Rainbowen

van medium en grof zand

Afstudeerverslag
Simon Han Burgmans
2003
Rainbowen

van medium en grof zand

HAM317 in Dubai op Palm Island aan het rainbowen

S.H. Burgmans, 2003

Rapport:
TU-Delft
Ballast Ham Dredging bv.

Dit rapport is eigendom van deTechnische Universiteit Delft en Ballast Ham Dredging bv. De industriële eigendomsrechten van dit rapport zijn in handen van Ballast Ham Dredging bv.
Titelpagina

Titel: Rainbowen
Ondertitel: van medium en grof zand
Document soort: Afstudeerverslag
Universiteit: Technische Universiteit Delft
Faculteit Civiele Techniek
Sectie Waterbouwkunde
Bedrijf: Ballast Ham Dredging bv.
Bedrijfsbureau
Research, Development en Engineering
Afstudeercommissie: Ir. H. Oostinga BHD RDE
Ir. J.P. Oostveen TU CT
Dr. ir. C. Van Rhee TU WBMT / BHD RDE
Ir. G.L.M Van der Schrieck TU CT
Prof. dr. ir. M.J.F. Stive TU CT
Dr. ir. P.J. Visser TU CT
Afstudeerder: Ing. S.H. Burgmans
Datum uitgave: donderdag 20 maart 2003
Voorwoord

Dit verslag is geschreven voor het afstudeerproject (CT5060) ter afsluiting van de opleiding aan de Technische Universiteit Delft, faculteit Civiele Techniek, sectie Kustwaterbouwkunde.

Als jong ingenieur ben je op zoek naar een balans tussen theorie en praktijk. Door binnen een bedrijf af te studeren, enige werkervaring te hebben en de HTS te hebben afgerond, heb ik geprobeerd de theorie en praktijk elkaar te laten ontmoeten in dit afstudeerwerk.

Tenslotte wil ik het bedrijf Ballast Ham Dredging bv. hartelijk bedanken voor het laten uitvoeren van de afstudeeropdracht. Mede de prettige werksfeer op het bedrijfsbureau heeft er voor gezorgd dat de opdracht met plezier werd voltooid.

Rotterdam, 2003

Simon Han Burgmans
Samenvatting

De sleephopperzuiger is een vrijvarend schip dat natte grond verzet. De sleephopperzuiger kan zijn lading lossen door deze via de boeg door een nozzle (tromp) te lanceren. Deze losmethode heet rainbowen. Rainbowen van medium en grof zand is gebruikelijk, wat wil zeggen een korreldiameter van 200 μm tot 2000 μm. Bij rainbowen bestaat er grote onbekendheid over de plaatsingslocatie van het zand. Deelprocessen van het proces rainbowen zijn onvoldoende beschreven en gekwantificeerd. Er zijn geen modellen beschikbaar om een voorspelling te geven over de bij rainbowen gegenereerde zandlichamen. In dit verslag wordt een beschrijving gegeven en een rekenmodel ontwikkeld waarmee mogelijke voorspellings gedaan kunnen worden van het losproces rainbowen. De procesonderdelen van het rainbowen zijn geometrisch onder te verdelen in: A. schip, B. straal en C. stort.

A. Aan boord van het schip wordt de mengselstroom door een tromp gelanceerd. De vorm van de tromp heeft invloed op de straal.

B. Na de lancering van de mengselstroom uit de tromp, beweegt de mengselstroom enkele tientallen meters door de lucht in de vorm van een straal. Modellen voor de voorspelling van de straal zoals de wrijvingsloze kogelbaan benadering en een brandweerstralen model nemen onvoldoende de wrijving mee. Om een correctere voorspelling te maken over de reikwijdte van de straal blijkt het van belang te zijn om de hoeveelheid lucht die in de straal wordt opgezogen in de beschouwing mee te nemen. Wanneer rekening wordt gehouden met de opname van lucht in de straal dan blijkt dat de optimale trompboek van de grootste spuitafstand ongeveer 30 à 35° te zijn. Bij een puur ballistische benadering is deze 45°. Voornamelijk wordt de mengselstroom bij een trompboek van 30 à 35° beter het talud opeduw door de kleinere hoek van inslag met de horizontaal.

C. Bij de aankomst van de straal op het stort wordt een ontgrondingskuil gevormd. Bestaande modellen voor de ontgrondingskuil gaan uit van een straal zonder lucht. In de praktijk blijkt dat de ontgrondingskuil als gevolg van de lucht in de straal aanmerkelijk minder diep is dan berekend met een straal zonder lucht. Uit deze modellen blijkt wel dat de ontgrondingskuil diepe afneemt naarmate de straal onder een kleinere hoek met de horizontaal (schuiner) aankomt.

Na de ontgrondingskuil gaat de mengselstroom over het talud van het stort stromen. Door de eigenschappen van de mengselstroom zoals de korreldiameter en de concentratie, worden korrels niet alleen gedragen door vloeiistof, maar ook door onderlinge korrrel-korrrel contact. Er treden in de mengselstroom zowel viskeuze- als korrelspanningen op. In een 1D model zijn naast de turbulente ook de korrelspanningen opgenomen. De snelheden van de zandwater mengselstroom welke hierbij berekend worden blijken erg klein te zijn. Voor kalibratie en validatie van het 1D model is nader onderzoek nodig.

Tevens is er een verticaal geïntegreerd 2D model opgesteld voor de zandwater mengselstroom, waarin de invloed van de korrelspanning is opgenomen. Bij het opstellen van de vergelijkingen van dit model kan de invloed van de korrelspanning echter niet eenduidig ingevoerd worden. Het bestaande rekenmodel voor de mengselstroming, maakt gebruik van een erosiemodel dat is gevalideerd met proefresultaten van ongeveer 200 μm zand. Ook de formule voor de entrainment is alleen voor ongeveer 200 μm zand gevalideerd. Voor medium en grof zand moeten deze formuleringen nog gevalideerd worden en waarschijnlijk aangepast/gerhizen. Door de grotere korreldiameter van het zand in de mengselstroom zijn de vergelijkingen van de processen erosie en entrainment ongevalideerd. Door de onbekendheid van deze processen is het 2D verticaal geïntegreerd model nog niet compleet. In het voorgaande 2D model is gebruik gemaakt van een impulsbalans.
Om de mengselstroom te beschrijven kunnen ook riviertransportvergelijkingen worden gebruikt. De transportvergelijking, welke in alleen geschikt is voor bodemtransport is door de afwezigheid van zwevend transport het meest geschikt. De bodemtransport vergelijking van Van Rijn, welke een grotere mate gebruik maakt van de invoer van fysische parameters is favoriet. Echter de vergelijking van Van Rijn reageert heftig bij variatie van de parameters van de zandwater mengselstroom (breedte en diepte) van het rainbowen en is daardoor niet geschikt voor een nadere analyse. Als de mengselstroom van het talud afstroomt, treedt overwegend sedimentatie op. De lengte waarover het sediment bezinkt is gedefinieerd als de sedimentatielengte. Het is mogelijk om de zeeffromme van het zand in de berekening van de sedimentatielengte mee te nemen. Het model van de sedimentatielengte geeft aan dat er bij een goed gegradeerde korrelverdeling (vlakke zeeffromme) ontzetting/segregatie van de korrels optreedt.

Wereldwijd wordt rainbowen toegepast, ervaringen van verschillende projecten zijn samengevat. Van vier projecten zijn 170 dwarsprofieën inclusief de grondgegevens geanalyseerd. Daar uit kan geconcludeerd worden dat naarmate de korrel diameter toeneemt de helling steiler wordt, met minder spreiding om de trendlijn. Naast deze algemene kennis is ook praktijkervaring opgedaan op het project Palm Island in Dubai. Hier bleken vele in de theorie te verwachten verschijnselen ook in de praktijk op te treden:

- de invloed van de topoek van de tromp
- de verwachte sterke korrel diameter ontzetting op het stort blijkt ook een feit te zijn

Tot slot, dit verslag is deels een theoretisch pionierswerk op het gebied van rainbowen. Door de auteur zijn in de literatuur geen andere theoretische analyses gevonden van het rainbowproces als geheel. Wel zijn de procesonderdelen zoals de straal en de mengselstroing reeds in de literatuur bekend. Duidelijk is geworden dat de processen welke optreden bij rainbowen door voornamelijk turbulente- en korrelspanningen moeilijk te beschrijven zijn. Via nader onderzoek zouden deze processen beter kunnen worden beschreven, waardoor uiteindelijk het proces van het opbouwen van een zandlichaam door middel van rainbowen beter te beheersen en te voorspellen is.
Summary

The trailing suction hopper dredger is a free sailing ship which moves wet soil. The trailing suction hopper dredger can discharge her load from the bow through a nozzle (tromp), this unloading method is called rainbowing. Rainbowing with medium and coarse sand is common, which means particle sizes of 200 µm to 2000 µm.

