Opdrachtgever:

Rijkswaterstaat, Dienst Weg- en Waterbouwkunde

Waterbeweging op grasdijken door golfaanval

Bureaustudie
december 1993
Waterbeweging op grasdijken
door golfaanval

D.G. Meijer, J.F. Ruff, H.J. Verheij
Inhoud

Lijst van Figuren
Lijst van Symbolen

Samenvatting .. 1

1 Inleiding .. 1

1.1 Kader en opdracht .. 1

1.2 Doelstelling en opzet studie .. 1

2 Literatuuroverzicht ... 2

2.1 Inleiding .. 3

2.2 Regelmatige golven .. 3

2.2.1 Golfklappen ... 3

2.2.2 Golfoploop en golfneerloop .. 5

2.2.3 Watersnelheden in golfoploop en -neerloop ... 7

2.2.4 Taludruwheid ... 8

2.2.5 Schuifspanningen ... 8

2.2.6 Drukken op het talud ... 9

2.2.7 Laagdikten ... 9

2.3 Onregelmatige golven .. 10

2.3.1 Golfklappen ... 10

2.3.2 Golfoploop en golfneerloop .. 10

2.3.3 Watersnelheden in golfoploop en -neerloop ... 11

2.3.4 Taludruwheid ... 11

2.3.5 Schuifspanningen ... 11

2.3.6 Drukken op het talud ... 11

2.3.7 Laagdikten ... 11

2.4 Conclusies .. 12

3 Modellering waterbeweging ... 12

3.1 Inleiding .. 13

3.2 Transformatie golfoploop ... 13
3.3 Watersnelheden en laagdikten bij onregelmatige golven .. 16
 3.3.1 Watersnelheden ... 16
 3.3.2 Laagdikten ... 17

3.4 Taludruwheid .. 17
 3.4.1 Ruwheid als functie van de golfoploopreductie .. 17
 3.4.2 Ruwheid als functie van de vegetatie ... 20
 3.4.3 Vergelijking weerstandsformules ... 24

3.5 Lokale schuifspanningen en drukken ... 25
 3.5.1 Regelmatische golven .. 25
 3.5.2 Onregelmatische golven ... 26

3.6 Conclusies ... 26

4 Registreren van de waterbeweging ... 26
 4.1 Inleiding ... 27
 4.2 Huidige registratie mogelijkheden ... 29
 4.3 Conclusies ... 30

Literatuur .. 31

Appendix: Memorandum about instrumentation
Lijst van Figuren

2.1 Locatie golfklap als functie van de taludhelling
2.2 Parameters golfoploop

3.1 Energiebeschouwing van de golfoploop
3.2 n-VR-weerstandskrommen voor grasbekledingen
3.3 Ruwheid grastalud volgens Kouwen en Dmitriew

4.1 Voorbeeld van verband tussen erosiesnelheid en significante golfhoogte
Lijst van Symbolen

<table>
<thead>
<tr>
<th>Symbolen</th>
<th>Definitie</th>
<th>Einheiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>breedte waarover golfklap werkzaam is</td>
<td>m</td>
</tr>
<tr>
<td>C</td>
<td>Chezy-coëfficiënt</td>
<td>m$^{0.5}$/s</td>
</tr>
<tr>
<td>c</td>
<td>coëfficiënt</td>
<td>-</td>
</tr>
<tr>
<td>c'</td>
<td>gemiddelde golffrontsnelheid</td>
<td>m/s</td>
</tr>
<tr>
<td>E</td>
<td>energiehoogte</td>
<td>m</td>
</tr>
<tr>
<td>E_{gras}</td>
<td>erosiesnelheid gras</td>
<td>m/s</td>
</tr>
<tr>
<td>El</td>
<td>buigtijheid</td>
<td>Nm2</td>
</tr>
<tr>
<td>f</td>
<td>Darcy-Weisbach ruwheidsparameter</td>
<td>-</td>
</tr>
<tr>
<td>f_r</td>
<td>Darcy-Weisbach ruwheidsparameter voor ruw talud</td>
<td>-</td>
</tr>
<tr>
<td>f_s</td>
<td>Darcy-Weisbach ruwheidsparameter voor glad talud</td>
<td>-</td>
</tr>
<tr>
<td>f_v</td>
<td>Darcy-Weisbach ruwheidsparameter voor gras talud</td>
<td>-</td>
</tr>
<tr>
<td>f_w</td>
<td>weerstandsfactor</td>
<td>-</td>
</tr>
<tr>
<td>g</td>
<td>versnelling zwaartekracht</td>
<td>m/s2</td>
</tr>
<tr>
<td>H</td>
<td>golfhoogte</td>
<td>m</td>
</tr>
<tr>
<td>H_0</td>
<td>brekerhoogte</td>
<td>m</td>
</tr>
<tr>
<td>H_{cr}</td>
<td>kritieke golfhoogte</td>
<td>m</td>
</tr>
<tr>
<td>H</td>
<td>individuele onregelmatige golfhoogte</td>
<td>m</td>
</tr>
<tr>
<td>H_m</td>
<td>gemiddelde golfhoogte onregelmatige golven</td>
<td>m</td>
</tr>
<tr>
<td>H_{rms}</td>
<td>root-mean-square golfhoogte onregelmatige golven</td>
<td>m</td>
</tr>
<tr>
<td>H_s</td>
<td>significante golfhoogte</td>
<td>m</td>
</tr>
<tr>
<td>$H_{2%}$</td>
<td>golfhoogte die door 2% van de onregelmatige golven wordt overschreden</td>
<td>m</td>
</tr>
<tr>
<td>h</td>
<td>waterdiepte</td>
<td>m</td>
</tr>
<tr>
<td>h_{max}</td>
<td>maximale waterlaagdikte in de golftong</td>
<td>m</td>
</tr>
<tr>
<td>$h_{max2%}$</td>
<td>waterlaagdikte in de golftong die door 2% van de dikten wordt overschreden</td>
<td>m</td>
</tr>
<tr>
<td>h_v</td>
<td>lengte vegetatie</td>
<td>m</td>
</tr>
<tr>
<td>i</td>
<td>verhang</td>
<td>-</td>
</tr>
<tr>
<td>i_r</td>
<td>verhang bij een ruw talud</td>
<td>-</td>
</tr>
<tr>
<td>i_s</td>
<td>verhang bij een glad talud</td>
<td>-</td>
</tr>
<tr>
<td>k</td>
<td>Nikuradse ruwheid</td>
<td>m</td>
</tr>
<tr>
<td>L</td>
<td>golflengte</td>
<td>m</td>
</tr>
<tr>
<td>L_r</td>
<td>lengte golfoploop op ruw talud gemeten langs talud</td>
<td>m</td>
</tr>
<tr>
<td>L_s</td>
<td>lengte golfoploop op glad talud gemeten langs talud</td>
<td>m</td>
</tr>
<tr>
<td>L_0</td>
<td>golflengte op diep water</td>
<td>m</td>
</tr>
<tr>
<td>$L_{0,p}$</td>
<td>golflengte op diep water met de piekperiode</td>
<td>m</td>
</tr>
<tr>
<td>M</td>
<td>relatieve dichtheid vegetatie</td>
<td>-</td>
</tr>
<tr>
<td>m</td>
<td>taludhelling</td>
<td>-</td>
</tr>
<tr>
<td>n</td>
<td>ruwheidsfactor volgens Manning</td>
<td>s/m$^{0.33}$</td>
</tr>
<tr>
<td>P</td>
<td>grootte van de golfklap</td>
<td>N/m</td>
</tr>
<tr>
<td>P_{cr}</td>
<td>kritieke druk om gronddeeltjes los te maken</td>
<td>N/m2</td>
</tr>
<tr>
<td>p</td>
<td>maximale druk</td>
<td>N/m2</td>
</tr>
</tbody>
</table>
p_x maximale druk die door x% van de optredende drukken wordt overschreden N/m²
q_x stootfactor die door x% wordt onderschreden -
R hydraulische straal m
Re Reynoldsgetal -
R_w gellijke golfoploop m
R_d golfneerloop m
R_d2% golfneerloop die door 2% wordt overschreden m
R_u golfoploop m
R_dg gemiddelde golfoploop bij onregelmatige golven m
R_u_g golfoploop op een ruw talud m
R_u_s significante golfoploop bij onregelmatige golven m
R_u2% golfoploop die door 2% wordt overschreden m
r reductiefactor voor golfoploop in verband met taludruwheid -
r_d reductiefactor voor snelheden in de golfneerloop op gras ten opzichte van een glad talud -
r_u reductiefactor voor snelheden in de golfoploop op gras ten opzichte van een glad talud -
s golfsteilheid -
s_0 golfsteilheid op diep water -
s_0,p golfsteilheid op diep water betrokken op de piekperiode -
T golfperiode s
T_p pickperiode s
T_m gemiddelde golfperiode s
T_s significante golfperiode s
t duur van de golfklap s
u stroomsnelheid m/s
u_k kritieke stroomsnelheid m/s
u_0 orbtaalsnelheid nabij bodem m/s
V stroomsnelheid m/s
V_d neerlooppnelheid m/s
V_d_glad neerlooppnelheid op een glad talud m/s
V_d_gras neerlooppnelheid op een gras talud m/s
V_d2% neerlooppnelheid die door 2% wordt overschreden m/s
V_u oploopsnelheid m/s
V_u_glad oploopsnelheid op een glad talud m/s
V_u_gras oploopsnelheid op een grastalud m/s
V_u2% oploopsnelheid die door 2% van de oploopsnelheden wordt overschreden m/s
x locatie op talud horizontaal ten opzichte van SWL m
x' locatie op talud gemeten langs talud ten opzichte van SWL m
z locatie op talud vertikaal ten opzichte van SWL m
α taludhoek °
ΔE energieverlies m
ΔE_r energieverlies bij een ruw talud
ΔE_s energieverlies bij een glad talud
Δp drukverschil
Δp_{cr} kritieke drukverschil
Δx lengteverschil
ξ_0 brekerparameter op diep water
$\xi_{0,p}$ brekerparameter op diep water betrokken op de piekperiode
ρ dichtheid water
τ schuiFsamping
τ_{cr} kritieke schuiFsamping
ν kinematische viscositeit

m
m
N/m2
N/m2
m
-
-
kg/m3
N/m2
N/m2
m2/s
Samenvatting

In het kader van de TAW-projectgroep "Grasland als dijkbekleding" worden activiteiten ondernomen om te komen tot een gedragsmodel voor de erosiebestendigheid van grasland op klei. Een van de relevante aspecten daarbij is de waterbeweging op het talud door golfwerking.

Door het Waterloopkundig Laboratorium is in opdracht van de Dienst Weg- en Waterbouwkunde van het Directoraat-Generaal Rijkswaterstaat daartoe een bureaustudie uitgevoerd met als doelstellingen: het verzamelen van relevante informatie betreffende de waterbeweging op een grastalud, het opstellen van hypothesen om de waterbeweging te kunnen bepalen, en het doen van aanbevelingen om de waterbeweging te kunnen registreren in een fysisch model.

