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The interface-induced magnetization damping of thin ferromagnetic films in contact with normal-metal
layers is calculated from first principles for clean and disordered Fe/Au and Co/Cu interfaces. Interference
effects arising from coherent scattering turn out to be very small, consistent with a very small magnetic
coherence length. Because the mixing conductances which govern the spin transfer are to a good approxima-
tion real-valued, the spin pumping can be described by an increased Gilbert damping factor but an unmodified
gyromagnetic ratio. The results also confirm that the spin-current-induced magnetization torque is an interface
effect.
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I. INTRODUCTION

The local magnetization dynamics in a bulk ferromagnet
are usually well described by a phenomenological model for-
mulated in terms of three parameters:Heff, an effective mag-
netic field;g, a gyromagnetic ratio; anda, a Gilbert-damping
constant. The fieldHeff is a sum of contributions from exter-
nally applied fields, crystal anisotropy, shape-dependent di-
polar interactions, and exchange interactions which govern
ferromagnetic spin-wave spectral characteristics.g is the ra-
tio of the total magnetic moment and the angular momentum
of the electrons in the ferromagnet; in 3d transition-metal
ferromagnets, such as Fe and Co, it is close to the free-
electron valueg<2mB/". The Gilbert-damping constanta
parametrizes the viscous damping of an excited magnetiza-
tion to the slocallyd lowest-energy configuration. Its value
differs considerably for various materials and also depends
on the temperature and on the impurity/defect composition
of a given sample. The motion of the magnetization-direction
unit vector m is determined by the phenomenological
Landau-Lifshitz-GilbertsLLGd equation:1

dm

dt
= − gm 3 Heff + am 3

dm

dt
. s1d

The magnetization dynamics of small monodomain ferro-
magnets are well described by the LLG equations1d down to
the micron scale. New effects may play a role on the submi-
cron scale, however. The magnetization dynamics is no
longer a highly coherent process because interface and sur-
face roughness are relatively more important in small
samples. Many-magnon processes can then acquire a size-
able spectral weight2 and are observable as, e.g., an increased
line width of the ferromagnetic resonancesFMRd.3 Another
source of additional FMR broadening is nonlocal, depending
on the environment into which the ferromagnet is embedded:
a time-dependent ferromagnetic order parameter pumps spin
currents that carry angular momentumsand energyd into ad-
jacent conducting materials.4,5 This angular-momentum loss,

in turn, is equivalent to an additional damping torque on the
magnetization.6

The spin-pumping concept for the magnetization dynam-
ics of nanostructures has far-reaching consequences. It gives
rise to an enhanced Gilbert damping of magnetic films in
contact with conducting media,4 may be employed as an
FMR-operated spin battery,7 and explains a dynamic ex-
change coupling in magnetic bilayers,8,9 as well as a dynamic
stiffness against current-induced magnetization reversal.10

The analysis of experimental FMR probes of the magnetiza-
tion dynamics in single films5 and magnetic bilayers8 relied
on phenomenological models of the electronic structure.
Here we show how these assumptions can be relaxed by
using instead scattering matrices calculated from first prin-
ciples which take into account the detailed atomic and elec-
tronic structure of the materials under study.

An early phenomenological treatment of the nonlocality
of the magnetization dynamics in hybrid normal-metal/
ferromagnetsN/Fd structures was given by Silsbeeet al.11

Recently, Šimáneket al.12 pointed out that time-dependent
linear-response theory could be used to calculate the spin
flows generated by a ferromagnet with a time-varying mag-
netization in contact with a nonmagnetic conductor, as an
alternative to the scattering-theory approach of Tserkovnyak
et al.4 In spite of the different starting point, complete agree-
ment between the two methods was demonstrated13 for the
simple case of ad-function magnetic layer embedded in a
free-electron gas. In addition, it was argued in Refs. 12 and
13 that the electron-electron interactions can considerably
enhance the spin currents into normal metals with large
Stoner-enhancement factors. The linear-response framework
has also been used to calculate the enhanced Gilbert damping
of finite-thickness ferromagnetic films.14 It was argued there
that ultra-thin films display oscillatory dampingsas a func-
tion of thicknessd due to quantum-size effects. In the follow-
ing, we show that these quantum-interference effects are
greatly overestimated by the ballistic free-electron band
model and do not survive when realistic transition-metal
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band structures are used. By calculating from first principles
the scattering matrix entering the spin-pumping theory,4 we
show that quantum-size oscillations are much smaller than
those reported in Ref. 14, especially if even small amounts of
disorder are introduced. We also find that the additional term
in the ferromagnetic equation of motion is of the Gilbert-
damping form, with only a very small correction to the gy-
romagnetic ratiosthe same conclusion can also be drawn
from previous work15d. Furthermore, the electron-electron in-
teraction effects discussed by Šimánek13 are taken into ac-
count in the exchange-correlation potential which we calcu-
late self-consistently within the local spin density
approximationsLSDAd of density-functional theory; they do
not give rise to enhanced Gilbert damping in our picture. The
electronic structure of the normal metal enters the expres-
sions for the Gilbert damping not via the Fermi energy den-
sity of states but via the Sharvin conductance. Finally, our
results confirm that the spin-current-induced magnetization
torque16 is an interface effect, which was earlier taken for
granted17,18 and analyzed in detail in Ref. 19.

