learn-
ing via resource-aware client placement, 2024.

[25] Zhenheng Tang, Xiaowen Chu, Ryan Yide Ran, Sun-
woo Lee, Shaohuai Shi, Yonggang Zhang, Yuxin
Wang, Alex Qiaozhong Liang, Salman Avestimehr, and
Chaoyang He. Fedml parrot: A scalable federated learn-
ing system via heterogeneity-aware scheduling on se-
quential and hierarchical training, 2023.

[26] Jie Wen, Zhixia Zhang, Yang Lan, Zhihua Cui, Jianghui
Cai, and Wensheng Zhang. A survey on federated learn-
ing: challenges and applications. International Journal
of Machine Learning and Cybernetics, 14(2):513–535,
2023.

[27] Jiajun Wu, Fan Dong, Henry Leung, Zhuangdi Zhu, Ji-
ayu Zhou, and Steve Drew. Topology-aware federated
learning in edge computing: A comprehensive survey.
ACM Comput. Surv., apr 2024. Just Accepted.

[28] Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong
Li, and Yuan Gao. A survey on federated learning.
Knowledge-Based Systems, 216:106775, 2021.

[29] Wanru Zhao, Xinchi Qiu, Javier Fernandez-Marques,
Pedro P. B. de Gusmão, and Nicholas D. Lane. Protea:

10



client profiling within federated systems using flower.
In Proceedings of the 1st ACM Workshop on Data Pri-
vacy and Federated Learning Technologies for Mobile
Edge Network, FedEdge ’22, page 1–6, New York, NY,
USA, 2022. Association for Computing Machinery.

[30] Zirui Zhu and Lifeng Sun. Federated trace: A node se-
lection method for more efficient federated learning. In
2021 IEEE International Conference on Image Process-
ing (ICIP), pages 1234–1238, 2021.

[31] Alexander Ziller, Andrew Trask, Antonio Lopardo,
Benjamin Szymkow, Bobby Wagner, Emma
Bluemke, Jean-Mickael Nounahon, Jonathan Passerat-
Palmbach, Kritika Prakash, Nick Rose, Théo Ryffel,
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