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Single atom detection is of key importance to solving a wide range of scientific and technological
problems. The strong interaction of electrons with matter makes transmission electron microscopy one of
the most promising techniques. In particular, aberration correction using scanning transmission electron
microscopy has made a significant step forward toward detecting single atoms. However, to overcome
radiation damage, related to the use of high-energy electrons, the incoming electron dose should be kept
low enough. This results in images exhibiting a low signal-to-noise ratio and extremely weak contrast,
especially for light-element nanomaterials. To overcome this problem, a combination of physics-based
model fitting and the use of a model-order selection method is proposed, enabling one to detect single
atoms with high reliability.

DOI: 10.1103/PhysRevLett.121.056101

Nanomaterials have attracted increasing scientific interest
because their exact atomic structure may lead to interesting
and unexpected physical and chemical properties. Therefore,
precise structure determination is crucial to fully under-
standing the structure-properties relation of these materials.
Because of several important developments in aberration
correction technology [1–3], transmission electron micros-
copy imaging has become an excellent technique to visualize
nanomaterials down to subangstrom resolution and thereby
solve challenging problems in materials science [4–12].
Precise structure information can be obtained by fitting a

physics-based model to the image data. This quantitative
model fitting approach is generally referred to as a statistical
parameter estimation [13–16]. When applied to annular
dark-field (ADF) scanning transmission electron microscopy
(STEM) projection images of crystalline nanomaterials, an
important assumption is that the number of atomic columns
is known. For materials that are stable under the electron
beam, this number can usually be determined visually from
atomic resolution images. For beam-stable materials, the
electron dose can indeed be chosen sufficiently large to
ensure a high enough signal-to-noise ratio (SNR) and high
contrast, enabling one to visualize the individual atomic
columns. However, for radiation-sensitive and light-element
nanomaterials, the incoming electron dose should be kept
sufficiently low to avoid radiation damage. As a conse-
quence, the images exhibit a relatively low SNR, and in
addition, they show weak contrast [17]. Both aspects cause
the images to possess low contrast-to-noise ratio (CNR)

values. Local fluctuations of the background or differences
in column thickness or composition can cause each atomic
column to possess an individual CNR value. The CNR value
of the column with the lowest intensity present in an image
is referred to as the so-called minimum column CNR of
the image. It is defined as the ratio of the total intensity of
electrons scattered by the column, the so-called scattering
cross section [16,18–20], to the square root of the sum of the
scattering cross section and the integrated background under
the column. In the absence of a priori knowledge, visual
inspection of low CNR images will lead to biased structure
information. To overcome this problem, the maximum
a posteriori (MAP) probability rule is proposed in this
Letter as an alternative, automatic, and objective method for
single atom detection from low CNR electron microscopy
images.
Statistical parameter estimation theory makes use of the

fact that the observed image pixel values can be related to
physical quantities or parameters. Often, this relationship
between the parameters and the pixel values can be described
by a mathematical expression or model, which is derived
from physical laws. If such first-principles-based models
cannot be derived or are too complex, simplified empirical
models may be used. To extract quantitative structure
information from atomic-resolution STEM images, a super-
position of Gaussian functions which are peaked at the
atomic column positions has been shown to provide reliable
results [16,18,21–26]. The model parameters that need to
be estimated include a constant background and the peak
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intensities, widths, and coordinates of all atomic columns in
the image. This is opposed to other maximum-likelihood
methods, where estimation is performed on the level of
single pixels [27,28].
In order to reliably quantify the number of atomic

columns, the MAP probability rule is introduced to select
the most probable number of atomic columns and hence the
number of Gaussian functions needed. This model-order
selection criterion is a direct consequence of Bayes’
theorem, which allows one to write the probability of a
certain event in terms of conditions that can be related to
that event [29,30]. Interestingly, MAP probability is
claimed to be an optimal selection rule in the sense that
it maximizes the probability of correctly detecting the
model order [31,32]. In our case, the MAP probability rule
can be written as

