Print Email Facebook Twitter Complete positivity and distance-avoiding sets Title Complete positivity and distance-avoiding sets Author DeCorte, Evan (McGill University) de Oliveira Filho, F.M. (TU Delft Discrete Mathematics and Optimization) Vallentin, Frank (Universität zu Köln) Date 2020 Abstract We introduce the cone of completely positive functions, a subset of the cone of positive-type functions, and use it to fully characterize maximum-density distance-avoiding sets as the optimal solutions of a convex optimization problem. As a consequence of this characterization, it is possible to reprove and improve many results concerning distance-avoiding sets on the sphere and in Euclidean space. Subject Chromatic number of Euclidean spaceCopositive programmingHadwiger-Nelson problemHarmonic analysisSemidefinite programming To reference this document use: http://resolver.tudelft.nl/uuid:145db990-90bc-4519-8f5c-15f31050f99f DOI https://doi.org/10.1007/s10107-020-01562-6 ISSN 0025-5610 Source Mathematical Programming, 191 (2), 487-558 Part of collection Institutional Repository Document type journal article Rights © 2020 Evan DeCorte, F.M. de Oliveira Filho, Frank Vallentin Files PDF DeCorte2020_Article_Compl ... tance_.pdf 809.77 KB Close viewer /islandora/object/uuid:145db990-90bc-4519-8f5c-15f31050f99f/datastream/OBJ/view