This article is organized as follows. The general theory of
spin pumping and its consequences for the dynamics of the
precessing ferromagnet are reviewed in Sec. II. In Sec. III we
describe the first-principles methods used to obtain the re-
sults presented and discussed in Sec. IV. A comparison with
results based on a free-electron model is made in the Appen-
dix and conclusions are drawn in Sec. V.

II. THEORY

We first consider a ferromagnetic film of thicknessd con-
nected to two perfect nonmagnetic reservoirs by two leads
which support well-defined scattering states. The electrons
incident on the ferromagnet from a lead are distributed ac-
cording to the Fermi-Dirac statistics of the respective reser-
voir, whereas the probability that an electron leaving the fer-
romagnet returns there with finite spinsor phased memory is
vanishingly small. Such perfect spin sinks can be realized
experimentally by attaching leads to the ferromagnetic film
in the form of point contacts with dimensions smaller than
the electron mean free path.20 Alternatively, a normal con-
ductor with a very high spin-flip to momentum scattering-
rate ratio sas could be provided by heavy impurities with
large spin-orbit interaction in a light metal or a heavy metal
with phonon or defect scatterersd can serve as a good spin
sink.5

Coherent motion of the magnetization, whose direction is
given by the unit vectormstd, leads to the emission of a spin
current

I s =
"

4p
SReA↑↓m 3

dm

dt
+ ImA↑↓dm

dt
D s2d

per unit area of the contact into each normal-metal layer,4

which we will here assume is then fully absorbed by
the spin sinkssreservoirsd.5 The complex spin-pumping
conductance21

A↑↓ = g↑↓
r − g↑↓

t s3d

is the difference between the reflectionsg↑↓
r d and transmis-

sion sg↑↓
t d mixing conductancessper unit contact aread which

are defined in terms of the spin-dependent reflection and
transmission matrices of the ferromagnetic film as18,22

g↑↓
r = S−1o

mn

sdmn− rmn
↑ rmn

↓! d, s4d

g↑↓
t = S−1o

mn

tmn8↑ tmn8↓!. s5d

Here,S is theF /N contact area, andm andn denote scatter-
ing states at the Fermi energy of the normal-metal leads. For
spin-pumping into one of the normal-metal layers,g↑↓

r is ex-
pressed in terms of the amplitudermn

s for an incoming elec-
tron in statem of the normal metal to be reflected at the
interface with the magnetic film into the outgoing staten,
while g↑↓

t is expressed in terms of the amplitudetmn8s for an
incoming electron from the otherN layer to be transmitted
across the ferromagnet into the outgoing staten. The total
angular-momentum loss of the ferromagnet is given by a
sum of contributionss2d from the two leads, characterized by
two spin-pumping parametersA1

↑↓ and A2
↑↓. As explained in

Ref. 4, adding this source of spin angular-momentum current
to the right-hand side of Eq.s1d leads to a new LLG equation
for the monodomain thin film with saturation magnetization
Ms embedded in the nonmagnetic conducting medium, with
the modified constantsaeff andgeff:

1

geff
=

1

g
F1 −

"g

4pMsd
ImsA1

↑↓ + A2
↑↓dG , s6d

aeff =
geff

g
Fa +

"g

4pMsd
ResA1

↑↓ + A2
↑↓dG . s7d

It can be easily shown4 that the real part ofA↑↓ is always
non-negative so that the correction to the damping is always
positive. The reader is referred to Sec. IV for a discussion of
the absolute and relative values ofg↑↓

r andg↑↓
t . Anticipating

these results, we note here that in typical situationsg↑↓
t and

Img↑↓
r sand thus ImA↑↓d are negligible so that the only effect

of the spin pumping is to make an additional contribution to
the Gilbert-damping parameter. We shall therefore assume
for the rest of the current section thatg↑↓

t !g↑↓
r with the latter

quantity being essentially an interface property.
Equation s2d was derived for anN/F /N structure con-

nected to perfectly equilibrated reservoirs.4,5 By using this
geometry, the finiteness of the Sharvin conductances is auto-
matically included.23 To apply calculated mixing conduc-
tances to the discussion of spin transport in diffuse systems
which are not ideal spin sinks, the “bare” conductances4d
has to be corrected24 for the corresponding “spurious” Shar-
vin resistance as discussed in Ref. 25. Additionally, a nonva-
nishing backflow and reabsorption of the spins emitted by
the ferromagnet has to be taken into account. The latter can
be achieved by considering the diffusion equation for the
spin accumulation in the normal lead with Eq.s2d providing
the boundary conditionssee Ref. 5d. This leads to an effec-
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tive scomplexd conductanceÃ↑↓ sfor either interfaced entering
Eqns.s6d and s7d where

1

Ã↑↓
=

1

g↑↓
r −

1

2gN
Sh +

2e2

h
·

RSD

tanhsL/lSDd
, s8d

gN
Sh is the Sharvin conductance of the normal-metal layer,

given by the number of the transverse channels per spin and
unit area of the interface;25 RSD=lSD/s is the unit-area re-
sistance of the normal-metal film with conductivitys /2 sper
spind and thicknesslSD, the spin-diffusion length; andL is
the actual thickness of the normal-metal layer. The last term
on the right-hand side of Eq.s8d accounts for impurity, de-
fect, or phonon scattering in the normal metal.sScattering in
the ferromagnet on length scales longer than the transverse
spin-coherence length does not modify the result.d When

spin-flip scattering in theN layer vanishes,lSD→` ,Ã↑↓
→0 si.e., the backflow spin-current completely cancels the
pumping effectd and the magnetization dynamics is not
modified at all.

