
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Assessment of Issue Handling Efficiency

Bart Luijten, Joost Visser, Andy Zaidman

Report TUD-SERG-2010-004

SERG

TUD-SERG-2010-004

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Paper accepted for publication in the proceedings of the 7th IEEE Working Conference on Mining
Software Repositories (MSR 2010)

c⃝ copyright 2010, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

Assessment of Issue Handling Efficiency

Bart Luijten
Delft University of Technology &

Software Improvement Group, The Netherlands
Email: b.j.h.luijten@student.tudelft.nl

Joost Visser
Software Improvement Group

The Netherlands
Email: j.visser@sig.eu

Andy Zaidman
Delft University of Technology

The Netherlands
Email: a.e.zaidman@tudelft.nl

Abstract—We mined the issue database of GNOME to assess
how issues are handled. How many issues are submitted
and resolved? Does the backlog grow or decrease? How fast
are issues resolved? Does issue resolution speed increase or
decrease over time? In which subproject are issues handled
most efficiently? To answer such questions, we apply several
visualization and quantification instruments to the raw issue
data. In particular, we aggregate issues into four risk categories,
based on their resolution time. These categories are the basis
both for visualizing and ranking, which are used in concert for
issue database exploration.

Keywords-Defect resolution, Issue mining

I. INTRODUCTION

Software development and maintenance are typically or-
ganized around issues (defects, feature requests, ...) that need
to be resolved. These issues can be managed with an Issue
Tracking System (ITS), which plays a central role in the
communication between members of the development team
and between developers and users of the system.

While not designed for mining purposes, issue trackers
can be a valuable source of information. Through analysis of
the historical data in the ITS, we are able to (1) gain insight
into the issue handling process, (2) identify bottlenecks or
problem areas and (3) find ways to optimize the process [1].

This leads us to our central research question for this
paper: How do developers and maintainers deal with issues?
More concretely, this paper addresses these questions:
RQ1 Can the efficiency of issue handling be assessed in an

objective way?
RQ2 Are there significant fluctuations in bug solving effi-

ciency throughout time?
RQ3 Are there significant differences in bug solving effi-

ciency between software components or packages?
In order to answer these research questions, we create three
views that offer alternative perspectives on the historical
issue information. We also present an approach which al-
lows software engineers to iteratively refine the analysis
and which can be used to identify problematic areas (e.g.,
components in the system that suffer from many open issues)
or bottlenecks in the issue handling process. Due to space
restrictions, this paper focuses on a particular type of issue,
namely bugs, but our methodology and views are equally
suitable for studying other types of issues.

This paper is structured as follows. In Section II we de-
scribe our approach and tool for analyzing issue repositories.
Section III describes the GNOME issue data, while the
results and their interpretation are provided in Section IV.
Related work is provided in Section V. We conclude the
paper in Section VI.

II. ASSESSMENT APPROACH AND TOOLS

We constructed a Java tool to capture information from an
ITS. The tool includes a generic data model that stores the
needed data from different issue trackers in a unified fashion.
The data model is optimized for post-mortem queries on
large batches of issues.

After loading the issue data into our tool, we are able
to generate three different views that enable assessment
of the issue handling process. A high-level overview is
provided by the Issue Churn View. When a problem area
has been identified, the Issue Risk Profiles can give a more
quantitative view on these areas, while the Issue Lifecycle
View can be used to zoom in on a particular (sub)component
to get a detailed view on the lifecycle of issues.

A. Issue Churn View

The high-level Issue Churn View (ICV) shows the issue
handling on a monthly basis (see Figure 1). The X-axis
represents time and the positive and negative values on the
Y-axis represent, respectively, the number of submitted and
resolved issues. For the submitted issues we use (1) dark
red to indicate that an issue was opened and solved in
the same month, (2) light red for issues that were opened
but not closed, (3) dark grey for recent backlog (issues
open ≤ 6 months) and (4) light grey for long-term backlog
(issues open > 6 months). For the resolved issues, we again
distinguish between issues both submitted and closed in this
month (dark green) and older issues that have been solved
in this month (light green).

Important facts that we can derive from the ICV are: the
number of incoming and outgoing issues, visible through
the red and green colors, and the development of backlog.
An increase of the backlog may indicate that issue solving
capacity is below what is needed or that submitted bug
reports are of low quality and require too much effort to
reproduce or track down.

