Opdrachtgever:
Rijkswaterstaat,
Rijksinstituut voor Kust en Zee

Meetopzet sluismetingen
Haringvliet

Inventarisatie van meetwensen

december 1995
Meetopzet sluismetingen
Haringvliet

Inventarisatie van meetwensen

H.J.M.G. Steeghs
J.A.Th.M. van Kester
G.S. Stelling
KLANT: Rijkswaterstaat, Rijksinstituut voor Kust en Zee (RIKZ)

TITEL: Meetopzet sluismetingen Haringvliet
Inventarisatie van meetwensen

SAMENVATTING:
In het kader van de MER Beheer Haringvlietsluizen zullen voor een aantal alternatieve beheerscenario's van de spuisluizen, de effecten van het Beheer worden aangegeven. Ten behoeve van het simuleren van de sluismanipulaties met TRIWAQ, wordt het numerieke model uitgebreid met 3D sluiformuleringen. De invloed van de processen rond de sluizen zal geparame teriseerd moeten worden ingebracht in het (grofmatige) rekenmodel waarmee te zijner tijd de verschillende scenario's voor het sluise regime worden doorgerekend. Deze parametrisatie is alleen mogelijk als er voldoende informatie beschikbaar is over de invloed van het openzetten van een sluis op de stroming en transport.

Bij het opzetten van de meetcampagne, is het belangrijk om goed rekening te houden met de informatie, die er voor het afrekenen en verifiëren van het wiskundige model noodzakelijk is. Uit het oogpunt van de modelverificatie, is een zo groot mogelijke dataset van stromings- en zoutgegevens gewenst. Er zijn echter technische en financiële randvoorwaarden. Er zal een verstandige keuze gemaakt moeten worden, gebaseerd op de vanuit de wiskundige modelkant te beantwoorden vragen. Het Waterloopkundig Laboratorium|WL, is door het Rijksinstituut voor Kust en Zee (RIKZ) brief RIKZ 957147 verzocht te helpen bij het maken van een meetopzet door het formuleren van de meetwensen.

REFERENTIES: RIKZ Opdrachtbonnr. 22953096 dd. 20/11/95

<table>
<thead>
<tr>
<th>REV.</th>
<th>AUTEUR</th>
<th>DATUM</th>
<th>OPMERKINGEN</th>
<th>GECONTROLEERD</th>
<th>GOEDGEKEURD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H.J.M.G. Steeghs</td>
<td>30-11-95</td>
<td>concept 2</td>
<td>J.A. van Kester</td>
<td>G.S. Stelling</td>
</tr>
<tr>
<td></td>
<td>H.J.M.G. Steeghs</td>
<td>12-12-95</td>
<td>definitief</td>
<td>J.A. van Kester</td>
<td>H.J.M.G. Steeghs</td>
</tr>
</tbody>
</table>

TREFWOORD(EN) | PAGINA'S | DOCUMENT NR. | STATUS
metingen | TEKST : 15 p. | VR1202.95 | □ VOORLOPIG
3D-barrierformuleringen | TABellen : 0 | | □ CONCEPT
gedeeltelijk geopende Haringvlietsluizen | FIGUReN : 9 | | ■ DEFINITIEF
zout-zoet

ARCHIEF NR: Z1023
Inhoud

Rapportsamenvatting ... 1

Lijst van figuren ... 2

1 Inleiding ... 3

2 Beschikbare 3D-modellen Haringvliet 5

3 Calibratie sluiscoëfficiënt ... 7

4 Randvoorwaarden en beginvoorwaarden MOHA-model 10

5 Keuze Meetlocaties ... 11

Referenties ... Ref - 1

Figuren
Rapportsamenvatting

In het kader van de MER Beheer Haringvlietsluiizen zullen voor een aantal alternatieve beheerscenario's van de spuisluiizen, de effecten van het Beheer worden aangegeven. Ten behoeve van het simuleren van de sluismanipulaties met TRIWAQ, wordt het numerieke model uitgebreid met 3D sluismformuleringen. De invloed van de processen rond de sluizen zal geparameetriert moeten worden ingebracht in het (grofmazige) rekenmodel waarmee te zijner tijd de verschillende scenario's voor het sluisregime worden doorgerekend. Deze parametrisatie is alleen mogelijk als er voldoende informatie beschikbaar is over de invloed van het openzetten van een sluis op de stroming en transport.

Bij het opzetten van de meetcampainge is het belangrijk om goed rekening te houden met de informatie, die er voor het afregelen en verifiëren van het wiskundige model noodzakelijk is. Uit het oogpunt van de modelverificatie is een zo groot mogelijke dataset van stromings- en zoutgegevens gewenst. Er zijn echter technische en financiële randvoorwaarden. Er zal een verstandige keuze gemaakt moeten worden, gebaseerd op de vanuit de wiskundige modelkant te beantwoorden vragen. Het Waterloopkundig Laboratorium (WL) is door het Rijksinstituut voor Kust en Zee (RIKZ) brief RIKZ 957147 verzocht te helpen bij het maken van een meetopzet door het formuleren van de meetwensen.