With rainbowing there exists a big unfamiliarity with the placing location of the sand. Sub-processes of the process rainbowing are poorly described and quantified. There aren’t any other models available to predict the medium and coarse sand bodies given with rainbowing. In this report a description is given and a mathematical model is developed which can make predictions of the unloading method of rainbowing. The process parts of rainbowing are geometrical divided in: A. ship, B. jet and C. sandfill.

A. On board of the ship the water sand mixture is launched through a tromp. The shape of the tromp influences the jet.

B. After launching the mixture through the tromp, the mixture will move dozens of meters in the shape of a jet. Models for the prediction of the jet, like the none friction bullet trajectory approach and a fire brigade jet model, it takes the friction unsatisfactory along. To make a more correct prediction about the range of the jet it is important to take along the amount of air which is sucked in the jet in the model.

When the amount of sucked up air is included in the calculation, then the optimal tromp angle of the biggest jet range is about 30° to 35°. With a pure ballistic approach is 45° optimal. Mainly the mixture with a tromp angle of 30° to 35° is better pushed on the slope because of the smaller angle of impact with the horizontal.

C. By arrival of the jet on the sand fill an erosion hole is formed. Existing models of the erosion hole don’t include air in the jet. In practise the erosion hole depth is, in a consequence of the air in the jet, much smaller then calculated for a jet without air. From these models it turns out that the erosion hole depth decreases as the jet arrives under a smaller angle with the horizontal (slant).

After the erosion hole the mixture flows over the slope of the sand fill. Due to the properties of the mixture flow, such as the particle diameter and the concentration, the particles will not only be supported by the fluid, but also by particle-particle contact. In de mixture flow there will be both viscous stresses as particle stresses. In a 1D model there are next to the turbulent stress also particle stress included. The velocities of the sand water mixture flow which are calculated in the 1D model are very small. For calibration and validation of the 1D model further research is necessary.

Also a vertical integrated 2D model is formed for a sand water mixture flow, in which the influence of the particle stress is introduced. With forming the equations of this model the particle stress can not be clearly introduced. The existing mathematical model for the mixture flow makes use of an erosion model which is validated with test results of around 200 µm sand. Also the equation of the entrainment is only for sand around the 200 µm. For medium and coarse sand the equations must be validated and maybe also be revised/adapted. Due to the bigger particle diameter of the sand in the mixture flow the equations of the processes erosion and entrainment are invalidated. Because of the uncertainty of these processes is the 2D model vertical integrated not yet complete. In this 2D model is an impulse balance used.

The mixture flow can also be described with river transport equations. The transport equation, which is only suitable for bottom transport due to the absent of the suspended transport, is most suitable. The bottom transport equation of Van Rijn, which uses many physical parameters is favourite. However the equation of Van Rijn violently reacts on the variation of the parameters of the sand water mixture flow (width and depth) of rainbowing and is because of that reason not suitable for further analyses.

When the mixture flows from the slope mainly sedimentation occurs. The length where over the sediment settles is defined as the sedimentation length. It is possible to take the
particle size distribution (PSD) into account. The model of the sedimentation length shows for a well-graded particle size distribution (flat PSD) segregation of the particles on the sand fill.

Worldwide rainbowing is used, these experiences are summarized for several projects. From four projects 170 cross profiles were collected with ground data and they were analysed. As the particle size increases the scatter round the trend line reduces. With this general experience there has been data gained from a project called Palm Island in Dubai. Here several phenomena could be theoretically explained, such as: the top angle of the nozzle (tromp) which is qualitatively described in the report and recognized in reality, the expected powerful segregation on the sand fill was also a fact.

This report is a theoretically pioneer work in the field of rainbowing. By the author there are no other theoretical analyses found about rainbowing. Clearly it is discovered that the processes of rainbowing are due to the turbulent and particle stresses difficult to describe. Further research should describe these processes better, whereby in the end the process of rainbowing can be better controlled and predicted.
Inhoudsopgave

Voorwoord .. 3
Samenvatting ... 4
Inhoudsopgave ... 8
Lijst van figuren .. 11
Lijst van tabellen .. 12
Symbolenlijst .. 13
Kengetallen en definities ... 16
Inleiding ... 18

1. INTRODUCTIE ... 19
 1.1. ACHEERGRONDINFORMATIE ... 19
 1.1.1. Sleephopperzuiger .. 19
 1.1.2. Rainbowen ... 20
 1.2. PROBLEEMANALYSE ... 22
 1.2.1. Probleembeschrijving .. 22
 1.2.2. Probleemstelling ... 22
 1.2.3. Doelstelling ... 22
 1.3. LEESWIJZER .. 23

2. PROCESANALYSE .. 25
 2.1. STORT .. 25
 2.1.1. Waterspiegel .. 25
 2.1.2. Zand-lucht-waterkolom .. 26
 2.1.3. Ontgrondingskuil ... 27
 2.1.4. Onderwaterstort ... 30
 2.1.4.1. Suspensie of korrelstroming ... 31
 2.1.4.2. Wrijving ... 35
 2.1.4.4. Geulbreedte ... 35
 2.1.4.3.1. Scenario I .. 36
 2.1.4.2. Scenario II & III .. 38
 2.1.4.4. Mengselstroom ... 39
 2.1.4.5. Evenwichtshelling .. 41
 2.1.4.6. Sedimentatielengte ... 43
 2.1.4.7. Macroprocessen .. 44
 2.1.5. BOVENWATERSTORT .. 45
 2.1.5.1. Evenwichtshelling .. 45
 2.1.5.2. Mengselstroom ... 46
 2.1.5.3. Bulldozer .. 46
 2.2. STRAAL .. 48
 2.2.1. Ballistiek .. 48
 2.2.2. Waterstraal .. 49
 2.2.3. Mengselstraal .. 52
 2.3. SCHIJF ... 54
 2.3.1. Pomp en aandrijving .. 54
 2.3.2. Boordleiding .. 54
 2.3.3. Tromp .. 55

3. TURBULENTE- EN KORRELSPANNINGEN IN EEN ZANDWATER-STROMING 57
 3.1. SNELHEIDSPROFIEL ... 57
 3.2. CONCENTRATIEPROFIEL ... 61
 3.3. BODEMTRANSPORT ... 64
 3.4. DISCUSSIE ... 65

4. MODELLEREN ... 66
 4.1. ALGEMENE AANNAMES ... 66
 4.1.1. Fysische aannames ... 66
4.1.2 Aannames omtrent natuurlijke factoren .. 66
4.1.3 Praktische uitgangspunt ... 66
4.2. STRAAL ... 67
 4.2.1 Ballistiek .. 67
 4.2.2 Hatton ... 67
 4.2.3 Luchtentrainment .. 67
4.3. STORT ... 68
 4.3.1 Ontgrondingskuil ... 69
 4.3.2 Spreiding ... 72
 4.3.3 Evenwichtstroom ... 72
 4.3.4 Geulbreedte .. 73
 4.3.5 Evenwichtsheiling .. 73
 4.3.6 Mengselstroom ... 75
 4.3.7 Sedimentatielengte ... 77

5. MODEL RESULTATEN .. 79
 5.1. STRAAL ... 79
 5.2. ONTGRONDINGSKUIL .. 81
 5.3. EVENWICHTSHEILING .. 81
 5.4. SEDIMENTATIELENGTE .. 85
 5.5. DISCUSSIE .. 88

6. PRAKTIJKANALYSE ... 89
 6.1. WERELDWID .. 89
 6.1.1 Onderwater taludhelling .. 89
 6.1.2 Sedimentatielengte .. 90
 6.1.3 Discussie .. 91
 6.2. PALM ISLAND .. 91
 6.2.1 Trip 411 Volvox Delta .. 91
 6.2.1.1. Taludhellingen ... 92
 6.2.1.2. Vorm van het stort .. 94
 6.2.2 Trip 431 HAM317 .. 97
 6.2.2.1. Vorm van het stort .. 98
 6.2.2.2. Ontgrondingskuil ... 102
 6.2.2.3. Sedimentatielengte en segregatie 102
 6.2.3 Interview ... 104
 6.3. CONCLUSIES EN AANBEVELINGEN .. 104