pðNjwÞ ¼ pðwjNÞpðNÞ
pðwÞ ; ð1Þ

where pðNjwÞ denotes the posterior probability of the
presence of N atomic columns in the image given the
observed image pixel values w. The MAP probability rule
will select the number N that maximizes pðNjwÞ. The term
pðwjNÞ reflects the probability that the image data are
generated by N atomic columns. The probability pðNÞ
expresses prior knowledge of the number of atomic
columns present in the image. Assuming there is no a priori
preference for any number of columns, pðNÞ can be
described as a uniform distribution. The denominator gives
the probability of the image data irrespective of the
knowledge about N. Since the denominator does not
depend on N, it is omitted when comparing posterior
probabilities with different N. Approximate analytical
expressions for the MAP probability rule have been derived
in the domains of molecular spectroscopy [33–35] and
x-ray photoelectron spectroscopy (XPS) [36] by using
calculation rules from probability theory. The same
approach has been followed and an analogous analytical
expression can be derived for ADF STEM when approxi-
mating the Poisson distribution, describing the number of
detected electrons falling onto the detector, by a normal
distribution [37,38]. This approximation will already hold
for a low number of detected electron counts per pixel. For
Gaussian functions, an approximate analytical expression
for the MAP probability rule is given by

pðNjwÞ ∝ N!ð4πÞ2Ne−χ2min=2

½ðηmax − ηminÞðρmax − ρminÞ�N

×
½detð∇∇χ2Þ�−1=2

½ðβxmax
− βxmin

Þðβymax
− βymin

Þ�N ; ð2Þ

in which χ2min is the minimum weighted sum-of-squared-
residuals misfit between the data and the parametric model

and detð∇∇χ2Þ is the determinant of the Hessian matrix
evaluated at χ2min. In this derivation, the weights are chosen
to be equal to the experimental image pixel values. The
symbols ρ, η, and (βx, βy) refer to the width, intensity,
and coordinates of the Gaussian functions, respectively.
The subscripts “max” and “min” refer to predefined
maximum and minimum values for the corresponding
parameter.
As a first example, the MAP probability rule is verified

by analyzing an experimental high-angle annular dark-
field (HAADF) STEM image of a material with known
structure, SrTiO3. Images have been recorded by using a
probe-corrected FEI Titan, operated at 300 kV. The
HAADF regime has been selected by using a semi-
convergence angle of 21.3 mrad and a detector collection
range of 58–197 mrad. A high CNR image is used as
reference and is shown in Fig. 1(a). From this image, the
brighter Sr columns and darker Ti-O columns are easily
recognizable. The inset indicates the locations of both
types of columns. Figure 1(b) shows a noisier counterpart
of the inset of Fig. 1(a) with an electron dose 100 times
lower. The dose was varied by defocusing the mono-
chromator. Figure 1(c) shows the evaluation of the MAP
probability rule for the image pixel values shown in
Fig. 1(b) for an increasing number of atomic columns.
Since the width of an atom column is mainly determined
by the finite source size and to a lesser extent by the atom
type [39], a parametric model described by a super-
position of Gaussian functions with equal widths has
been used. From Fig. 1(c), it follows that the presence
of 13 atomic columns is most probable, corresponding to
the expected crystal structure in the [100] direction.
Moreover, the MAP probability rule also provides a
quantitative statement of how much more probable a
certain number of columns is as compared to another
number. Indeed, from Fig. 1(c) it can be derived that the
probability of the presence of 13 atomic columns is
around 63 times larger than that of 12 columns, and
around 3 times larger than that of 14 columns. Figure 1(d)
shows a synthetic ADF image of graphene obtained from
an experimental 4D STEM data set with an acceleration
voltage of 80 kV, a semiconvergence angle of 24.8 mrad,
and a detector collection range of 26–50 mrad. Figure 1(e)
shows the evaluation of the MAP probability rule to detect
the C atoms of graphene from the low contrast data in
Fig. 1(d), using a parametric model described by a
superposition of Gaussian functions with equal widths.
The most probable parametric model is shown in Fig. 1(f),
clearly resolving the hexagonal lattice of graphene. It
should be noted that the MAP probability rule obtained the
expected structures of SrTiO3 and graphene from images
with minimum column CNRs of only 5.2 and 6.1, respec-
tively, for which an ordinary peak-finding routine, which
searches for local maxima in the image by choosing an
arbitrary threshold [16], failed. By changing the threshold,
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one can obtain a better result, but this approach relies heavily
on visual inspection, which will lead to biased structure
information. Moreover, the MAP probability rule has been
applied without introducing any prior knowledge concerning
the atomic structure or chemical composition of SrTiO3 or
graphene. Calculations were performed using a single work-
station, resulting in a computation time of approximately
1 hour for the analysis of the SrTiO3 image and approx-
imately 11 hours for the graphene image.
As a next example, the method has been applied to both