In het rapport worden wensen geformuleerd ten aanzien van zaken als: de meetlocaties, de meetnauwkeurigheid en de meetfrequentie. Bij de manipulatie van de sluizen tijdens de proef is de verwachte praktijk tijdens het nieuwe beheer uitgangspunt. Over de wens 'een zo groot mogelijke dataset van stromings- en zoutgegevens' ter beschikking te krijgen is bij diverse gelegenheden gesproken met medewerkers van RWS, onder andere in een vergadering bij WL op 22 november 1995. Een en ander heeft ertoe geleid dat de oorspronkelijke wensen sterk zijn ingedikt tot het hierna beschreven wensenpakket. Het rapport beperkt zich tot de 'functionele' eisen. Over de vraag op welke wijze de metingen worden uitgevoerd zijn geen uitspraken gedaan.
Lijst van figuren

Figuur 1 MOHA FIJN
Figuur 2 MOHA FIJN, DETAIL
Figuur 3 MOHA GROF (deel RIJMAMO)
Figuur 4 NIEUWE RANDEN MOHA
Figuur 5 SCHEMA SLUIS
Figuur 6 SCHEMA STORTEBEDDEN
Figuur 7 PROEF VISINTREK
Figuur 8 MEETLOCATIES BARRIER
Figuur 9 MEETLOCATIES (vervolg)
1 Inleiding

In het kader van de MER Beheer Haringvlietsluizen zullen voor een aantal alternatieve beheerscenario’s van de spuisluizen, de effecten van het Beheer worden aangegeven. Eers is onder andere, dat geen zoutindringing voorbij het spui mag optreden i.v.m. de waterinname bij Bernisse. Mogelijke effecten betreffen de waterkwaliteit en de morfologie en worden vooral veroorzaakt door een veranderde waterbeweging en saliniteitsverdeling aan de rivierzijde van het sluizencomplex. Om de effecten te bestuderen zal gebruik gemaakt worden van het 3D-RIJHAMO model (Rijn-Maasmond model), dat in het kader van INVOWA is opgezet en afgeregeld. De resultaten met het 3D-RIJHAMO-model voor een gesloten Haringvlietsluizencomplex zijn geverifieerd, (Van der Kaaïj, 1995) aan de hand van een uitgebreide meetcampagne uitgevoerd in 1993, waarbij snelheids- en saliniteitsgegevens zijn verzameld, (De Jong, 1994). De nauwkeurigheid van het huidige 3D-RIJHAMO-model m.b.t. de grootschalige verspreiding van zout zal voor de MER-Haringvliet als uitgangspunt beschouwd moeten worden.

Ten behoeve van het simuleren van de sluismanipulaties met TRIWAQ, wordt het numerieke model uitgebreid met 3D sluissformuleringen. Om de lokale processen rond de sluizen te kunnen berekenen, zijn roosterafstanden van de orde 1-5 meter en een tijdsschaal van secondes nodig, terwijl voor het bestuderen van het effect van de sluismanipulaties op de zoutindringing een gebied van de orde kilometers, met een tijdsschaal van enkele dagen, zal moeten worden beschouwd. De processen rond de sluizen kunnen dus wel met een fijnmazig model bestudeerd worden, maar de invloed van deze processen zal geparametrisereld moeten worden ingebracht in het grovere model. Deze parametratisatie is alleen mogelijk als er voldoende informatie beschikbaar is over de invloed van het openzetten van een sluis op de stroming en transport. De in het verleden uitgevoerde metingen, zoals weergegeven in het WL-rapport 3D-numerieke modellering Haringvlietsluizen (Stelling e.a., 1994), hebben allemaal betrekking op het spuien van zoet rivier water bij hoge rivierafvoeren. Om de informatie over de invloed van het openzetten van de sluizen op de stroming tijdens vloed te verzamelen, zijn aanvullende metingen noodzakelijk. Omdat een verzilting van het Haringvliet de belangen van de drinkwaterwinning en landbouw kan schaden, zal het 3D-RIJHAMO model de zoutindringing nauwkeurig moeten kunnen voorspellen. Het 3D-model zal dus met betrekking tot dit aspect goed geverifieerd moeten worden.

