Instrument for fast and effective splitting of organizations

Martin Op 't Land
Instrument for fast and effective splitting of organizations
Contents

1 Introduction 1
 1.1 Background ... 1
 1.2 Why splitting? 1
 1.3 What is splitting? 2

2 Why this research? 3

3 The research 4
 3.1 ING Shared Service Center Securities 5
 3.2 RWS Application Portfolio Rationalization (RAPR) 7
 3.3 RWS Deltares splitting: Water Quantity (RD-1) 9
 3.4 RWS Deltares splitting: Water Quality (RD-2) 11

4 Conclusions and specific results 14
 4.1 Instrument for organization splitting 14
 4.2 Research agenda 16

Colophon

This booklet is a management summary of the PhD thesis
Applying Architecture and Ontology to the Splitting and Allying of Enterprises

References

van de sociotechnische theorie. ST-Groep, Vlijmen
Introduction

1.1 Background

Organizations increasingly split off parts and subsequently start cooperating with those parts, for instance in Shared Service Centers (SSC) or by using Business Process Outsourcing (BPO).

Once the decision has been made to split or otherwise divide an organization into parts, questions of what to do with people, resources and structure demand attention. Because what is the right spot and way for finding the organization split? How should the new organization design look like? And on what subjects should the ‘new’ organizations agree to cooperate effectively across the organization split?

This research resulted in an instrument that assists decision makers in answering the above questions. The instrument consists of (1) organization construction rules, (2) a way to calculate a plausible organization splitting proposal, (3) a method for finding subjects for contracting split organizations, (4) a real-life tested combination of all this in a way of working, with (5) a known Return On Modeling Effort (ROME). The instrument is illustrated in chapter 3, where we show the results of applying action research to four large real-life case-studies at ING, Rijkswaterstaat and Deltares.

1.2 Why splitting?

Organizations have numerous reasons to split themselves and organize themselves differently. Consider motives such operational excellence, customer intimacy and product leadership. Achieving economies of scale by globalization plays a important role here.

Apart from these ‘traditional’ reasons, the importance of flexibility is increasing. Customers want to increase their say in the products they buy and to postpone their final choices to the latest. Organizations therefore need to offer products and services of increasing complexity with ever shorter times-to-market. Splitting up an organization into components enables fast recombining, which in turn can provide such flexibility.

Potential advantages of ‘rightsplittting’ enterprises are:

- focus on core competencies;
Introduction

- access to additional resources and capacities;
- stronger sense of entrepreneurship, also internally;
- increased customer-orientated focus of the organizational units involved;
- increased efficiency of business processes and ICT;
- easier management of ICT and other operational means;
- swifter upgrades for processes, applications and technology;
- less compliance costs;
- overall cost savings.

1.3 What is splitting?

In this research, we understand by splitting organizations:

The well underpinned assigning of roles and responsibilities to a separate organizational entity.

Typical results of splitting are a SSC, a BPO-party or just a centralized department in an organization.

To illustrate the concept of splitting, Fig. 1.1 shows the DEMO Construction Model (CM) for Mario’s pizzeria.

![DEMO Construction Model Mario’s Pizzeria](http://www.demo.nl)

The DEMO CM shows a chain of units, each one providing services to another. Such a responsible unit is called actor (A). Each actor provides its service to the other by entering into transactions (T). In Mario’s pizzerias we see a sales (A01), a baker (A02), and a transporter (A03). The sales is supposed to complete the purchase (T01) and receive the payment (T04) from the customer (S01). As for making the actual pizza (T02), that is the baker’s job, in the same way that transporting it (T03) is the transporter’s job.

If Mario decides to split the pizzeria, he has several options. He might position sales in a (inter)national call center, teaming up with twenty more pizzerias. Together with his next-door neighbors, Giovanni’s pizzeria and Antonio’s pizzeria, he could also set up a Shared Service Center Bakery. Similarly, Mario could ask a logistics provider to take care of the pizza transportation.

1 DEMO: Design and Engineering Methodology for Organizations; see Dietz (2006) and http://www.demo.nl
Why this research?

The potential advantages of splitting organizations, as mentioned in [chapter 1], are generally known. However, the question of where an organization can best be split remains a question amongst managers.

