Mainstream traffic flow control at sags

Bernat Goñi Ros, Victor L. Knoop, Bart van Arem, Serge P. Hoogendoorn

Transportation Research Board
93rd Annual Meeting
January 12-16, 2014
Paper 14-2726

Bernat Goñi Ros
Delft University of Technology
TRAIL Research School
b.goniros@tudelft.nl

Abstract

We present a new control strategy that aims to reduce total delay at sags. The strategy is based on the concept of mainstream traffic flow control. The traffic density at the bottleneck area is regulated in order to keep it slightly below the critical density, hence preventing traffic from breaking down while maximizing outflow. Density is regulated by means of a variable speed limit section that regulates the inflow to the bottleneck. Speed limits are set based on a proportional feedback control law. We evaluate the effectiveness of the control strategy by means of a case study using microscopic traffic simulation. The results show a significant increase in bottleneck outflow, particularly during periods of high demand, which considerably reduces delay.

Control strategy

Regulate the inflow to the bottleneck \((\rho_{\text{in}} < \rho, < \rho_{\text{lim}}) \), so that the bottleneck does not activate:
- Exit flow \((\rho) > \) discharge capacity \((\rho_{\text{out}}) \)
- VSL section outflow \((\rho) < \) demand \((\rho) \)

Control law

Proportional feedback:
\[
\rho_{\text{lim}}(k) = \rho_{\text{lim}} + K_p \cdot \left(\rho - \rho(k - r) \right)
\]

Gain Target density Delay

Speed limit constraints
\[
| \rho_{\lim}(k+1) - \rho_{\lim}(k) | < \Delta \rho_{\lim}
\]

Results

- The controller reacts adequately to changes in demand
- 7% increase in exit flow \((\rho) \) in periods of high demand
- 30% reduction in total delay / Significant reduction also with different car-following model parameter values

Conclusions

- The proposed control strategy has the potential to reduce total delay at sags
- Further research:
 - Evaluation: multi-lane network, heterogeneous traffic
 - Controller design: mitigation of oscillatory behavior, combination with other control measures

Sags are bottlenecks in freeway networks

Increase in gradient (sag)
Insufficient throttle operation
Increase in resistance force
Insufficient propulsion force
Vehicle acceleration limitation
Local changes in car-following behavior:
- Lower free flow speeds
- Longer headways at a given speed
Reduction in traffic flow capacity (10-20%)

Flow (veh/h)
Flat section
Sag bottleneck

With low demand \((\rho < \rho_{\text{lim}}) \), the bottleneck does not activate:
- Exit flow \((\rho) = \) demand \((\rho) \)

With high demand \((\rho > \rho_{\text{lim}}) \), the bottleneck activates:
- Exit flow \((\rho) = \) discharge capacity \((\rho_{\text{lim}}) < \) demand \((\rho) \)

Traffic composition: 100% passenger cars, 1 driver class
Car-following model:
Acceleration = \((1 / \) speed, relative speed, spacing, gradient) \)
100% compliance with speed limits
Scenarios:
- Reference scenario (no influence of gradient)
- No-control scenario
- Control scenario
Network performance measure:
Total delay \((TD) \) = Total travel time \((TTT) \) - TTT_{Reference}

TOYOTA
TU Delft

TOYOTA