opdrachtgever:
Rijkswaterstaat
Dienst Weg- en Waterbouwkunde

zandtransport in granulaire filters

horizontale stationaire stroming

meetverslag
november 1989
zandtransport in granulaire filters

horizontale stationaire stroming

M. Klein Breteler
INHOUD

LIJST VAN SYMBOLEN

1. Inleiding .. 1
2. Modelopstelling en uitvoering proeven 2
3. Resultaten ... 6
4. Nauwkeurigheidsanalyse 10

REFERENTIES

TABELLEN

FIGUREN
Symbolenlijst

- **a** = lineaire weerstandscoëfficiënt van het filter \((s/m)\)
- **b** = kwadratische weerstandscoëfficiënt van het filter \((s^2/m^2)\)
- **c** = empirische coëfficiënt (als \(D_{b50} = 0.15\) mm dan: \(c = 0.78\)) \((-\))
- **\(D_{b50}\)** = karakteristieke korrelgrootte van zand (wordt door 50 gewichtsprocenten onderschreven) \((m)\)
- **\(D_{15f}\)** = karakteristieke korrelgrootte van het filter (wordt door 15 gewichtsprocenten onderschreven) \((m)\)
- **g** = zwaartekrachtsversnelling \((m/s^2)\)
- **i** = verhang in het filter \((-\))
- **M** = massa van de filterkorrels \((kg)\)
- **m** = empirische coëfficiënt (als \(D_{b50} = 0.15\) mm dan: \(m = 0.2\)) \((-\))
- **n_f** = porositeit van het filter \((-\))
- **\(R_{e_x}\)** = bekende functie van \(\Psi_s\) (zie [4]) \((-\))
- **v_f** = filtersnelheid in het filter \((m/s)\)
- **v_{fcr}** = kritieke filtersnelheid \((m/s)\)
- **\(V\)** = volume van het filter \((m^3)\)

- **\(\Delta\)** = relatieve soortelijke massa van zand \((= \rho_s/\rho - 1)\) \((-\))
- **v** = viscositeit van het water \((m^2/s)\)
- **\(\rho_s\)** = soortelijke massa van zandkorrels \((kg/m^3)\)
- **\(\rho\)** = soortelijke massa van water \((kg/m^3)\)
- **\(\Psi_s\)** = Shields parameter \((-\))
ZANDTRANSPORT IN GRANULAIRE FILTERS
Horizontale stationaire stroming

1. Inleiding

In zijn brief van 28 april 1988, kenmerk WB/BSF 882778, heeft de hoofdingenieur-directeur van de Dienst Weg- en Waterbouwkunde opdracht verleend aan het Waterloopkundig Laboratorium tot het uitvoeren van modelonderzoek gericht op het meten van zandtransport in een granulair filter op zand.

Dit modelonderzoek vormt een ondersteuning van het fundamentele filteronderzoek, dat wordt uitgevoerd bij Grondmechanica Delft. Daar is een onderzoek gaande met als doel het opstellen van een numeriek model dat het zandtransport in granulaire filters kan voorspellen [1]. De ijking van een dergelijk numeriek model vereist gedetailleerde metingen in een fysische model. Deze metingen zijn in dit verslag gerapporteerd, terwijl de analyse van de meetresultaten wordt verzorgd door Grondmechanica Delft.

De resultaten van de metingen zijn ook verwerkt in het verslag over de dimensionering van filters dat is opgesteld in het kader van het onderzoek naar de stabiliteit van gezette steen [2].
2. Modelopstelling en uitvoering proeven

Het modelonderzoek is uitgevoerd in de Filterbak van het Waterloopkundig Laboratorium met een horizontale stationaire stroming. De modelopstelling is weergegeven in Figuur 1. Geheel links is in deze figuur de bovenstroomse druktoeren te zien, waar een bepaalde waterstand ingesteld kan worden. Van daar stroomt het water door het model, dat is opgebouwd uit een laag zand met daarop een laag grind. De opstelling is zodanig gebouwd dat het water uitsluitend horizontaal door het model kan stromen. Daartoe is het grind aan de bovenzijde waterdicht afgedekt met plastic en een flexibele trovidur plaat ('dak'). Het grind en het zand zijn aan linker en rechterzijde (zie Figuur 1) opgesloten tussen twee roosters, waarbij ter hoogte van het grind een gaas met maaswijdte van 1.5 mm is aangebracht en ter plaatse van het zand een zanddicht geotextiel. Benedenstrooms van het model (rechts in Figuur 1) is een bezinkbak voor het uitgespoelde zand aanwezig. Van daar stroomt het water weg over een stuw.