Returning to the example of Mario’s pizzeria (Fig. 1.1): if Mario outsources his sales to a call center, he will no longer have personal contact with his customers. On the other hand, it will save Mario time and money if he no longer has to face the customers himself. Moreover, a call center offers the possibility to pay via telephone or via internet. If Mario sets up the Bakery together with Giovanni and Antonio, the baking process may become more efficient. However, this does mean that Mario will only be able to compete with Giovanni and Antonio in the front of house. And would purchasing, inventory management and maybe even financial administration have to become a part of the Bakery? The transportation could also be outsourced, but would the pizza still be delivered warm and within half an hour?

In this simple example of splitting, organization issues such as customer relations, efficiency, product uniqueness, costs and balancing capacities already become apparent. Even if the motives for splitting are well-articulated, it is not immediately clear how these motives lead to choices for the organizational design of Mario’s pizzeria. For larger organizations and supply chains this process is even more complex.

Defining the Problem

Very little research has been performed on the guidelines that managers use as a basis to split an organization. Moreover there are no constructional rules or methods with which a blueprint for an organizational split can be made. This is quite surprising, as the costs which result from a wrongful splitting of an organization can be very high. This brings us to the main research question:

How can an organization be adequately split, while ensuring that the split sections continue to cooperate well? Or: How can you give managers practical guidelines to simplify the decision process involved in splitting an organization?
The research

There are a number of methodologies that contain promising elements for the splitting instrument which we are looking for. Language Action Perspective (LAP) assumes that actors change reality through language-interaction. The actors enter into and comply with commitments. LAP is interesting as it reckons with: (1) the increasing focus on the external behavior of organizations; (2) the increased opportunity to work independently from time and location resulting from ICT; (3) the need for design guidelines next to functional guidelines; (4) the need for an integral guideline for business processes and (5) information systems and ICT-infrastructure.

Dietz (2006) has elaborated LAP in DEMO (see Fig. 1.1). The goal of the DEMO-models is to find the essence of an organization, the so-called Enterprise Ontology. In his ROOD case, Mulder (2006) shows how the transaction concept of DEMO can be applied to the design of an organization. Dietz and Mulder do not yet enter into the area of construction rules. Modern SocioTechnique (MST) (Amelsvoort, 1999) does delve deeper into this subject. MST mentions principles which must be applied successively in the design of organizations, such as: (1) begin with a strategic orientation; (2) design the production structure, and only then design the management structure; (3) design the production structure top-down.

What we miss are decision or constructional rules for the splitting of organizations. For example: “Do not split the organization in a place where a lot of information comes together and information exchange takes place, as this will increase the error-rate.” Through practical research we wish to find out how Enterprise Ontology works, how we can use it in practice for splitting organizations and how we can, using organizational construction rules, get a better hold of organizational splitting, with minimal effort. We expect a better insight in reorganization, out- and insourcing and ‘sharing’, through which an organizational splitting is easier to manage. Furthermore we wish to find out what the minimum size is of an Enterprise Ontology and of an Enterprise Architecture. By Enterprise Architecture we understand design principles, i.e., a conscious restriction of design freedom.

We will discuss four successive cases: the implementation of ING Shared Service Center Securities, Rijkswaterstaat Application Portfolio Rationalization (RAPR), the splitting of Rijkswaterstaat-Deltares Water Quantity (RD-1) and finally the splitting of Rijkswaterstaat-Deltares Water Quality (RD-2). In these cases a distinction will be made between case and research goals to show the differences between the goals of
the principal and the goals of the research. Furthermore, focus will be made on the research results, since the goal is to create an instrument for splitting organizations.

3.1 ING Shared Service Center Securities

Background

In 2001 ING was active in 65 countries worldwide and numbered 110,000 employees. The global bank-insurer has chiefly grown through mergers and acquisitions. Through the existence of many products, brands and sub-cultures, there were opportunities to improve the operational synergy within ING. For this reason, in 2001 ING Europe started introducing Shared Service Centers for its primary processes (see Fig. 3.1). The goal was synergy, lower costs and improved quality.

![Fig. 3.1. AsIs and ToBe situation ING](image)

To set up a Shared Service Center for Securities in Europe, ING started the Foundations program.

Goals

The goal of Foundations was a well-founded splitting proposal for ING Securities. Mid-2002 a blueprint was to be ready which should show the first benefits in the area of cost saving of personnel and ICT to ING Securities, within two years. The roadmap should be based on architecture. The research goal was to determine which model could quickly and effectively express the core of ING Securities, so that splitting choices could be made based on that model.

Approach

For Foundations we developed an approach which had to unveil the essence of ING Securities. Based on this we wished to realize solutions for the re-use of organization and applications. Thus we sought for answers to the following questions:
• Which services are delivered to which actors? And which instruments are used by these actors on which markets?
• What are the core activities of ING Securities?
• What are the core objects of ING Securities?