In het voorjaar van 1994 is de Praktijkproef Visintrek uitgevoerd (Bol, 1995). Tijdens de proef zijn er enkele schuiven gedeeltelijk geheven, zodat zout water kon binnendringen. De verspreiding van het zout is gemeten. Tijdens de meting is geconstateerd dat er een sterke verticale gelaagdheid optreedt. Alleen een drie-dimensionaal model kan de stroming en het transport in het Haringvliet dus goed beschrijven. De metingen zijn uitgevoerd met rondvarende meetschepen. Deze schepen konden in verband met de hoge stroomsnelheden, slechts op enige (meer dan honderd meter) afstand van de sluizen meten. De proef Visintrek leverde dus informatie over de grootschalige verspreiding van het zout achter de sluizen, maar niet over het lokale gedrag van de stroming en het transport van zout in rond de openstaande sluis. Om de wiskundige formulering te kunnen afregelen is hierover wel informatie nodig. Hiervoor zijn aanvullende metingen nodig, waarbij er vaste meetinstrumenten ter plaatse van het sluizencomplex gebruikt moeten worden.
Bij het opzetten van de meetcampagne is het belangrijk om goed rekening te houden met de informatie, die er voor het afregelen en verifiëren van het wiskundige model noodzakelijk is. Uit het oogpunt van de modelverificatie is een zo groot mogelijke dataset van stromings- en zoutgegevens gewenst. Er zijn echter technische en financiële randvoorwaarden. Er zal een verstandige keuze gemaakt moeten worden, gebaseerd op de vanuit de wiskundige modellkant te beantwoorden vragen. Het Waterloopkundig Laboratorium WL, is door het Rijksinstituut voor Kust en Zee (RIKZ) brief RIKZ 957147 verzocht te helpen bij het maken van een meetopzet.

Enkele uitgangspunten

- Bij de MER zullen vooral situaties met een (zoveel mogelijk) gelijkmatige opening (over de volledige breedte van het sluizencomplex) worden beschouwd.
- Er zal tijdens de meetcampagne een maximum voor de totale sluisopening van 900 m² worden aangehouden, d.w.z. maximaal 1 meter open over de hele breedte (alle 17 schuiven). Eén schuif volledig open komt overeen met (6×60=)360 m² sluisopening. De schuifstanden in de flankerende sluizen zullen zo worden gekozen, dat in de sluis (/sluizen) die wordt/(en) bemeten de aanstroming loodrecht is.
- Verondersteld wordt dat de bemeten sluis representatief is voor alle 17 sluizen.
- De zoutriolen en visintreksluizen zullen dicht staan tijdens de metingen.
- Er zal een minimale afvoer bij Lobith worden aangehouden: 2000 m³/s geeft 200 m² spuiopening. De afvoer zal ook niet te groot moeten zijn, anders stroomt er geen zout water naar binnen.
- De meting zal worden uitgevoerd met vaste meetopstellingen en met varende systemen (bootsmetingen).
- De bootsmetingen vinden plaats gedurende 9 getijcylci; onduidelijk is nog hoeveel aaneengesloten cycli zullen worden bemeten. De metingen zijn geplant voor half januari. Indien dat nodig blijkt zou nog een aanvullende meetcampagne kunnen worden gepland (in maart?). In verband met het groeiseizoen zal er na 1 april niet meer worden gemanipuleerd met de sluizen.
- De metingen hebben als uiteindelijk doel dat er een 3D wiskundige model kan worden gemaakt/afgeregeld dat "voldoende nauwkeurig uitspraken t.b.v. de MER-studie mogelijk maakt". Deze uitspraken zullen op 1 april beschikbaar moeten zijn.

Uitvoerenden

De volgende medewerkers van WL hebben het project uitgevoerd: Prof.Dr.Ir. G.S. Stelling, Ir. J.A.Th. M. van Kester en Ir. H.J.M.G. Steeghs. Het project is namens Rijkswaterstaat begeleid door drs. E.V.L. Kuijper van RIKZ (projectverantwoordelijke), door Ir. R. Bol van RIZA, F.J.D. Donkervoort van directie Zuid-Holland en ir. A.W. Kraak van RIKZ.
2 Beschikbare 3D-modellen Haringvliet

Om de stroming rond de Haringvlietsluizen te bestuderen zijn er op dit moment drie wiskundige modellen beschikbaar, die het effect van verticale stratificatie op de stroming in rekening brengen.

2DV-prototype model

Dit model beschrijft een verticale doorsnede van een sluiz. Het model heeft een roosterafstand van 5 meter en strekt zich uit van 75 meter voor tot 600 meter na de sluiz. Ook niet-hydrostatische effecten kunnen in dit model bestudeerd worden. Het model kan processen met tijdschalen in de orde van minuten simuleren. Voor de vraagstelling van de MER heeft dit model alleen waarde als tussenstap van wiskundige modelvorming uitgaande van de meting naar modellen met grovere roosterschalen.

MOHA-model

Het Mond Haringvlietmodel strekt zich uit van 3 km stroomopwaarts tot 3 km stroomafwaarts t.o.v. het Haringvlietsluizencomplex. Elk der 17 sluizen valt samen met één roostercel. (Van de 20,5 cellen in de mond zijn er 3,5 afgesloten: 1,5 cellen zijn deel van de oever, 2 cellen compenseren voor de blokkering door de pijlers.) Ter plaatse van de sluizen zijn de roostercellen ongeveer 57 m breed en 46 meter lang. Nabij de modelranden zijn de vaklengtes ongeveer 200 meter. Figuren 1 en 2 (uit Stelling e.a. 1994) geven een overzicht van dit zogenaamde "FIJNE" rooster. Het MOHA-model kan processen met een tijdschaal van uren simuleren.