SERG Luijten et al. – Assessment of Issue Handling Efficiency

TUD-SERG-2010-004 1

ICVs are best constructed separately for defects and other
issues, since their numbers and priorities are very different.

B. Issue Risk Profiles

To quantify the speed of issue resolution, we aggregate
resolution times of individual issues into so-called risk
profiles, which are subsequently mapped to ratings.

We define the resolution time as the time an issue is in an
open state. Thus, we look at the time an issue is marked as
being in the new or assigned state but not in the closed or
resolved state. If an issue has been closed and then reopened,
all open intervals count towards the issue resolution time, but
the intervals in which the issue was closed do not.

Individual issue resolution times do not follow a normal
distribution, but rather a power-law-like distribution. As a
result, a simple aggregation by taking the mean or median
of the issue resolution times is not appropriate. Instead we
construct risk profiles by assigning items to risk categories
based on their metric values. For defect resolution time, we
use the following risk categories:

Category Thresholds
Low [0, 28] days (4 weeks)
Moderate (28, 70] days (10 weeks)
High (70, 182] days (6 months)
Very high (182, ∞) days

For example, a defect with a resolution time of 42 days
falls into the moderate risk category. The thresholds between
these risk categories were chosen to coincide roughly with
the 70th, 80th, and 90th percentile of defect resolution
times in a set of about 100 releases of various open source
software products, because at these percentiles the variability
between releases was observed to be higher than at lower
percentiles [2].

Based on this risk assignment, a risk profile is constructed
by calculating the percentage of items in each category.
For example, ⟨70, 19, 11, 0⟩ is the risk profile of a product
history where 70% of all defects were resolved within 4
weeks, 89% were solved within 10 weeks, and none took
longer than 6 months to solve.

Risk profiles can be constructed for the entire history of
a product but also for sub-groups of the defects, such as
releases or sub-products. When grouping issues by product
version, we take the issues that are resolved between that
version and the next. For grouping by sub-product, we
exploit issue categorization tags in the ITS.

Risk profiles can be mapped to ratings to enable straight-
forward comparison. We rate on a unitless scale between 0.5
and 5.5 that can be rounded to an integral number of stars.
By benchmarking against the defect sets of the same 100
systems, we calculated the following mapping [2]:

Rating Moderate High Very High
***** 8.3% 1.0% 0.0%
**** 14% 11% 2.2%
*** 35% 19% 13%
** 77% 23% 34%

For example, a snapshot with risk profile ⟨70, 19, 11, 0⟩ will
be eligible for a ranking of 3 stars. By interpolation our
ranking algorithm establishes an exact rating of 3.25.

Risk profiles and ratings for issue resolution time are
useful for comparing (slices of) the history of software
products in a quantitative manner. As such, systems or
components who perform relatively worse can be identified
and action can be undertaken. Table I shows examples.

C. Issue Lifecycle View
The Issue Lifecycle View (ILV), which is loosely based

on the Change History View by Zaidman et al. [3], is a
scatter plot of issues versus modification dates. An example
ILV can be seen in Figure 3. The X-axis represents time,
while the Y-axis is populated by issues, sorted by the date
they first appeared in the tracker. An issue is represented by
a horizontal line fragment, which indicates that the issue is
marked open. Blue dots on this line signify that a comment
was placed on the issue and yellow dots point at other
events, i.e., any change in a property for that issue, except
for opening, closing or commenting (e.g., reassignment,
attaching a patch or a change in priority).

A number of interesting facts can be derived from the
ILV: the number of horizontal lines directly above a point in
time (X-axis) shows the number of open issues at that point.
The length of the lines indicates the time an issue has been
open and thus also shows potential backlog. By studying
the length of lines we also see the age composition of open
issues, which in turn helps to understand how the backlog is
being handled. For example, a system with a constant (non-
addressed) backlog has a set of very long lifecycle lines,
the backlog, and a set of short lines, issues that are actually
being solved. Vice versa, when the backlog is addressed, the
line lengths would be more uniform, since the older issues
are solved quicker, but the younger ones slower.