First we compared the concepts of functions, processes and transactions, in order to determine with which concept the above questions can best (read: fast and effective) be answered. The transaction concept of DEMO proved to be the most practical tool to reveal the core of ING Securities in a limited time span and to eventually indicate the ideal organization split. The DEMO transactions were explained in the case as the (smallest) building blocks or work units of the organization. Thus it could be decided per transaction whether the work units should remain internal or whether it would be better to put them in the Shared Service Center Securities.

Research results

The most important added value of the DEMO CM was:
1 the creation of a shared vision for all parties involved;
2 to support project scoping and communication about investment decisions;
3 giving direction to better governance of processes and ICT;
4 a shared language to express implementation decisions in organization and ICT.

In addition to this the model helped to tune the current application portfolio.

The experiences at ING produced six guidelines for organization splitting (Table 3.1).

<table>
<thead>
<tr>
<th>nr</th>
<th>Organization construction rule: keep actors together, when...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>...they cannot have a supporting role for other actors</td>
</tr>
<tr>
<td>2</td>
<td>...sufficient similarity in services exists</td>
</tr>
<tr>
<td>3</td>
<td>...sufficient similarity of events/work exists</td>
</tr>
<tr>
<td>4</td>
<td>...same order types occur</td>
</tr>
<tr>
<td>5</td>
<td>...those actors more or less work on the same case / deal with the same event</td>
</tr>
<tr>
<td>6</td>
<td>...the risk to fail (in banking sector: operational risk) of a split is unacceptably high</td>
</tr>
</tbody>
</table>

Time taken

The transactions were found after one day around the table with ING business experts. It took another two weeks to document the transactions and to link these to the products and services of ING Securities and to objects and external actors.

Remaining questions

In the ING case no complete DEMO Construction Model had been used. However, the transaction concept was used to its full potential. Questions that remain and
will be taken to the next cases are: Could the use of a full DEMO CM be of added value? Which solutions exactly contributed to the result? And could we find more than six construction rules?

3.2 RWS Application Portfolio Rationalization (RAPR)

Background

Rijkswaterstaat (RWS) is responsible for the maintenance and the development of the infrastructure of the Netherlands. Next to this it manages traffic on roads and water ways, and it manages water quantity and water quality. In 2004 RWS numbered 17 departments in 160 offices with roughly 10,500 employees. In 2004 RWS formulated the plan to change a professional organization driven by technology into one driven by demand. Goal: achieve ‘more with less’.

Projectscope

One of the components of the plan was the start of an Application Portfolio Rationalization program. For this research we focused on the application rationalization for the management of traffic on highways (Road – or Dry – Traffic Management). In this component at least 130 different applications were used, spread out over five different regional traffic management centers.

Goals

The goal of the case was to select the right applications and to spot opportunities for better application support. To achieve this we followed the next step-by-step plan:

1. build and validate a DEMO Construction Model;
2. create an application portfolio inventory;
3. link applications to CM-elements, including validation;
4. order, select and prioritize rationalization of applications;
5. define next steps.

In RAPR we used a more complete DEMO CM to describe the business than was done in the ING case. The research goal was to determine to what extent it is useful to spend extra time and effort in the building of a more complete DEMO CM.

First a DEMO CM for Road Traffic Management was produced (see Fig. 3.2 for a part of it). Road Traffic Management used 134 applications, which we split up into fourteen application domains. All applications could be linked with at least one transaction from the CM. When we linked the applications directly to the transactions it proved to be necessary to make a distinction between applications that supported the production and applications that were purely information providers. With the DEMO CM we could track down the duplicate applications that were used by the distinct traffic management centers and the applications that were very similar to each other. Thus a well-underpinned proposal for the gradual removal of applications could be made. Eventually, from all the applications 49% could be phased out or replaced.
Research results

The produced DEMO CM revealed the responsibilities in the organization via transaction links as well as via information links. In practice the model was effective and easy to use. Experts of RWS understood the DEMO Construction Model after a short explanation and were then able to check the results.

The most important research conclusions of the RAPR-case were that:

- A DEMO CM can be made ten times faster than a process model because all connected process steps – like requesting, accepting and rejecting – are summa-
rized in one transaction. Next to this a DEMO CM only demonstrates business processes and no information and documentation related processes.

- The result of the ING-case – that a transaction is a good ‘language’ to let similar activities become manifest – was confirmed.
- The model clearly demonstrated that this language could be used to structure application functionalities. In fact, transactions work better than actors or information links do for this purpose.