Op basis van een literatuurstudie is allereerst een overzicht samengesteld van beschikbare formules voor zowel regelmatige als onregelmatige golven.

Voor het speciale geval van een grastalud blijken er nauwelijks formules in de literatuur te worden aangetroffen. Alleen de golfoploop en -neerloop is uitgebreid onderzocht voor zowel regelmatige als onregelmatige golven. Verder is kwantitatieve informatie beschikbaar inzake golfklappen. Wat betreft watersnellen en laagdikten zijn uitsluitend voor regelmatige golven formules bekend. Geen informatie is beschikbaar betreffende schuifspanningen, drukken en hydraulische ruwheid.

Op basis van de beschikbare informatie is de waterbeweging boven het talud gecombineerd. Een en ander heeft geresulteerd in relaties voor de lokale schuijsframing en de lokale druk in de golfoploop als functie van de taludruwheid en de lokale watersnelligheid in en lokale dikte van de golfom.

Vervolgens zijn de mogelijkheden nagegaan om de waterbeweging te registreren. Aangegeven is op welke wijze een relatie gelegd kan worden tussen belasting en sterkte van een grasbekleding.

Conclusies

De uitgevoerde bureaustudie naar de waterbeweging door golfwerking boven een grastalud is aanleiding de volgende conclusies te trekken en hypothesen op te stellen ten aanzien van de waterbeweging boven een grastalud in de golfoploopzone:

- Formules voor de berekening van de waterbeweging zijn slechts voor een deel beschikbaar. De wel beschikbare formules betreffen: golfoploop en -neerloop voor regelmatige en onregelmatige golven, watersnellen en laagdikten in geval van regelmatige golven, en golfklappen. Geen informatie is aangetroffen in de literatuur betreffende watersnellenheden
en laagdikten bij onregelmatige golven, schuijflspanningen, drukken en hydraulische ruwheid.

- Op grond van de gebleken grote gelijkheid van formules voor de golfoploop bij regelmatige en onregelmatige golven is aangenomen dat een dergelijke gelijkheid ook geldt voor de watersnelheid en de laagdikte. Door transformatie van de formules voor regelmatige golven konden formules voor de watersnelheid en de laagdikte bij onregelmatige golven worden afgeleid:

\[
\frac{h}{L_{0,0}} > 0,15 : \\
v_{u,2\%} / (g H_e)^{0.5} = c_1 \tan \alpha (s_{0,p})^{0.5} (1 - z/R_{u,2\%})^{0.5} \quad z/R_{u,2\%} > 0 \\
v_{d,2\%} / (g R_{u,2\%})^{0.5} = c_2 (\tan \alpha)^{0.5} (1 - z/R_{u,2\%})^{0.5} \quad z/R_{d,2\%} > -0.7
\]

\[
\frac{h}{L_{0,0}} < 0,15 : \\
V_{u,2\%} / (g H_e)^{0.5} = c_3 \tan \alpha (1 - z/R_{u,2\%})^{0.5} \quad -0.8 R_{d,2\%} < z < R_{u,2\%} \\
h_{\text{max,2\%}}(z) / (H_e L_{0,0})^{0.5} = c_4 (1 - z/R_{u,2\%})
\]

waarin:
- \(g \) = versnelling zwaartekracht (m/s²)
- \(H_e \) = significante golfhoogte (m)
- \(h \) = waterdiepte (m)
- \(L_{0,0} \) = golflengte op diep water met de piekperiode (m)
- \(R_{d,2\%} \) = golfoploop die door 2% wordt overschreden (m)
- \(R_{u,2\%} \) = golfoploop die door 2% wordt overschreden (m)
- \(s_{0,p} \) = golfsteilheid op diep water betrokken op de piekperiode (-)
- \(v_{d,2\%} \) = neerloopsnelheid die door 2% wordt overschreden (m/s)
- \(v_{u,2\%} \) = oploopsnelheid die door 2% wordt overschreden (m/s)
- \(z \) = lokatie op talud verticaal ten opzichte van SWL (m)
- \(\alpha \) = taludhoek (°)
- \(h_{\text{max,2\%}} \) = maximale laagdikte bij onregelmatige golven (m)

De gegeven formules bevatten coëfficiënten met de volgende theoretisch bepaalde waarden:
- \(c_1 = 1.43 \), \(c_2 = 1.04 \), \(c_3 = 8.6 \) en \(c_4 = 0.12 \). Deze waarden zullen experimenteel getoetst moeten worden.

- De afhankelijkheid tussen de Darcy-Weisbach ruwheidsparameter \(f \) en de reductiefactor \(r \) voor de golfoploop, samenhangend met de taludruwheid, kon worden aangetoond:
\[f_r = f_s/r + (1 - r)/r \sin \alpha/\tan \alpha^2 (H/L_o)^{0.5} \] \hspace{1cm} (45b)

waarin:
- \(f_r \) = Darcy-Weisbach ruwheidsparameter voor een ruw talud (-)
- \(f_s \) = Darcy-Weisbach ruwheidsparameter voor een glad talud (-)
- \(r \) = reductiefactor voor golfoploop in verband met taludruwheid (-)
- \(\alpha \) = taludhoek (°)
- \(H \) = golffhoogte (m)
- \(L_o \) = golflengte op diep water (m)

De formule leidt tot uitkomsten die goed overeenstemmen met empirische formules zoals bijvoorbeeld die van Dmitriew voor de ruwheidsparameter \(f \):

\[f_r = 8315 \ h_o^{0.54} \ Re^{-0.67} \] \hspace{1cm} (52)

waarin:
- \(f_r \) = Darcy-Weisbach ruwheidsparameter voor een grastalud (-)
- \(h_o \) = lengte vegetatie (m)
- \(Re \) = Reynoldsgetal (-)

- Gegeven de ontwikkelde formules voor de watersnelheid, laagdikte en weerstand is de hypothese opgesteld dat de lokale schuifspanning \(\tau \) en verschil \(\Delta p \) als functie van de plaats op het talud in de golfoploopzone kunnen worden geschat met de formules:

\[\tau = 0.125 \ f \ \rho \ u^2 \] \hspace{1cm} (18)

\[\Delta p / \Delta x = \tau / h \] \hspace{1cm} (28)

waarin:
- \(\tau \) = schuifspanning (N/m²)
- \(f \) = Darcy-Weisbach ruwheidsparameter (-)
- \(\rho \) = dichtheid water (kg/m³)
- \(u \) = lokale stroomsnelheid (m/s)
- \(\Delta p \) = drukverschil (N/m²)
- \(\Delta x \) = lengteverschil (m)
- \(h \) = lokale waterdiepte (m)

- Het meten van de waterbeweging boven een grastalud is mogelijk voorzover het betreft: golfoploop en neerloop, over de vertikaal gemiddelde watersnelheden, en drukken. Schuifspanningen meten is niet mogelijk.
Aanbevelingen

De opgestelde hypothese ten aanzien van de waterbeweging boven een grastalud in de golfooploopzone vereisen een verdere onderbouwing. De volgende aanbevelingen worden daarom gedaan:

- Toetsen van de gepresenteerde formules voor de watersnelheden en laagdikten bij onregelmatige golven en zonodig de theoretische waarde van de coefficienten aanpassen.

- Toetsen van het verband tussen de hydraulische ruwheid en de golfooploopreductiefactor samenhangend met de taludruwheid.

- Vergelijken van berekende drukverschillen en tijdens experimenteel onderzoek gemeten drukverschillen in de golfooploopzone. Indirect worden hiermee ook berekende en optredende schuifspanningen getoetst.

- Verzamelen op basis van literatuuronderzoek van kritieke waarden voor schuifspanning, drukverschil, watersnelheid in geval van grastaluds.

- Ontwikkelen van een relatie tussen belasting en sterkte op basis van de erosiesnelheid.
1 Inleiding

1.1 Kader en opdracht

Op grasland als dijkbekleding worden krachten uitgeoefend door onder andere windgolven. De golfaanval kan de grasstengels doen buigen en breken en het onderliggende substraat doen eroderen. Op dit moment zijn er geen richtlijnen voor inspectie, beoordeling of ontwerp van grasdijken die rekening houden met de toestand van het gras en de wortels en de sterkte van de graszode. In het kader van de TAW-projectgroep "Grasland als dijkbekleding" (TAW-A3) worden activiteiten ondernomen teneinde te komen tot een gedragsmodel voor de erosiebestendigheid van grasland op klei. Een van de relevante aspecten daarbij is de hydraulische belasting door golfwerking. Aan het Waterloopkundig Laboratorium is in dat kader door de Dienst Weg- en Waterbouwkunde van het Directoraat-Generaal Rijkswaterstaat per brief d.d. 27 augustus 1990 met kenmerk WB/BXF 903884 in eerste instantie opdracht verstrekt om de waterbeweging op grasdijken door golven te bestuderen aan de hand van een oriënterende literatuurstudie teneinde inzicht te krijgen in de optredende verschijnselen. In een vervolg opdracht (brief d.d. 22 november 1991 met kenmerk WB/BXF 915028) is aan het WL verzocht hypothesen op te stellen ten aanzien van de waterbeweging boven een gratalud. Het onderhavige verslag bevat de resultaten van beide uitgevoerde bureau-studies.

1.2 Doelstelling en opzet studie

Een gedragsmodel voor de erosiebestendigheid van grasland op klei vereist inzicht in hydraulische belastingen, grondmechanische sterkte en vegetatie aspecten. Centraal in de onderhavige studie staan de hydraulische belastingen, in het bijzonder de krachten optredend door de golfaanval. De doelstellingen die daarbij zijn geformuleerd, luiden:

• verzamelen van relevante parameters wat betreft watersnelheden, laagdikten, drukken, schuifspanningen en golfkappen, zo mogelijk inclusief informatie in kwantitatieve zin, op basis van een literatuuronderzoek,

• het doen van aanbevelingen met betrekking tot de wijze waarop relevante parameters kunnen worden gemeten, en
het opstellen van hypothesen ten aanzien van de waterbeweging boven een grastalud, in het bijzonder de watersnelheden, schuifspanningen en drukken boven de grasmat in de golfzone als functie van de lokatie op het talud.

In een later stadium zullen de opgestelde hypothesen getoetst dienen te worden. Vervolgens zal een relatie gelegd moeten worden tussen waterbeweging, grondparameters en vegetatiekenmerken, zodat de erosiebestendigheid van grasland op klei kwantitatief kan worden bepaald. Uiteindelijk moet een aan ander op lange termijn leiden tot ontwerpcriteria, onderhoudsrichtlijnen en evaluatiemethoden voor aanleg en beheer van grasdijken.

De opzet van de studie is als volgt geweest. Allereerst is aan de hand van de literatuur een overzicht samengesteld van de beschikbare formules betreffende de waterbeweging door golfaanval op een grastalud.