7. CONCLUSIES EN AANBEVELINGEN ... 106
 7.1. CONCLUSIES ... 106
 7.1.1 Schip ... 106
 7.1.2 Straal ... 106
 7.1.3 Ontgrondingskuil .. 106
 7.1.4 Stort ... 106
 7.2. AANBEVELINGEN .. 107
 Literatuurlijst ... 108
 Appendices ... 113
 Appendix A Pomp en aandrijving 114
 Appendix B Afleiding evenwichtsheiling 116
 Appendix C Minimale geulbreedte 122
 Appendix D Zandverlies .. 125
 Appendix E Afleiding entrainment 128
 Appendix F Wrijvingsoëfficiënt 130
 Appendix G Sedimentatielengte 134
 Inhoudsopgave Annex .. 136
 Annex 1 Kwantificering Pluimmechanisme 137
 Annex 2 Beddingvorm ... 138
 Annex 3 Zand classificatie .. 139
 Annex 4 Relaties rivieren ... 140
<table>
<thead>
<tr>
<th>Annex</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Balansen</td>
<td>141</td>
</tr>
<tr>
<td>6</td>
<td>Sedimentatielengte</td>
<td>142</td>
</tr>
<tr>
<td>7</td>
<td>Stabiliteit straal</td>
<td>143</td>
</tr>
<tr>
<td>8</td>
<td>Wrijvingscoëfficiënt (C_D) tegen korrel Reynoldsgetal (Re_p)</td>
<td>144</td>
</tr>
<tr>
<td>9</td>
<td>Berekening MSeep</td>
<td>145</td>
</tr>
<tr>
<td>10</td>
<td>Dempingsfuncties</td>
<td>149</td>
</tr>
<tr>
<td>15</td>
<td>Data van projecten</td>
<td>162</td>
</tr>
<tr>
<td>16</td>
<td>Grondgegevens projecten</td>
<td>163</td>
</tr>
</tbody>
</table>
Lijst van figuren

figuur 1.1 Cyclus van een sleepopperzuiger.................................20
figuur 1.2 Sleepopperzuiger Rotterdam aan het rainbowen..................21
figuur 1.3 Tijd benodigd bij verschillende losmethoden......................21
figuur 1.4 Structuur verslag...23
figuur 2.1 Stortprocessen onder en boven water.............................25
figuur 2.2 Zand-water-luchtkolom..27
figuur 2.3 Ontgrondingskuil voor verticale jet..................................28
figuur 2.4 Regimes Bagnold..32
figuur 2.5 Laagdiktes en snelheden van korrelstromen........................34
figuur 2.6 Terrasvorm bodemprofiel...35
figuur 2.7 Scenario's voor het gedrag van de zandwaterdichtheidsstroom..36
figuur 2.8 Invloed wandschuijspansing op geulbreedte.........................38
figuur 2.9 Controlegebied massabalansvergelijking................................38
figuur 2.10 Krachtnspel korrelstroom..41
figuur 2.11 Sedimentatielengte en lengte van zandtalud.......................43
figuur 2.12 Driehoek met scala aan mogelijkheden van zettingsvloeiing....44
figuur 2.13 Stadia I t/m III van zettingsvloeiing.............................45
figuur 2.14 Gemiddelde relatieve porositetswaarden (V.O.U.B., 1998)......47
figuur 2.15 Ballistiek rainbowen..48
figuur 2.16 Invloed van vrijing op de baan van een straal........................49
figuur 2.17 Schematisatie straal..51
figuur 2.18 Straal van rainbowen...52
figuur 2.19 Schets krachtnspel in een bocht......................................54
figuur 2.20 Schematisatie tromp..55
figuur 3.1 Krachtnbalans korrel..61
figuur 3.2 Invloed van de gradiënt korrel normaalspanningen op een korrel..62
figuur 4.1 Gebiedsverdeling van het stort...69
figuur 4.2 Schematisatie bovenaanzicht ontgrondingskuil......................70
figuur 5.1 Modellen van de straal..79
figuur 5.2 Luchtentrainment model waarbij de tromp hoek (α) is gevarieerd..80
figuur 5.3 Tangentiële impuls van de straal op het stort......................81
figuur 5.4 Helling korrelstromen..82
figuur 5.5 Evenwichtshelling bodemtransport van Van Rijn......................84
figuur 5.6 Evenwichtshelling bodem en zwevendtransportvergelijking Engelund Hansen..85
figuur 5.7 Sedimentatielengte van Sri Lanka.......................................87
figuur 5.8 Sedimentatielengte van Palm Island W7...............................87
figuur 6.1 Gerealiseerde taludhellingen over de wereld met een dso........89
figuur 6.2 Gerealiseerde taludhellingen over de wereld met een dmf........90
figuur 6.3 Stortlocatie van Volvox Delta..91
figuur 6.4 Locatie straal Volvox Delta...92
figuur 6.5 Hellingen over de breedte van het stort van de Volvox Delta....92
figuur 6.6 Schematisatie bovenaanzicht stort Volvox Delta.....................93
figuur 6.7 Stort Volvox Delta...93
figuur 6.8 Insurvey stort Volvox Delta..94
figuur 6.9 Uitsurvey stort Volvox Delta..95
figuur 6.10 Verschil in- en uitsurvey stort Volvox Delta.........................95
figuur 6.11 Bovenaanzicht in- en uitsurvey stort Volvox Delta.................96
figuur 6.12 Stortlocatie HAM317..97
figuur 6.13 Locatie straal HAM317...98
figuur 6.14 Uitsurvey stort HAM317...99
figuur 6.15 Verschil in- en uitsurvey stort van de HAM317........................99
figuur 6.16 Bovenaanzicht in- en uitsurvey stort HAM317 .. 100
figuur 6.17 Zijaanzicht rainbowende Volvox Delta ... 101
figuur 6.18 Zijaanzicht rainbowende HAM317 .. 101
figuur 6.19 Het snelheidsprofiel van een stompe en scherpe tromp 101
figuur 6.20 Gemiddelde korreladius in een dwarsprofiel stort HAM317 103
figuur 6.21 Uitkomst theoretische sedimentatielengte ... 104
figuur 9.0.1 Invoer MSep ... 145
figuur 9.0.2 Resultaten MSep met snelheidvectoren en potentiëlvakken 145
figuur 9.0.3 Krachtenspel talud met uittredende grondwaterstroom 146
figuur 9.0.4 Effect grondwaterstroom op het talud ... 147
figuur 9.0.5 Grondwaterstroom in de teen van het bovenwatertalud 148

Lijst van tabellen

tabel 2-1 Samenvatting eigenschappen van de mechanismen ... 27
tabel 2-2 Bezijk mechanisms versus voorwaarden ... 45
tabel 3-1 Opsomming snelheidsprofielen .. 61
tabel 5-1 Dimensies sleeppopperzuigers bij rainbowen .. 83
tabel 5-2 Sedimentatielengte voor de verschillende projecten 86
tabel 6-1 Trip 411 Volvox Delta .. 97
tabel 6-2 Gemiddelde rainbow proces eigenschappen HAM317 98
tabel 6-3 Grondgegevens lading HAM 317 ... 103
Symboelenlijst

