Title
Six-Center Assessment of CNN-Transformer with Belief Matching Loss for Patient-Independent Seizure Detection in EEG
Author
Peh, Wei Yan (Nanyang Technological University)
Thangavel, Prasanth (Nanyang Technological University)
Yao, Yuanyuan (Katholieke Universiteit Leuven)
Thomas, John (McGill University, Montreal Neurological Institute and Hospital)
Tan, Yee Leng (National Neuroscience Institute of Singapore)
Dauwels, J.H.G. (TU Delft Signal Processing Systems) 
Date
2023
Abstract
Neurologists typically identify epileptic seizures from electroencephalograms (EEGs) by visual inspection. This process is often time-consuming, especially for EEG recordings that last hours or days. To expedite the process, a reliable, automated, and patient-independent seizure detector is essential. However, developing a patient-independent seizure detector is challenging as seizures exhibit diverse characteristics across patients and recording devices. In this study, we propose a patient-independent seizure detector to automatically detect seizures in both scalp EEG and intracranial EEG (iEEG). First, we deploy a convolutional neural network with transformers and belief matching loss to detect seizures in single-channel EEG segments. Next, we extract regional features from the channel-level outputs to detect seizures in multi-channel EEG segments. At last, we apply post-processing filters to the segment-level outputs to determine seizures' start and end points in multi-channel EEGs. Finally, we introduce the minimum overlap evaluation scoring as an evaluation metric that accounts for minimum overlap between the detection and seizure, improving upon existing assessment metrics. We trained the seizure detector on the Temple University Hospital Seizure (TUH-SZ) dataset and evaluated it on five independent EEG datasets. We evaluate the systems with the following metrics: sensitivity (SEN), precision (PRE), and average and median false positive rate per hour (aFPR/h and mFPR/h). Across four adult scalp EEG and iEEG datasets, we obtained SEN of 0.617-1.00, PRE of 0.534-1.00, aFPR/h of 0.425-2.002, and mFPR/h of 0-1.003. The proposed seizure detector can detect seizures in adult EEGs and takes less than 15 s for a 30 min EEG. Hence, this system could aid clinicians in reliably identifying seizures expeditiously, allocating more time for devising proper treatment.
Subject
belief matching
electroencephalogram
patient-independent seizure detection
Transformer
To reference this document use:
http://resolver.tudelft.nl/uuid:0fb0ff96-1365-440a-8ae1-23397b3df03a
DOI
https://doi.org/10.1142/S0129065723500120
Embargo date
2023-08-22
ISSN
0129-0657
Source
International Journal of Neural Systems, 33 (3)
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Part of collection
Institutional Repository
Document type
journal article
Rights
© 2023 Wei Yan Peh, Prasanth Thangavel, Yuanyuan Yao, John Thomas, Yee Leng Tan, J.H.G. Dauwels