Vervolgens zijn hypothesen opgesteld voor de verschillende verschijnselen in de waterbeweging op een grastalud. Deze betreffen: laagdikten, watersnelheden, drukken en schuifspanningen in de golfzone als functie van de plaats op het talud. Hierbij is verondersteld dat de waterbeweging boven een grastalud vergelijkbaar is met die boven gladde taluds, hetgeen gerechtvaardigd lijkt gezien recente onderzoekresultaten inzake gladde taluds en grastaluds. Bij het opstellen van een hypothese ten aanzien van de optredende momentane drukken in de golfoploopzone zou gebruik gemaakt worden van drukregistraties verkregen met onderzoek naar de waterbeweging op een glad talud [van der Meer et al, 1991]. De uitwerking van de drukregistraties is evenwel beperkt gebleven tot die welke nodig zijn voor de schematisatie van het stijghoogteverloop op het maatgevende tijdstip zoals dat wordt gehanteerd in het analytische rekenmodel voor de stabiliteit van steenzettingen. Dit betekende dat in de golfoploopzone geen drukregistraties zijn uitgewerkt en de drukregistraties derhalve ook niet zijn gebruikt bij het opstellen van een hypothese.

Tenslotte zijn op basis van de verkregen informatie en de mogelijkheden om kenmerkende verschijnselen te registreren aanbevelingen gedaan betreffende een zinvolle inzet van meetapparatuur bij grootschalig toetsingsonderzoek.
2 Literatuuroverzicht

2.1 Inleiding

Relevant voor het opstellen van een gedragsmodel van de erosiebestendigheid van grasland op klei onder invloed van golfwerking is wat betreft de hydraulische omstandigheden kennis van watersnelheden, drukken en schuifspanningen. Deze karakteristieke verschijnselen kunnen de inleiding zijn tot een drietal erosiemechanismen: overstromend water, golfklappen en uittredend water. Daarbij dient te worden aangetekend dat uittredend water kan optreden enerzijds door een waterstandsverschil omdat de golfneloop een lager niveau heeft dan het fretisch vlak in het dijklichaam, of anderzijds door de golfklap. In het kader van deze studie is uitsluitend aandacht besteed aan de verschijnselen overstromend water en golfklap.

Voor zover beschikbaar zullen formules worden gepresenteerd voor zowel regelmatige als onregelmatige golven. Het betreft dan relaties voor golfklap, golfoploop en golfneerloop en bijbehorende watersnelheden, laagdikte van de golftong, drukken en schuifspanningen op het talud, en taludruwheid. In een slotparagraaf zullen de huidige lacunes worden aangegeven.

2.2 Regulmatige golven

2.2.1 Golfklappen

De golfklap is afhankelijk van factoren zoals golfoogte, steilheid van de golf en taludhelling. Een theoretische methode om de krachten door een golfklap te beschrijven is niet beschikbaar, maar er zijn wel enige empirische relaties bekend. Deze zijn vermeld in een richtlijn voor asfaltbekledingen en gebaseerd op experimenteel onderzoek [TAW, 1985]. Geen relaties zijn daarbij afgeleid voor de resulterende erosie.

Een golfklap kan worden beschouwd als een druk die over een bepaalde breedte werkzaam is. De golfklap wordt daarbij geschematiseerd tot een lijnbelasting. De brekende golf belast het talud op een plaats op het talud gelegen op een afstand z beneden SWL (stilwaterlijn). De exacte plaats is moeilijk te definiëren (figuur 2.1). Golfkracht en golfdruk kunnen worden bepaald met:

\[P = \rho b \]
\[p = \rho g q_r H \]
\[b = 0.4 H \]
waarbij: $P = \text{grootte van de golfklap (N/m)}$
$p = \text{maximale druk (N/m}^2\text{)}$
$b = \text{breedte waarover de druk optreedt (m)}$
$\rho = \text{dichtheid water (kg/m}^3\text{)}$
$g = \text{versnelling zwaartekracht (m/s}^2\text{)}$
$H = \text{golfhoogte (m)}$
$q_k = \text{stootfactor die door x% wordt onderschreven (-)}$

Figuur 2.1 Locatie golfklap als functie van de taludhelling

De factor q_k geeft de kracht van de klap weer. Deze waarde is afhankelijk van onder andere de taludhelling. Ook bij regelmatige golven blijkt q_k stochastisch verdeeld. In [Van Vledder, 1990] wordt een overzicht gegeven van in de literatuur vermelde waarden voor de stootfactor. Recent onderzoek heeft geresulteerd in de volgende formule [Klein Breteler, 1992]:

$$q_{k0} = 90 \frac{H}{L_0} \quad \text{voor } H/L_0 \leq 0.03$$ (4)

Deze uitdrukking is gebaseerd op golfproeven (asfalttalud 1:4) met golfhoogten van gemiddeld 1,5 m. Opgemerkt is dat grotere golven iets lagere waarden en kleinere golven iets hogere waarden laten zien. Bij golfsteilheden boven 0,03 neemt de stootfactor weer af. Deze afname is niet in formulevorm uitgedrukt.

Voor de plaats van de golfklap geeft Klein Breteler de volgende uitdrukking:
\[z/H = -0.0085 \{ H/(gT^2) \}^{-0.75} = -0.0337 \{ H/L_0 \}^{-0.75} \]

waarin: \(H \) = plaats van de golfklap ten opzichte van SWL (m)
\(T \) = golfperiode (s)
\(L_0 \) = golflengte op diep water (m)

De duur van de golfklap blijkt afhankelijk van de taludhelling en kan worden geschat met:

\[t = \begin{cases} 0.06 H^{0.5} & \text{tan } \alpha \leq 0.33 \\ 0.18 H^{0.5} & \text{tan } \alpha > 0.33 \end{cases} \]

waarin: \(t \) = duur golfklap (s)
\(\alpha \) = taludhoek (°)

2.2.2 Golfoploop en golfneerloop

De theoretische golfoploop voor niet-brekende golven voldoet aan de volgende relatie die is gebaseerd op Miche [van Rijn, 1990]:

\[R_u = H \{ \pi/(2\alpha) \}^{0.5} \]

waarin: \(R_u \) = golfoploop ten opzichte van SWL (m)
\(H \) = golfhoogte inkomende regelmatige golven (m)
\(\alpha \) = taludhoek (°)

Deze formule houdt geen rekening met wrijving en vormweerstanden. In [Battjes en Roos, 1975] wordt de volgende formule gepresenteerd (figuur 2.2):

\[R_u = (H L_0)^{0.5} \tan \alpha \]
Meer recent onderzoek heeft geresulteerd in de volgende vergelijkingen [van der Meer en Klein Breteler, 1990]:

\[
\begin{align*}
R_e/H &= \xi_0 \quad \text{voor } \xi_0 < 2.6 \quad \text{(plunging waves)} \\
R_e/H &= -1.5 \xi_0 + 6.5 \quad \text{voor } 2.6 < \xi_0 < 3.0 \quad \text{(collapsing waves)} \\
R_e/H &= 2.0 \quad \text{voor } \xi_0 > 3.0 \quad \text{(surging waves)}
\end{align*}
\]

(9)

\[
R_d = -0.1 \xi_0^2 + \xi_0 - 0.5
\]

(10)

waarin:
- \(R_e \) = golfoverloop ten opzichte van SWL (m)
- \(R_d \) = golfnederloop ten opzichte van SWL (m)
- \(\xi_0 \) = brekerparameter, \(\xi_0 = \tan \alpha / s^{0.5} \)
- \(s \) = golfsteilheid, \(s = H/L_0 = 2\pi H/(gT^2) \)
- \(\alpha \) = taludhoek (°)
- \(H \) = golflengte (m)
- \(L_0 \) = golflengte op diep water, \(L_0 = gT^2/2\pi \) (m)
- \(T \) = golffrequentie (s)

Voor de nederloop worden in de literatuur ook de volgende relaties gegeven [Klein Breteler, 1989]:

\[
\begin{align*}
R_e/H &= 0.6 \xi_0 \quad \xi_0 < 3 \\
R_e/H &= 2.0 \quad \xi_0 > 3
\end{align*}
\]

(11a)

(11b)

Bovenstaande formules houden geen rekening met schuininvallende golven, de aanwezigheid van een berm of een ondiep voorland, en de ruwheid van het talud. Hiertoe dienen correctiefactoren te worden ingevoerd. De meest belangrijke daarvan, namelijk die voor de ruwheid, resulteert in een reductie van de golfoverloop volgens:

\[
R_{act} = r \cdot R_e \quad \text{met } r \leq 1
\]

(12)

waarin:
- \(r \) = reductiefactor voor taludruwheid (-)
- \(R_{act} \) = werkelijke golfoverloop (m)

De waarde van \(r \) is bekend voor diverse typen harde taludbekledingen. Recent zijn beschikbaar gekomen experimentele waarden voor gras taluds. In [Führböter et al, 1989] wordt voor een talud 1:6 voor kunstgras (graslengte 28 mm, onderlinge afstand in lengte- en dwarsrichting van individuele grasstengels 8 mm) een reductiefactor van \(r = 0.95 \) vermeld ten opzichte van een asfalttalud (\(r_{asfalt} = 1 \)).
2.2.3 Watersnelheden in golfooploop en -neerloop

Theoretische golfooploop- en golfneerloopsnelheden kunnen onder bepaalde aannamen, zoals verwaarlozing van de wrijving, worden afgeleid. Voor de praktijk hebben deze bovengrenzen weinig waarde. Van meer belang zijn de op basis van de theoretische beschouwingen experimenteel getoetste en gomodificeerde formules [van der Meer en Klein Breteler, 1990]:

\[
\begin{align*}
V_u/(g H)^{0.5} &= 0.6 \tan \alpha s^{0.5} & -0.8 < \frac{z}{R_d} < 0 \\
V_d/(g H)^{0.5} &= 0.8 \tan \alpha \left(1 - \frac{z}{R_d}\right)^{0.5} & 1 > \frac{z}{R_u} > 0 \\
V_d/(g H)^{0.5} &= 0.9 \tan \alpha \left|\frac{z}{R_d}\right|^{2} & \frac{z}{R_d} < -0.8 \\
V_d/(g R_u)^{0.5} &= 1.7 \left(\tan \alpha\right)^{0.5} \left(1 - \frac{z}{R_u}\right)^{0.5} & \frac{z}{R_d} > -0.7 \\
V_d/(g H)^{0.5} &= 0.3 \left(\tan \alpha\right)^{0.1} \left|\frac{z}{R_d}\right|^{2.3} & \frac{z}{R_d} < -0.7
\end{align*}
\]

\[h/L_o < 0.15:\]

\[
V_u/(g H)^{0.5} = 4.8 \tan \alpha \left(1 - \frac{z}{R_u}\right)^{0.5} & -0.8 \leq \frac{R_d}{R_u} < \frac{z}{R_u}
\]

waarin: \(V_u =\) golfooploopsnelheid (m/s)
\(V_d =\) golfneerloopsnelheid (m/s)
\(z =\) locatie op talud ten opzichte van SWL (m)
\(h =\) waterdiepte voor talud (m)