Bij het ontwerp van de modelopstelling is ermede rekening gehouden dat er ook een groot zandtransport, en dus erosie van het grensvlak, mogelijk is. Een van de konsequenties van grote erosie is dat het grind in de erosie-kuilen zakt en dat deze zakking ook door het dak van de opstelling gevolgd moet kunnen worden, zonder dat dit leidt tot lekkage. Daarom is de trovidur plaat, die iets kleiner was dan het oppervlak van het grind, via plastic (folie) bevestigd aan de zijwanden van de modelfaciliteit. Dit is weergegeven in onderstaande schetsen:

![Diagram](image-url)
Tijdens proef 1 bleek dat het noodzakelijk was om aan het bovenstroomse rooster een plankje te bevestigen, teneinde lekkage na een zakking van het dak te voorkomen. Dit plankje was alleen tijdens proef 2 en 3 aanwezig en verkleinde de doorstroomhoogte lokaal met 5 cm.

Op het dak is ballast geplaatst ten einde opdrijven te voorkomen. Op de bovenstroomse kant van het dak is steeds het meeste geplaatst en dan geleidelijk aan afnemend naar de benedenstroomse kant.

Tijdens T1 (d.w.z. proef 1) verliep het van 560 kg/m² aan de bovenstroomse rand tot 120 kg/m² aan de benedenstroomse rand. Tijdens T2 was dit 360 kg/m² op de bovenstroomse helft en tijdens T3 in eerste instantie 400 kg/m² en vanaf stap 6 ongeveer 650 kg/m².

Om de invloed van randeffecten op de stroming in het grind aan de boven- en benedenstroomse rand van het model te minimaliseren, is een zanddicht geotextiel op het zand aangebracht en vanaf ± 5 cm van de rand onder een hoek van 45° ingegraven tot een diepte van ongeveer 7 cm. Een eventuele erosiekuil zal daardoor altijd op enige afstand van de rand ontstaan. Gezien de verhouding van deze afstand vanaf de rand en de gemiddelde diameter van het grind (orde 20:1) kan verwacht worden dat de stroming in het grind ter plaatse van de erosiekuil identiek is aan die elders in het grind.

Het lokale verhang in het grind en in het zand is gemeten door middel van stijgboeisjes, die de stijghoogte op een groot aantal punten aan de achterwand weergeven. Op basis van deze stijghoogte-metingen is vastgesteld dat de stromingsrichting in het zand en in het grind mooi horizontaal was. De lokatie van de stijgboeisjes is weergegeven in Tabel 1.

Het debiet door het model is gemeten door de tijd te meten die nodig is om een bak van 420 liter vol te laten lopen. Aannemende dat al het water door het grind stroomt, is de filtersnelheid (specifiek debiet) in het grind hieruit te berekenen.

Het eroderende zand zal door de stroming langs het grensvlak zand/grind meegeweerd worden en uiteindelijk uit het model spoelen. Benedenstrooms van het model is een bezinkruimte aanwezig. De valsnelheid van de korrels en de stroomsnelheid in de bezinkruimte is zodanig dat meer dan 95% van het zand bezinkt.
Het bezinkende zand is door een wijde trechter geleid naar een platte bak van 74 bij 89 cm (zie Figuur 2). Deze bak was opgehangen aan drie staaldraden, die elk via een krachtopnemer was verbonden aan een plaatsvaste dwarsbalk. Elke opnemer is in staat tot orde 25 kgf te registreren. Het signaal van de krachtopnemers is elektronisch gesommeerd en vastgelegd met een penschrijver.

Er zijn drie proeven uitgevoerd, elk met hetzelfde zand ($D_{50b} = 0.15$ mm). De zeefkromme is getekend in Figuur 3.

Tijdens de eerste proef is het zand droog aangebracht, zonder het te verdichten. Na het aanbrengen van het grind en de ballast is eerst het gehele model gedurende 1 à 2 uur onder water gezet. Vervolgens is de waterspiegel verlaagd tot onder het zand, waarna het model weer gevuld is en de proef in korte tijd is uitgevoerd.