A similar analysis can be applied to magnetic damping in
more complex multilayer systems.5,8 For example, in an
F /N/F structure the presence of two ferromagnetic layers
can make damping possible for each individual layer even in
the absence of spin-flip relaxation in the system. In this case,
each magnetic layer acts as the sink for the spin current
pumped by the other layer. If the structure is weakly excited
from a collinear equilibrium state, and the individual ferro-
magnetic resonances are well separated, then a different ef-
fective conductance enters Eqs.s6d and s7d. Instead of the

sumA1
↑↓+A2

↑↓, for the two magnetic films, the quantityÃF/N/F
↑↓

with

1

ÃF/N/F
↑↓ =

1

g↑↓
1r +

1

g↑↓
2r −

1

gN
Sh +

2e2

h
·

L

s
s9d

defined for the globally diffuse system should be used, where
g↑↓

ir is the mixing conductance for theith F /N interface.
Equations9d can be intuitively interpreted in terms of resis-
tances in series: in order to be absorbed, the spin current
must be pumped through the firstF /N interfacesg↑↓

1r renor-
malized by 2gN

Shd, propagate across the normal layersL /s
termd, and enter the second ferromagnet through the other

interfacesg↑↓
2r renormalized by 2gN

Shd. The formula forÃF/N/F
↑↓

can be straightforwardly derived using the spin-diffusion ap-
proach of Ref. 5. It is worthwhile pointing out that it remains
correct for nondiffusive normal metal spacersss→`d if the
interface disorder is sufficient to suppress any quantum-size
effectsssee Ref. 25d.

The effect of spin-dependent scattering on the time evo-
lution of the magnetic order parameter is therefore mostly
governed by three parameters: the reflection and transmis-
sion mixing conductances of the ferromagnetic layer,g↑↓

r and
g↑↓

t , and the Sharvin conductance of the normal metal,gN
Sh.

We noted before4 that these quantities are in principle acces-
sible to ab initio electronic-structure calculations.15,26,27 In
the following we demonstrate this by studying two represen-
tative N/F material combinations: Au/Fes001d and

Cu/Cos111d, the former routinely used by the Simon-Fraser
group28–30 and the latter by the Cornell group.20,31

III. FIRST-PRINCIPLES METHOD

Parameter-free calculations of transmission and reflection
coefficients were performed using the local spin density ap-
proximationsLSDAd of density-functional theorysDFTd in a
two-step procedure. In the first step, the self-consistent elec-
tronic structuresspin densities and potentialsd of the system
was determined using the layer TB-LMTOstight-binding lin-
ear muffin-tin orbitald surface Green’s functionsSGFd
method in the atomic-sphere approximationsASAd.32 The
exchange-correlation potential in the Perdew-Zunger33 pa-
rametrization was used. The atomic-spheresASd potentials of
four monolayers on either side of the magnetic layersor in-
terfaced were iterated to self-consistency while the potentials
of more distant layers were held fixed at their bulk values.
Because both of the systems we consider, Au/Fes001d and
Cu/Cos111d, are nearly ideally lattice matched, common lat-
tice constants were assumed for both metals of a given struc-
ture: aCu/Co=3.549 Å and aAu/Fe=Î232.866=4.053 Å. In
the second step, the AS potentials serve as inputs to calculate
scattering coefficients using a recently developed scheme
based on TB-MTOs.26,34,35Disorder is modeled by allowing
a number of interface layers to consist ofNxF1−x alloy which
is modeled using repeated lateral supercells. Because a mini-
mal basis set ofs, p and d orbitals is used, we are able to
treat lateral supercells containing as many as 200 atoms in
which the two types of atoms are distributed at random in the
appropriate concentration. For disordered interfaces, the AS
potentials were calculated self-consistently using the layer
CPA approximation in which each layer can have a different
alloy composition.32

Little is known from experiment about the atomic struc-
ture of metallic interfaces. We model “dirty” interfaces with
one sfor N/F /N systemsd or two sfor singleN/F interfacesd
atomic layers of a 50%-50% alloy. Such a model is probably
reasonable for Cufcc/Cofcc because of the nearly perfect lat-
tice match and structural compatibility. The situation is, how-
ever, more complicated for Aufcc/Febcc because of the large
difference in AS sizes for Au and Fe with Wigner-Seitz radii
of 2.99 and 2.67 Bohr atomic units, respectively. We have
assumed here that the disorder is only substitutional and that
the diffused atoms occupy the AS of the same size as that of
the host element. In the Au/Fe/Au case, where the alloy is
only 1 atomic monolayersML d thick, we assume that the Fe
atoms diffuse into Au. While the validity of this model can
be questioned, the insensitivity of the final results to the de-
tails of the disorderse.g., one versus two monolayers of al-
loyd indicate that this is not a critical issue. The layer-
resolved magnetic moments for single interfaces are given in
Table I. They agree well with values reported previously in
the literature.36–38

The two-dimensional Brillouin zones2D BZd summation
required to calculate the mixing conductances using Eqs.s4d
and s5d was performed usingkuu-mesh densities correspond-
ing to 104 points in the 2D BZ of a 131 interface unit cell.
The uncertainties resulting from this BZ summation and
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from impurity ensemble averaging are of the order of a few
times 1012V−1m−2, which is smaller than the size of the sym-
bols used in the figures.