RIJMAO-model

In het RIJMAO-model valt het totale sluizencomplex samen met 5 roostercellen; zie figuur 3 (uit Stelling e.a. 1994). De roostercellen ter plaatse van het sluizencomplex zijn ongeveer 250 m lang en 250 m breed. Het openen of sluiten van één enkele sluiz is dus op RIJMAO-schaal niet goed te representeren. Roosterverfijning binnen RIJMAO rond het sluizencomplex leidt niet alleen tot meer roostercellen rond het sluizencomplex, maar ook tot meer roostercellen op zee en in de Nieuwe Waterweg. Het RIJMAO-model kan lange termijn processen met een tijdschaal van dagen-maanden simuleren. De inspeeltijd van RIJMAO ligt in de orde van 10-15 dagen.

Noot: Inmiddels heeft RIJKZ het RIJMAO-model verfijnd nabij de barrier: iedere sluiseopening vormt een aparte roostercel; de cellen zijn, evenwijdig aan de sluiz, een factor 2 verkleind.

Het modelgebied moet zo groot zijn, dat de veranderingen 'niet de rand bereiken'. Dit betekent dat voor de MER-berekeningen die een lange periode beslaan, waarschijnlijk een model-gebied ter grootte van het volledige RIJMAO-model moet worden gekozen. Voor het narekenen van de aanstaande proevenserie kan met een uitsnede van het RIJMAO-gebied worden volstaan. Dit bespaart rekentijd (ook vooraf: het model speelt sneller in).
Het model moet ook in staat zijn de optredende zoutprocessen in voldoende detail weer te geven. Bij de lange-termijn MER-berekeningen zijn de uiteindelijke zoutgradienten zodanig flauw, dat een grove ruimtelijke resolutie toelaatbaar is. Bij de aanstaande proeven moeten echter (relatief steile) zoutfronten worden verwacht. Om in een dergelijke situatie metingen goed in het model te kunnen weergeven, moet de horizontale resolutie voldoende zijn. Een resolutie van 10-tallen meters is dan geboden. ($u\Delta x/2 = 1$ geeft bij een karakteristieke $u=0.1$ m/s een noodzakelijke Δx van 20 m).

De resultaten van een praktijkproef, waarbij er slechts door 1 of 2 sluizen gedeeltelijk te openen, zout water wordt binnengelaten, kunnen dus onmogelijk nauwkeurig op RIJMAOMO-schaal geverifieerd worden. Een model met lokaal rond het sluizencomplex een rooster met de fijnheid van het MOHA-rooster lijkt hiervoor meer geschikt. De randen van het huidige MOHA-model liggen echter op 3 kilometer van de sluizen. Bij de Praktijkproef Visintrek is een snelheid van de zouttong (interne golf) waargenomen van 0.25 m/s; over een periode van 6 uur kan de tong dus 5.4 km binnendringen.

Verder moet gerekend worden op zout in de putten ter plaatse van de Slijkplaat (ca. 8 km.). Het huidige MOHA-model zal uitgebreid moeten worden tot het Spui, om 'zeker' te zijn dat de zouttong de open rand aan de rivierzijde niet bereikt. De lengte van het model zal met ruwweg 11 km toenemen, van 6 km tot 17 km. Zie figuur 4 (uit Bol 1995). Dit heeft grote consequenties voor de benodigde rekentijden.

Om een onder invloed van het getij heen en weer bewegende zouttong nauwkeurig te kunnen simuleren is een zoveel mogelijk uniform rooster gewenst. Bij de overgang van fijne naar grovere roosterstappen treedt er numerieke dispersie op (middeling wordt immers niet ongedaan gemaakt bij terugstrooming van grof naar fijn), waardoor de grootste roosterstappen bepalend worden voor de nauwkeurigheid. Dit betekent dat lokale verfijning bij cyclische (!) waterbeweging tot extra opmenging aanleiding geeft.

Op grond van de ruimtelijke schaal van de praktijkproef, manipulatie met één of twee sluizen, en de tijdschaal, 3-4 dagen open, lijkt alleen een TRIWAOQ-model met de roosterresolutie en de afmetingen van het uitgebreide MOHA-model geschikt om een praktijkproef te simuleren. In het volgende hoofdstuk wordt een voorstel gedaan voor de opzet van de meetcampagne. Dit voorstel veronderstelt dat er een aangepast MOHA-model beschikbaar is. In de meetcampagne zal namelijk informatie op de open randen van het model verzaameld moeten worden.

Het MOHA-model is zelf niet geschikt als modelinstrument om de vragen m.b.t. de lange termijn effecten van het open zetten van de sluizen, die in het kader van de MER-Haringvliet gesteld worden, te beantwoorden. Voor het bestuderen van lange termijn effecten is een model dat een groter gebied modelleert met een grover rooster, zoals RIJMAOMO een beter instrument. Het geverifieerde MOHA-model kan gebruikt worden om de sluisformuleringen in het RIJMAOMO-model af te regelen.
3 Calibratie sluiscoëfficiënten

De invloed van een sluis op de stroming zal in de vorm van een extra kwadratische vrij-
vingsterm in de impulsvergelijking van TRIWAQ worden ingebracht (Stelling e.a., 1994). Deze kwadratische term parametriseert het effect van de steile bodemgradiënt bij de sluis en de vormweerstand o.a. ten gevolge van de pijlers van het sluizencomplex, die niet op het gebruikte horizontale en verticale rooster kunnen worden opgelost. De bodem van de sluis ligt voor het Haringvlietsluizencomplex ongeveer 8 meter hoger dan het stortebed.