Deze procedure had tot gevolg dat er extreem veel lucht in het zand was opgesloten. Dit bleek ook duidelijk tijdens het uitbouwen van het model na de proef. Hoewel dit oorspronkelijk niet zo bedoeld was, is deze gelegenheid aangegrepen om de invloed van lucht in het zand op het zandtransport en op het verhang bij begin van beweging vast te stellen.

Het karakteristieke korrelgrootte van het grind (D_{f15}) was tijdens de eerste proef 7.0 mm (zie Figuur 4).

Voor de tweede proef is gebruik gemaakt van hetzelfde zand en grind als bij de eerste proef. Het zand is echter onder water aangebracht, zodat er geen enkele luchtbol in opgesloten was.

Het zand voor de derde proef is aangebracht op de manier zoals dat ook voor de proeven uit [2] is gedaan, behalve dat het nauwelijks is verdicht. Deze methode behelst het boven water aanbrengen van nat zand.

De derde proef is uitgevoerd met fijner grind dan gebruikt is bij de eerste twee proeven. De D_{15f} bedroeg 3.4 mm (zie Figuur 4).

Het grind is voor geen van de proeven verdicht.

Voor elke proef is de porositeit van het grind bepaald door de soortelijke massa van de korrels, de totale massa van de korrels en het volume van de filter te meten. De porositeit is hiermee als volgt te berekenen:
\[n_f = 1 - \frac{M}{\rho V} \] (1)

met:
\[n_f = \text{porositeit van het filter} \quad (-) \]
\[M = \text{massa van de filterkorrels} \quad (\text{kg}) \]
\[V = \text{volume van het filter} \quad (\text{m}^3) \]
\[\rho = \text{soortelijke massa} \quad (\text{kg/m}^3) \]

De massa van de filterkorrels is gekorrigieerd voor het aanhangende water dat is meegewogen. Daartoe is het watergehalte van een monster bepaald. De op deze wijze berekende porositeit is gelijk aan het deel van de ruimte dat niet wordt ingenomen door de filterkorrels. De effektieve porositeit (het deel van de ruimte dat door het water wordt ingenomen) is door onvermijdelijke luchtinsluitingen iets kleiner.

De porositeit van het zand voor de eerste proef is op dezelfde wijze als voor het grind bepaald. Voor de tweede proef is er een steekringmonster van 100 cc genomen. Bij de derde proef is de porositeit niet gemeten.

Elke proef is opgebouwd uit een aantal stappen. Tijdens iedere stap is het verhang, en daarmee de filtersnelheid, konstant gehouden en is er continu gemeten hoeveel zand er op de weegbak lag. Doorgaans duurde een stap orde 15 à 30 minuten.

Tijdens het eerste deel van de proef is zonder oponthoud voor elke volgende stap het verhang iets verhoogd. Na de stap waarbij een zeer hoog zandtransport is gemeten (tientallen gram per seconde per strekkende meter), is tijdens proef 2 en 3 nog aandacht besteed aan een eventuele histeresis in het verband tussen het zandtransport en het verhang (of filtersnelheid).

De watertemperatuur was tijdens de proeven ongeveer 8°C. De proeven zijn begin november 1988 uitgevoerd.

Van de hele proevenserie is een videoreportage gemaakt op Umatic onder nummer H869.
3. Resultaten

In dit hoofdstuk wordt een overzicht gegeven van de resultaten van de proeven, zonder stil te staan bij de nauwkeurigheid van de metingen. Hiervoor wordt verwezen naar de volgende paragraaf.
Gezien het doel van de metingen, namelijk een ijking van het numerieke transportmodel mogelijk maken, is de analyse van de resultaten in dit kader sumier. Een meer uitgebreide analyse zal uitgevoerd worden door Grondmechanica Delft.

