Print Email Facebook Twitter Transparent silicon carbide/tunnel SiO2 passivation for c-Si solar cell front side Title Transparent silicon carbide/tunnel SiO2 passivation for c-Si solar cell front side: Enabling Jsc > 42 mA/cm2 and iVoc of 742 mV Author Pomaska, Manuel (Forschungszentrum Jülich GmbH) Köhler, Malte (Forschungszentrum Jülich GmbH) Procel Moya, P.A. (TU Delft Photovoltaic Materials and Devices) Zamchiy, Alexandr (Russian Academy of Sciences) Singh, Aryak (Forschungszentrum Jülich GmbH) Kim, Do Yun (Forschungszentrum Jülich GmbH) Isabella, O. (TU Delft Photovoltaic Materials and Devices) Zeman, M. (TU Delft Electrical Sustainable Energy) Li, Shenghao (Forschungszentrum Jülich GmbH; Sun Yat-sen University) Department Electrical Sustainable Energy Date 2020 Abstract N-type microcrystalline silicon carbide (μc-SiC:H(n)) is a wide bandgap material that is very promising for the use on the front side of crystalline silicon (c-Si) solar cells. It offers a high optical transparency and a suitable refractive index that reduces parasitic absorption and reflection losses, respectively. In this work, we investigate the potential of hot wire chemical vapor deposition (HWCVD)–grown μc-SiC:H(n) for c-Si solar cells with interdigitated back contacts (IBC). We demonstrate outstanding passivation quality of μc-SiC:H(n) on tunnel oxide (SiO2)–passivated c-Si with an implied open-circuit voltage of 742 mV and a saturation current density of 3.6 fA/cm2. This excellent passivation quality is achieved directly after the HWCVD deposition of μc-SiC:H(n) at 250°C heater temperature without any further treatments like recrystallization or hydrogenation. Additionally, we developed magnesium fluoride (MgF2)/silicon nitride (SiNx:H)/silicon carbide antireflection coatings that reduce optical losses on the front side to only 0.47 mA/cm2 with MgF2/SiNx:H/μc-SiC:H(n) and 0.62 mA/cm2 with MgF2/μc-SiC:H(n). Finally, calculations with Sentaurus TCAD simulation using MgF2/μc-SiC:H(n)/SiO2/c-Si as front side layer stack in an IBC solar cell reveal a short-circuit current density of 42.2 mA/cm2, an open-circuit voltage of 738 mV, a fill factor of 85.2% and a maximum power conversion efficiency of 26.6%. Subject antireflecting coatingexcellent passivationheterojunctionhot wire CVDlean processrefractive indexsilicon carbidetunnel oxide To reference this document use: http://resolver.tudelft.nl/uuid:1d7eae95-3bad-48ae-8464-ff9174dd1470 DOI https://doi.org/10.1002/pip.3244 ISSN 1062-7995 Source Progress in Photovoltaics: research and applications, 28 (4), 321-327 Part of collection Institutional Repository Document type journal article Rights © 2020 Manuel Pomaska, Malte Köhler, P.A. Procel Moya, Alexandr Zamchiy, Aryak Singh, Do Yun Kim, O. Isabella, M. Zeman, Shenghao Li, More Authors Files PDF pip.3244.pdf 6.12 MB PDF pip.3244_1.pdf 6.12 MB Close viewer /islandora/object/uuid:1d7eae95-3bad-48ae-8464-ff9174dd1470/datastream/OBJ1/view