The produced DEMO CM also clarified organizational responsibilities and information dependencies. For example it became apparent that Dry and Wet Traffic Management have a lot in common in the area of Incident Management (S009, S010 and S021 in Fig. 3.2). Thus clearly opportunities exist here for the re-use of each others processes and applications. The DEMO CM also showed that the Infraprovier is responsible for providing data on road construction works, even if the Traffic Manager is the main user of these data.

Time taken

The time it took for DEMO experts to draft the DEMO CM (including actors, transactions and information links) and to get it validated by domain experts was limited: less than 25 man-days was needed for the DEMO-experts and 5 man-days for the domain experts.

Remaining questions

In comparison with the ING case, a more complete DEMO-model was used in the RWS case. The question is: how can this model be used to contribute to the splitting of organizations? And which value does the use of a complete model add, in comparison with a model in which only transactions are used?

3.3 RWS Deltares splitting: Water Quantity (RD-1)

Background

In 2007 a Dutch research institute for Delta Technology was founded (Deltares). For this parts of the Rijkswaterstaat needed to be split off and transferred to Deltares.

Goals

The case goal of RD-1 was to make an adequate splitting proposal for the area of Water Quantity. Three research goals were defined:

- determine which construction rules are used for splitting;
- test the BI-hypothesis: “In splitting organizations Business dependencies are more important than Information dependencies”;
- test the construction principle ‘High Internal Cohesion, Low External Coupling’ (HICLEC).
Approach

For the RD-1 project we used a fairly complete DEMO CM. We applied the model to support decision making on the splitting of the organization.

To prove or disprove the BI-hypothesis we weighed each transaction and information relationship between the actors in the DEMO CM (see Fig. 3.3). A high weight means that it is difficult to cut or remove this relation. The sum of the weights of the cut relations of a solution we call the 'Penalty' (P). The Penalty is a measurement of the degree of difficulty of splitting. This is where the HICLEC-principle comes in: the lower the P, the simpler it is to split at this point.

Based on the detailed DEMO CM we calculated several alternatives for organizational splitting. Also we asked experts to come up with a free-format (gut feeling) organization alternative with the help of Group Decision Support (GDS). In that same half-day GDS-session we asked experts to compare the gut feeling organization alternative with the calculated ones.

Research results

Research showed that the use of a more complete CM clearly contributed more than just a list of actors or transactions. With the DEMO CM it is possible to calculate theory-supported organizational alternatives, which are also seen as plausible by experts. Moreover, the insight in Penalties results in a more conscious choice of the management between different organizational alternatives. The best calculated alternative based on the DEMO CM came very close to the gut feeling splitting alternative: only 4 of the 43 elementary actors were positioned differently. If one wishes to deviate from a calculated alternative, one can now immediately see what
the consequences of this action are. To illustrate: in the case of RD-1 ‘separation of functions’ was a good reason to deviate from the best calculated alternative.

With the DEMO CM the BI-hypothesis was also tested. Results show that business dependencies are much more important than information dependencies. Our list of organizational construction rules has been extended to the 11 rules which one can find in Table 3.2.

Table 3.2. Organization construction rules

<table>
<thead>
<tr>
<th>code</th>
<th>Organization-construction rule: keep actors together, when . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC01</td>
<td>. . . their mutual interface cannot well be standardized, due to complexity</td>
</tr>
<tr>
<td>PC02</td>
<td>. . . their mutual interface cannot well be standardized, due to frequent change</td>
</tr>
<tr>
<td>PC03</td>
<td>. . . they cannot have a supporting role for other actors</td>
</tr>
<tr>
<td>PC04</td>
<td>. . . they use the same language / culture</td>
</tr>
<tr>
<td>PC05</td>
<td>. . . they operate under the same regulatory, legal and tax-regime</td>
</tr>
<tr>
<td>PC06</td>
<td>. . . they more or less work on the same case / deal with the same event</td>
</tr>
<tr>
<td>PC07</td>
<td>. . . the risk to fail (in banking sector: operational risk) of a split is unacceptably high</td>
</tr>
<tr>
<td>PC08</td>
<td>. . . they need comparable competencies</td>
</tr>
<tr>
<td>PC09</td>
<td>. . . a (business) transaction-relationship exists between them</td>
</tr>
<tr>
<td>PC10</td>
<td>. . . an information-relationship exists between them</td>
</tr>
<tr>
<td>PC11</td>
<td>. . . they have High Internal Cohesion and Low External Coupling (HICLEC)</td>
</tr>
</tbody>
</table>

Time taken

For this domain, a built and validated DEMO CM was already available. On top of that 10 domain expert man-days and 10 consultancy man-days were invested, using also GDS-facilities during half a day.