IV. RESULTS AND DISCUSSION

Figures 1–4 show how G↑↓
r =se2/hdg↑↓

r and G↑↓
t

=se2/hdg↑↓
t depend on the thicknessd of the magnetic layer

smeasured in atomic layersd for specularskW uu-preservingd Au/
Fe/Aus001d and Cu/Co/Cus111d systems. Both quantities ex-
hibit oscillatory behavior with, however, noticeably different
periods and amplitudes. The values of bothG↑↓

r andG↑↓
t are

determined by two factors: the matching of the normal metal
and ferromagnetic metal states at the interfacesdescribed by
the scattering coefficients of the single interfaced and the
phases accumulated by electrons on their passage through

the magnetic layersquantum-size effectd. The first factor de-
termines the amplitudes of the oscillations andsfor G↑↓

r d the
asymptotic values, while the second is responsible for the
observed periodicity. In order to better understand this, it is
instructive to interpret the transmission and reflection coeffi-
cients of the finite-size magnetic layer in terms of multiple
scattering at the interfaces. We first note that both Cu and Au
have only one left- and one right-going state at the Fermi
level for each value ofkW uu and spin so that the summations in
Eqs. s4d and s5d reduce to integrations over the 2D BZ in-
volving the complex-valued functionsrsskW uud and tsskW uud. Re-
taining only lowest-order thickness-dependent terms, drop-
ping explicit reference tokW uu and to the primes ont8, we then
have

ts < tF→N
s LstN→F

s s10d

rs < rN→N
s + tF→N

s LsrF→F
s LstN→F

s s11d

where tN→F
s =st1

s , . . . ,tn
sdT is a vector of transmission coeffi-

cients between a single propagating state in the normal metal
and a set of states in the ferromagnet,Ls is a diagonal matrix

TABLE I. Layer-resolved magnetic moments in Bohr magne-
tons for singleN/F interfacessN=Au,Cu;F=Fe,Cod.

N/F Au/Fe Cu/Co

Layer Clean Dirty Clean Dirty

mNsbulkd 0.000 0.000 0.000 0.000

mNsint-4d 0.000 0.000 0.001 0.000

mNsint-3d 0.001 20.003 20.000 20.003

mNsint-2d 20.002 0.010 20.004 20.003

mNsint-1d 0.064 0.026 0.006 0.010

mFsint-1d 2.742 1.410

mNsint+1d 0.128 0.036

mFsint+1d 2.687 2.691 1.545 1.540

mFsint+2d 2.336 2.396 1.635 1.596

mFsint+3d 2.325 2.363 1.621 1.627

mFsint+4d 2.238 2.282 1.627 1.624

mFsbulkd 2.210 2.210 1.622 1.622

FIG. 1. Reflection spin-mixing conductancesper unit aread of a
Au/Fe/Aus001d trilayer with perfect interfaces as a function of the
thicknessd of the Fe layer. In this and subsequent plots, mixing
conductances expressed in terms of number of conduction channels
per unit area are converted toV−1m−2 using the conductance quan-
tum e2/h, i.e., G↑↓=se2/hdg↑↓.

FIG. 2. Transmission spin-mixing conductance of a Au/Fe/Au
s001d trilayer with perfect interfaces as a function of the thicknessd
of the Fe layer.

FIG. 3. Reflection spin-mixing conductance of a Cu/Co/Cu
s111d trilayer with perfect interfaces as a function of the thicknessd
of the Co layer.
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of phase factorseikj'
s d sj is an index of the states in the

ferromagnetd, rN→N
s is a scalar reflection coefficient for states

incoming from the normal metal, andrF→F
s is a square matrix

describing reflection on the ferromagnetic side. The set of
states in the ferromagnet consists of both propagating and
evanescent states. The contribution of the latter decreases
exponentially with the thickness of the layer.

Concentrating first on the thickness dependence ofg↑↓
t , we

notice that, in view of Eq.s10d, the summation in Eq.s5d is

carried out over terms containing phase factorseiski'
↑ −kj'

↓ dd.
Because of the large differences between majority and mi-
nority Fermi surfaces of the ferromagnet, this typically leads
to rapidly oscillating terms which mostly cancel out on sum-
ming overkW uu. It can be argued19 in the spirit of the theory of
interlayer exchange coupling39 that the only long-range con-
tributions originate from the vicinity of points for which
¹kuu

ski'
↑ −kj'

↓ d=0, corresponding to the stationary phase of
the summand in Eq.s5d. These contributions will then ex-
hibit damped oscillations around zero value as seen in Figs. 2
and 4.

Turning to g↑↓
r , we find on substituting Eq.s11d into Eq.

s4d that there are two thickness-independent contributions.
The first comes from summing thednm term in Eq.s4d and is
nothing other than the number of states in the normal metal
si.e., the Sharvin conductanced. The second comes from the
rN→N
↑ rN→N

↓* term and provides an interface-specific correction
to the first. Superimposed on these two is the contribution
from the thickness-dependent terms which, to lowest order,

contain phase factorseiski'
s +kj'

s dd and e−iski'
s +kj'

s dd. Just as in
the case ofg↑↓

t , one can argue that the integral over these
terms will have oscillatory character. However, the oscilla-
tions will have different periods and occur around the con-
stant value set by the first two contributions. It is clear that
the value approached asymptotically byg↑↓

r is simply the
reflection mixing conductance evaluated for a single inter-
face.