<table>
<thead>
<tr>
<th>Symbool</th>
<th>Beschrijving</th>
<th>Eenheid</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_i</td>
<td>coëfficiënt Bagnold</td>
<td>[]</td>
</tr>
<tr>
<td>A</td>
<td>oppervlakte</td>
<td>[m2]</td>
</tr>
<tr>
<td>A_b</td>
<td>stroomvoerend oppervlakte</td>
<td>[m2]</td>
</tr>
<tr>
<td>B</td>
<td>breedte</td>
<td>[m]</td>
</tr>
<tr>
<td>B_b</td>
<td>begin breedte geul</td>
<td>[m]</td>
</tr>
<tr>
<td>Ba</td>
<td>Bagnoldgetal</td>
<td>[-]</td>
</tr>
<tr>
<td>c</td>
<td>volume concentratie</td>
<td>[-]</td>
</tr>
<tr>
<td>c_c</td>
<td>cohesie</td>
<td>[N/m2]</td>
</tr>
<tr>
<td>c_i</td>
<td>volume concentratie van de fractie</td>
<td>[-]</td>
</tr>
<tr>
<td>c_t</td>
<td>volume concentratie totaal</td>
<td>[-]</td>
</tr>
<tr>
<td>C</td>
<td>Chezycoëfficiënt</td>
<td>[m$^{1/2}$/s]</td>
</tr>
<tr>
<td>C_D</td>
<td>wrijvingscoëfficiënt</td>
<td>[-]</td>
</tr>
<tr>
<td>C_N</td>
<td>vorm wrijvingscoëfficiënt</td>
<td>[-]</td>
</tr>
<tr>
<td>C_1</td>
<td>coëfficiënt Regime theorie</td>
<td>[-]</td>
</tr>
<tr>
<td>d</td>
<td>korrel diameter</td>
<td>[m]</td>
</tr>
<tr>
<td>D</td>
<td>diameter</td>
<td>[m]</td>
</tr>
<tr>
<td>D_A</td>
<td>diameter straal inclusief lucht</td>
<td>[m]</td>
</tr>
<tr>
<td>D_a</td>
<td>dimensioloze korrel diameter</td>
<td>[-]</td>
</tr>
<tr>
<td>E</td>
<td>erosie</td>
<td>[kg/m2s]</td>
</tr>
<tr>
<td>E_D</td>
<td>dimensioloze entrainment parameter</td>
<td>[-]</td>
</tr>
<tr>
<td>f_b</td>
<td>bodem wrijvingscoëfficiënt van Darcy-Weisbach</td>
<td>[-]</td>
</tr>
<tr>
<td>f_i</td>
<td>intern wrijvingscoëfficiënt van Darcy-Weisbach</td>
<td>[-]</td>
</tr>
<tr>
<td>F</td>
<td>kracht</td>
<td>[N]</td>
</tr>
<tr>
<td>F_C</td>
<td>centrifugaalkracht</td>
<td>[N]</td>
</tr>
<tr>
<td>F_D</td>
<td>wrijvingskracht</td>
<td>[N]</td>
</tr>
<tr>
<td>F_G</td>
<td>gravitatiekracht</td>
<td>[N]</td>
</tr>
<tr>
<td>F_K</td>
<td>korrel-korrelkracht</td>
<td>[N]</td>
</tr>
<tr>
<td>Fr</td>
<td>Froudegetal</td>
<td>[-]</td>
</tr>
<tr>
<td>F_{r_i}</td>
<td>intern Froudegetal</td>
<td>[-]</td>
</tr>
<tr>
<td>g</td>
<td>gravitatieversnelling</td>
<td>[m/s2]</td>
</tr>
<tr>
<td>G</td>
<td>Grashofgetal</td>
<td>[-]</td>
</tr>
<tr>
<td>h</td>
<td>diepte</td>
<td>[m]</td>
</tr>
<tr>
<td>H</td>
<td>valhoogte straal</td>
<td>[m]</td>
</tr>
<tr>
<td>i</td>
<td>evenwichtsstorthelling</td>
<td>[-]</td>
</tr>
<tr>
<td>k</td>
<td>doorlatendheid</td>
<td>[m/s]</td>
</tr>
<tr>
<td>k</td>
<td>ruwheidshoogte</td>
<td>[m]</td>
</tr>
<tr>
<td>k'</td>
<td>ruwheidshoogte korrelgrootte</td>
<td>[m]</td>
</tr>
<tr>
<td>k''</td>
<td>ruwheidshoogte beddingsvorm</td>
<td>[m]</td>
</tr>
<tr>
<td>l_m</td>
<td>mengweglengte</td>
<td>[m]</td>
</tr>
<tr>
<td>l_n</td>
<td>lengte van de nozzle</td>
<td>[m]</td>
</tr>
<tr>
<td>L_b</td>
<td>break-up lengte</td>
<td>[m]</td>
</tr>
<tr>
<td>L_j</td>
<td>lengte van de jet</td>
<td>[m]</td>
</tr>
<tr>
<td>L_{sed}</td>
<td>sedimentatie lengte</td>
<td>[m]</td>
</tr>
<tr>
<td>L_{straal}</td>
<td>lengte van de straal</td>
<td>[m]</td>
</tr>
<tr>
<td>L+</td>
<td>hydraulische sedimentatie kengetal</td>
<td>[-]</td>
</tr>
<tr>
<td>m</td>
<td>Richardson en Zaki coëfficiënt</td>
<td>[-]</td>
</tr>
<tr>
<td>M</td>
<td>massa</td>
<td>[kg]</td>
</tr>
<tr>
<td>n</td>
<td>poriëntal</td>
<td>[-]</td>
</tr>
<tr>
<td>n</td>
<td>correctie coëfficiënt overgangsgebied</td>
<td>[-]</td>
</tr>
<tr>
<td>O</td>
<td>omtrek</td>
<td>[m]</td>
</tr>
<tr>
<td>Symbool</td>
<td>Beschrijving</td>
<td>Eenheid</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>P</td>
<td>korrel normaalspanningen</td>
<td>[N/m²]</td>
</tr>
<tr>
<td>q</td>
<td>specifiek debiet</td>
<td>[m³/s]</td>
</tr>
<tr>
<td>Q</td>
<td>debiet</td>
<td>[m³/s]</td>
</tr>
<tr>
<td>r</td>
<td>straal</td>
<td>[m]</td>
</tr>
<tr>
<td>rₒ₀</td>
<td>oneindige straal</td>
<td>[m]</td>
</tr>
<tr>
<td>R</td>
<td>straalbocht</td>
<td>[m]</td>
</tr>
<tr>
<td>Re</td>
<td>Reynoldsgetal</td>
<td>[-]</td>
</tr>
<tr>
<td>Reᵢ</td>
<td>interne Reynoldsgetal</td>
<td>[-]</td>
</tr>
<tr>
<td>Reₒ</td>
<td>korrel Reynoldsgetal</td>
<td>[-]</td>
</tr>
<tr>
<td>Ri</td>
<td>Richardsongetal</td>
<td>[-]</td>
</tr>
<tr>
<td>Rᵣᵣ</td>
<td>relatieve porositeit</td>
<td>[%]</td>
</tr>
<tr>
<td>s</td>
<td>specifieke zanddebit</td>
<td>[kg/sm]</td>
</tr>
<tr>
<td>S</td>
<td>zanddebit</td>
<td>[kg/s]</td>
</tr>
<tr>
<td>Se</td>
<td>sedimentatie</td>
<td>[kg/m²s]</td>
</tr>
<tr>
<td>St</td>
<td>Stokesgetal</td>
<td>[-]</td>
</tr>
<tr>
<td>t</td>
<td>tijdcoördinaat</td>
<td>[s]</td>
</tr>
<tr>
<td>T</td>
<td>korrelschuifspanningen</td>
<td>[N/m²]</td>
</tr>
<tr>
<td>Tₒ</td>
<td>bodem korrel schuifspanning</td>
<td>[N/m²]</td>
</tr>
<tr>
<td>u</td>
<td>snelheid</td>
<td>[m/s]</td>
</tr>
<tr>
<td>uᵢ</td>
<td>schuifsnellheid</td>
<td>[m/s]</td>
</tr>
<tr>
<td>uᵢᵣ</td>
<td>Shields kritieke snelheid</td>
<td>[m/s]</td>
</tr>
<tr>
<td>uᵢᵣᵣ</td>
<td>Shields kritieke schuifsnellheid</td>
<td>[m/s]</td>
</tr>
<tr>
<td>uₑᵣ</td>
<td>minimum entrainment snelheid van de straal</td>
<td>[m/s]</td>
</tr>
<tr>
<td>uₑᵣᵣ</td>
<td>entrainment of aanzuigsnelheid</td>
<td>[m/s]</td>
</tr>
<tr>
<td>uₒᵣ</td>
<td>snelheid straal onderwater uit nozzle</td>
<td>[m/s]</td>
</tr>
<tr>
<td>uₒᵣᵣ</td>
<td>zandverlies</td>
<td>[m/s]</td>
</tr>
<tr>
<td>w</td>
<td>valsnelheid korrel in suspensie</td>
<td>[m/s]</td>
</tr>
<tr>
<td>wₒᵣ</td>
<td>valsnelheid enkele korrel</td>
<td>[m/s]</td>
</tr>
<tr>
<td>Weᵣ</td>
<td>Webergetal voor een jet</td>
<td>[-]</td>
</tr>
<tr>
<td>X</td>
<td>horizontale afstand</td>
<td>[m]</td>
</tr>
<tr>
<td>Y</td>
<td>horizontale afstand</td>
<td>[m]</td>
</tr>
<tr>
<td>Z</td>
<td>verticale afstand</td>
<td>[m]</td>
</tr>
<tr>
<td>zₒᵣ</td>
<td>hoogte bodem ten opzichte van een referentie niveau</td>
<td>[m]</td>
</tr>
<tr>
<td>Zₒᵣ</td>
<td>suspensiegetal</td>
<td>[-]</td>
</tr>
<tr>
<td>Zₒᵣᵣ</td>
<td>coëfficiënt Lowe</td>
<td>[m]</td>
</tr>
</tbody>
</table>