Remaining questions

In the RD-1 case a more complete DEMO model was used and the BI-hypothesis was tested. Would this hypothesis apply in other organizations? And if this hypothesis is proven and business dependencies are more important than information dependencies in the splitting of organizations, why would one then spend extra time in the discovery of information links? Next to this we aim to further research and test the discovered organization construction rules.

3.4 RWS Deltares splitting: Water Quality (RD-2)

Background

In 2007 parts of Rijkswaterstaat were transferred to Deltares, the Dutch research institute for Delta Technology. Not only was the correct organizational split to be
determined (as in the RD-1 case), the cooperation between Deltares – more specifically, the parts of Deltares that stem from Rijkswaterstaat – and Rijkswaterstaat needed to be optimal.

Goals

In this case we see another opportunity to test our BI-hypothesis. This fits in with our wish to support the decision-making process of the splitting of organizations better. The most important goal of the case as well as the research is however: How should parties cooperate after an organizational split? In order to be able to offer the same products and services the demand and supply chains must be kept intact. Thus Rijkswaterstaat and Deltares must make specific contractual agreements and prepare for the cooperation after the organizational split. This is applied to the area of Water Quality.

Approach

Also in the RD-2 case a complete and validated DEMO CM was available. We used this DEMO CM as a stepping stone to systematically track down the contract subjects between the two organizations (Org1 and Org2). Three subjects were found (see Fig. 3.4):

a. Ownership of assets, split up for Org1 and Org2.

b. Behavior at the organizational border. The specification of content, quality (when, how often and how well) and shape (format of communication) of business and information services at the organizational border, in order to manage mutual expectations and obligations after the split.

c. Critical chain dependencies. Part b is executed again, only now we limit ourselves to the suppliers of the split off organization 2 which is seen by organization 1 as ‘critical’.

To be able to calculate another splitting proposal, we again applied the calculation method used in RD-1, and the ‘minimum Penalty’ (minP) criterion. Next to this we used a new criterion from the literature on cohesion in social networks, namely the ‘maximum Modularity’ (maxM) criterion. In a series of four meetings we applied partly the same method as in RD-1. Again we let experts express a gut feeling splitting alternative in a GDS-session. This time however we let researchers compare the results of the calculated and gut feeling alternative. Next to this, during one of the expert meetings the subjects for contracting were systematically inventoried.
Research results

By using a complete DEMO CM it quickly became clear in which area of mutual dependency good contractual agreements need to be made. Some examples are:

a Ownership of assets. It is of great importance that good agreements are made about intangible assets such as knowledge and advice. In the case of RD-2 for example, specific agreements must be made regarding knowledge management, copyrights, water forecast models and basic water figures.

b Behavior at the organizational border. Agreements about quality and shape of communication are very important. These must be expressed in the splitting proposal. Clear agreements must be made about the way, and in which shape information between the two organizations must be exchanged. If this does not happen the split parts of the organization will experience risks after the split. For example if a part of the organization no longer has access to data it had before the split.

c Critical chain dependencies. After the split RWS risks that it no longer has a say in the knowledge that Deltares obtains from other research institutes. In this area RWS and Deltares must also make transparent agreements.

We found that the best calculated alternative with the use of maxM was almost equal to the best alternative with the use of criterion minP. Both calculated alternatives were close to the gut feeling splitting alternative.

Next to this all results from RD-1 were confirmed. A more complete DEMO CM displays added value in comparison with a DEMO CM with only a list of actors or transactions, since it enables calculating plausible organization splitting alternatives. For the calculation of the organizational split the minP worked just as well as the maxM optimizations. Also in this case the BI-hypothesis was proven to be correct as well.

Finally an important value of information links became apparent. These are indeed not really necessary in order to calculate a good organizational split. However the information links proved to be of added value in order to systematically track down which contractual agreements must be made in order to cooperate and work well together after a split.

Time taken

Starting from an already existing DEMO CM, four expert meetings were conducted, one of which used half a day of GDS-facilities. The total time investment amounted to 15 man-days of domain experts and 45 man-days of consultants.
Conclusions and specific results

With this research we wanted to give managers practical recommendations to simplify the decision making process of splitting organizations. More specifically we sought the answer to:

The use of which organization construction rules leads to adequate splitting and allying of enterprises?