The period and damping of oscillations ofg↑↓
r andg↑↓

t as a
function of the magnetic-layer thicknessd clearly depend
sthrough theLsd on the electronic structure of the internal
part of the magnetic layer, which for metallic systems is

practically identical to that of the bulk material. The ampli-
tudes, on the other hand, are related to the interfacial scatter-
ing coefficients introduced in Eqs.s10d and s11d. Analyzing
the scattering properties of the single interface enables us in
the following to understand why the amplitudes of oscilla-
tion of g↑↓

t are substantially larger than those ofg↑↓
r for the

two systems considered. We begin by noting that the trans-
mission probability for states in the majority-spin channel
assumes values close to one over large areas of the Brillouin
zone for both Cu/Co and Au/Fe, as illustrated in Fig. 5sad for
the Cu/Cos111d interface. For Cu/Co, this results from the
close similarity of the corresponding Cu and Co electronic
structures. The situation is more complicated for Au/Fe be-
cause the majority-spin Fermi surface of Fe consists of sev-
eral sheets, unlike that of Au. However, one of these sheets is
made up of states which match well with the states in Au. In
the minority-spin channel, on the other hand, the transmis-
sion probability varies between 0 and 1; see Fig. 5sbd. The
maximum sizes of thesabsolute value of thed “spin-mixing”
products of Eqs.s4d ands5d are therefore determined mostly
by the majority-spin scattering coefficients while the modu-
lation, as a function ofkW uu, is governed by the corresponding
minority-spin coefficients.

The small reflectivity for the majority-spin states has a
direct consequence for the values of the mixing conduc-
tances. In the case ofg↑↓

r , the second term under the sum in
Eq. s4d will typically have a negligible magnitude. This fol-
lows directly fromrN→N

↑ <0 and Eq.s11d and is illustrated in
Figs. 5scd and 5sdd for the rN→N

↑ rN→N
↓* term. As we can see,

the only nonzero contributions in this case come from the
outer regions of the Brillouin zone, where states from the
normal metal are perfectly reflected because of the absence
of propagating majority-spin states in the ferromagnet. Inde-
pendently varying phasessas a function ofkW uud for “up” and
“down” reflection coefficients leads, in the course of integra-
tion overkW uu, to additional cancellation of already small con-
tributions. The final outcome is that the values ofg↑↓

r are
determined mostly by the first term in the Eq.s4d, i.e., the
Sharvin conductance of the lead.

Because the interface transmission in the majority-spin
channel is uniformly large almost everywhere in the Bril-
louin zone, the transmission through the magnetic layer also
remains large for arbitrary thicknesses, and its magnitude
sbut not its phased is only weakly modulated by the multiple
scattering within the layer. The magnitude of thet↑t↓* prod-
uct is then modulated mostly by the variation of the trans-
mission in the minority-spin channel, as a function ofkW uu. To
demonstrate the effect of the interface scattering ong↑↓

t , val-
ues of the producttint

↑ tint
↓* are shown in Figs. 5sed and 5sfd for

a Cu/Co s111d interface. Here,tint
↑ is defined as the scalar

product of the interface transmission vectors:tint
s

= tF→N
s ·tN→F

s . As one can see, the values assumed by the real
and imaginary parts of this product vary strongly throughout
the Brillouin zone. Unlike the case ofg↑↓

r , however, the val-
ues span the entire range from -1 to11. An imbalance of
positive and negative contributions is therefore more likely
to produce a sizeable integrated value. The complex values
of t↑t↓* are further modified by thickness- andkW uu-dependent
phase factors discussed above, which leads to the oscillatory

FIG. 4. Transmission spin-mixing conductance of a Cu/Co/Cu
s111d trilayer with perfect interfaces as a function of the thicknessd
of the Co layer.
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damping seen in Figs. 2 and 4. We compare the magnitude
and damping of these oscillations with those derived from a
free-electron model in the Appendix.

Figures 6 and 7 show the same quantitiessG↑↓
r andG↑↓

t d
calculated in the presence of disorder modeled by one mono-
layer of 50% alloy added on each side of the magnetic layer.
For both systems we have used 10310 lateral supercells.

The thicknessd in this case is that of the clean ferromagnetic
layer. For both material systems, the effect of disorder is to
strongly reduce the amplitudes of the oscillations. The reflec-
tion mixing conductance becomes practically constant at the
level of its asymptoticsi.e., interfaciald value. ForG↑↓

t , the
oscillations are not entirely damped out but their amplitude is
substantially reduced. In fact, the values ofG↑↓

t become neg-

FIG. 5. sColord Plotted within the first Brillouin zone for the Cu/Cos111d interface are transmission probability forsad majority spins and
sbd minority spins.scd The real andsdd imaginary parts ofrN→N

↑ rN→N
↓! . sed The real andsfd imaginary parts oftint

↑ tint
↓! wheretint

s = tF→N
s ·tN→F

s as
discussed in the text. Note the different scales for panelssad and sbd and for scd–sfd.

FIG. 6. Spin-mixing conductances of a Au/Fe/Aus001d trilayer
with disordered interfaces as a function of the thicknessd of the Fe
layer.

FIG. 7. Spin-mixing conductances of a Cu/Co/Cus111d trilayer
with disordered interfaces as a function of the thicknessd of the Co
layer.
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ligible compared to ReG↑↓
r for all but the thinnest magnetic

layers. In addition, we expect that diffusive scattering in the
bulk of the magnetic layer, which for simplicity has not been
included here, will have a similar effect.