III. INPUT DATA

As input data for the study reported in this paper we
have used and ITS dump of the GNOME project1. This data
represents the period between 1999-01-01 and 2008-09-19.
A few issues from before this period are in the dataset, but
we removed those from our analysis. In the period under
analysis, 431838 issues were recorded. Issues marked as
duplicate (143568), invalid (114611, including notgnome
etc.) or wontfix (18093) were not taken into consideration.
Using the severity field of each issue, we discovered that
22120 of the remaining issues are in fact enhancements and
the rest are true defects (133446). Of these defects, 106932
are closed and 26514 are still open.

IV. RESULTS

Figure 1 shows an ICV for the defects in the GNOME
issue tracker. A number of observations can be made about

1http://msr.uwaterloo.ca/msr2009/challenge/gnome data/gnome
bugzilla.xml.bz2

Luijten et al. – Assessment of Issue Handling Efficiency SERG

2 TUD-SERG-2010-004

Date (month)

N
r.

 o
f

is
s
u

e
s
 (

a
ll)

0

5000

10000

15000

20000

25000

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Added / Removed

New and closed

Old closed

New and closed

New and open

Open (< 26 wks)

Open (> 26 wks)

Figure 1. Issue Churn View for the issues of type defect of GNOME.

Figure 3. Issue Lifecycle View for defects in the GNOME-pilot subproject.

Time

N
r.

of
 d

ef
ec

ts

0

10

20

30

40

50

2001 2002 2003 2004 2005 2006 2007 2008

Risk Category

Low

Moderate

High

Very High

Figure 4. Quality profile evolution over time in the GNOME-pilot subproject.

Product Profile Rating

Gnome-pilot * (1.47)
Evolution ** (2.18)
Beagle *** (3.23)

Table I
EXAMPLE DEFECT RISK PROFILES.

Rating

C
ou
nt

0

10

20

30

40

1 2 3 4 5

Figure 2. Histogram of defect resolution ratings for GNOME projects.

the GNOME defect solving history:
The use of the tracker picks up during the year 2000 and

reaches a stable level from 2002 onwards.
From 2002 until November 2006, the number of incoming

and outgoing defects per month is constant. The backlog is
growing steadily, indicating that there are more defects being
submitted than solved (i.e., a capacity deficit).

In November 2006, there is a sudden increase in defect
submission activity, which lasts until the end of 2007 and
then decreases again. In parallel, the backlog also strongly
increases.

Because the backlog in the preceding graph seems very
large, we are interested in knowing which parts of the
GNOME project contain the longest to solve defects. We
split up the dataset into separate products, using the product
name recorded with each issue. We then assigned each
product a defect resolution rating, based on the resolution
times for the closed defects only.

Products that have less than 10 associated closed defects
have been removed, because these contain too few defects to
make the rating meaningful. Many of them have either the
maximum or minimum possible rating, because all solved

SERG Luijten et al. – Assessment of Issue Handling Efficiency

TUD-SERG-2010-004 3

defects are in the highest or lowest risk category. The
resulting dataset contains 300 products. Three example risk
profiles are shown in Table I. For example, Evolution has
the risk profile ⟨54, 13, 14, 19⟩, giving it a rating of 2.18.

Figure 2 shows a histogram of all ratings for the 300
products. The ratings seem to be skewed to the left, in-
dicating that in GNOME products it takes longer to solve
defects than in the systems in our calibration set. Looking
at the products in the lower end of this graph, we noticed
a number of interesting candidates for further analysis.
Gnome-pilot, gnome-media and gnome-core all have more
than 200 defects and a rating below 1.6.

We picked gnome-pilot, a product for hand-held comput-
ers, for further investigation. It has 237 closed defects and
rates 1.47, with over 35% of defects taking more than half a
year to solve. To find out why this rating is so low, we use
the ILV to investigate the defect lifecycle in more detail.

The ILV for gnome-pilot, Figure 3, shows us that there
are many defects that are open for multiple years. The graph
shows a number of clearly visible vertical stripes, where a
large number of defects was solved simultaneously. Looking
at the comments associated to these issues, we found that
many (but not all) had been solved some time previously,
but were left open in the issue tracker. At the dates where
the stripes show, these were closed as a clean-up.