In onderstaande tabel zijn de berekende porositeiten gegeven:

<table>
<thead>
<tr>
<th></th>
<th>filter</th>
<th>zand</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>0.39</td>
<td>0.49</td>
</tr>
<tr>
<td>T2</td>
<td>0.39</td>
<td>0.41</td>
</tr>
<tr>
<td>T3</td>
<td>0.41</td>
<td>7</td>
</tr>
</tbody>
</table>

Het verband tussen de gemeten filtersnelheid en het verhang is weergeven in Figuur 5. De resultaten zijn te vergelijken met de berekende doorlatendheid volgens de formule van Forchheimer [3]:

\[i = a \frac{v_f}{v}^2 + b \frac{v_f}{v} \] \hspace{1cm} (2)

\[a = \frac{160 \nu (1 - n_f)^2}{g n_f^3 D_{15f}^2} \] \hspace{1cm} (3)

\[b = \frac{2.2}{g n_f^2 D_{15f}} \] \hspace{1cm} (4)

met:
- \(i \) = verhang in het filter \((-\))
- \(v_f \) = filtersnelheid in het filter \((m/s)\)
- \(a \) = lineaire weerstandscoëfficiënt van het filter \((s/m)\)
- \(b \) = kwadratische weerstandscoëfficiënt van het filter \((s^2/m^2)\)
- \(\nu \) = viscositeit van het water \((m^2/s)\)
- \(n_f \) = porositeit van het filter \((-\))
- \(D_{15f} \) = karakteristieke korrelgrootte van het filter
(wordt door 15 gewichtsprocenten onderschreven) (m)

\[g = \text{zwaartekrachtsversnelling} \quad (m/s^2) \]

De resultaten van de berekeningen en metingen zijn \((v = 1.4 \times 10^{-6}; g = 9.8 \text{ m/s}^2)\):

<table>
<thead>
<tr>
<th>gemeten</th>
<th>berekend met Forchheimer</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_f)</td>
<td>(D_{15f})</td>
</tr>
<tr>
<td>(-)</td>
<td>(mm)</td>
</tr>
<tr>
<td>T1</td>
<td>0.39</td>
</tr>
<tr>
<td>T2</td>
<td>0.39</td>
</tr>
<tr>
<td>T3</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Uit deze resultaten kan gekonkludeerd worden dat er de overeenstemming tussen berekende en gemeten waarden voor T1 en T2 groot is, maar dat bij T3 de gemeten doorlatendheid wat kleiner is dan de berekende waarde.

In Figuur 6 tot en met 11 zijn de resultaten van de gemeten zandtransporten gegeven. Uit deze resultaten kan de kritieke filtersnelheid en kritiek verhang bij begin van zandtransport afgeleid worden, zoals dat is gedefinieerd in [2]. Volgens die definitie is er sprake van begin van transport als er gemiddeld over de hele stap (inclusief het instellen van het verhang) 0.2 gr/s/m getransporteerd wordt.

In onderstaande tabel zijn de resultaten samengevat:

<table>
<thead>
<tr>
<th>gemeten</th>
<th>berekend</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_{fcr})</td>
<td>(i_{cr})</td>
</tr>
<tr>
<td>(mm/s)</td>
<td>(-)</td>
</tr>
<tr>
<td>T1</td>
<td>21</td>
</tr>
<tr>
<td>T2</td>
<td>19</td>
</tr>
<tr>
<td>T3</td>
<td>14</td>
</tr>
</tbody>
</table>

In de tabel zijn tevens resultaten van een berekening gegeven op basis van de formules uit [2]. Er is hierbij uitgegaan van de ontwerpformule voor een horizontaal grensvlak zonder vertikale verhangcomponent:
\[
 v_{fcr} = \left[\frac{n^c}{c} (\frac{D_{f15}}{\nu})^m \sqrt{\psi_s \Delta g D_{b50}} \right]^{1/(1-m)}
\]

met:
- \(v_{fcr} \) = kritieke filtersnelheid \((m/s) \)
- \(c, m \) = empirische koëfficiënten (als \(D_{b50} = 0.15 \) mm dan:
 \(c = 0.78 \) en \(m = 0.2 \) \(-\))
- \(\psi_s \) = Shields parameter \(-\)
- \(\Delta \) = relatieve soortelijke massa van zand \(-\)
 \(\Delta = \frac{\rho_s}{\rho} - 1 \)
- \(\rho_s \) = soortelijke massa van zandkorrels \((kg/m^3) \)
- \(\rho \) = soortelijke massa van water \((kg/m^3) \)
- \(D_{b50} \) = karakteristieke korrelgrootte van zand
 (wordt door 50 gewichtsprocenten onderschreden) \((m) \)