Uit bovenstaande formules blijkt dat de maximale watersnelheden optreden ter plaatse van \(z = 0\) of iets onder SWL. Dit is ook aannemelijk daar bijvoorbeeld de watersnelheid in de golfooploop afneemt door wrijving en vormweerstand en nul wordt als de kinetische energie geheel in omgezet in potentiële energie.

\[
\begin{align*}
V_u/(g H)^{0.5} &= r_u 2.83 \left(\tan \alpha\right)^{0.4} \xi^{0.4} \quad (16a) \\
V_d/(g H)^{0.5} &= r_d 3.64 \left(\tan \alpha\right)^{0.4} \xi^{0.4} \quad (16b)
\end{align*}
\]

waarin: \(r_u =\) reductiefactor voor snelheden in de golfooploop op gras ten opzichte van een glad talud, \(r_u = 0.8\)
\(r_d =\) reductiefactor voor snelheden in de golfneerloop op gras ten opzichte van een
gat talud, \(r_d = 0.4 \)

De snelheid waarmee het golffront zich verplaatst in opwaartse richting is gegeven door [Battjes en Roos, 1975]:

\[
c'/(g H)^{0.5} = 0.6 \, \xi_0^{0.5}
\]

waarin \(c' \) = gemiddelde golffrontsnelheid (m/s)

2.2.4 Taludruwheid

In geval van een niet-glad talud wordt bij de berekening van de golffoploop een reductiefactor \(r \) toegepast om de ruwheidsinvloed te verdisconteren (zie vgl. (12)). Deze factor houdt verband met de vorm- en wrijvingsweerstand zoals die bijvoorbeeld in opgenomen in de Chezy-coëfficiënt \(C \), de Darcy-Weisbach factor \(f \) of de Manning-coëfficiënt \(n \). Een relatie tussen deze parameters en de reductiefactor \(r \) is onbekend.

2.2.5 Schuifspanningen

Als de watersnelheid \(u \) en de ruwheid \(C \) (of \(f \) of \(n \)) bekend zijn, kan de schuifspanning worden berekend met:

\[
\tau = \rho g \, u^2 / C^2 \quad \text{of} \quad \tau = 0.125 \, f \, \rho \, u^2 \quad \text{of} \quad \tau = \rho g \, n^2 \, R^{-0.33} \, u^2
\]

waarin:
\(\tau \) = schuifspanning (N/m\(^2\))
\(\rho \) = dichtheid water (kg/m\(^3\))
\(g \) = versnelling zwaartekracht (m/s\(^2\))
\(C \) = Chezy-coëfficiënt (m\(^0.5\)/s)
\(f \) = Dracy-Weisbach factor (-)
\(n \) = Manning-coëfficiënt (s/m\(^{0.33}\))
\(R \) = hydraulische straal (m)
\(u \) = watersnelheid (m/s)

De parameters \(C \), \(f \) en \(n \) zijn als volgt gerelateerd:

\[
f = 8 \, g / C^2 \quad \text{en} \quad f = 8 \, g \, n^2 / R^{0.33}
\]

Voor de grootte van \(f \) (of \(C \) of \(n \)) kan gebruik worden gemaakt van relaties volgens Dmitriew, Kouwen, etc. (zie paragraaf 3.5). Voor de stroomsnelheid kan de maximale waarde in oploop of neerloop worden gesubsituteerd. Voor de waterdiepte \(h \) (of hydraulische straal \(R \)) kan de maximale laagdikte ingevuld worden.

Directe relaties tussen \(\tau \) en de watersnelheid zijn uit de literatuur niet bekend.
Voor alle duidelijkheid: met vgl. (18) wordt aangenomen dat de stroming op een talud veroorzaakt door brekende golven vergelijkbaar is met uniforme stroming in een waterloop. Schuifspanningen op een bodem onder invloed van niet-brekende golven volgen uit:

$$\tau = 0.5 \, f_w \, \rho \, u_{orb}^2$$ \hspace{1cm} (20)

waarin: f_w = weerstandsfactor (-)
u_{orb} = orbitaalsnelheid nabij bodem (m/s)

Waarden voor f_w variëren van 0,01 tot 0,1 afhankelijk van bodemruwheid en orbitaalbeweging.

2.2.6 Drukken op het talud

2.2.7 Laagdikten

In [Battjes en Roos, 1975] wordt een formule gepresenteerd voor de maximale dikte van de golftong als functie van de plaats op het talud (figuur 2.2):

$$h_{max}/(H \, L_o)^{0.5} = 0.08 \, \{1 - x/(H \, L_o)^{0.5}\}$$ \hspace{1cm} (21)

waarin: h_{max} = maximale waterlaagdikte in de golftong (m)
x = horizontale afstand tot SWL (m)

De formule kan ook worden geschreven als functie van z:

$$h_{max}/(H \, L_o)^{0.5} = 0.08 \, \{1 - z/[H \, L_o)^{0.5} \, \tan(\alpha)]\}$$ \hspace{1cm} (22)

hetgeen gelijk is aan:

$$h_{max}/H = 0.08 \, \{1 - z/(Ru)/(H/L_o)^{0.5}\}$$ \hspace{1cm} (23)

waarin: z = vertikale afstand tot SWL (m)
2.3 **Onregelmatige golven**

2.3.1 **Golfklappen**

Analoog aan regelmatige golven wordt de maximale druk bij een golfklap uitgedrukt in de golfoogte. Bij onregelmatige golven betreft het de significante golfoogte H_s. In [Van Vledder, 1990] wordt een overzicht gegeven van de weinige beschikbare formules. Aanbevolen wordt de volgende relatie:

$$p_x/(\rho g H_s) = 12 \tan \alpha$$

waarin:

- $p_x = $ maximale druk die door x% van de optredende drukken wordt overschreden (N/m2)
- $\rho = $ dichtheid water (kg/m3)
- $g = $ versnelling zwaartekracht (m/s2)
- $H_s = $ significante golfoogte (m)
- $\alpha = $ taludhoek ($^\circ$)

De waarde van de index x bij p bedraagt ongeveer 2 à 5%.

2.3.2 **Golfoploop en golfdieploop**

De golfoploop voor onregelmatige golven voldoet aan de volgende formules:

$$R_{2\%}/H_s = 1.5 \xi_{0p} \quad \text{voor} \quad \xi_{0p} \leq 2$$

$$R_{2\%}/H_s = 3.0 \xi_{0p} \quad \text{voor} \quad \xi_{0p} > 2$$

met

$$\xi_{0p} = \tan \alpha/(H_s/L_{0p})^{0.5}$$

$$L_{0p} = g T_p^2 / 2\pi$$

waarin:

- $R_{2\%} = $ golfoploop die door 2% wordt overschreden (m)
- $H_s = $ significante golfoogte (m)
- $\xi_{0p} = $ brekerparameter op diep water betrokken op de piekperiode (-)
- $r = $ reductiefactor golfoploop in verband met taludruwheid (-)
- $L_{0p} = $ golflengte op diep water met de piekperiode (m)
- $T_p = $ piekperiode (s)
- $g = $ versnelling zwaartekracht (m/s2)
- $\alpha = $ taludhoek ($^\circ$)
Uit bovenstaande formules blijkt dat voor de maximale golfoploop de 2%-waarde wordt aangehouden.
De formules zijn getoetst aan gemeten golfoplopen voor diverse taludsteilheden, inclusief een
graztalud 1:8.

Uit experimenteel onderzoek met kunstgras blijkt de golfoploop op een graztalud 1:6 te
worden gereduced met een factor $r = 0,9$ in vergelijking met de oploop op een asfalttalud
[Führbötter et al, 1989]. Ten opzichte van de oploopformule blijkt de reductiefactor echter een
waarde van 1 te hebben [van der Meer et al, 1991]. Met andere woorden:

$$ r = 0,9 \pm 1,0 $$

Voor de golfneerloop zijn in de literatuur geen formules aangetroffen. Eventueel zouden op
dezelfde wijze als voor de golfoploop de formules voor de golfneerloop bij regelmatige golven
kunnen worden vertaald naar formules voor de neerloop bij onregelmatige golven.

2.3.3 Watersnelheden in golfoploop en -neerloop

In de literatuur zijn geen formules aangetroffen voor watersnelheden in oploop en neerloop bij

2.3.4 Taludruwheid

Evenals bij regelmatige golven is geen formule bekend voor de taludruwheid bij onregelmatige
golven.

2.3.5 Schuifspmanningen

Een rechtstreeks verband tussen schuifspanning en watersnelheid op een graztalud bij
onregelmatige golven is in de literatuur niet gevonden.

2.3.6 Drukken op het talud

Er zijn in de literatuur geen relaties aangetroffen die het verband beschrijven tussen drukken
en schuifspmanningen, danwel watersnelheden.

2.3.7 Laagdikten

Een formule voor de maximale laagdikte van de golftong als functie van de lokatie op het
talud is in de literatuur niet aangetroffen. In [De Waal et al, 1991] zijn wel de resultaten van
metingen opgenomen, maar deze zijn niet verder uitgewerkt.
2.4 Conclusies

In de voorgaande paragrafen zijn de beschikbare formules gepresenteerd om de waterbeweging boven een grastalud ten gevolge van golfwerking te bepalen. In zijn algemeenheid moet worden vastgesteld dat voor de specifieke situatie van een grasdijk slechts weinig formules beschikbaar zijn. Feitelijk is alleen informatie beschikbaar over de reductie van de golfooploop. De resterende kennis heeft vooral betrekking op taluds met een harde bekleding en dan nog voornamelijk voor regelmatige golven. Het betreft formules voor de golfklap, de maximale watersnelheden op het talud als functie van de plaats en de maximale laagdikte van de watertong. Geen enkele informatie is beschikbaar over schuifspanningen en drukken.
3 Modellering waterbeweging

3.1 Inleiding

Golven die breken op een talud veroorzaken watersnelheden, drukken en schuifspanningen. Op basis van het literatuuronderzoek moet worden vastgesteld dat er geen relaties beschikbaar zijn om genoemde parameters in geval van een grasbekleding te kunnen bepalen. Uitsluitend voor gladde taluds zijn er empirische formules op basis van experimenteel onderzoek (waarvan sommige met een theoretische basis) die een relatie leggen met de maximale watersnelheden of golfoploop en -neerloop.

Voor het opstellen van een gedragsmodel voor grasland als dijkbekleding is het relevant de optredende schuifspanning τ of druk Δp lokaal te kunnen bepalen. Voor de lokale schuifspanning geldt daarvoor:

$$\tau = 0,125 \ f \ \rho \ u^2$$

(18)

waarin:
- $f = \text{Darcy-Weisbach ruwheidsparameter (-)}$
- $\rho = \text{dichtheid water (kg/m}^3\text{)}$
- $u = \text{lokaal stroomsnelheid (m/s)}$

Voor de lokale druk geldt:

$$\frac{\Delta p}{\Delta x} = \frac{\tau}{h}$$

(28)

waarin:
- $\Delta x = \text{lengteverschil (m)}$
- $h = \text{lokaal waterdiepte (m)}$

Voor het bepalen van de druk ter plaatse van de golfklap zijn in hoofdstuk 2 empirische relaties gegeven. In dit hoofdstuk zal de aandacht daarom uitgaan naar de schuifspanning en de druk in de golfzone. Allereerst zullen daartoe formules worden opgesteld voor de watersnelheden en de laagdikte van de golftong op basis van de mogelijkheid de golfoplooprelaties voor regelmatige golven en onregelmatige golven in elkaar om te zetten. Vervolgens zal de ruwheid f worden behandeld, waarna tenslotte formules voor de schuifspanning en de druk worden gepresenteerd.