Griekse letters

<table>
<thead>
<tr>
<th>Symbool</th>
<th>Beschrijving</th>
<th>Eenheid</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>hoek van tromp met horizontaal naar boven gericht</td>
<td>[°]</td>
</tr>
<tr>
<td>β</td>
<td>hoek van straal afhankelijk van plaats</td>
<td>[°]</td>
</tr>
<tr>
<td>δ</td>
<td>dikte menglaag</td>
<td>[m]</td>
</tr>
<tr>
<td>δₛᵣᵣ</td>
<td>dynamische hoek van inwendige wrijving</td>
<td>[°]</td>
</tr>
<tr>
<td>Δ</td>
<td>relative korrel dichtheid</td>
<td>[-]</td>
</tr>
<tr>
<td>ΔH</td>
<td>waterkolom verschil</td>
<td>[m]</td>
</tr>
<tr>
<td>ε</td>
<td>relative dichtheid</td>
<td>[-]</td>
</tr>
<tr>
<td>εᵣᵣ</td>
<td>turbulent diffusie coëfficiënt</td>
<td>[m²/s]</td>
</tr>
<tr>
<td>eᵣᵣ</td>
<td>poriëntal</td>
<td>[m]</td>
</tr>
<tr>
<td>Φ</td>
<td>erosieparameter</td>
<td>[-]</td>
</tr>
<tr>
<td>γ</td>
<td>hoek van talud met horizontaal</td>
<td>[°]</td>
</tr>
<tr>
<td>λ</td>
<td>lineaire talud</td>
<td>[-]</td>
</tr>
<tr>
<td>κ</td>
<td>constante van Von Karman</td>
<td>[-]</td>
</tr>
<tr>
<td>Symbool</td>
<td>Beschrijving</td>
<td>Eenheid</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>η</td>
<td>efficiëntie van de straal</td>
<td>[%]</td>
</tr>
<tr>
<td>η_0</td>
<td>dynamische viscositeit</td>
<td>[kg/ms]</td>
</tr>
<tr>
<td>φ</td>
<td>hoek van inwendige wrijving</td>
<td>[°]</td>
</tr>
<tr>
<td>Φ</td>
<td>hoek waarmee de geul verdeelt</td>
<td>[°]</td>
</tr>
<tr>
<td>ρ_m</td>
<td>dichtheid mengsel</td>
<td>[kg/m3]</td>
</tr>
<tr>
<td>ρ_s</td>
<td>dichtheid zand</td>
<td>[kg/m3]</td>
</tr>
<tr>
<td>ρ_w</td>
<td>dichtheid water</td>
<td>[kg/m3]</td>
</tr>
<tr>
<td>σ</td>
<td>oppervlaktespanning vloeistof</td>
<td>[N/m]</td>
</tr>
<tr>
<td>σ_p</td>
<td>turbulente Prandtl-Schmidt getal</td>
<td>[-]</td>
</tr>
<tr>
<td>θ</td>
<td>Shields parameter</td>
<td>[-]</td>
</tr>
<tr>
<td>τ</td>
<td>turbulente schuifspanning</td>
<td>[N/m2]</td>
</tr>
<tr>
<td>$\tau_{dispersie}$</td>
<td>locale dispersie schuifspanning</td>
<td>[N/m2]</td>
</tr>
<tr>
<td>τ_b</td>
<td>bodemschuifspanning</td>
<td>[N/m2]</td>
</tr>
<tr>
<td>τ_i</td>
<td>interne grensvlak schuifspanning</td>
<td>[N/m2]</td>
</tr>
<tr>
<td>ν</td>
<td>kinematische viscositeit</td>
<td>[m2/s]</td>
</tr>
<tr>
<td>ν_t</td>
<td>turbulente viscositeit</td>
<td>[m2/s]</td>
</tr>
<tr>
<td>\section</td>
<td>paragraaf</td>
<td>[-]</td>
</tr>
</tbody>
</table>

Sub-schriften

<table>
<thead>
<tr>
<th>boordleiding</th>
<th>boordleiding</th>
</tr>
</thead>
<tbody>
<tr>
<td>imp</td>
<td>impactpunt waar straal het wateroppervlak ontmoet</td>
</tr>
<tr>
<td>k</td>
<td>ontgrondingskuil</td>
</tr>
<tr>
<td>l</td>
<td>lucht</td>
</tr>
<tr>
<td>m</td>
<td>zandwatermengsel</td>
</tr>
<tr>
<td>max</td>
<td>maximaal</td>
</tr>
<tr>
<td>min</td>
<td>minimaal</td>
</tr>
<tr>
<td>o</td>
<td>beginwaarde</td>
</tr>
<tr>
<td>p</td>
<td>particle</td>
</tr>
<tr>
<td>r</td>
<td>rand van de ontgrondingskuil</td>
</tr>
<tr>
<td>straal</td>
<td>straal</td>
</tr>
<tr>
<td>tromp</td>
<td>tromp</td>
</tr>
<tr>
<td>x</td>
<td>x-richting horizontale vlak</td>
</tr>
<tr>
<td>y</td>
<td>y-richting horizontale vlak</td>
</tr>
<tr>
<td>z</td>
<td>z-richting verticale vlak</td>
</tr>
</tbody>
</table>

![Diagram](image-url)
Kengetallen en definities

<table>
<thead>
<tr>
<th>Vergelijking</th>
<th>Omschrijving</th>
<th>Eenheid</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Ba = \frac{\sqrt{\lambda \rho_s d^2}}{\eta_o} \frac{\partial u}{\partial z}$</td>
<td>Bagnoldgetal</td>
<td>[-]</td>
</tr>
<tr>
<td>$c = \frac{\rho_m - \rho_w}{\rho_s - \rho_w}$</td>
<td>volumeconcentratie</td>
<td>[-]</td>
</tr>
<tr>
<td>$C = 18 \log \frac{12h}{k}$</td>
<td>Chezycoëfficiënt</td>
<td>$[m^{0.5} s]$</td>
</tr>
<tr>
<td>$\varepsilon = \frac{\rho_m - \rho_w}{\rho_m}$</td>
<td>relatieke mengseldichtheid</td>
<td>[-]</td>
</tr>
<tr>
<td>$\Delta = \frac{\rho_s - \rho_w}{\rho_w}$</td>
<td>relatieke korrel dichtheid</td>
<td>[-]</td>
</tr>
<tr>
<td>$Fr = \frac{u}{\sqrt{gD}} = \frac{u}{\sqrt{gh}}$</td>
<td>Froudegetal</td>
<td>[-]</td>
</tr>
<tr>
<td>$Fr_i = \frac{u}{\sqrt{agh}}$</td>
<td>intern Froudegetal</td>
<td>[-]</td>
</tr>
<tr>
<td>$G = \frac{g(\rho_m - \rho_w)D_{imp}^3}{\rho_w v^2}$</td>
<td>Grashofgetal</td>
<td>[-]</td>
</tr>
<tr>
<td>$R = \frac{O}{A}$</td>
<td>hydraulische straal</td>
<td>[m]</td>
</tr>
<tr>
<td>$Re = \frac{uh}{\nu} = \frac{q}{\nu}$</td>
<td>Reynoldsgetal</td>
<td>[-]</td>
</tr>
<tr>
<td>$Re_i = \frac{q_m}{\nu}$</td>
<td>intern Reynoldsgetal</td>
<td>[-]</td>
</tr>
<tr>
<td>$Re_{length} = \frac{u_{ramp} L_{straal}}{v_m}$</td>
<td>Reynolds lengte getal</td>
<td>[-]</td>
</tr>
<tr>
<td>Vergelijking</td>
<td>Omschrijving</td>
<td>Eenheid</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>$Re_p = \frac{wd}{v}$</td>
<td>korrel Reynoldsgetal</td>
<td>[-]</td>
</tr>
<tr>
<td>$Ri = \frac{-g}{\frac{\partial \rho}{\partial z}} \left(\frac{\partial u}{\partial z} \right)^2 \rho$</td>
<td>Richardson gradiëntgetal</td>
<td>[-]</td>
</tr>
<tr>
<td>$R_s = \frac{n_{\text{max}} - n}{n_{\text{max}} - n_{\text{min}}}$</td>
<td>relatieve porositeit</td>
<td>[%]</td>
</tr>
<tr>
<td>$We_j = \frac{v^2 D \rho}{\sigma}$</td>
<td>Webergetal voor een jet</td>
<td>[-]</td>
</tr>
<tr>
<td>$\theta = \frac{u_c^2}{g \Delta d}$</td>
<td>Shieldsparameter</td>
<td>[-]</td>
</tr>
<tr>
<td>$u_c = \sqrt{g \Delta d}$</td>
<td>Shields kritieke snelheid</td>
<td>[m/s]</td>
</tr>
<tr>
<td>$u_{\text{crit}} = \sqrt{\frac{f_s + f_i}{8} (u_c)^2}$</td>
<td>Shields kritieke schuifsnelheid</td>
<td>[m/s]</td>
</tr>
<tr>
<td>$St = \frac{\rho_s d}{18 \eta_0 \frac{D_{\text{tromp}}}{v_{\text{tromp}}}}$</td>
<td>Stokesgetal</td>
<td>[-]</td>
</tr>
</tbody>
</table>
Inleiding

In 1878 werd de eerste Nederlandse hopperzuiger gebouwd. Deze werd gekenmerkt door een vooruitstekende zuigbuis, de steekhopperzuiger. Al snel werd de zuigbuis naar achter gericht en de steekhopperzuiger werd omgedoopt tot sleeppopperzuiger. Vanaf het ontstaan van de hopperzuigers zijn zij onderwerp van innovatie geweest.

In 1975 werd waarschijnlijk de losmethode rainbowen voor het eerst toegepast in Callantsoog, Nederland. Rainbowen is het lossen van een grond-water mengsel door het spuiten onder hoge druk door een jet in de lucht, waarbij het mengsel enige tientallen meters aflegt voor het neerslaat op de aardoppervlakte. De aannemer Adriaan Volker Baggermaatschappij had hierbij de gedachte om meer onafhankelijk van het weer te kunnen lossen. Een jaar later kreeg deze losmethode internationale aandacht in een vaktijdschrift (D'Angremond et al., 1976). Overigens is Adriaan Volker Baggermaatschappij opgenomen in Ballast Ham Dredging bv.