In deze formule komt de Shields-parameter voor die onder andere afhankelijk is van de viscositeit van het water. In appendix 3 van [4] is deze afhankelijkheid afgeleid:

\[
 D_{b50} = \left(\frac{Re^*_s \psi^2}{\Delta g \psi_s} \right)^{1/3}
\]

met:
- \(Re^*_s \) = bekende functie van \(\psi_s \) (zie [4]) \(-\)

De invloed van de viscositeit kan afgeleid worden als de empirische relatie tussen \(Re^*_s \) en \(\psi_s \) gesubstitueerd wordt:

\[
 Re^*_s = 0.035 \psi_s^{-1.5} \quad \text{mits} \quad 0.15 \leq D_{b50} \leq 0.4 \text{ mm}
\]

Met formule (6) wordt dit:

\[
 \psi_s = 0.19 \frac{\nu}{D_{50b}^{0.76} (\Delta g)^{0.25}} \quad \text{mits} \quad 0.15 \leq D_{b50} \leq 0.4 \text{ mm}
\]

Ten opzichte van de grootte van de viscositeit die in [2] is aangenomen (\(\nu = 1.24 \times 10^{-6} \text{ m}^2/\text{s} \)), is dit bij de proeven orde 20% hoger geweest. Met formule (8) is eenvoudig in te zien dat daardoor de Shields-parameter orde 10% hoger is.
Uit formule (5) en (8) kan afgeleid worden dat de grootte van de kritieke filtersnelheid evenredig is met \(v^{0.06} \). Er kan derhalve geconcludeerd worden dat de viscositeit volgens de formules een verwaarloosbare invloed op het resultaat heeft.
De vergelijking tussen berekende en gemeten kritieke waarden van de filtersnelheid en het verhang toont een vrij groot onderling verschil bij T1 en T2 en een mooie overeenstemming voor T3. Dit is met de huidige kennis niet te verklaren, ook niet als de resultaten direct vergeleken worden met eerdere metingen [2], die gebruikt zijn om formule (5) te ijken:

<table>
<thead>
<tr>
<th></th>
<th>huidige metingen</th>
<th>eerdere metingen</th>
<th></th>
<th>gemeten</th>
<th>berekend</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(D_{f15})</td>
<td>(n_f)</td>
<td>(v_{fcr})</td>
<td>(i_{cr})</td>
<td>(D_{f15})</td>
</tr>
<tr>
<td></td>
<td>(mm)</td>
<td>(-)</td>
<td>(mm/s)</td>
<td>(-)</td>
<td>(mm)</td>
</tr>
<tr>
<td>T1</td>
<td>7.0</td>
<td>0.39</td>
<td>21</td>
<td>0.15</td>
<td>8.4</td>
</tr>
<tr>
<td>T2</td>
<td>7.0</td>
<td>0.39</td>
<td>19</td>
<td>0.13</td>
<td>4.2</td>
</tr>
<tr>
<td>T3</td>
<td>3.4</td>
<td>0.41</td>
<td>14</td>
<td>0.27</td>
<td></td>
</tr>
</tbody>
</table>

Er valt echter wel op dat de eerdere meting een iets kleinere kritieke filtersnelheid heeft opgeleverd dan T1 en T2 en dat de formules een weer iets kleinere (en dus veilige) waarde geven dan de eerdere meting.

Uit de meetresultaten blijkt dat er slechts weinig verschil is tussen zand met zeer veel opgesloten lucht en zand zonder lucht.

In figuur 10 en 11 is zichtbaar dat bij een afnemende filtersnelheid het transport hoger is dan tijdens de stappen met toenemende filtersnelheid. Dit is volledig toe te schrijven aan de wijze waarop het gemiddelde transport is berekend (overeenkomstig de methode uit [2]). Doordat ook het transport tijdens het instellen van het verhang wordt meegeteld, zal het gemiddelde tijdens het stap voor stap toenemende verhang iets onderschat worden, terwijl tijdens het afnemende verhang dit flink wordt overschat. De overschatting is veel groter dan de onderschatting omdat het transport tijdens het instellen van een groter verhang te verwaarlozen is, in tegenstelling tot het transport tijdens het instellen van een kleiner verhang.
4. Nauwkeurigheidsanalyse