an experimental and a simulated HAADF STEM image of a
Au nanorod. The experimental image is shown in Fig. 2(a)
and was obtained by a double-aberration-corrected FEI
Titan operated at 300 kV with a semiconvergence angle of
21.8 mrad and a detector collection range of 62–190 mrad
[19]. It is noted that, due to the electron beam, surface
atoms especially might not stay in the same position during
the image acquisition [40]. The MAP probability rule has
been used to identify the presence of atoms near the edge,
which are difficult to detect visually. In this region the rod is
only a few atoms thick, which, in combination with the
relatively low incoming electron dose, leads to a low CNR.

The following two-step procedure is suggested to deter-
mine the most probable structure of the Au nanorod. First,
an ordinary peak-finding routine is applied on the image.
This routine is able to quickly detect most of the thicker
columns, but it has difficulties in correctly detecting atoms
near the edge of the particle. Therefore, the MAP proba-
bility rule is applied to investigate the presence of atomic
columns near the edge. The total intensity under a Gaussian
function in the model has been chosen to be at least the total
intensity scattered by a single Au atom, obtained from
simulation with the MULTEM software [41,42]. In this way,
a specific value is assigned to ηmin in expression (2).
Furthermore, in order to take thickness fluctuations in the
carbon support into account, the edge has been divided into
different subregions. Their sizes have been selected such
that the background in each subregion can adequately be
modeled as a constant. This is the case when the size of a
subregion is not larger than the maximum distance hmax
upon which the variability of the background does not
affect atom detection. The so-called variogram γðhÞ is a
measure of the variability of the background as a function
of distance h [43]. As a rule of thumb, the size of each

FIG. 1. (a) HAADF image of SrTiO3 [100] with an incoming electron dose of ð9.1� 0.4Þ × 105 e−=Å2 and a minimum column CNR
of 71.6. The region indicated by the square has been magnified in the inset, where Sr columns and Ti-O columns are indicated in red and
green, respectively. (b) Noisier counterpart of the inset in (a) with an incoming electron dose of ð1.08� 0.05Þ × 104 e−=Å2 and a
minimum column CNR of 5.2. (c) MAP probability rule evaluated for the experimental data shown in (b). Refined models with
optimized parameters are shown in the inset, taking into account 12, 13, and 14 atomic columns, where the most probable parametric
model is the one containing 13 atomic columns, as indicated by the MAP probability rule. (d) Synthetic ADF image of graphene
obtained from an experimental 4D STEM data set with an incoming electron dose of around 3 × 105 e−=Å2 and a minimum column
CNR of around 6.1. (e) MAP probability rule evaluated for the experimental data shown in (d). (f) Most probable parametric model of
the experimental data in (d) as indicated by the MAP probability rule in (e).
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subregion should obey Δγ ≤ η2min=32, which holds for the
selected size of 10 Å by 10 Å. The result of the analysis is
shown in Fig. 2(b). Columns in red have been found by the
ordinary peak-finding routine. Columns in yellow have
been detected by both the ordinary peak-finding routine
and the MAP probability rule. Columns in green have been
detected by the MAP probability rule only. It should be
noted that at the edge, there were no columns found by the
ordinary peak-finding procedure which were not detected
by the MAP probability rule. For radiation-sensitive materi-
als, the incoming electron dose should be kept as low as
possible. To illustrate the possibilities of the MAP proba-
bility rule when applied to low-dose images, a 10-nm-thick
Au nanorod has been simulated using MULTEM with an
acceleration voltage of 200 kV, a semiconvergence angle of
24 mrad, a detector collection range of 60–165 mrad, and
Gaussian source size broadening with a FWHM of 0.7 Å. In
order to make the simulation more realistic, the structure has
been fully relaxed by using molecular dynamics simulations
employing the embedded atom method (EAM) potential
[44] with the GPU Lammps package [45–47]. Figure 2(c)
shows the simulated Au nanorod with an incoming electron