3.2 Transformatie golfoploop

In de literatuur zijn formules gegeven voor de golfoploop voor zowel regelmatige als onregelmatige golven. Deze formules kunnen eenvoudig in elkaar worden omgezet. In het
navolgende zal dit worden aangetoond. Op basis hiervan wordt verondersteld dat een dergelijke transformatie ook mogelijk is voor de watersnelheden en de laagdikten. In paragraaf 3.3 zal dit worden uitgewerkt.

De volgende formules zijn gegeven (zie paragraaf 2.2.2 en 2.3.2):

regelmatige golven:

\[
\begin{align*}
R_v/H &= \xi_0 \\
R_v/H &= -1,5 \xi_0 + 6,5 \\
R_v/H &= 2,0
\end{align*}
\]
voor \(\xi_0 < 2,6 \)
voor \(2,6 < \xi_0 < 3,0 \)
voor \(\xi_0 > 3,0 \)

(9)

onregelmatige golven:

\[
\begin{align*}
R_{v,2%}/H_s &= 1,5 \xi_0 \\
R_{v,2%}/H_s &= 3,0
\end{align*}
\]
voor \(\xi_{0p} \leq 2 \)
voor \(\xi_{0p} > 2 \)

(25)

waarin:
\(H \) = golflengte van golven (m)
\(H_s \) = significant golftoeloop van golven (m)
\(R_v \) = golflengte van golven (m)
\(R_{v,2%} \) = golflengte van golven die door 2% wordt overschreven (m)
\(\xi_0 \) = brekerparameter bij golven (-)
\(\xi_{0p} \) = brekerparameter bij onregelmatige golven (-)

Bij onregelmatige golven met een Rayleigh-verdeling geldt:

\[
H_{2%} = 1,4 H_s \text{ en } H_s = 1,596 H_m
\]

met \(H_m = (\Sigma H_i)/N = 0,886 H_{rms} = 0,886 \left\{ (\Sigma H_i^2)/N \right\}^{0.5} \)

waarin:
\(H_m \) = gemiddelde golflengte van golven (m)
\(H_{rms} \) = root-mean-square golflengte van golven (m)
\(H_s \) = significant golflengte van golven (m)
\(H_{2%} \) = golflengte die door 2% van de onregelmatige golven wordt overschreden (m)
\(H_i \) = individuele onregelmatige golflengte (m)

Voorts geldt:

\[
T_p = \pm T_s = \pm 1,15 T_m
\]

waarin:
\(T_p \) = pickperiode (s)
\(T_m \) = gemiddelde golflengte (s)
\(T_s = \text{significante golfperiode (s)} \)

Hieruit is af te leiden dat geldt:

\[
s_0 = \frac{(1,15^2/1,596)}{s_{0,p}} = 0,83 \ s_{0,p}
\]

en

\[
\xi_0 = \frac{(1,596/1,15^2)^{0.5}}{\xi_{0,p}} = 1,10 \ \xi_{0,p}
\]

waarin:
\(s_0 \) = golfsteilheid op diep water bij regelmatige golven (-)
\(s_{0,p} \) = golfsteilheid op diep water bij onregelmatige golven en betrokken op de piekperiode (-)
\(\xi_0 \) = brekerparameter op diep water (-)
\(\xi_{0,p} \) = brekerparameter op diep water betrokken op de piekperiode (-)

Voor de golfoploop wordt een zelfde verdeling verondersteld als voor de golfhoogte:

\[
R_{u,2\%} = 1,4 \ R_{u,s} \ \text{en} \ \ R_{u,s} = 1,596 \ R_{u,m}
\]

waarin:
\(R_{u,m} \) = gemiddelde golfoploop bij onregelmatige golven (m)
\(R_{u,s} \) = significante golfoploop bij onregelmatige golven (m)

Uitgaande van:

\[
\frac{R_s}{H_s} = \xi_0
\]

is dan te schrijven:

\[
\{1,596/(1,4 \times 1,596)}\ R_{u,2\%}/H_s = 1,1 \ \xi_{0,p}
\]

of

\[
R_{u,2\%}/H_s = 1,54 \ \xi_{0,p}
\]

De factor 1,54 in deze formule is vrijwel identiek aan de factor 1,5 in de experimenteel bepaalde formule (zie vgl.(25)).

Analoog kan worden bepaald:

\[
R_{u,2\%}/H_s = 2,8
\]
3.3 Watersnelheden en laagdikten bij onregelmatige golven

3.3.1 Watersnelheden

Gezien de mogelijkheid om de golfoploopformules voor regelmatige en onregelmatige golven in elkaar om te zetten, lijkt dit ook voor de watersnelheden en laagdikten een goed alternatief. Voor enkele formules is deze executie uitgevoerd. In deze paragraaf voor de watersnelheden en in paragraaf 3.3.2 voor de laagdikten.

Uitgegaan is van de formules (13b), (14a) en (15), dat wil zeggen van formules die ook gelden in de golfoploopzone. Het resultaat is:

\[
\begin{align*}
\frac{h}{L_{op}} &> 0.15: \\
\nu_{u,2\%} / (g H_s)^{0.5} &= c_1 \tan \alpha \left(\frac{s_{0,p}}{R_{u,2\%}} \right)^{-0.5} (1 - z/R_{u,2\%})^{0.5} \quad z/R_{u,2\%} > 0 \quad (29) \\
\nu_{d,2\%} / (g R_{d,2\%})^{0.5} &= c_2 \tan \alpha \left(\frac{1 - z/R_{d,2\%}}{R_{d,2\%}} \right)^{0.5} \quad z/R_{d,2\%} > -0.7 \quad (30) \\
\frac{h}{L_{op}} &< 0.15: \\
V_{u,2\%} / (g H_s)^{0.5} &= c_3 \tan \alpha (1 - z/R_{u,2\%})^{0.5} \quad \text{omgeving} \quad -0.8 \text{ } R_{d,2\%} < z < R_{u,2\%} \quad (31)
\end{align*}
\]

waarin:
\begin{itemize}
 \item \text{g} = versnelling zwaartekracht (m/s²)
 \item \text{H}_s = significante golfoptrekte hoogte (m)
 \item \text{h} = waterdiepte (m)
 \item \text{L}_{op} = golfduur op diep water met de piekperiode (m)
 \item \text{R}_{d,2\%} = golfnieerloop die door 2% wordt overschreden (m)
 \item \text{R}_{u,2\%} = golfoploop die door 2% wordt overschreden (m)
 \item \text{s}_{0,p} = golfoplossing op diep water betrokken op de piekperiode (-)
 \item \text{\nu}_{d,2\%} = neerloopsnelheid die door 2% wordt overschreden (m/s)
 \item \text{\nu}_{u,2\%} = oploopsnelheid die door 2% wordt overschreden (m/s)
 \item \text{z} = lokatie op talud verticaal ten opzichte van SWL (m)
 \item \text{\alpha} = taludhoek (°)
\end{itemize}

Waarden voor \text{c}_1, \text{c}_2 \text{ en } \text{c}_3 \text{ kunnen met de in paragraaf 3.2 gegeven transformatieformules worden bepaald. Dit resulteert in: } \text{c}_1 = 1.43, \text{c}_2 = 1.04 \text{ en } \text{c}_3 = 8.6. \text{ De berekende waarden zullen moeten worden vergeleken met de waarden die zijn te onthalen uit meetregistraties.}

De formules houden geen rekening met een reductie van de watersnelheden door een grotere ruwheid. In [Führbötter et al, 1991] worden hiervoor reductiefactoren vermeld:
\[v_{\text{d,gsm}} = 0.8 \ v_{\text{d,glad}} \] \hspace{1cm} (32)

\[v_{\text{d,gsm}} = 0.4 \ v_{\text{d,glad}} \] \hspace{1cm} (33)

waarin:
- \(v_{\text{d,glad}} \) = neerloopsnelheid op een glad talud (m/s)
- \(v_{\text{d,gsm}} \) = neerloopsnelheid op een gras talud (m/s)
- \(v_{\text{u,glad}} \) = oploopsnelheid op een glad talud (m/s)
- \(v_{\text{u,gsm}} \) = oploopsnelheid op een gras talud (m/s)

3.3.2 Laagdikten

Analoog aan de transformatie van de watersnelheden is ook de maximale laagdikte bij regelmatige golven omgezet in een formule voor de maximale laagdikte bij onregelmatige golven. Daarbij is uitgegaan van vgl. (22) wat leidt tot:

\[h_{\text{max,2%}} = c_4 \ (1 - z/R_{u,2%})^{0.5} \] \hspace{1cm} (34)

waarin:
- \(h_{\text{max,2%}} \) = maximale laagdikte bij onregelmatige golven (m)

Voor \(L_{0,0} \) geldt: \(L_{0,0} = 1.15^2 \ L_0 \). Voor de factor \(c_4 \) betekent dit:

\[c_4 = (1.596 \cdot 1.15^2)^{0.5} \cdot 0.08 = 0.12 \]

Deze waarde dient experimenteel te worden getoetst.

3.4 Taludruwheid

3.4.1 Ruwheid als functie van de golfoploopreductie

In de literatuur is geen relatie aangetroffen die het verband aangeeft tussen de ruwheid van het talud en de reductie van de golfoploop. Een theoretische relatie zal in het navolgende worden afgeleid tussen de golfoploopreductiefactor \(r \) en de Darcy-Weisbach coëfficiënt \(f \) (of de Chezy coëfficiënt \(C \)).