Hedendaags wordt de losmethode rainbowen over de hele wereld toegepast. In de afgelopen twee decennia is er door de baggeraars veel ervaring opgedaan met rainbowen. Praktisch is de losmethode rainbowen vaak goed toepasbaar, echter theoretisch is er weinig onderzoek gedaan naar de processen die optreden tijdens het rainbowen. In dit onderzoek wordt er een uitgebreide procesanalyse gedaan en modellering gemaakt om met het daarbij opgedane procesbegrip een betere beheersing en kwantificering van het rainbowen te kunnen maken.
1. Introductie

Allereerst zal uitgelegd moeten worden wat een sleepopperzuiger en de losmethode rainbown is (§1.1). Met deze basis informatie kan een probleemanalyse (§1.2) worden gegeven. Hierna wordt er nog ingevuld hoe dit verslag is geschreven in een uitgebreide leeswijzer (§1.3).

1.1. Achtergrondinformatie

1.1.1 Sleepopperzuiger

Ballast Ham Dredging bv heeft ongeveer 20 sleepopperzuigers. De sleepopperzuiger is een werktuig dat vandaag de dag zeker het werkpaard van de baggerindustrie genoemd mag worden. Vaargeulen over de hele wereld worden makkelijk op diepe gehouden met de sleepopperzuiger. De sleepopperzuiger is bijna de enige niet stationaire zuiger, die tijdens het baggeren geen gebruik maakt van spudpalen en/of ankers en hindert om die reden de scheepvaart minimaal. Het enige andere niet stationaire baggerwerkruig is de Water Injectie Dredger (W.I.D.) van Ballast Ham Dredging bv.

Een sleepopperzuiger is een vrij varend zee- of binnenvaartschip. Het is een zelfladend en meestal zelfflossend schip, eventueel voorzien van een leegpersinstallatie. Specifieke kenmerken zijn: achterwaarts gerichte zuigbuizen, een aantal baggerpompen, transportleidingen, zuigbosbokken, lieren, enz. De orde van grootte van het laadruim is 3000 tot 33.000 m³.

De sleepopperzuiger is geschikt om rendabele vaaraftstanden van ongeveer 10 tot 200 kilometer af te leggen. Hierdoor heeft de sleepopperzuiger zijn eigen markt gecreëerd in de landaanwinning. Grote stukken land, bijvoorbeeld het vliegveld van Hong Kong, zijn met de sleepopperzuigers gecreëerd.

Door deze nieuwe markt worden er meer en grotere sleepopperzuigers gebouwd. Door het opschalen van de sleepopperzuiger is proceskennis omtrent baggeren een vereiste. Grote investeringen gaan gemoeid met de bouw en het onderhoud van een sleepopperzuiger.

Door de cyclus is het interessant om zo snel mogelijk elk deelproces te doorlopen. Hoe sneller men de cyclus goed doorloopt, hoe meer grond wordt verzet per tijdseenheid, dus hoe economischer het werktuig.

Het deelproces lossen kan met een sleephopperzuiger op verschillende manieren worden uitgevoerd, onder andere: klappen, walpersen en rainbowen. Klappen wordt gedaan door de kleppen, schuiven of deuren in het vlak van het schip open te zetten, zodat de lading eruit valt. Walpersen wordt gedaan door eerst de lading te fluidiseren en door middel van een leegzuigsysteem van het been naar de pomp te transporteren. Op de sleephopperzuiger is dan een drijvende leiding en een walleiding (stortleiding) aangesloten, om de lading naar het stort op de wal te persen.

1.1.2 Rainbowen

Rainbowen begint net als walpersen in het been en is tot en met de pomp in principe hetzelfde. Echter na de pomp wordt het mengsel niet door een leiding naar de wal geperst, maar wordt het gelanceerd naar het stort. Het mengsel wordt gelanceerd door een vernauwing aan het eind van de boordleiding. Hierdoor krijgt het voldoende snelheid om de benodigde spuitafstand te overbruggen. Deze vernauwing is te vergelijken met het dichtknijpen van het einde van een tuinslang, hierdoor onstaat een dunne snelle straal met een grote reikwijdte. Rainbowen wordt herkend aan het geweld waarmee de straal tentatlen meters weg wordt gespoten. Snelheden van 140 km/h worden in de vernauwing zeker gehaald!
RAIENGOENEN

Introductie

figuur 1.2 Sleeppopperzuiger Rotterdam aan het rainbowen

Rainbowen is een losmethode die wordt toegepast als er onvoldoende waterdiepte is om de lading van het schip te klappen en/of wanneer het materiaal hoger onder of boven water moet worden geplaatst dan met klappen mogelijk is. Klappen is een snel losproces met een orde van grootte van een kwartier. De andere optie voor het lossen is walpersen met een tijdsduur van minimaal een uur. In vergelijking tot rainbowen moet hier minimaal een extra kwartier in de cyclustijd worden opgeteld voor het koppelen van de leiding. Deze tijd kan nog eens extra worden vergroot als het walpersen door de grote leidingafstand ofwel door de pompproductie maatgevend is. In figuur 1.3 zijn de verschillende losmethodes nogmaals in de tijd uiteengezet.

figuur 1.3 Tijd benodigd bij verschillende losmethoden

Het grote voordeel van rainbowen is dus de kortere cyclustijd omdat er niet gekoppeld hoeft te worden. Tevens zijn er geen drijvende- en landleidingen nodig om het zand aan de wal te krijgen. Door het niet gebruiken van deze leidingen kan er met een hoger debiet worden g pompomt, omdat er minder drukverlies is. Eveneens is er door minder leiding lengte minder slijtage van de kostbare leidingen.

Rainbowen is echter niet altijd mogelijk afhankelijk van de bereikbaarheid van de bovenwaterstort met de sleeppopperzuiger. Voor een goede bereikbaarheid moet de helling van het onderwaterstort stel genoeg zijn, zodat de sleeppopperzuiger voldoende dicht op het bovenwaterstort kan komen.

Het grote nadeel van rainbowen is de onvoorspelbaarheid, waar de lading uiteindelijk terechtkomt.
1.2. Probleemanalyse

1.2.1 Probleembeschrijving

1.2.2 Probleemstelling

Voor de losmethode rainbowen is tot op heden geen nauwkeurig model beschikbaar waarmee een schatting kan worden gedaan naar de vorm van het gestorte zandlichaam. Een aantal deelprocessen in het losproces rainbowen zijn onvoldoende beschreven en gekwantificeerd.

1.2.3 Doelstelling

Een methode maken voor de voorspelling van de vorm en samenstelling van een zandlichaam gegenereerd door de losmethode rainbowen.

De doelstelling is bewerkstelligd met de volgende aanpak:

- Een literatuurstudie is verricht naar alle deelprocessen van rainbowen met de nadruk op het plaatsen.
- Een modellering is gemaakt van het losproces rainbowen, waarbij met voldoende invoergegevens een meer nauwkeurige voorspelling kan worden gegenereerd over het ontstane zandlichaam. Het zandlichaam wordt beschreven met de volgende parameters:
 - diepte en straal ontgrondingskuil
 - evenwichtsschelling
 - sedimentatielengte
 - geulbreedte
- De modellering is deels gevalideerd aan de hand van praktijkgegevens.
- Metingen en waarnemingen uit de praktijk zijn theoretisch verklaard.
1.3. **Leeswijzer**

Voor het verslag is de volgende structuur gebruikt, welke staat weergegeven in het onderstaande blokdiagram

figuur 1.4 Structuur verslag

In figuur 1.4 worden met blokken de onderdelen van het verslag aangeduid. Met een dikke rode lijn wordt de rode draad van het verslag aangegeven. Het verslag begint met de nodige basisinformatie te geven over het baggeren (1.1). Met deze basiskennis kan een probleembeschrijving worden gemaakt waarmee het doel van dit verslag komt vast te liggen (1.2).

In hoofdstuk 2 "Procesanalyse" worden alle mogelijke optredende processen onderzocht. Hierbij wordt de kennis gebruikt welke voorradig is in de literatuur. Door gebruik te maken van enkele simpele berekeningen is het mogelijk om processen die van weinig invloed zijn te verwaarlozen. Voor bijna het hele verslag geldt dat gebruik wordt gemaakt van Appendices om de kennis samen te vatten en uit te werken. Hieraan wordt meerdere malen in het verslag gerefereerd. Enige extra informatie wordt gegeven in de annex. Door tekeningen, grafieken, codes en berekeningen wordt de behandelde stof in het verslag meer inzichtelijk gemaakt.