Het globale effect van een sluis op de stroming kan worden beschreven door een zogenaamde Q-H relatie:

\[Q = C_D \cdot A \cdot \sqrt{2g(H_1 - H_2)} \]

met

- \(H_1 \) : de bovenstroomse waterhoogte ten opzichte van het gekozen referentievlak
- \(H_2 \) : de benedenstroomse waterhoogte ten opzichte van het gekozen referentievlak
- \(Q \) : het profielgemiddelde debiet
- \(A \) : het doorstroomde oppervlak
- \(C_D \) : de afvoercoëfficiënt

1) Het ware beter om voor de afvoercoëfficiënt het symbool "\(\mu \)" te gebruiken; het symbool "\(C_D \)" duidt in de regel de weerstandcoëfficiënt aan.

Voor het Haringvlietsluizencomplex is in het verleden tijdens het spuien van zoet rivierwater een gemiddelde afvoercoëfficiënt van 0.78 gevonden, zie (Rijkswaterstaat 1983; is D20 in Stelling e.a. 1994). Deze afvoercoëfficiënt wordt zowel voor volledig als gedeeltelijk geheven schuiven gehanteerd. Toch zal de weerstand waarschijnlijk ook (enigszins) beïnvloed worden door de hefhoogte, mede ook afhankelijk van de aanstroomrichting.

De afvoercoëfficiënt zal daarom voor verschillende schuifhoogtes moeten worden bepaald. We stellen voor dit te doen voor 0.25 of zo laag als mogelijk, 0.50, 1.0, 1.5, 2.5 en 4.5 m. Een en ander mag afhankelijk gesteld worden van de feitelijk te gebruiken MERSCenario’s.

De schuiven zijn in het sluizencomplex dubbel uitgevoerd. Zie Figuren 5 en 6 uit (Stelling e.a. 1994; ook Stelling en Van den Boogaard 1993). In het onderhavige rapport wordt ervan uitgegaan dat er alleen met de schuiven aan de zee-zijde gemanipuleerd wordt. De vormweerstand van de schuif en het complex is geheel verschillend voor de eb (uitstroom) en de vloeidstroming (instroom). De afvoercoëfficiënt zal dus voor beide situaties uit metingen bepaald moeten worden. Ook is de aanstroom van de sluis niet symmetrisch voor de schuif aan de rivier- en aan de zeezijde.

Uit het oogpunt van modelcalibratie is één van de belangrijkste doelstellingen het verkrijgen van een beter inzicht in de afvoerrelatie, gegeven verschillende standen van de schuif/schui-
ven voor één sluis.
De hefhoogtes van de schuif/schuiven moeten tijdens de praktijkproef gekozen worden aan de hand van de beheerscenario's, die in het kader van de MER bestudeerd gaan worden. Het gecalibreerde model kan later alleen betrouwbaar toegepast worden voor standen van de schuiven, waarvoor het model gecalibreerd is.

Het is gewenst bij één of meer standen van de schuiven in een tweede sluisopening simultaan eenzelfde meting uit te voeren. Op die manier kan inzicht worden verkregen in de mate waarin de gekozen sluisopening representatief is.
We krijgen dan naast meetpunt 1 (zie figuur 8) eenzelfde meetpunt 1' elders in het complex. De meetpunten 2', overeenkomend met 2, kunnen wellicht worden ingevuld met schepen.

Om de afvoercoëfficiënt te kunnen bepalen zullen de volgende grootheden gemeten moeten worden (N.B. de locatie voor \(H_1 \) en \(H_2 \) liggen binnen of buiten afhankelijk van de stroomrichting).
- \(H_{1,a} \) de bovenstroomse waterstand; ongeveer 500 meter vóór de sluis; vóór de zone van vernauwing in dwarsrichting).
- \(H_{1,b} \) de bovenstroomse waterstand; zo dicht mogelijk bij de sluis, net buiten de bestorting; vóór de versnellingszone t.g.v. verticale vernauwing.
- \(H_{2,a} \) de benedenstroomse waterstand; zo dicht mogelijk bij de sluis, net buiten de bestorting; direct na de vertragingsszone t.g.v. verticale verwijding.
- \(H_{2,b} \) de benedenstroomse waterstand; ongeveer 500 meter na de sluis; na de zone van verwijding in dwarsrichting.
- \(H_3 \) de waterstand direct nabij de schuif (op de sluisvloer), dus direct ná de versnellingszone en vóór de vertragingsszone.
- Q het debiet door de sluis. (We gaan uit van loodrechte aanstroming: er wordt slechts 1 horizontale component en de verticale component gemeten.)
- Chloride-concentratie

Gewenste nauwkeurigheden

\(H_{1,a}, H_{1,b}, H_{2,a} \) en \(H_{2,b} \) moeten met een nauwkeurigheidsmarge van minder dan 1 cm. Voor \(H_3 \) geldt een eis van minder dan 5 cm. Indien gemeten wordt in de neer moet een voldoend grote middelingstijd worden gekozen.