In figuur 3.1 is een energiebeschouwing weergegeven van een oplopende golf. De energielijn geeft daarbij geen momentopname weer maar de maximale energiehoogte gedurende een golfperiode. Ten opzichte van een theoretisch talud treedt bij een glad talud een energieverlies \(\Delta E_{2,5} \) op gelijk aan:

\[\Delta E_{2,5} = i_s \ R_{u,2} / \sin \alpha \] \hspace{1cm} (35)
Analoog is het energieverlies bij een ruw talud:

\[\Delta E_{2x} = i_r \frac{R_{ux}}{\sin \alpha} = i_r \frac{R_{ux}}{\sin \alpha} \]

waarbij:
- \(\Delta E_{2x} \) = energieverlies bij een ruw talud (m)
- \(\Delta E_{2s} \) = energieverlies bij een glad talud (m)
- \(i_r \) = verhang bij een ruw talud (-)
- \(i_s \) = verhang bij een glad talud (-)
- \(R_{ux} \) = golfooploop op een ruw talud (m)
- \(R_{us} \) = golfooploop op een glad talud (m)
- \(r \) = golfooploopreductiefactor voor taludruwheid (-)
- \(\alpha \) = taludhoek (°)

Figuur 3.1 Energiebeschouwing van de golfooploop

Het verschil tussen een glad en een ruw talud is dan:

\[\Delta E = \Delta E_{2x} - \Delta E_{2s} = i_r \frac{R_{us}}{\sin \alpha} - i_s \frac{R_{ux}}{\sin \alpha} \]

Voor het energieverlies geldt ook:

\[\Delta E = (1 - r) \frac{R_{ux}}{\sin \alpha} \]

Gelijkstellen van vgl.(37) en (38) levert na enig omwerken:
\[r_i - i_s = (1 - r) \sin \alpha \] \hspace{1cm} (39)

Als nu wordt aangenomen dat voor elke lokatie op het talud geldt dat de maximale laagdikte en de maximale watersneltijd gelijktijdig optreden (figuur 3.1), is de ligging van de energielijn te bepalen. Voor het verhang \(i \) geldt dan in algemene zin:

\[i = f u^2 / (8 g h) \] \hspace{1cm} (40)

waarin:
- \(u \) = stroomsnelheid (m/s)
- \(h \) = waterdiepte (m)
- \(i \) = verhang (-)
- \(g \) = versnelling zwaartekracht (m/s²)
- \(f \) = Darcy-Weisbach ruwheidsparameter (-)

Deze relatie geldt feitelijk alleen voor uniforme stroming, maar wordt hier als benadering van toepassing verondersteld. Vervroyloos worden dan de snelheidsverandering per tijdseenheid (\(du/dt \)) en de snelheidsverandering in de stromingsrichting (\(du/dx \)).

De term \(u^2/(8gh) \) in vgl. (40) kan verder worden uitgewerkt door substitutie van de maximale oplooptijd snelheid \(v_u \) voor \(u \):

\[u = v_u = 0.8 (gL_o)^{0.5} \tan \alpha \] \hspace{1cm} (13b)

en voor \(h \) de maximale laagdikte:

\[h = h_{\text{max}} = 0.08 (H \ L_o)^{0.5} \] \hspace{1cm} (22)

Dit resulteert in:

\[u^2/(8gh) = (\tan \alpha)^2 (H/L_o)^{0.5} \] \hspace{1cm} (41)

waarin:
- \(H \) = golfhoogte (m)
- \(L_o \) = golflengte (m)

Impliciet is verondersteld dat de maximale stroomsnelheid en laagdikte onafhankelijk zijn van de taludruwheid. Dit lijkt een logische veronderstelling.

Substitutie van vgl. (41) in vgl. (40) geeft vervolgens:

\[i = f (\tan \alpha)^2 (H/L_o)^{0.5} \] \hspace{1cm} (42)

Op basis hiervan kunnen nu het verhang \(i_s \) op een glad talud en het verhang \(i_i \) op een ruw talud worden bepaald:
\[i_s = f_s (\tan \alpha)^2 (H/L_o)^{0.5} \] \hspace{1cm} (43)
\[i_r = f_r (\tan \alpha)^2 (H/L_o)^{0.5} \] \hspace{1cm} (44)

waarin:
- \(f_s \) = Darcy-Weisbach ruwheidsparameter voor een glad talud (-)
- \(f_r \) = Darcy-Weisbach ruwheidsparameter voor een ruw talud (-)

Deze beide relaties worden ingevuld in vgl.(39) en dit leidt tenslotte tot:

\[r f_r - f_s = (1 - r) (\sin \alpha) / (\tan \alpha)^2 (H/L_o)^{0.5} \] \hspace{1cm} (45a)

of

\[f_r = f_s / r + (1 - r)/r (\sin \alpha) / (\tan \alpha)^2 (H/L_o)^{0.5} \] \hspace{1cm} (45b)

Op het eerste gezicht lijkt de vorm van vgl.(45b) redelijk. Immers voor \(r = 1 \) volgt namelijk \(f_r = f_s \), dat wil zeggen een glad talud; voor \(r = 0 \) gaat \(f_r \) naar oneindig, dat wil zeggen een zeer ruw talud.

Voor \(f_s \) zal een waarde gekozen moeten worden, bijvoorbeeld \(f_s = 0.050 \) (overeenkomend met \(C = 40 \text{ m}^{0.5}/\text{s} \)). Waarden voor \(f_r \) kunnen nu worden berekend als functie van \(r, \alpha \) en \(H/L_o \).

De formule voor \(f_r \) is uitsluitend van toepassing voor regelmatige golven, immers relaties zijn gesubsstitueerd voor de maximale watersnelheid en de maximale laagdikte die slechts gelden bij regelmatige golven. Bij onregelmatige golven zal een factor toegevoegd moeten worden.

De juistheid van de theoretische formule voor \(f_r \) wordt grotendeels bepaald door de juistheid van de formules voor de maximale stroomsnelheid en de maximale laagdikte, alsmede door de veronderstelling dat in de golfvong uniforme stroming mag worden verondersteld. Bovendien is verondersteld dat de maximale laagdikte en de maximale watersnelheid gelijktijdig optreden. Dit zal door fysisch onderzoek getoetst moeten worden. Overigens treedt de maximale laagdikte op kort na passage van het golffront [Battjes en Roos, 1975].

3.4.2 Ruwheid als functie van de vegetatie

De uitkomst van berekeningen van de weerstand \(f_r \) met vgl.(45) kan worden vergeleken met empirische formules voor de weerstand bij vegetaties. In de literatuur is namelijk wel het een en ander hierover bekend. In het algemeen betreft het relaties tussen de weerstand \(f_r \) en waterdiepte \(h \), stroomsnelheid \(u \), Reynoldsgetal \(Re \) en vegetatiehoogte \(h_v \).

Zo wordt in de Angelsaksische wereld veel gebruik gemaakt van de n-VR methode, waarbij de Manning-coëfficiënt \(n \) volgt uit de waarde voor het product van stroomsnelheid \(V (= u) \) en hydraulische straal \(R \) [USDA, 1954]. Daarbij wordt onderscheid gemaakt in verschillende "retardance" klassen afhankelijk van de graslengte en de grasconditie (figuur 3.2).
Voor de "retardance" klassen C (graslengte $h_c = 0,15$ m à 0,25 m) en D (graslengte $h_c = 0,05$ m à 0,15 m) is voor $Re = 10^5$ à 10^6 af te leiden:

$$f_r = \frac{8g/C^2}{8g/(0,33 h^{0.16} Re^{0.33})^2} = 72 \, g \, h^{-0.33} \, Re^{-0.67}$$ (46)

waarin:
- $f_r =$ Darcy-Weisbach ruwheidsparameter voor gras (-)
- $h =$ maximale waterdiepte in golfzone (m)
- $Re =$ Reynoldsgetal, $Re = uh/u$ (-)
- $C =$ Chezy-coëfficiënt ($m^{0.5}$/s)
- $g =$ versnelling zwaartekracht (m/s^2)

In figuur 3.3 is het geldigheidsgebied van vgl.(46) aangegeven, daarbij uitgaand van waterdiepten van 0,20 m tot 0,60 m.
Figuur 3.3 Ruwheid grastalud volgens Kouwen en Dmitriew
De n-VR methode is feitelijk niet toepasbaar bij verhangen steiler dan 1:10. In [Hewlett et al, 1987] wordt op grond van experimenteel onderzoek aanbevolen voor energiehellingen van 1:3 en steiler voor de Manningcoëfficiënt een waarde \(n = 0,020 \) te hanteren en voor energiehellingen variërend van 1:3 tot 1:10 te interpoleren tussen \(n = 0,020 \) en \(n = 0,030 \). De waarden van \(n \) kunnen worden omgeredend naar de Darcy-Weisbach-factor \(f_r \), met:

\[
f_r = 8 \ g \ n^2 / R^{1/3}
\]

waarin: \(R = \) hydraulische straal (m) (Voor \(R \) moet de laagdikte \(h \) van de watertong gesubstitueerd worden).

Bij een talud 1:3 à 4 betekent de aanbeveling in [Hewlett et al, 1987] voor \(n \) een waarde gelijk aan 0,021. Dit gesubstitueerd in vgl.(20) met \(R = h \), geeft:

\[
f_r = 0,0035 \ g \ h^{-0.33}
\]

Opgemerkt wordt dat bij \(n = 0,020 \) voor het product VR geldt: VR = 27,5. Dit betekent een Reynoldsgetal van 2,75.10^7, wat relatief hoog is.

Een meer recente methode is die volgens Kouwen [Kouwen, 1988][Kouwen en Unny, 1973]. Hierbij wordt een Darcy-Weisbach factor \(f_r \) berekend met een formule analoog aan die voor uniforme stroming:

\[
f_r^{0.5} = a + b \log(h/k)
\]

waarin: \(h = \) waterdiepte (m)
\(k = \) Nikuradse ruwheid (m)

Voor de factoren \(a \) en \(b \) moeten waarden worden gesubstitueerd variërend van 0,15 tot 0,29 voor \(a \) en van 1,85 tot 3,5 voor \(b \), afhankelijk van de stromingscondities. Dit kan worden vergeleken met de gebruikelijke formulering voor \(f \):

\[
f^{0.5} = 2,2 + 2,0 \log(h/k)
\]

Kouwen geeft ook een relatie voor \(k \). Deze is afhankelijk van onder andere de relatieve dichtheid \(M \) en de buigtijheid \(EI \). Waarden hiervoor zijn tabellarisch verzameld. Ook is een benaderende formule gegeven als functie van de graslengte:

\[
MEI = 223 \ h_r^{3.125}
\]

waarin: \(M = \) relatieve dichtheid vegetatie (-)
\(EI = \) buigtijheid (Nm^2)
\(h_r = \) lengte vegetatie (m)
Hoewel de methode in principe waarschijnlijk de beste mogelijkheden in zich draagt, is het nadeel dat de waarde voor MEI onbekend is of geschat moet worden. Voorts zijn voor de berekening waarden nodig voor waterdiepte en verhang. De methode is afgeleid voor Reynoldsgetallen van 10^3 à 5×10^5 en graslengten van 0,10 m tot 0,15 m. In figuur 3.3 zijn de resultaten gepresenteerd.

Een empirische methode is de methode van Dmitriew [Dmitriev, 1951]. Deze stelt:

$$f_v = (A \text{ Re}^2 + B \text{ Re} + C)^{-1}$$ \hspace{1cm} (51)

Dmitriew geeft voor de coëfficiënten A, B en C relaties, maar deze zijn onjuist. Op basis van de gepresenteerde gegevens in [Dmitriev, 1951] kan de volgende relatie worden bepaald:

$$f_v = 8315 \; h_v^{0.54} \; \text{Re}^{-0.67}$$ \hspace{1cm} (52)

De maximale fout in f_v bedraagt 0,15. Het onderzoeksgebied kan alsvolgt worden gekarakteriseerd:

- $\text{Re} = 10^5$ à 2×10^6
- $u = 0,15$ m/s à 2,0 m/s
- $h = 0,07$ m à 0,36 m
- $h_v = 0,06$ m à 0,31 m

In figuur 3.3 zijn de resultaten weergegeven.