De nauwkeurigheid van de in de vorige hoofdstukken gegeven meetresultaten is voornamelijk afhankelijk van de nauwkeurigheid van de gebruikte meetinstrumenten en de nauwkeurigheid van de aflezing. Onderstaand is een tabel gegeven van de geschatte nauwkeurigheid van de metingen, die opgemaakt kunnen worden als de randen van het 95% betrouwbaarheids-interval:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>range</th>
<th>absolute fout</th>
<th>relatieve fout</th>
<th>eenheid</th>
</tr>
</thead>
<tbody>
<tr>
<td>stijghoogte</td>
<td>10 - 70</td>
<td>0.3</td>
<td>0.4 - 3%</td>
<td>cm</td>
</tr>
<tr>
<td>debiet</td>
<td>2 - 8</td>
<td>0.02 - 0.08</td>
<td>1%</td>
<td>1/s</td>
</tr>
<tr>
<td>filterkorrels</td>
<td>2 - 10</td>
<td>0.2 - 1</td>
<td>10%</td>
<td>mm</td>
</tr>
<tr>
<td>basiskorrels</td>
<td>0.1 - 0.3</td>
<td>0.01 - 0.03</td>
<td>10%</td>
<td>mm</td>
</tr>
<tr>
<td>dikte filterlaag</td>
<td>0.3</td>
<td>0.006</td>
<td>2%</td>
<td>m</td>
</tr>
<tr>
<td>massa grind</td>
<td>500 - 600</td>
<td>0.5 - 0.6</td>
<td>0.1%</td>
<td>kg</td>
</tr>
<tr>
<td>volume grind</td>
<td>0.3</td>
<td>0.09</td>
<td>3%</td>
<td>m³</td>
</tr>
<tr>
<td>soortelijke massa</td>
<td>2000</td>
<td>8</td>
<td>0.3%</td>
<td>kg/m³</td>
</tr>
<tr>
<td>transport</td>
<td>0.1 - 20</td>
<td>0.02 - 4</td>
<td>20%</td>
<td>gr/s/m</td>
</tr>
<tr>
<td>gemiddeld transport</td>
<td>0.1 - 10</td>
<td>0.01 - 1</td>
<td>10%</td>
<td>gr/s/m</td>
</tr>
</tbody>
</table>

De nauwkeurigheid van de gemeten zandtransporten is vrij laag doordat de registraties van de weegschaal zijn vastgelegd met een penschrijver, vanwaar de resultaten met beperkte nauwkeurigheid kunnen worden afgelezen. Bovendien is het verschil van twee aflezingen noodzakelijk om het transport te kunnen berekenen.

Doorgaans is de relatieve fout tijdens de stappen met steeds groter wordend verhang kleiner dan aan het eind van de proef als er reeds vele kilo's op de weegschaal ligt en er relatief weinig bijkomt. In het laatste geval kan de fout oplopen tot orde 30%.

Met bovenstaande gegevens is het mogelijk om de nauwkeurigheid van de porositeit, verhang en filtersnelheid te berekenen:

a) **Porositeit**

De porositeit wordt berekend met de volgende formule:

\[
\eta_f = 1 - \frac{M/p}{V}
\]

(9)

Bij vermenigvuldigen en delen worden de relatieve fouten kwadratisch opgeteld: relatieve fout in \(M/(pV)\) is \(\sqrt{(0.1^2 + 3^2 + 0.3^2)} = 3\%\).
Vervolgens wordt de waarde van \(l \) afgetrokken, waardoor de absolute grootte van de waarde orde 0.7 maal groter wordt, terwijl de absolute fout niet verandert. Dit betekent dat de relatieve fout 1/0.7 maal groter wordt:

relatieve fout in \(n_f \): \(3\% / 0.7 = 4\% \).

Ditzelfde geldt voor de porositeit van de basis.

b) Verhang

Het verhang is berekend door eerst in twee raaien de gemiddelde stijghoogte te berekenen en vervolgens het verschil te delen door de onderlinge afstand. Door te middelen over 6 stijghoogtmetingen neemt de absolute fout af tot \(0.3/\sqrt{6} = 0.12 \) cm. De fout in het verschil tussen twee gemiddelde stijghoogten is echter weer \(\sqrt{2} \) maal groter, te weten: 0.17 cm.