In view of the above results, we conclude that in a typical
situationA↑↓<g↑↓

r , whereg↑↓
r can be calculated simply for an

interface instead of a complete structure. The results of such
calculations are listed in Table II for clean and disordered
interfaces. The disorder here was modeled by 2 ML of 50%
alloy. In spite of this difference, the values are practically
identical to the asymptotic ones seen in Figs. 1, 3, 6, and 7.
In particular, ImG↑↓

r assumes values two orders of magnitude
smaller than ReG↑↓

r , with the latter being close to the Sharvin
conductance of the normal metal. This approximate equality
results once again from a combination of amplitudessmall
ur↑ud and uncorrelated spin-up and spin-down phase effects.

The values given in Table II differ somewhat from ones
reported previously in Ref. 15. There are two reasons for
this. First, the calculations in Ref. 15 were performed using
energy-independent muffin-tin orbitals linearized about the
centers of gravity of the occupied conduction states. The
current implementation34,35 uses energy-dependent,snon-
linearizedd MTO’s, calculated exactly at the Fermi energy
which improves the accuracy of the method. Second, on per-
forming the 2D-BZ integration in Eq.s4d, it was assumed in
Ref. 15 that the contribution to the sum ofkW uu points for
which there are no propagating states in the ferromagnet
should be neglected. However, the lack of propagating states
in the ferromagnet does not necessarily prohibit the transfer
of spin angular momentum which can be mediated by eva-
nescent states, for example in the case of a magnetic insula-
tor. The contribution from suchkW uu pointsshouldbe included
in the 2D-BZ integration.

A. Comparison with experiment

In Ref. 28, Urbanet al. reported room-temperaturesRTd
observations of increased Gilbert damping for a system con-
sisting of two Fe layers separated by a Au spacer layer. The
magnetization of the thinner of the two ferromagnetic layers
precesses in the external magnetic field. The other ferromag-
netic layer, with the direction of its magnetization fixed, acts
as a spin sink. No modification of the damping coefficient
was measured for configurations without a second Fe layer.
The latter finding is consistent with the prediction given by
Eq. s8d in the lSD→` limit swell fulfilled for Aud as dis-
cussed in Sec. II.

In the presence of a second Fe layer, Eq.s9d should be

used. Neglecting ImÃF/N/F
↑↓ leads togeff=g and the damping

enhancement

aeff − a =
"gReÃF/N/F

↑↓

4pMsd
, s12d

wherea<0.0046 is the damping measured for a single layer.
Using40g=2.1mB/" and the values of the interface and Shar-
vin conductances from Table IIswe assume that the values
are the same for both Au/Fe interfacesd, Eq.s12d is compared
with the experimental data41 in Fig. 8 for various assump-
tions abouts in s9d. In the low-temperature limit and ne-
glecting the residual resistivity of the Au layer,s→`, Eq.
s12d yields the solid line which is seen to overestimate the
damping enhancement compared to the measured results.

Using finite values ofs will lead to lower values ofÃ↑↓ and,
indeed, it was found experimentally30 that lowering the tem-
peraturesincreasing the conductivityd increases the damping
by as much as about 20%sopen circle in Fig. 8d. If we use
the room temperaturesRTd conductivity due to phonon scat-
tering in crystalline bulk Au,42 sph=0.453108V−1m−1, the
dashed line is obtained which, as expected, is closer to the
RT measurements. The agreement with experiment can be
further improved by taking into account the possibility of
non-negligible residual resistance43 of the Au spacer. Assum-
ing, for example,sres=0.453108V−1m−1 and sph=0 would

TABLE II. Interface conductances in units of 1015V−1 m−2.

System Interface G↑ G↓ ReG↑↓
r ImG↑↓

r GN
Sh GF↑

Sh GF↓
Sh

Au/Fe clean 0.40 0.08 0.466 0.005 0.46 0.83 0.46

s001d alloy 0.39 0.18 0.462 0.003

Cu/Co clean 0.42 0.38 0.546 0.015 0.58 0.46 1.08

s111d alloy 0.42 0.33 0.564 20.042

FIG. 8. Enhancement of the Gilbert damping coefficient for an
Fe/Au/Fe trilayer as a function of 1/d whered is the thickness of
the excited Fe layer. The filled circless•d are the RT values mea-
sured in Ref. 29 and the open onessd is a low temperature value
from Ref. 31. The theoretical predictions based on Eq.s12d for 0 K
swith s→`d are shown as solid and the RT-correctedswith phonon
scatteringd ones as dashed lines. The results of 0 K calculations for
a Au/Fe/vacuum system are given by crossess3d and starsspd for
specular and disordered interfaces, respectively. The value of the
Gilbert damping for a single Fe film is marked with an arrow.
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obviously yield the dashed line in the figure while taking
sres=sph=0.453108V−1m−1 and 1/s=1/sres+1/sph will
yield a line very close to the measured points.

The theoretical results represented by the straight lines in
Fig. 8 are based upon the asymptotic, single-interface value
of G↑↓

r from Table II, assumingG↑↓
t to be zero. To study

possible size-dependent corrections in thin films, the experi-
mental system needs to be represented by a more realistic
model than the symmetricN/F /N structures discussed in the
previous section. The Au/Fe/GaAs structure used in Ref. 28
differs from these in two important respects. First, the trans-
mission mixing conductancesg↑↓

t d is identically zero because
of the insulating substrate. Second, because the reflection is
perfect forbothspin channels, the thickness-dependent terms
in Eq. s11d have larger amplitudes, leading to more pro-
nounced oscillations ofg↑↓

r than those seen in Figs. 1 and 3.
To estimate the variation which can result from size-
dependent corrections, we have performed a series of calcu-
lations for a Au/Fe/vacuum structure, using vacuum instead
of GaAs for simplicity. The mixing conductance for the other
Au/Fe interface is kept at its asymptotic valuesTable IId. The
results for perfectsspeculard structures,44 marked in Fig. 8
with black crossess3d, exhibit oscillations of non-negligible
amplitude about the asymptotic values given by the solid line
sarbitrarily taking the low-temperature regime, i.e.,s→` for
referenced. The introduction of interface disorderstwo ML of
50%-50% alloyd yields values for the dampingfstarsspd in
Fig. 8g essentially averaged back to the limit given by the
single-interface calculations of Table II.