dose of 5000 e−=Å2. For the analysis, the background has
been set to zero, since no carbon support is present in the
simulation and the edge has been divided into 49 equal
subregions to speed up the calculations. Figure 2(d) shows
the detected atomic columns. From this analysis, it follows
that all present atom columns have been detected and that
only one extra atom has been found at a position where the
simulation did not include an atom. This atom is indicated by
the blue arrow shown in Fig. 2(d). This probability for over-
or underfitting is an inherent limitation of model-order
selection methods and will in general increase with decreas-
ing CNR. However, the present example demonstrates the
excellent performance of the MAP probability rule when
analyzing a low CNR image. Moreover, it can be seen from
Figs. 2(b) and 2(d) that a substantial amount of atom
columns would not have been detected in the absence of
the MAP probability rule. This is an important result, since it
is well known that the exact surface morphology of nano-
particles can influence their physical properties.
The MAP probability rule is also of great importance to

detecting single atoms in ultrasmall nanoclusters. Such
clusters can be thought of as fundamental building blocks
leading to metamaterials with physical and chemical
properties that are not available in nature [48,49]. The
growth mechanisms for small nanoclusters are much more
exotic than for bulk materials and therefore have a more
complex structure. A series of HAADF STEM images of a
small Ge cluster is shown in Figs. 3(a), 3(c), and 3(e). The
clusters have been imaged using a double-aberration-
corrected FEI Titan operated at 120 kV, and the beam
current was set to 40 pA [50]. The MAP probability rule in
combination with atom counting [51] can be used to verify
whether there is no loss of atoms during the acquisition of
the series of the images. In this analysis, one should,
however, take into consideration that displacements of
individual atoms are possible due to the interaction with
the electron beam [40]. This may cause atoms to move in or
out of the field of view. The MAP probability rule is used to
determine the most probable structure of the cluster, using
the intensity of a single Ge atom as prior knowledge,
obtained from an image simulation with MULTEM. The most
probable parametric models are shown in Figs. 3(b), 3(d),
and 3(f), where the dots refer to estimated column posi-
tions. The volumes under the estimated Gaussian peaks are
calculated to count the number of atoms in a column [51].
As compared to earlier results obtained by detecting atom
columns by visual inspection of the images [50], the MAP
probability rule detects more peaks, whereas the total
number of atoms in each of the individual frames remains
almost constant. The extra peaks correspond to atoms
which are not perfectly aligned along the beam direction.
This suggests that the MAP probability rule is able to
disentangle strongly overlapping peaks, resulting in more
accurate structure information as compared to visual
inspection. This is of great importance to fully understand
the dynamics of such a small nanocluster.

FIG. 2. (a) Experimental HAADF image of a Au nanorod with
an incoming electron dose of around 2 × 105 e−=Å2 and a
minimum column CNR of around 11.1. (b) Most probable atomic
columns detected from (a) by a combination of an ordinary peak-
finding routine and the MAP probability rule near the edge of the
rod, where columns in red have been detected by the ordinary
peak-finding routine, columns in yellow by both the ordinary
peak-finding routine and the MAP probability rule, and columns
in green by the MAP probability rule only. (c) Simulated HAADF
image of a Au nanorod with the presence of Poisson noise with an
incoming electron dose of 5000 e−=Å2 and a minimum column
CNR of 8.9. (d) Most probable atomic columns detected from (c),
where the arrow indicates an atom detected at a position where no
atom was present.
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In conclusion, the MAP probability rule has been
introduced to detect single atoms from low CNR
STEM images. By combining parameter estimation and
model-order selection, the most probable atomic structure
of unknown nanomaterials can be determined in an
automatic and objective manner. This information is of
great importance for the analysis of radiation-sensitive
and light-element nanostructures, where a visual inspec-
tion of images may lead to biased results. In addition,
the MAP probability rule enables one to quantify how
much more likely the result is as compared to other
atomic structures. The validity and usefulness of the MAP
probability rule has been demonstrated to experimental
and simulated ADF STEM images of samples of arbitrary
shape, size, and atom type. The MAP probability rule
has been implemented in the freely available StatSTEM
software [16].
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