Bij een verhang van 0.1 en een onderlinge afstand tussen de raaien van 77 cm is de relatieve fout in het stijghoogteverschil 2.2\%. De fout in de gemeten afstand tussen de raaien wordt geschat op 0.5\%. De fout in het verhang volgt uit het kwadratisch optellen van de beide fouten:

relatieve fout in verhang: \(\sqrt{(2.2^2 + 0.5^2)} = 2\% \)

Als het verhang groter is dan 0.1, is de relatieve fout kleiner.

c) Filtersnelheid

De filtersnelheid is berekend door het debiet te delen door het doorstroomoppervlak. De relatieve fout in het doorstroomoppervlak wordt geschat op 2\%. De relatieve fout in de filtersnelheid volgt uit de kwadratische som van de relatieve fouten in debiet en doorstroomopervlak:

relatieve fout in filtersnelheid: \(\sqrt{1^2 + 2^2} = 2\% \)
REFERENTIES

1. H. den Adel
 Transportmodel voor deeltjes
 Grondmechanica Delft, CO-244859, deel I, II en III

2. M. Klein Breteler
 Taludbekledingen van gezette steen
 Ontwerpregels voor het filter
 Waterloopkundig Laboratorium, Concept verslag M1795/H195 deel XXI, 1987

3. H. den Adel
 Heranalyse van de doorlatendheidsmetingen dmv de Forchheimer relatie
 Grondmechanica Delft, rapport CO-272550/56, nov. 1987

4. F.C.M. van der Knaap, e.a.
 Taludbekledingen van gezette steen
 Belasting en sterkte van zetsteenverdedigingskonstrukties op oevers en dijken
 Waterloopkundig Laboratorium en Grondmechanica Delft, verslag M1795/ M1881 deel XVI, 1985
<table>
<thead>
<tr>
<th>nr.</th>
<th>X (cm)</th>
<th>Z (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.5</td>
<td>-23.5</td>
</tr>
<tr>
<td>3</td>
<td>48.5</td>
<td>-23.5</td>
</tr>
<tr>
<td>4</td>
<td>68.5</td>
<td>-23.5</td>
</tr>
<tr>
<td>5</td>
<td>88.5</td>
<td>-23.5</td>
</tr>
<tr>
<td>11</td>
<td>11.5</td>
<td>-13.5</td>
</tr>
<tr>
<td>12</td>
<td>28.5</td>
<td>-13.5</td>
</tr>
<tr>
<td>13</td>
<td>48.5</td>
<td>-13.5</td>
</tr>
<tr>
<td>14</td>
<td>68.5</td>
<td>-13.5</td>
</tr>
<tr>
<td>15</td>
<td>88.5</td>
<td>-13.5</td>
</tr>
<tr>
<td>21</td>
<td>11.5</td>
<td>-8.5</td>
</tr>
<tr>
<td>22</td>
<td>28.5</td>
<td>-8.5</td>
</tr>
<tr>
<td>23</td>
<td>48.5</td>
<td>-8.5</td>
</tr>
<tr>
<td>24</td>
<td>68.5</td>
<td>-8.5</td>
</tr>
<tr>
<td>25</td>
<td>88.5</td>
<td>-8.5</td>
</tr>
<tr>
<td>31</td>
<td>11.5</td>
<td>-3.5</td>
</tr>
<tr>
<td>32</td>
<td>28.5</td>
<td>-3.5</td>
</tr>
<tr>
<td>33</td>
<td>48.5</td>
<td>-3.5</td>
</tr>
<tr>
<td>34</td>
<td>68.5</td>
<td>-3.5</td>
</tr>
<tr>
<td>35</td>
<td>88.5</td>
<td>-3.5</td>
</tr>
<tr>
<td>41</td>
<td>11.5</td>
<td>6.5</td>
</tr>
<tr>
<td>42</td>
<td>28.5</td>
<td>6.5</td>
</tr>
<tr>
<td>43</td>
<td>48.5</td>
<td>6.5</td>
</tr>
<tr>
<td>44</td>
<td>68.5</td>
<td>6.5</td>
</tr>
<tr>
<td>45</td>
<td>88.5</td>
<td>6.5</td>
</tr>
<tr>
<td>51</td>
<td>11.5</td>
<td>16.5</td>
</tr>
<tr>
<td>52</td>
<td>28.5</td>
<td>16.5</td>
</tr>
<tr>
<td>53</td>
<td>48.5</td>
<td>16.5</td>
</tr>
<tr>
<td>54</td>
<td>68.5</td>
<td>16.5</td>
</tr>
<tr>
<td>55</td>
<td>88.5</td>
<td>16.5</td>
</tr>
</tbody>
</table>