We have thus demonstrated that direct first-principles cal-
culations can produce values of the damping coefficient in
the same range as those measured experimentally. What is
more, by taking into account various other sources of scat-
tering in the Au spacer and/or quantum-size effects, the cal-
culations can be brought into very close agreement with ex-
periment. A more definitive quantitative comparison with
experiment would require a detailed knowledge of the micro-
scopic structure of the experimental system which is cur-
rently not available.

B. Material dependence

The input parameters of spin pumping theory are scatter-
ing matrix elements which are computed using the effective
potential of Kohn-Sham theory. This potential is calculated
self-consistently and includes electron-electron interaction
effects via an exchange-correlation potential approximated
using the local spin density approximation, and the Hartree
potential. In particular, the modification of interface param-
eters as a result of magnetic moments being induced in the
normal metal by proximity to a ferromagnetsdiscussed in the
Appendix of Ref. 13d is already included in our results in a
self-consistent and nonperturbative mannerssee Table Id. For
the Cu and Au normal metals we have considered, this effect
is small. Expressed in terms of a Stoner enhancement, this is
related to the low Fermi level densities of states,Ds«Fd, of
these metals. Viewing it in this way poses the question of the
possibility of finding much larger effects for materials such
as Pd and Pt which have a large density of states at the Fermi

level ssee Table IIId and are known to be close to a ferro-
magnetic transition as expressed by the susceptibility en-
hancementx /x0=f1−Ds«FdIxcg−1, also included in the table.
To calculate this factor, typical values of the Stoner param-
eter,Ixc, were taken from Refs. 45 and 46.

To examine whether enhancements of the Gilbert damp-
ing parameter recently reported47,48 for thin layers of Ta, Pd
and Pt compared to Cu are related to their large Fermi level
densities of states, we need to reexamine how the electronic
structure enters our description of the Gilbert damping. In
the spin-pumping formulation, the quantities determining the
damping enhancement are not densities of states but trans-
mission and reflection mixing conductances determined from
the scattering matrix. In most situations, we have seen, the
former is negligible and the latter reduces to its real part,
ReG↑↓

r , which in turn is very close to the Sharvin conduc-
tance of the normal metal. Values of this quantity are given
for Cu, Ta, Pd, and Pt in the last row of the Table. It is seen
that the Sharvin conductance changes less thanDs«Fd. More
significantly, with a maximum for Ta, the trend does not
correspond to that observed experimentally:47,48 Cu→Ta
→Pd→Pt. We believe that the explanation should be sought
elsewhere, possibly in the increasing spin-orbit interaction
which will lead to the heavier materials behaving as more
efficient spin sinks.4,5 To examine this suggestion in detail
from first principles requires a formulation of the theory to
which the spin-orbit interaction can be readily added.

C. Spin-current-induced torque

The mixing conductances calculated above, which de-
scribe how a spin current flows through the system in re-
sponse to an externally applied spin accumulationm fdefined
as a vector with length equal to half of the spin-splitting of
the chemical potentialsum u =sm↑−m↓d /2g, also describe the
spin torque exerted on the moment of the magnetic layerssee
e.g., Refs. 15, 17–19, and 22d. Consider, for example, the
situation where the spin accumulation has been induced by
some means in the left lead only and the ferromagnet is
magnetized along thez axis. The spin current incident on the
interface is proportional to the number of incoming channels
in the leadI in

L =s1/2pdgN
Shm whereas the transmitted spin cur-

rent is given by22

I out
R =

1

2p1
Reg↑↓

t Img↑↓
t 0

− Img↑↓
t Reg↑↓

t 0

0 0
g↑ + g↓

2
2m s13d

and the reflected spin current by

TABLE III. Density of states at the Fermi level, Stoner enhance-
ment factor, and typical Sharvin conductances for bulk fcc Cu, Pd
and Pt and bcc Ta. Typical values of the Stoner parameter,Ixc, were
taken from Refs. 45 and 46.

Cu Ta Pd Pt

Ds«Fd fstates/sRy atom spindg 2 10 15 12

f1−Ds«FdIxcg−1 1.1 1.9 4.4 2.2

GShs1015V−1 m−2d 0.58 0.97 0.62 0.68
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I out
L =

1

2p1
gN

Sh− Reg↑↓
r − Img↑↓

r 0

Img↑↓
r gN

Sh− Reg↑↓
r 0

0 0 gN
Sh−

g↑ + g↓

2
2m

s14d

wheregs=onmu tnm
s u2 are the conventional Landauer-Büttiker

conductances. Thereforeg↑↓
t determines the transverse com-

ponent of the transmitted spin current subject to precession
and absorption within the magnetic layer. Similarly, the real
and imaginary parts ofgN

Sh−g↑↓
r =omnrmn

↑ rmn
↓! are related to the

components of the reflected transverse spin current. The
rapid decay ofg↑↓

t sandgN
Sh−g↑↓

r d discussed in previous para-
graphs as a function of increasing magnetic layer thickness
implies that the absorption of the transverse component of
the spin current occurs within a few monolayers of theN/F
interface. In particular we find that the presence of the dis-
order improves the effectiveness of the absorption. The limit
g↑↓

t →0 andg↑↓
r →gN

Sh corresponds to the situation where all
of the incoming transverse polarized spin current is absorbed
in the magnetic layer. The torque is then proportional to the
Sharvin conductance of the normal metal. As demonstrated
in Figs. 1–4, 6, and 7 this is the situation for all but the
thinnestsfew monolayersd and cleanest magnetic layers.