Voor de snelheidsmeting geldt, gezien ook het belang van deze grootheid voor de bepaling van de fluxen, in principe de eis 100% nauwkeurig. Een onnauwkeurigheid van 10% is het maximaal toelaatbare.
Voor de chloride-concentratie geldt hetzelfde. Men zou willen dat de berekende zoutflux (debiet*concentratie) een maximale onnauwkeurigheid heeft van +/- 10%.

Om het transport van zout en de invloed van zout op de afvoercoëfficiënt te kunnen bepalen is het nodig om ter plaatse van de sluisdeur de verticale verdeling van de chlorideconcentratie en de verticale verdeling van de snelheid te weten. Informatie over de verticale structuur geeft inzicht in de optredende verticale menging in de versnellingszone.
Verder kan dan wellicht de vraag worden beantwoord of in de praktijk gedurende een langere periode in het getij gelaagdheid in stand blijft.

Het gebruik van zogenaamde ADCP's (Acoustic Doppler Current Profilers) lijkt hiervoor het meest geschikt. Hierbij kan het instrument vanaf het wateroppervlak of vanaf de bodem meten, afhankelijk waar het instrument bevestigd is. Het instrument is het meest onnauwkeurig in de buurt van het instrument zelf. Indien het niet mogelijk is twee ADCP's te gebruiken, verdient meting vanaf het vrije oppervlak de voorkeur. Overigens kunnen ADCP's niet worden toegepast in stroomgebieden waarin veel luchtbellen voorkomen.

De te meten grootheden zullen in de tijd variëren. Tijdsregistraties over de volledige periode van de proef zijn gewenst, waarbij de gebruikte meetinstrumenten, mede bepalend zullen zijn voor de toegepast bemonsteringsfrequentie. De signalen van de instrumenten zullen echter voldoende lang gemiddeld moeten worden, om niet alle korte tijdsfluctuaties te registreren. We stellen voor om per meetpunt om het half uur verticale profielen op te slaan, waarbij per profiel minimaal over een periode van 5-10 minuten in de tijd gemiddeld is.

Belangrijk is om te realiseren dat met het kenteren van de snelheid de positie waar H₁ en H₂ gemeten moet worden, wijzigt! Het handigste lijkt het daarom om zowel tijdens eb als vloed 100 á 200 meter (zie figuur 6) en 500 meter vóór en ná de sluis te meten. De waterstanden zullen bepaald moeten worden langs een raai van het model, omdat de sluisformuleering weliswaar ééndimensionaal is, maar de proef duidelijk driedimensionaal is!
4 Randvoorwaarden en beginvoorwaarden MOHA-model

Randvoorwaarden

Om de praktijkproef met een aangepast MOHA-model, zie hoofdstuk 2, te kunnen simuleren zal er tijdens de praktijkproef ter plaatse van de open randen van het model informatie over waterstand, stroming en transport verzameld moeten worden. De nauwkeurigheid van de informatie op de open randen, zal de modelresultaten sterk beïnvloeden.

Het is nodig op de modelranden zowel de debieten als de waterstanden te meten; dit maakt een flexibele keuze van de randvoorwaarden mogelijk. Voor de randaansturing van de zoutfluxen zijn dan ook de chloride-concentraties nodig.

In het model zal de zeerand waarschijnlijk een waterstandsrand zijn. De binnenrand in het Haringvliet zal in het model waarschijnlijk een debietrand zijn.

Nauwkeurige informatie over de snelheden aldaar is dus nodig. Daarnaast is aldaar ook waterstandsindicatie nodig, mogelijk enkel ter controle. De rand in het Spui is in principe ook een debietrand; daarvoor geldt dus hetzelfde.

We zullen aannemen dat de zoutconcentraties bij de binnenranden constant zijn (zoet water). Een meting als controle daarop is echter wel aan te bevelen.

Beginvoorwaarden

De proef start met een stromend Haringvliet, waarbij er reeds gespuid wordt. Aan de zeezijde is de watermassa waarschijnlijk gestratificeerd (er bevindt zich daar mogelijk meer zoet water dan het geval zou zijn geweest/zal zijn bij deels - naar weerszijden - geopende sluizen). Om de proef dus met het model te kunnen simuleren moet de beginsituatie nauwkeurig bekend zijn. Het model moet ingespeeld zijn op tijdstip $t=0$ (aanvang (boot)metingen bij verschillende openingen).