We suspected these large simultaneous actions to be the
cause of the low overall rating. To investigate this, we
constructed an issue resolution quality profile per month for
gnome-pilot. The result is displayed in Figure 4. In this graph
the height of a bar indicates how many defects were solved.
The peaks coincide with the large actions in the ILV, and are
primarily composed of (very) high risk defects. The large
simultaneous actions do indeed seem to form the bulk of
the high-risk defects. Nonetheless, since not all defects with
long resolution times are closed as part of clean up actions,
the rating of gnome-pilot remains low.

V. RELATED WORK

Kim and Whitehead investigated the bug-fixing time of
each file in a software system. They found that the files with
the longest bug-fixing time also contain the most bugs [4].
Similar to our study, they also try to identify problem areas.

Ihara et al. propose a method to analyze the bug modi-
fication process. They calculate the time required to transit
between states in the bug modification process [5]. Similar
to our own study, their aim is to identify bottlenecks in the
bug modification process. One of the bottlenecks they have
identified is the verification of resolved bugs, which was the
most time-consuming step in the bug resolution process in
both Apache and Firefox.

VI. CONCLUDING REMARKS

In this paper we have presented three views and an
approach that allow software engineers to retrospectively

assess the issue handling process on the basis of recorded
issue data. We have applied these to the GNOME project.
We can now answer the research questions of Section I:

RQ1: Can the efficiency of issue handling be assessed
in an objective way?: Yes. We can perform a high-level
assessment of the issue handling process using the Issue
Churn View. Using Issue Risk Profiles and ratings derived
from them, we can zoom in and assess issue handling during
particular periods and/or for particular system components.
Finally, the Issue Lifecycle View allows detailed assessment
on the level of individual issues.

RQ2: Are there significant fluctuations in bug solving
efficiency throughout time?: Yes. In the case of GNOME the
Issue Churn View revealed certain periods (e.g., November
2006 – end of 2007) with an increase in the number of
defects reported and a subsequent sharp increase in the
defect backlog. The monthly Issue Risk Profiles showed a
simultaneous increase in high risk defects (resolution times
over 6 months) and a drop in the defect resolution rating.

RQ3: Are there significant differences in bug solving
efficiency between software components or packages?: Yes.
The Issue Risk Profiles offer a quick way of comparing
the defect solving efficiency, by assigning a rating to each
component. In the case of GNOME we have seen that
there is a large difference in the time it takes to solve
defects between subprojects, with some packages where
most defects are solved within 28 days, while for some other
packages many defects take 182 days or more to solve.

Our case study has shown that a number of straightfor-
ward instruments for visualisation and quantification of issue
handling can be used in concert to assess the efficiency of
issue handling both at a high abstraction level and in detail.

In future work we expect to refine these instruments. In
particular, we want to take into account the difficult to solve
a bug (e.g., blocker bugs). Furthermore, we aim to apply our
approach to commercial software projects.

REFERENCES

[1] J. Anvik, L. Hiew, and G. C. Murphy, “Coping with an open
bug repository,” in Proc. 2005 OOPSLA workshop on Eclipse
technology eXchange (eclipse’05). ACM, 2005, pp. 35–39.

[2] B. Luijten, “The influence of software maintainability on issue
handling,” Master’s thesis, Delft University of Technology,
2010.

[3] A. Zaidman, B. Van Rompaey, S. Demeyer, and A. van
Deursen, “Mining software repositories to study co-evolution
of production and test code,” in Proceedings of the Inter-
national Conference on Software Testing, Verification and
Validation (ICST). IEEE, 2008, pp. 220–229.

[4] S. Kim and E. J. Whitehead, Jr., “How long did it take to fix
bugs?” in Proc. Int’l workshop on Mining software repositories
(MSR). ACM, 2006, pp. 173–174.

[5] A. Ihara, M. Ohira, and K.-i. Matsumoto, “An analysis method
for improving a bug modification process in open source soft-
ware development,” in Proc. joint int’l workshops on Principles
of software evolution (IWPSE) and software evolution (Evol).
ACM, 2009, pp. 135–144.

Luijten et al. – Assessment of Issue Handling Efficiency SERG

4 TUD-SERG-2010-004

TUD-SERG-2010-004
ISSN 1872-5392 SERG