Oorsprong = snijpunt van grensvlak zand/grind met bovenstrooms rooster en de achterwand

X - as: horizontaal
Z - as: vertikaal

benedenstrooms rooster: X = 107 cm

Tabel 1, Koordinaten van stijgbuisjes (achterwand)
Tabel 2, Samenvatting van meetresultaten van T1

<table>
<thead>
<tr>
<th>stapnummer</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>verhang (-)</td>
<td>0.05</td>
<td>0.10</td>
<td>0.14</td>
<td>0.19</td>
<td>0.18</td>
<td>0.14</td>
<td>0.14</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>filtersnelheid (mm/s)</td>
<td>10.2</td>
<td>16.1</td>
<td>20.0</td>
<td>24.6</td>
<td>28.6</td>
<td>23.3</td>
<td>19.7</td>
<td>20</td>
<td>24.1</td>
</tr>
<tr>
<td>transport (g/m)</td>
<td>0</td>
<td>0.36</td>
<td>2.8</td>
<td>8.9</td>
<td>3.1</td>
<td>0.54</td>
<td>0.12</td>
<td>1.9</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 3, Samenvatting van meetresultaten van T2

<table>
<thead>
<tr>
<th>stapnummer</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>verhang (-)</td>
<td>0.10</td>
<td>0.21</td>
<td>0.25</td>
<td>0.29</td>
<td>0.48</td>
<td>0.30</td>
<td>0.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>filtersnelheid (mm/s)</td>
<td>6.2</td>
<td>11.3</td>
<td>13.1</td>
<td>14.4</td>
<td>19.4</td>
<td>22.6</td>
<td>14.4</td>
<td>18.7</td>
<td></td>
</tr>
<tr>
<td>transport (g/m)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.37</td>
<td>2.1</td>
<td>4.3</td>
<td>7.1</td>
<td>1.9</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Tabel 4, Samenvatting van meetresultaten van T3

-15-
WEEG OPSTELLING FILTERBAK
MATERIAAL: PLEXIGLAS
WATERLOOPKUNDIG LABORATORIUM
ZEEFKROMME VAN ZAND

WATERLOOPKUNDIG LABORATORIUM

H 869

FIG. 3
ZEEFKROMME VAN GRIND

WATERLOOPKUNDIG LABORATORIUM

H 869 FIG. 4
\[V_i (\text{mm/s}) \]

\[i (\text{\%}) \]

- \(o \) = T1 (\(D_{115} = 7.0 \text{ mm} \); \(n = 0.39 \))
- \(□ \) = T2 (\(D_{115} = 7.0 \text{ mm} \); \(n = 0.39 \))
- \(x \) = T3 (\(D_{115} = 3.4 \text{ mm} \); \(n = 0.41 \))
TRANSFERT ALS FUNKTIE VAN DE TIJD

WATERLOOPKUNDIG LABORATORIUM

T1

H 869 FIG. 6
TRANSPORT ALS FUNKTIE VAN DE TIJD

S (gr/s/m)

T2

WATERLOOPKUNDIG LABORATORIUM

H 869 FIG 7
Metingen

T_2

- \square = meting uit onafgebroken reeks
- \times = meting na onderbreking

TRANSPORT ALS FUNKTIE VAN FILTERSNELHEID

WATERLOOPKUNDIG LABORATORIUM

T 2

H 869 FIG. 10
Metingen
T3

transport (gr/s)

filtersnelheid (mm/s)

TRANSPORT ALS FUNKTIE VAN FILTERSNELHEID

WATERLOOPKUNDIG LABORATORIUM

H 869 FIG. 11
hoofdkantoor
Rotterdamseweg 185
postbus 177
2600 MH Delft
telefoon (015) 56 93 53
telefax (015) 61 96 74
telex 38176 hydel-nl

locatie ‘De Voorst’
Voorsterweg 28, Marknesse
postbus 152
8300 AD Emmeloord
telefoon (05274) 29 22
telefax (05274) 35 73
telex 42290 hylvo-nl