Short term predictions in public transport
Applying Dutch smartcard data

dr. ir. N. van Oort
Assistant professor public transport
Transport and Planning
Public Transport Consultant
Goudappel Coffeng

1st Smart card data workshop
July 2-3, 2014, Gifu, Japan
Introduction

• Assistant professor at TU Delft
• Consultant Public Transport at Goudappel Coffeng

• Practice < - > Science

• Research agenda
 • Optimizing public transport level of service
 • Network, timetables and operations
 • Data driven research
 • Special interest in reliability and robustness

• Today: pragmatic approach to PT forecasts, usable for operators and authorities
• Modeling as a tool, not as an objective
Challenges in PT industry

Main challenges:
- Increasing cost efficiency
- Increasing customer experience
- Motivating new strategic investments

- Data and models enable achieving objectives
Applied examples

- **Monitoring and predicting passenger numbers: Whatif**

- **Quantifying benefits of enhanced service reliability in public transport**
 Van Oort, N. (2012)., Proceedings of the 12th International Conference on Advanced Systems for Public Transport (CASPT12), Santiago, Chile.

- **Optimizing planning and real time control**
 Van Oort, N. and R. van Nes (2009), Control of public transport operations to improve reliability: theory and practice, Transportation research record, No. 2112, pp. 70-76.

- **Optimizing synchronization multimodal transfers**
 Lee, A. N. van Oort, R. van Nes (2014), Service reliability in a network context: impacts of synchronizing schedules in long headway services, TRB

- **Improved scheduling**
Smartcard data (1/2)

The Netherlands
- OV Chipkaart
- Nationwide
- All modes: train, metro, tram, bus
- Tap in and tap out
- Bus and tram: devices are in the vehicle

Issues
- Privacy
- Data accessibility via operators

Data
- 19 million smartcards
- 42 million transactions every week
Smartcard data (2/2)

• Several applications of smartcard data (Pelletier et. al (2011). Transportation Research Part C)

Our research focus:

Connecting to transport model

• Evaluating history
• Predicting the future
• Elasticity approach (quick and low cost)

• Whatif scenario’s
 • Stops: removing or adding
 • Faster and higher frequencies
 • Route changes

• Quick insights into
 • Expected cost coverage
 • Expected ridership
Connecting data to transport model

- Importing PT networks (GTFS) (Open data)
- Importing smartcard data (Closed data)
- Matching
- Visualization options of transport model
Challenge the future

fictitious data
OD-patterns
Challenge the future

OD-patterns

Fictieve data
What if?
PT modelling

Traditional (4-step) model
- Multimodal (~PT)
- Network
- Complex
- Long calculation time
- Visualisation
- Much data
- Detailed results

Simple calculation
- PT only
- Line
- Transparent
- Short calculation time
- Only numbers
- Little data
- Assessments

Short term predictions
- Impact of construction works (rerouting, ridership decrease)
- Simple efficiency improvements (schedule, fares)
- Dealing with budget savings (least damage)

Elasticity method based on smartcard data
What if: elasticity approach

\[C_{ij} = \alpha_1 T_{ij} + \alpha_2 WT_{ij} + \alpha_3 NT_{ij} + \alpha_4 F_{ij} \]
\[\text{With:} \]
\[C_{ij} \] Generalized costs on OD pair \(i,j \)
\[\alpha_1, \alpha_2, \alpha_3, \alpha_4 \] Weight coefficients in generalized costs calculation
\[T_{ij} \] In-vehicle travel time on OD pair \(i,j \)
\[WT_{ij} \] Waiting time on OD pair \(i,j \)
\[NT_{ij} \] Number of transfers on OD pair \(i,j \)
\[F_{ij} \] Fare to be paid by the traveler on OD pair \(i,j \)

Elasticities
- Literature (e.g. Balcombe)
- “Proven “ rules of thumb

NOTE:
- Simple changes
- Short term
- Only LOS changes
- Accuracy
Whatif scenarios

Adjusting
- Speed
- Fares
- Routes
- Frequency

Illustrating impacts on (indicators):
- Cost coverage
- Occupancy
- Ridership
- Revenues
Whatif results: Flows rerouting
Whatif results: Flows increased frequencies
Summary

- Major challenges in public transport
- Data supports optimization
- Evaluating and controlling -> predicting and optimizing

- Connecting data to transport models enables short term predictions
- Combining strengths of two approaches (complex <-> simple)

- First cases show promising results
- Valuable for quick scan or first selection of project alternatives

Next steps
- Updating elasticities (using smartcard data)
- Additional factors in cost function (reliability, crowding, etc)

Pitfall
Combining weaknesses of two approaches
Questions / Contact

Niels van Oort

N.vanOort@TUDelft.nl

Publications

https://nielsvanoort.weblog.tudelft.nl/