Er moeten dus een dag (twee cycli) voorafgaande aan de proef al metingen worden uitgevoerd (in de vaste meetopstellingen) van de snelheden, waterstanden en chlorideconcentraties. Voor het te hanteren meetnet verwijzen we naar hoofdstuk 5.

De meteoorologische gegevens moeten worden gemeten; uiteraard moet ook de bathymetrie bekend zijn.
5 Keuze Meetlocaties

Praktijkproef Visintrek

Voor de Praktijkproef Visintrek is een groot aantal meetlocaties geselecteerd, zie Figuur 7 afkomstig uit (Bol 1995). In deze lokaties is door meetschepen met een frequentie van ongeveer 2 uur de verticale verdeling van chlorideconcentratie aan de hand van de geleidbaarheid geregistreerd. Daarnaast zijn er door twee varende schepen op vaste hoogtes (5 en 7 meter beneden de waterspiegel) horizontale saliniteitsvelden gemeten met een frequentie van éénmaal per uur. De keuze van de meetlocaties in de Visintrekproef was goed doordacht. Vooral de registraties van de chlorideverdeling in de putten van het Haringvliet is voor modelverificatie bijzonder belangrijk. Het vullen en leiden van de putten met zout zal veel invloed hebben op de op langere termijn optredende saliniteitsverdeling.

De komende meetcampagne

Er zal meteo-informatie moeten worden verzameld. Met name snelheid en richting van de wind is belangrijk, onder andere in verband met de invloed van wind op de menging.

Voor de bepaling van de hydrodynamische data stellen we voor de komende meetcampagne het volgende meetnet voor:

Vaste meetpunten, zie figuren 8 en 9:

<table>
<thead>
<tr>
<th>punt</th>
<th>plaats</th>
<th>opmerking</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>boven sluisvloer</td>
<td>mogelijk tweede meting als backup, zie Hfdst. 3</td>
</tr>
<tr>
<td>2</td>
<td>nabij de opening</td>
<td>2a direct na stortebed</td>
</tr>
<tr>
<td></td>
<td>aan weerszijden</td>
<td>2b op ca. 500 m. afstand</td>
</tr>
<tr>
<td>3</td>
<td>in putten bij Slijkplaat</td>
<td>indien mogelijk ook in ander punten</td>
</tr>
<tr>
<td>4</td>
<td>zeerand</td>
<td>minimaal ter plaatse van de twee geulen</td>
</tr>
<tr>
<td>5</td>
<td>rivierranden</td>
<td>Haringvliet en Spui</td>
</tr>
</tbody>
</table>

Verticaal metingen vanaf boten ten behoeve van verticale informatie op zekere plaats, zie fig. 9:

Hierbij gaat het om metingen die vergelijkbaar zijn met die in een vaste opstelling, zij het dat die opstelling verplaatsbaar is: snelheden en saliniteiten.
Gedacht wordt hier aan metingen op plaatsen waar geen meetpaal o.i.d. mogelijk bleek. Punten op de zeerand bijvoorbeeld. Ook denken we hier aan andere putten dan de vaste punten 3. Tenslotte kan met meer detail, zowel verticaal als horizontaal, de gelaagdheid in de geulen worden gemeten.
Varende metingen ten behoeve van ruimtelijke verdeling in het hele gebied:

Het gaat hier wederom om snelheden en chloride-concentraties.

De contourplots voor de chloride-concentratie zoals die zijn opgenomen in (Bol 1995) zijn buitengewoon nuttig bij de (vooral kwalitatieve) beoordeling van de modelresultaten. Die gegevens moeten zowel voor het binnengebied als ook voor het zeegebied beschikbaar komen; beide gebieden zijn vanuit modellerings-standpunt even belangrijk.

Bij het bepalen van de contourplots wordt geïnterpoleerd over de plaats en in de tijd. Voor de ruimtelijk verdeling van de saliniteit is een bemonsteringsinterval van maximaal een half uur gewenst omdat de zouttong zich met waargenomen snelheid van 0.25 m/s dan ongeveer 450 meter verplaatst heeft. Tegelijkertijd zal ook de snelheid moeten worden gemeten. Uit het oogpunt van modelverificatie m.b.t. de verticale menging is dit noodzakelijk.

Door RIZA zal een vaarplan worden uitgewerkt op basis van de ervaringen die zijn opgedaan bij de Visintrekproef; ten aanzien van de ruimtelijke resolutie kan, zo lijkt het, worden aangesloten bij het toen gekozen tracks. Onder andere zal gelet moeten worden op de relatie tussen de vaarsnelheid en de vereiste signaal/ruisverhouding bij de ADCP-metingen.

Het verdient aanbeveling de varende metingen gericht op de geografische verdeling van de watersnelheid en de chloride-concentratie aan te vullen met remote sensing metingen vanuit de lucht.