In hoofdstuk 3 "Turbulente- en korrelspanningen in een zandwater-stroming" wordt een uitstapje gemaakt, zoals weergegeven in figuur 1.4. Uit hoofdstuk 2 is sterk naar voren gekomen dat korrelspanningen optreden bij voornamelijk de grotere korreldiameters.
Hierop wordt analytisch diep ingegaan om het gedrag van de mengselstroom beter te kunnen bepalen.
In hoofdstuk 4 "Modelleren" wordt een vervolg gemaakt op hoofdstuk 2, waarbij zijdelings kennis wordt gebruikt uit hoofdstuk 3. Beschikbare modellen worden waar nodig theoretisch aangepast of aangevuld. Eveneens zijn met behulp van een wiskundige en fysische analyse sommige modelleringen onbruikbaar verklaard.
In hoofdstuk 5 "Model resultaten" zijn de theoretisch bruikbare modellen gebruikt voor berekeningen en waar mogelijk gevalideerd aan de hand van praktijk gegevens. In hoofdstuk 6 "Praktijkanalyse" worden metingen en waarnemingen uit de praktijk verklaard.
Uit dit onderzoek komen in hoofdstuk 7 conclusies en aanbevelingen naar voren. In dit verslag blijkt onvoldoende kennis beschikbaar te zijn over bepaalde onderwerpen, deze onderwerpen zouden mogelijk nader onderzocht kunnen worden.
2. Procesanalyse

In dit hoofdstuk worden de mogelijk significante processen aangegeven die invloed kunnen hebben op het overkoepelende proces rainbowen. Het proces rainbowen is geometrisch onderscheid in 3 gebieden, te weten Stort, Straal en Schip. Begonnen wordt met het stort. Op den duur zal het duidelijk worden dat de processen op het stort zelfs worden beïnvloed door processen aan boord van het schip.

2.1. Stort

I. Straal slaat in de waterspiegel (§2.1.1).
II. Vorming van zand-lucht-waterkolom (§2.1.2).
III. Vorming van ontgrondingskuil (§2.1.3).
IV. Erodierende en sedimentierende stroming van zandwater mengsel over de bodem naar een boven- of onderwater evenwichtsleiding toe (§2.1.4 en §2.1.5).

\[\text{figuur 2.1 Stortprocessen onder en boven water}\]

2.1.1 Waterspiegel

De straal landt op de waterspiegel onder een hoek met de verticaal met een snelheids- en concentratieprofiel. Door de turbulentie-intensiteit en de oppervlakteruwheid van de straal kan er lucht inslaan op het grensvlak water/lucht. Het toetreden van lucht in de straal vindt plaats in de lucht en als de straal inslaat door de waterspiegel. Op het punt waar de straal het wateroppervlak raakt, wordt alleen lucht ingeslagen als de snelheid op dit punt (impactpunt) groter is dan een bepaalde waarde. De snelheid waarmee de straal aankomt kan men hiervoor berekenen met de valhoogte (H) dat is de verticale afstand van het culminatiepunt tot de waterspiegel. Horizontale snelheid en wrijving worden even buiten beschouwing gelaten, het gaat om de orde van grootte, zodat de snelheid kan worden afgeschatt (Bin, 1993):
Procesanalyse

\[u_{imp} = \sqrt{2gH} \quad [\text{m/s}] \quad (2.1) \]

- \(u_{imp} \) = snelheid op het impactpunt [m/s]
- \(g \) = gravitatieversnelling [m/s²]
- \(H \) = valhoogte straal [m]

Het binnendringen van lucht door de grenslaag in het water heet entrainment. Het bepalen van de minimale entrainment-snelheid van de straal, waarbij nog lucht in het water slaat, is afhankelijk van de turbulentie-intensiteit in de straal en de manier waarop de straal valt. De turbulentie-intensiteit hangt af van vele factoren en is moeilijk van tevoren in te schatten of zelfs ook maar te meten. De meest gangbare relatie is die volgens Bin (1988b).

\[u_e = 1.4 \left(\frac{H}{D_{tromp}} \right)^{0.164} \quad [-] \quad (2.2) \]

Geldig voor een ronde plunging jet en \(1<H/D_{tromp}<100 \) en \(l_n/D_{tromp}<3 \).

- \(u_e \) = minimum entrainment snelheid van de straal [m/s]
- \(D_{tromp} \) = diameter tromp [m]
- \(l_n \) = lengte nozzle [m]

Kwantitatief kan men zeggen dat er zeker lucht in de waterkolom komt, met de waarden voor de valhoogte en de diameter van de tromp die voor het rainbowen gebruikelijk zijn. De tromp is de nozzle aan boord van de sleepperzuijer waar doorheen het mengsel wordt weggеспoten.

2.1.2 Zand-lucht-waterkolom

Er wordt in deze paragraaf een beschrijving gemaakt van de straal die door de waterspiegel is geslagen en in een zand-lucht-waterkolom overgaat. Op foto’s van rainbowen zoals figuur 1.2 zijn een aantal kenmerken te zien.

De straal komt aan:
- onder een hoek
- deels uiteengevallen in druppels
- over een groot oppervlak

In paragraaf 2.2 Straal wordt het gedrag van de straal beschreven.

Hierna volgt de afdaling van de korrels in de zand-lucht-waterkolom. Door het dichtheidsverschil van de zand-lucht-waterkolom zal deze zich als een buoyant jet gaan gedragen.

De toplaag van de bezinkingskolom zal nog significante hoeveelheden lucht bevatten. De lucht zal invloed hebben op het sedimentatiegedrag en geeft een extra diffusie van sediment (Van Rhee, 2002).

Het mengsel van zand en water zal als een dichtheidsstroom naar de bodem zakken. Hierbij zou veel entrainment op kunnen treden, door een onstabiele grenslaag tussen dichtheidsstroom en omringend water. Voor de grenslaag van dichtheidsstroom en water kunnen berekeningen gedaan worden naar de stabiliteit van de menglaag. Bij een stabiele grenslaag wordt er van een straalmechanisme gesproken (Heezen en Stap, 1988).
Procesanalyse

Door toename van snelheid, diameter en menging onstaat er een pluimmechanisme. Beide mechanismen hebben hun eigen kenmerken, wat onderstaand wordt uitgelegd. De straal krijgt ook aandrijving door het dichtheidsverschil, zoals warme rook die opstijgt uit een schoorsteen. De stabiliteit van de menglaag kan worden beschreven met het Richardsongetal en het intern Froudegetal (het quotiënt van impuls en buoyancy). Bij rainbowen treedt waarschijnlijk geen straalmechanisme op. De grote diameter waarover de waterspiegel wordt aangespoten, de hoge beginsnelheid en de lagere concentratie van oppervlakte zijn kenmerkend voor rainbowen. Deze geven altijd een hoog Reynoldsgetal en Grashofgetal, een hoog intern Froudegetal en een laag Richardsongetal (Rodi, 1982). Ter verduidelijking aan de hand van vergelijkingen en berekeningen zie annex 1. De stroming is dus in het turbulente regime, intern superkritisch met een turbulente menglaag. Hierdoor is het aannemelijk dat er een pluimmechanisme optreedt. In figuur 2.2 is het bovenstaande geïllustreerd en in tabel 2-1 zijn de bovenstaande eigenschappen samengevat.

![Image](image_url)

figuur 2.2 Zand-water-luchtkolom

<table>
<thead>
<tr>
<th>Straalmechanisme</th>
<th>laag/hoog</th>
<th>laag/hoog</th>
<th>laag</th>
<th>hoog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pluimmechanisme</td>
<td>hoog</td>
<td>Hoog</td>
<td>hoog</td>
<td>laag</td>
</tr>
</tbody>
</table>

Tabel 2-1 Samenvatting eigenschappen van de mechanismen

2.1.3 Ontgrondingskuil

In de cirkelvormige kuil ontstaat een hoge homogene concentratie \((c_k)\). Aan de rand van de kuil gaat de hoog geconcentreerde zandwaterstroming al sedimenterend en eroderend op de evenwichtshelling liggen, zie figuur 2.3.

Het volgende stelsel vergelijkingen kan worden opgelost om de eigenschappen van de kuil te berekenen (Van Rhee, 1988).