3.4.3 Vergelijking weerstandsformules

In paragraaf 3.4.1 is een weerstandsformule voor ruwe taluds bepaald als functie van de golfoploopreductiefactor:

$$f_v = f_r + (1 - r)/r \cdot (\sin \alpha)/(\tan \alpha)^2 \cdot (H/L_o)^{0.5}$$ \hspace{1cm} (45b)

Voorts zijn in paragraaf 3.4.2 diverse formules voor de weerstand van gras taluds gepresenteerd. Beschouwen we deze formules nader dan zijn de overeenkomsten groot, maar is de nauwkeurigheid beperkt (zie ook figuur 3.3). Aangezien het gebied met Reynoldsgetallen van 10^3 à 10^5 (dat wil zeggen voor $u_h = 0.1$ m3/s à 1,0 m3/s) het meest interessant is en in de relatie van Dmitriew ook de graslengte wordt meegenomen, wordt voor de vergelijking met de formule op basis van de factor voor de golfoploopreductie voor deze formule gekozen:

$$f_v = 8315 \; h_v^{0.54} \; \text{Re}^{-0.67}$$ \hspace{1cm} (52)
In [Führbötter et al, 1989] zijn proeven beschreven inzake de golfoploop op een grastalud met een helling 1:6. De golfoploopreducefaktor r bedroeg 0,96. De lengte van het gras was 0,028 m, dus kleiner dan de graslengten waarmee Dmitriew zijn proeven heeft uitgevoerd. Toch is vgl.(52) gebruikt voor de vergelijking. Substitutie van Re = 10^6 geeft: \(f_r = 0,121 \).

Met de weerstandsformule (45b) kan op basis van \(r = 0,95 \), \(\alpha = 9,5^\circ \), \(H/L_0 = 0,04 \) en \(f_r = 0,050 \) voor \(f \) worden berekend: \(f = 0,119 \).

Gezien het beperkte verschil tussen beide resultaten, wordt voorlopig geconcludeerd dat vgl.(45) een goede schatting geeft voor de weerstand \(f \) van een grastalud.

3.5 Lokale schuifspanningen en drukken

3.5.1 Regelmatige golven

De lokale schuifspanning en de lokale druk kunnen worden berekend met:

\[
\tau = 0,125 \, f \rho \, u^2 \tag{18}
\]

\[
\frac{\Delta \rho}{\Delta x} = \frac{\tau}{h} \tag{28}
\]

Voor de lokale watersnelheid in oploop of neerloop kunnen de formules uit paragraaf 2.2.3 worden gesubstitueerd, bijvoorbeeld:

\[
V_o/(g \, H)^{0.5} = 0,8 \tan \alpha \left((1 - z/R_o)/a\right)^{0.5} \quad 1 > z/R_o > 0 \tag{13b}
\]

De watersnelheid moet dan nog wel worden gereduceerd in verband met de hydraulische ruwheid (factor \(r_u = 0,8 \) volgens Führbötter).

Voor de waterdiepte \(h \) wordt de lokale maximale laagdikte ingevuld:

\[
h_{\text{max}}/H = 0,08 \left(1 - z/R_o\right)/(H/L_0)^{0.5} \tag{23}
\]

Voor \(f \) tenslotte kan een waarde worden ingevuld berekend met de theoretische formule (paragraaf 3.4.1):

\[
f_r = f/r + (1 - r)/r \left(\sin \alpha\right)/(\tan \alpha)^2 \left(H/L_0\right)^{0.5} \tag{45b}
\]

Uit bovenstaande formules blijkt dat zowel \(f \) als \(v_o \) als \(h_{\text{max}} \) een functie zijn van golfparameters, taludhoek, lokatie op het talud en de redactiefactor voor de ruwheid. Dit betekent dat ook de schuifspanning en de druk functies zijn van deze parameters.

Bovenstaande biedt in principe de mogelijkheid om de lokale schuifspanningen en de lokale drukken in geval van regelmatige golven te bepalen. Een toetsing aan meetgegevens is evenwel gewenst.
3.5.2 Onregelmatige golven

Voor onregelmatige golven kan een zelfde werkwijze worden gevolgd voor de bepaling van schuifspanningen en drukken als bij reguliermatige golven. Met andere woorden:

$$\tau = 0,125 f \rho u^2$$

(18)

$$\Delta p / \Delta x = \tau / h$$

(28)

Voor de watersnelheid, de laagdikte en de weerstand moeten nu de eerder in dit hoofdstuk afgeleide formules voor onregelmatige golven worden gesubstitueerd:

$$v_{u,2%}/(g H_a)^{0.5} = c_1 \tan \alpha (s_{o,p})^{0.5} (1 - z/R_{u,2%})^{0.5}$$

$$z/R_{u,2%} > 0$$

(29)

$$h_{max,2%}(z)/(H_u L_p) = c_4 (1 - z/R_{u,2%})$$

(34)

$$f_r = c_5 \{f_o/r + (1 - r)/r (\sin \alpha)/(\tan \alpha)^2 (H/L_o)^{0.5}\}$$

(45c)

Het zal duidelijk zijn dat in het geval van onregelmatige golven een berekening van schuifspanning of druk onmogelijk is zolang de waarde van de coefficiënten onbekend is. Deze zullen door experimenteel onderzoek moeten worden bepaald.

3.6 Conclusies

Het blijkt onder bepaalde aannames mogelijk de golfoploopformules voor reguliermatige en onregelmatige golven in elkaar om te zetten. Op basis hiervan is verondersteld dat een dergelijke analogie ook van toepassing is op stroomsnelheden en laagdikten in de golfoploopzone. Gegeven de formules voor reguliermatige golven zijn formules bepaald voor stroomsnelheden en laagdikten bij onregelmatige golven.

Voorts blijkt het mogelijk een relatie te leggen tussen de ruwheidssparameter volgens Darcy-Weisbach en de golfoploopreductiefactor.

Gegeven deze relaties is het vervolgens mogelijk de lokale stroomsnelheid en druk op het talud in de golfzone te bepalen. Aanbevolen wordt de diverse relaties te toetsen door middel van experimenteel onderzoek.
4 Registreren van de waterbeweging

4.1 Inleiding

Als wordt verondersteld dat de waterbeweging op het talud door golfwerking verantwoordelijk is voor de erosie, dan is het noodzakelijk dat de karakteristieke parameters van de waterbeweging kunnen worden gemeten. In het ideale geval betreft dit dan schuifspanning τ, drukverschil Δp en golfklap P. De optredende waarden kunnen dan in analogie met loskorrelig materiaal worden vergeleken met kritieke waarden:

$$\tau < \tau_{cr} \quad (53a)$$

$$\Delta p < \Delta p_{cr} \quad (53b)$$

$$P < P_{cr} \quad (53c)$$

waarin: τ = optredende schuifspanning (N/m2)

τ_{cr} = kritieke schuifspanning (N/m2)

Δp = drukverschil (N/m2)

Δp_{cr} = kritieke drukverschil (N/m2)

P = golfklap (N/m)

P_{cr} = kritieke waarde golfklap in relatie tot erosie (N/m)

Ook kan bijvoorbeeld de erosiesnelheid E_{gras} worden bepaald:

$$E_{gras} = f(\tau - \tau_{cr}) \quad (54a)$$

$$E_{gras} = f(\Delta p - \Delta p_{cr}) \quad (54b)$$

$$E_{gras} = f(P - P_{cr}) \quad (54c)$$

waarin: E_{gras} = erosiesnelheid (m/s)

Als zou blijken dat de schuifspanning τ of het drukverschil Δp of de drukklap P niet of slechts onnauwkeurig zijn te meten dan kan wellicht worden teruggevallen op de over de vertikaal gemiddelde stroomsnelheid u en zijn de volgende relaties van toepassing:

$$u < u_{cr} \quad (53d)$$
\[E_{grm} = f(u - u_c) \] \hspace{1cm} (54d)

waarin: \(u \) = stroomsnelheid (m/s)
\(u_c \) = kritieke stroomsnelheid (m/s)

Mocht ook het registreren van de stroomsnelheid niet goed mogelijk blijken dan is een volledig black-box model nog mogelijk:

\[E_{grm} = f(H - H_{cr}) \] \hspace{1cm} (54e)

waarin: \(H \) = golfhoogte (m)
\(H_{cr} \) = kritieke golfhoogte (m)

In figuur 4.1 is een voorbeeld gegeven van een niet-lineair verband volgens vgl.(54e) met \(H_{cr} = 0 \):

\[E_{grm} = aH^b \] \hspace{1cm} (54f)

Het zal duidelijk zijn dat een en ander staat of valt met de mogelijkheid de diverse waterbewegingsparameters te kunnen registreren. In de volgende paragraaf zijn op basis van discussies met instrumentatiedeskundigen de mogelijkheden geïnventariseerd. Tenslotte worden in een slotparagraaf conclusies getrokken.

![Graph](image)

Figuur 4.1 Voorbeeld van verband tussen erosiesnelheid en significante golfhoogte
4.2 Huidige registratie mogelijkheden

De mogelijkheden zijn nagegaan om drukken, watersnelheden en schuifspanningen te meten in de golfklapzone en in de golflap- en neerloopzone. In appendix A worden daartoe enige ideeën aangedragen. In het navolgende staan aanvullende opmerkingen.

Drukmetingen in de golflapzone zijn recent uitgevoerd op gladde taluds met verschillende inkomende golfhoogten. Evenzo zijn drukmetingen gedaan in de golfklapzone. In de betreffende zone zijn op het talud een aantal drukdozen achter elkaar geplaatst. Dit biedt in principe de mogelijkheid om de ruimtelijke verdeling van de druk en de exacte plaats van de golfklap vast te stellen.

In geval van een gras talud is het denkbaar dat de golfdruk optreedt over een groter oppervlak dan bij een glad talud vanwege de mogelijk spreidende werking van de bovengrondse delen van de vegetatie.

Op dit moment zijn geen bevredigende directe methoden beschikbaar om schuifspanningen als gevolg van golfwerking te meten. Meestal wordt de schuifspanning indirect afgeleid uit de gemeten snelheidsverdeling in de vertikaal of bepaald uit metingen met een Preston buis (een pitot buis die is geplaatst op enkele millimeters afstand van de wand. In [Petryk and Shen, 1971] wordt weliswaar wel melding gemaakt van een directe schuifmeting, maar het betreft hier stromend water. Tenslotte wordt in appendix A een suggestie gedaan voor een meetinstrument, maar die vereist voldoende grote (dat wil zeggen meetbare) schuifkrachten. De geschatte benodigde kracht is in de orde van 1 tot 100 gram op een oppervlak van 5 tot 15 centimeter. Met name het relatief grote oppervlak is een ernstige beperking.