Varende metingen ten behoeve van debietbepaling:

Bij de bepaling van het debiet door de beschouwde opening kan wellicht met vrucht gebruik gemaakt worden van de zgn. 'moving boat methode'.
Nadere specificatie

Vaste meetpunten; aantal posities in de verticaal:

(..) betekent facultatief/indien mogelijk

<table>
<thead>
<tr>
<th>punt</th>
<th>plaats</th>
<th>snelheid</th>
<th>chloride</th>
<th>waterstand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>boven sluisvloer</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>nabij de opening, 2a</td>
<td>5 2X 2)</td>
<td>5 2X 3)</td>
<td>1 2X 3)</td>
</tr>
<tr>
<td></td>
<td>2b</td>
<td>5 2X 4)</td>
<td>5 2X 3)</td>
<td>1 2X</td>
</tr>
<tr>
<td>3</td>
<td>in putten bij Slijkplaat</td>
<td>5 2X</td>
<td>5 2X</td>
<td>1 1X</td>
</tr>
<tr>
<td>4</td>
<td>zeerand</td>
<td>5 2X 5)</td>
<td>5 2X 5)</td>
<td>1 2X</td>
</tr>
<tr>
<td>5</td>
<td>rivierranden</td>
<td>5 2X</td>
<td>5? 2X (1X)</td>
<td>1 2X</td>
</tr>
</tbody>
</table>

1) Indien mogelijk 5 meetpunten, equidistant verdeeld over de lokale waterdiepte; u, v en w.
2) Alleen u en w.
3) Bij de lage snelheden die zullen optreden bij maximaal 900 m² opening, zal de waterstand tussen 2a en 2b vrijwel altijd, zeker in de vloed-situatie, niet veel verschillen. In principe zou deze meting daarom als facultatief kunnen worden aangemerkt.
4) Alleen u en v.
5) Met de meetgegevens op de zeerand wordt het model aangestuurd. In vaste meetpunten zal tijdens de proefneming ter plaatse van de modelranden, de waterstand (om de 5 minuten) en de verticale verdeling (om het half uur) van de snelheid en de chlorideconcentratie, over de gehele periode van de proef in de tijd geregistreerd moeten worden. Indien het mogelijk is 3 of meer (tot 5) vaste punten op de zeerand te kiezen zou dat zeer welkom zijn.

Verticaal metingen vanaf boten ten behoeve van verticale informatie op zekere plaats, zie fig. 9:

Gewenst: snelheden (u en v) en chloride-concentraties op 5 dieptes (equidistant).
Hier is een eerder gemaakte opmerking zeer van belang:
De te meten grootheden zullen in de tijd variëren. Tijdsregistraties over de volledige periode van de proef zijn gewenst, waarbij de gebruikte meetinstrumenten, mede bepalend zullen zijn voor de toegepast bemonsteringsfrequentie. De signalen van de instrumenten zullen echter voldoende lang gemiddeld moeten worden, om niet alle korte tijdsfluctuaties te registreren. We stellen voor om per meetpunt per half uur verticale profielen op te slaan, waarbij per profiel minimaal over een periode van 5-10 minuten in de tijd gemiddeld is.

Varende metingen ten behoeve van ruimtelijke verdeling in het hele gebied:

Gewenst: snelheden (u en v) en chloride-concentraties op zoveel dieptes als haalbaar.

Het lijkt gewenst alle drie beschikbare systemen voor varend meten ook daadwerkelijk in te zetten: één in het zeegebied en twee in het (veel grotere) binnengebied.
Referenties

Sluizencomplex Haringvliet
Detail beeld FIJNE MOHA modelrooster nabij sluizen

Z 686.40 TRISULA
MOHA-FIJN
Jan 24, 1994 Fig. 5.1.2

WATERLOOPKUNDIG LABORATORIUM

MOHA FIJN, DETAIL

Z1023; FIG. 2
overzicht van de extra meetlocaties van de Praktijkproef Visintrek

rijkswaterstaat
riza
hoofdafdeling watersystemen

RIZA nota 94.051
bijlage 1.1.2
Schematische weergave sluizen, deel 1

WATERLOOPKUNDIG LABORATORIUM

Z 686

Mar 14, 1994

Fig. 2.1.2
overzicht van de basis-meetlocaties van de Praktijkproef Visintrek

<table>
<thead>
<tr>
<th>rijkswaterstaat</th>
<th>riza</th>
<th>RIZA nota 94.051</th>
</tr>
</thead>
<tbody>
<tr>
<td>hoofdafdeling watersystemen</td>
<td></td>
<td>bijlage 1.1.1</td>
</tr>
</tbody>
</table>

WATERLOOPKUNDIG LABORATORIUM

PROEF VISINTREK

Z1023; FIG. 7
overzicht van de extra meetlocaties van de Praktijkproef Visintrek

<table>
<thead>
<tr>
<th>rijkswaterstaat</th>
<th>RIZA nota 94.051</th>
</tr>
</thead>
<tbody>
<tr>
<td>riza</td>
<td>bijlage 1.1.2</td>
</tr>
<tr>
<td>hoofdafdeling watersystemen</td>
<td></td>
</tr>
</tbody>
</table>

WATERLOOPKUNDIG LABORATORIUM MEETLOCATIES (vervolg) Z1023; FIG. 9