And the answer to the sub-questions:

a How can architecture and ontology influence the splitting and allying of enterprises?

b What is the minimum size of architecture and ontology in order to reach the same results with the found construction rules?

Referring to the main research question: we have found in total eleven organization construction rules and we have tested these by analyzing four cases (see Table 3.2).

The answer to sub-question a is as follows. Through revealing the actors and transactions it is possible to reach an agreement on the organizational split, with minimal effort. For a better supported splitting proposal it is useful to make calculations based on the DEMO Construction Model. To lay a foundation for the cooperation of the split off areas or parts, it is important to show the information links between the split parts. The links do not only show organizational responsibilities, but also give an insight to the ownership of assets, behavior at the organizational border of business and information services and critical chain dependencies.

Finally, sub-question b: there is no minimum size for the architecture and the ontology. However, after the research we have greater insight into which parts of the architecture and ontology give which results. And we know how much time and money it takes to ground a splitting proposal and cooperation agreements better (see Table 4.1).

4.1 Instrument for organization splitting

The research resulted in an instrument, 'Evidence based Splitting of Organizations' (EBSO) to support organization splitting, cooperation and post-merger integration. The instrument consists of:

1 (Eleven) organization-construction rules (see Table 3.2).
Table 4.1. Effect of putting extra effort in organization splitting proposal

<table>
<thead>
<tr>
<th>level</th>
<th>extra effort (methods, models, principles, . . .)</th>
<th>extra investmenta (man-days)</th>
<th>extra benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>basis: classic or GDS-workshop(s)</td>
<td>domain experts 10 consultancy 10</td>
<td>basic reporting - elaborated Post-its or GDS-report (in every next level necessary, but not sufficient)</td>
</tr>
<tr>
<td>1</td>
<td>+ just actors/transactions</td>
<td>+3 consultancy +10</td>
<td>+ qualitative consensus building, with bottom-up underpinning</td>
</tr>
<tr>
<td>2</td>
<td>+ explicit principles available</td>
<td>+3 consultancy +5</td>
<td>+ underpinning choices in terms of previously formulated principles</td>
</tr>
<tr>
<td>3</td>
<td>+ CM without I-links + graph-theoretical calcs</td>
<td>+2 consultancy +15</td>
<td>+ formally calculated plausible organization splitting proposal</td>
</tr>
<tr>
<td>4</td>
<td>+ CM with I-links + using CM-based structured inventory of contract items</td>
<td>+2 consultancy +30</td>
<td>+ underpinning how to contract allying after the organization split + extended reporting</td>
</tr>
</tbody>
</table>

a All estimations of investments are just indicative; much depends on project context, the embedding in an over-all approach for organization splitting, number of stakeholders, timely availability of domain experts, etc.

2 A way in which to calculate a plausible organizational splitting proposal.
3 A method to determine subjects for contracting between the split organizations.
4 A tested work method to expose the three above-mentioned points. This produces two results for management:
 a a splitting proposal containing the chosen and underpinned organization split in terms of actors that participate in one of the organizations;
 b subjects for contracting (see point 3).
The core of the approach consists of four meetings. Namely a meeting about the principles, one regarding the DEMO Construction Model, one about the organizational split with the ownership of assets and finally one regarding the business and information services and critical chain dependencies.
5 a known Return On Modeling Effort (ROME) (see Table 4.1).
The basis of this instrument is formed by the DEMO concepts of actor and transaction. These concepts proved to be very useful as a 'language' and a tool to express implementation decisions for organization and ICT.
4.2 Research agenda

To build on the power of the delivered instrument and to overcome its limitations, we suggest a research agenda which ensures that:

1. this instrument is made more broadly applicable, for example by unveiling potential sector dependencies;
2. the decision support is delivered faster, for example by simulation;
3. this instrument is tested further, and
4. the mutual dependency of organization splitting and ICT-splitting is clarified.
Organizations increasingly split off parts and start cooperating with those parts, for instance in Shared Service Centers or by using in- or outsourcing. However, what is the right spot and way for finding the organization split?

Martin Op ‘t Land (Capgemini) offers a long-awaited answer to this question, based on both literature and field research. His research resulted in a practical instrument to support organization splitting, allying and post-merger integration – an instrument that is fast, effective and relatively cheap.

Martin Op ‘t Land (1959) works as Principal Consultant and Certified Enterprise Architect at Capgemini. He conducts research and is involved in education at several academic institutions.