V. CONCLUSIONS

In summary, we have calculated the transmission and re-
flection mixing conductances that govern the nonlocal effects
in the ferromagnetic magnetization dynamics for two com-
monly usedN/F combinations: Au/Fe and Cu/Co. In both
cases, the transmission mixing conductanceg↑↓

t is much
smaller than the reflection mixing conductanceg↑↓

r , except
for the thinnest magnetic films, only a few atoms thick. Even
for such thin films,g↑↓

t is smaller thang↑↓
r . Furthermore,g↑↓

t

is more sensitive to disorder, even a small amount of which
reduces it to zero while having only a small effect ong↑↓

r as
shown in Figs. 6 and 7. For all thicknesses, Reg↑↓

r @ Img↑↓
r

and Reg↑↓
r is very close to its interfacial valuesi.e., the mix-

ing conductance of the infinitely thick magnetic filmd. The
general formulass6d and s7d predict that the spin pumping
renormalizes both the Gilbert dampingsad and the gyromag-
netic ratio sgd of a ferromagnetic film embedded in a con-
ducting nonmagnetic medium. However, in view of the re-
sults discussed in the previous section, we conclude that, for
all but the thinnest and cleanest magnetic layers, the only
effect of the spin pumping is to enhance the Gilbert damping.
The correction is directly proportional to the real part of the
reflection mixing conductance and is essentially an interface
property. We also find that oscillatory effects are averaged
out for realistic band structures, especially in the presence of
disorder. Reg↑↓

r swhich determines the damping enhancement
of a single ferromagnetic film embedded in a perfect spin-
sink mediumd is usually very close togN

Sh for intermetallic
interfaces15,19 fbeing in general bounded by 2gN

Sh according
to its definition, Eq.s4dg. These results also apply to the
spin-current-induced magnetization reversal in intermetallic
systems, indicating that the “effective field” correction due to

the imaginary part of the mixing conductance and bulk con-
tributions to the torque are very small.
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APPENDIX: COMPARISON WITH A FREE-ELECTRON
MODEL

A combination of interfacial and bulk dephasing mecha-
nisms, discussed in Sec. IV, ensures that in the asymptotic
sthick magnetic layerd limit the spin-pumping mixing-
conductance,A↑↓, reduces to the reflection mixing conduc-
tanceg↑↓

r , with the latter quantity assuming values which are
predominantly real and equal to those determined for a single
N/F interface. Thinner layers exhibit oscillatory behavior
which is most pronounced forG↑↓

t sFigs. 2 and 4d. The am-
plitude of oscillation, however, is at most 20% of the
asymptotic value ofG↑↓

r and decreases to less than 5% for
layers more than 10 ML thick. This fast decay, found even
for clean, fully coherent structures, contrasts with results re-
ported in Ref. 14 for a free-electron model. For thin layers,
Mills found the damping coefficient oscillated with ampli-
tude in the range of 80% of the asymptotic value and, for
layers several tens of MLs thick, it was still of order 10%.
This feature of the free-electron model is illustrated vividly
in Fig. 9 by comparing ResG↑↓

t d for Cu/Co/Cus111d from Fig.
4 with the corresponding results calculated for free electrons.

FIG. 9. The real part ofG↑↓
t calculated for a free electron model

with «F=7 eV senergy measured from the bottom of the parabolic
conduction band in the normal metald and various choices of the
exchange splittingD. The interlayer distance is taken to be the same
as for the Cu/Cos111d system. The results of the first-principles
calculationssPd from Fig. 4 are included for comparison.
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In our free-electron calculation, the Fermi energy in the non-
magnetic material was taken to be 7 eV in order to obtain the
correct value for the Sharvin conductance of Cu and the ef-
fect of changing the exchange splittingD of the ferromagnet
was studied. ForD=2,4,6 eV, the amplitude of oscillation is
much larger and the decay is much slower than what we find
for the more realistic multi-band electronic structures. As
might be expected, increasing the exchange-splitting from 2
to 6 eV leads to a shorter period and more rapid decay of the
oscillations. However, in order to mimic the parameter-free
result, an exchange splitting in the range of 10 eV would be
neededsnot shown in the figured. Such a large value cannot
be justified either on theoretical or experimental grounds.
This discrepancy illustrates the difficulty of mapping the

complex electronic structure of transition metals onto single
band models in a meaningful way. Free-electron models do
not adequately describe the effectiveness of the thickness-
dependent “bulk” dephasing in the ferromagnet. What is
more, they also cannot reproduce the complex spin- and
kW uu-dependence of the interface scattering coefficientssillus-
trated in Fig. 5d which results from the mismatch of the
normal metal electronic structure and the quite different
majority- and minority-spin electronic structures of a ferro-
magnetic metal. For single band free-electron models, the
interface scattering coefficients contain much less structure
and consequently this model fails to take into account even
qualitatively the dephasing effect of the interface.
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