Onderzocht is ook in hoeverre het mogelijk is de snelheidsverdeling in de verticaal vlakbij het talud te bepalen. Het probleem daarbij is de responsie van het instrument bij niet-stationaire omstandigheden en het frequent droogvallen van het instrument. Bovendien is de laagdikte zeer gering. Gezien deze problemen is een snelheidsverdeling in de verticaal niet te bepalen en zal een meting zich moeten beperken tot over de verticaal gemiddelde watersnelheden in de golfoppervlak op diverse locaties op het talud op verschillende tijdstippen. Overigens is het nog maar de vraag of er sprake is van een ontwikkeld snelheidsprofiel. De watertong die na de golfklap over het talud uittroomt heeft het karakter van een straal waarvoor een meer blokvormig snelheidsprofiel karakteristiek is. Bovendien zijn de mogelijkheden voor de ontwikkeling van een grensstraal beperkt.

Samenvattend kan worden gesteld dat de kans klein is dat binnen afzienbare termijn zich mogelijkheden voordoen om op directe wijze schuifspanningen te meten en dat de kans om een snelheidsverdeling te bepalen eveneens gering geacht moet worden, hoewel deze kans groter is. Drukken, over de verticaal gemiddelde watersnelheden, laagdikten en golflaploop als gevolg van golfaanval kunnen wel worden gemeten.
4.3 Conclusies

Het gestelde in de voorgaande paragraaf betekent dat in een fysisch model wel relaties kunnen worden getoetst voor golfoploop, over de vertikaal gemiddelde watersnelheden, laagdikten en drukken, maar dat relaties voor de taludweerstand en de schuifspanning slechts indirect kunnen worden getoetst. Indirect betekent in dit verband de bepaling van de schuifspanning op basis van andere gemeten grootheden, zoals bijvoorbeeld weerstand f en stroomsnelheid u:

\[\tau = 0,125 f \rho u^2 \]

waarin:
- \(f \) = Darcy-Weisbach ruwheidsparameter (\(-\))
- u = stroomsnelheid (m/s)
- \(\rho \) = dichtheid water (kg/m\(^3\))

Deze of een vergelijkbare relatie zou in vgl.(53a) of (54a) kunnen worden gesubstitueerd, maar dit biedt geen reële mogelijkheid zolang de weerstand f niet rechtstreeks meetbaar is of de in hoofdstuk 3 afgeleide relatie voor f (vgl.(45b)) niet is geverifieerd. Geconcludeerd moet daarom worden dat voor het verband tussen belasting en sterkte voorlopig nog moet worden teruggevallen op formules met de stroomsnelheid u, drukverschil \(\Delta p \) of druk P. In het uiterste geval kan een black-box model op basis van de golfhoogte H worden gebruikt. Het voorgaande maakt wel duidelijk dat experimentele verificatie van de weerstandformule gewenst is.
Literatuur

Delft University of Technology, Department of Civil Engineering, Communications on hydraulics,
report no. 75-3.

Wasserwirtschaft und Wassertechnik, Herausgeber Kammer der Technik, Fachverband Wasser,
Berlin.

Wellenauflauf auf glatten und rauen Deichböschungen mit de Neigung 1:6.
Die Küste, Archiv für Forschung und Technik an der Nord- und Ostsee, Heft 30,

und -ablauf an einer Deichböschung 1 m=1:6.
Die Küste, Archiv für Forschung und Technik an der Nord- und Ostsee, Heft 52,

Waterloopkundig Laboratorium, verslag H657 bijlage F, Delft.

Klein Breteler, M., 1992: Gedrag van asfaltbekleding onder golfaanval, modelonderzoek in Deltagoot.
Waterloopkundig Laboratorium, verslag H1480, Delft.

Meer, J.W. van der, and M. Klein Breteler, 1990: Measurement and computation of wave induced velocities on
a smooth slope.

Meer, J.W. van der en J.P. de Waal, 1991: Waterbeweging op talud - Invloed van berm, ruwheid en ondiep
voorland.
Waterloopkundig Laboratorium, conceptverslag H1256, Delft.

TAW, 1985: The Use of Asphalt in Hydraulic Engineering.
Technical Advisory Committee On Waterdefences, Rijkswaterstaat Communications,

Appendix
Memorandum about instrumentation

General

This memo was drawn up after discussing the possibilities to measure shear stress, water velocity and the thickness of a layer of flowing water along a slope under wave run-up conditions. In this memo also sketches, tentative set ups and descriptions are inserted. These ideas form the basis for further research to develop instruments for the measurements of the phenomena mentioned.

Measurement of shear stress along a slope construction

Shear stress just above the bottom is a friction force between the water layer and the bottom. This force can be measured by a so-called "Bolder"-transducer (Figure A.1). It is shown that the movement of the water causes a friction force on the active part of the transducer. Details of this shear-stress transducer must be worked out further.
The sealing between the transducer housing and the point on the surface were the measurement takes place must be flexible and perhaps a spongy material can be applied. Excess water pressure inside the transducer housing will be applied to keep the shear-stress meter clean.
The flow (leakage) of water will also keep the spongy material free from particles and will clean the edges (Figure A.2).

The construction of the transducer and the measuring section surface has to be stable and rigid so as to prevent the measuring surface from moving. By doing this the accuracy of the measurements will not be affected because of the stiffness of the spongy material (Figure A.2).

Enlargement of the measuring section will cause an increase in sensitivity of the transducer which can be done by enlargement of the transducer's surface. However, in this case two transducers of the above mentioned "Bolder"-type will be necessary. But to align the transducers properly, a well-chosen construction must be applied. The construction is shown in Figure A.3.

Measurements of the thickness of a layer

Model tests were carried out during which the thickness of a layer had been measured with wave-height meters. The probes of these instruments were installed under the slope surface in small trenches along the slope of the model (Figure A.4).

During these model tests the thickness of a layer had been measured with an ultrasonic distance meter (USDM). Such an instrument does not disturb the flow, which is an advantage. Because of the irregularity of the layer thickness the output signal of the USDM may have an echosounder-like character, but this can be overcome by using digital filter techniques.

However, the application of an USDM together with the use of digital filters need a further elaboration (Figure A.5).

Instead of an ultrasonic distance meter Laser devices can be used. Laser equipment has no temperature effects nor will it disturb the flow. Propagation of a laser beam will not be influenced by temperature variations. This is contrary to ultrasonic distance meters which are more sensitive to these effects which will invariably cause errors.
Measurement of velocity in wave run-up layers

In principle, measurement of water velocity can be done with an electromagnetic water velocity meter (EMF). However, the probe of the EMF will be covered with water during run-up after it has been fallen dry during run-down. It is possible that air will be included during the run-up, which may disturb the velocity measurement. Besides, the disk-type probe of the available EMF has to be modified for the measurements in question. A sketch of an EMF under wave run-up conditions is shown in Figure A.6.

The front of the probe must be flat (flush-mounted) in order to get a smooth and flat slope surface. For grounding purposes the probe is provided with a metal ring. During testing the probe of the EMF will be covered with water and fall dry during run-up and run-down respectively. A special device, the so-called wet/dry detector placed close by the probe will switch off the signal when it stands clear of the water. It must be emphasized, however, that this device needs further study.

To study velocity gradients just above the surface of the slope the standard probe-electrodes should be extended. With these extended electrodes the velocity signal can be obtained in a layer of water above the slope surface. But this method requires a thorough examination to find out whether it can successfully be applied.

Another option to measure velocities in a wave run-up layer is with Particle Image Velocimetry (PIV). With this method, theoretically, a velocity cross section can be measured in just two milliseconds. With the present available equipment a test in the Scheldeflume could be performed to assess its applicability. The instrumentation department of Delft Hydraulics is still developing this system. A description of this system PIV is inserted as an annex.
Figure A.1

measurement surface

spronge material

transducer housing

water velocity

water pressure

bolder type force transducer

measurement of shear-stress (on a slope)

projektnaam: measurement of shear-stress (on a slope)
nummmer: F0124781
onderdeel: FIGURE 1

opm.

material: De Voorst N.O.P.

- see file Instrumentatie
Figure A.2
measurement surface

velocity

Figure A.3
Electrode
slope
Velocity
Electro Magnetic Velocity Meter

Figure A.6
Annex

publication no. 418

Modern laboratory techniques

A.C.E. Wessels, A.E. Mynett, J.K. Kostense
and J.E. Prins

July 1989

delft hydraulics
Flow visualization techniques can also be applied to full advantage in research on wave dynamics. One particular case to be discussed here is particle image velocimetry.

Particle image velocimetry. Although the laser Doppler method has been used extensively in wave dynamics research, its application near the free surface causes some problems (Mizuguchi, 1986, Okayasu et al., 1986, Skjelbreia, 1987). As mentioned above the major difficulties are associated with the fact that when measurements are being recorded above the level of the troughs the laser beams are only submerged for a part of the wave period. With sophisticated computer techniques for analyzing the Doppler signal it has been possible to overcome many of these difficulties, and detailed studies of velocity distributions have now been made. Despite these advances, a fundamental limitation of this type of measuring device remains. For water wave studies one is generally interested in the velocity field beneath a specified surface profile. The laser Doppler technique, however, measures at only one point in space. The complete velocity field can then only be constructed in situations where the wave profile in question can be accurately repeated many times, the probe being moved to a succession of points across the flow field, as the train of waves is generated. This necessitates the use of elaborate wave generation techniques to ensure the required repeatability. For random waves and single event situations the procedure even becomes impossible.

Particle image velocimetry (PIV) as described by Gray et al. (1988) is a non-intrusive technique which allows the complete two-dimensional flow field in a wave tank to be captured at a single instant. It also has the advantage of being experimentally uncomplicated. The water is seeded with small neutrally buoyant particles and illuminated with a plane sheet of pulsed laser light. Using a conventional camera with an exposure time exceeding the pulse period, photographic film is exposed to record double (or sometimes multiple) images of the moving particles.

![Figure 11. Optical set-up for generating photographic records for particle image velocimetry.](image)

The position of the particle pairs, which determines the velocity at any particular point, is found by illuminating the appropriate point on the developed film with light from a low power laser (see Figure 12). Youngs fringes are formed in the diffraction pattern, whose separation and orientation are directly related to those of the particles. The fringe pattern is analyzed with a two-dimensional Fourier transformation, giving the fringe frequency. The fringe spatial frequency components are proportional to the displacement of the particles. Since the time lag between the exposures is known, local velocities can be calculated, but only at random places. To convert these data to a velocity field defined on a regular grid,
another, mostly quite elaborate, numerical calculation process has to be carried out. This process was described extensively by Imaichi and Ohmi (1983) who also gave an estimation of the expected errors.

Figure 12. Two methods (a and b) for analyzing photographic records (indicated by P) obtained as depicted in figure 11.
wl | delft hydraulics

Rotterdamseweg 185
postbus 177
2600 MH Delft
telefoon 015 285 85 85
telefax 015 285 85 82
e-mail info@wldelft.nl
internet www.wldelft.nl

Rotterdamseweg 185
p.o. box 177
2600 MH Delft
The Netherlands
telephone +31 15 285 85 85
telefax +31 15 285 85 82
e-mail info@wldelft.nl
internet www.wldelft.nl