Volumebalans van mengsel inclusief het uittreden van water aan de bovenzijde. In figuur 2.3 zijn de symbolen opgenomen welke gebruikt worden in de onderstaande vergelijkingen.

\[
Q_{mp} - m_k \cdot w_o \cdot (1 - c_k)^m - 2m_k \cdot h \cdot u_m = 0 \quad [m^3/s] \tag{2.3}
\]

\[
\begin{align*}
Q_{mp} &= \text{debit bij impactpunt} \quad [m^3/s] \\
\frac{r_k}{r_d} &= \text{straal ontgrondingskuil} \quad [m] \\
w_o &= \text{valsnelheid enkele korrel} \quad [m/s] \\
c_k &= \text{volumeconcentratie in ontgrondingskuil} \quad [-] \\
m &= \text{Richardson en Zaki coëfficiënt} \quad [-] \\
h &= \text{dieptemengsel op de rand van de ontgrondingskuil} \quad [m] \\
u_m &= \text{snelheid zandwatermengsel} \quad [m/s]
\end{align*}
\]

Volumebalans van het sediment:

\[
c_{mp} \cdot Q_{mp} - 2m_k \cdot h \cdot u_m \cdot c_k = 0 \quad [m^3/s] \tag{2.4}
\]

\[
c_{mp} = \text{volumeconcentratie bij impactpunt} \quad [-]
\]
Intern Froudegetal is kritisch (Fr = 1):

\[u_m^2 \cdot \frac{gh_r}{1 + \frac{1}{\Delta c_k}} = 0 \quad [m^2/s^4] \quad (2.5) \]

\[\Delta = \frac{\rho_s - \rho_w}{\rho_w} = \text{relatieve dichtheid} \quad [-] \]

\[\rho_w = \text{dichtheid water} \quad [kg/m^3] \]

\[\rho_s = \text{dichtheid zand} \quad [kg/m^3] \]

Erosie (\(\Phi \)) op de horizontale cirkelvormige rand van de ontgrondingskuilt is gelijk aan de sedimentatie:

\[\Phi = \frac{we_k (1 - c_k)^m}{\sqrt{g \Delta d}} = 0 \quad [-] \quad (2.6) \]

\[d = \text{korreldiameter} \quad [m] \]

Maximale erosie (\(\Phi_{\text{max}} \)) door een maximale concentratie, welke op \(c_{\text{max}} = 0.6 \) gesteld is (Van Rijn, 1984):

\[\Phi_{\text{max}} = 0.033 \frac{c_{\text{max}} - c_k}{c_k} \quad [-] \quad (2.7) \]

Geldig voor \(\Phi < \Phi_{\text{max}} \) dan \(\Phi \) anders \(\Phi_{\text{max}} \)

\[c_{\text{max}} = 0.6 \quad = \text{maximale volumeconcentratie} \quad [-] \]

Er zijn nu vier vergelijkingen ((2.3) tot en met (2.6)) voor vier onbekenden (\(c_k, h_k, u \) en \(r_k \)), dus het stelsel vergelijkingen is op te lossen.

Zoals eerder vermeld staat, valt de straal onder een hoek met de verticaal bij rainbowen. In de voorstudie “sorten van zand, 2” wordt een vergelijking voor de ontgrondingskuitdiepte gegeven onder andere afhankelijk van de hoek van inslag (Van Rhee, 1988).

\[h_k = 0.557 \frac{h_o \sin(\beta_{\text{imp}}) D_{\text{imp}}^{0.45}}{d^{0.10}} - L_j \quad [m] \quad (2.8) \]

\[h_k = \text{diepte ontgrondingskuit} \quad [m] \]

\[\beta_{\text{imp}} = \text{hoek van straal in impactpunt t.o.v.horizontaal} \quad [^\circ] \]

\[u_o = \text{snelheid straal onderwater uit nozzle} \quad [m/s] \]

\[L_j = \text{lengte buoyant jet} \quad [m] \]

\[D_{\text{imp}} = \text{diameter straal bij impactpunt} \quad [m] \]

Deze empirische relatie is gebaseerd op een consistente straal, oftewel zonder de entrainment van lucht. Bij rainbowen is ook de straal over een groot oppervlak gespreid, waardoor waarschijnlijk de empirische coëfficiënt aan het begin van de vergelijking ongeldig is.
Procesanalyse

Breusers (1991) heeft voor een verticale buoyant jet onder water een vergelijking opgesteld voor het vaststellen van de diepte van de krater. De diameter van de straal (D\textsubscript{imp}) is voor een consistente straal opgesteld. De empirische coëfficiënten welke hieronder worden getoond in de vergelijkingen zijn hierdoor waarschijnlijk ongeldig.

\[
\frac{h_k}{D_{\text{imp}}} = 0.075 \frac{u_o}{u_c} \quad [-] \text{als } \frac{u_o}{u_c} < 100 \quad [-]
\]

\[
\frac{h_k}{D_{\text{imp}}} = 0.35 \left(\frac{u_o}{u_c} \right)^{2/3} \quad [-] \text{als } \frac{u_o}{u_c} > 100 \quad [-]
\]

\[
u_o = \text{snelheid straal onderwater uit nozzle [m/s]}
\]

\[
u_c = \sqrt{\frac{f_o}{8} (u_c)^2} = \text{Shield's kritieke schuifsnelheid [m/s]}
\]

\[
u_c = \sqrt{\frac{\Delta gd}{u_c}} = \text{Shield's kritieke snelheid [m/s]}
\]

\[f_o = \text{bodem wrijvingscoëfficiënt van Darcy-Weisbach [-]}\]

Voor de laatste twee modellen (2.8) en (2.9) is de snelheid een invoerparameter. Belangrijk is het om te kunnen kwantificeren in welke hoedanigheid de straal aankomt. De hoedanigheid van de straal kan in een snelheidsprofiel en een concentratieprofiel worden beschreven. Alleen met deze profielen is het mogelijk een snelheid te bepalen welke overeenkomt met snelheden waarvoor de laatste twee modellen zijn opgesteld. Verderop in dit hoofdstuk wordt een beschrijving gegeven van de straal, hiermee zou iets meer bekend kunnen worden over de aankomst van de straal op het stort.

In vergelijking (2.8) is het interessant om te vermelden dat de sinus van de hoek van inslag is opgenomen, kennelijk neemt de diepte van de ontgrondingskuil evenredig hiermee af.

2.1.4 Onderwaterstort

Op het onderwaterstort wordt begonnen aangezien de sleepopperzuigers het zandlichaam opbouwen vanaf de bodem. Uit een mogelijke ontgrondingskuil komt een zandstroming de helling af. De zandstroming kan in de vorm van een suspensiestroming of korrelstroming van het talud glijden. In paragraaf 2.1.4.1 worden deze stromingstypen nader toegelicht. Als de mengelstroom van het talud glijdt treedt er natuurlijk wrijving op met het bed, zie paragraaf 2.1.4.2. Ook is interessant om in te gaan op de breedte waarover deze mengelstroming naar beneden stroomt, zie paragraaf 2.1.4.3. Voor de geulbreedte moet er onderscheid worden gemaakt tussen wel of niet evenwichtsstroming, deze zijn in een tweetal sub-paragrafen van paragraaf 2.1.4.3 beschreven. Door de introductie van het stromingstype, de wrijving en de geulbreedte is het mogelijk om een bestaand mengelstroommodel te bekijken in paragraaf 2.1.4.4. Hierna wordt er specifiek gekeken naar de evenwichtshelling (2.1.4.5) en de sedimentatielengte (2.1.4.6). Het stromingsproces is in de eerder gegeven paragrafen beschreven, echter op het onderwatertalud kunnen er secundaire macroprocessen optreden (2.1.4.7). Met deze indeling van de paragraaf is geprobeerd een complete procesanalyse te geven van het onderwaterstort.
2.1.4.1. Suspensie of korrelstroming

De dichtheidsstroom ondervindt op een helling een aandrijvende kracht van de gravitatie, welke voor een spel van erosie en sedimentatie zorgt. In de onderstaande éénmaal geïntegreerde diffusie-vergelijking (2.10) wordt een stationair verband gelegd tussen de valsnelheid \(w\) van de korrels en de turbulente diffusie \(\varepsilon_t\).

\[
\varepsilon_t \frac{\partial c}{\partial z} + wc = 0 \quad [\text{m/s}]
\]

(2.10)

Geldig voor: \(D/Dt=0, \partial c/\partial z=0\) en \(\partial u/\partial x=0\)

\(\varepsilon_t\) = turbulente diffusie coëfficiënt \([\text{m}^2/\text{s}]\)
\(z\) = verticale afstand \([\text{m}]\)

Met deze vergelijking en een logaritmisch snelheidsprofiel heeft Rouse een concentratieprofiel berekend. De hoeveelheid zwevend transport in de verticaal neemt af bij een toenemende diameter \(d\). In appendix D wordt de relatie van de korreldiameter met de hoeveelheid zwevend transport onderzocht.

In vergelijking (2.10) is de turbulente diffusie opgenomen, een parameter die samen met de korrelvalsnelheid het onderscheid weergeeft tussen een suspensiestroming en een korrelstroming. Naarmate de turbulente diffusie afneemt en/of de korrelvalsnelheid toeneemt, ontstaat er een korrelstroming. Suspensiestroming wordt gedefinieerd als stroming die korrels draagt met behulp van turbulente en/of viskeuze schuifspanningen. Transport van zand langs een talud met een grotere turbulente werking gebeurt dus door suspensiestroming.

Korrelstromingen zijn glijdende zandtongen die als lawines langs het talud naar beneden vallen. Hierbij is de turbulente zoals bij suspensietransport niet van groot belang. Als korrels elkaar passeren wordt er een schuif- of normaalspanning uitgewisseld, zowel door de viscositeit van de poriënvliesstof als door het botsen van korrels met elkaar (Mastbergen, 1983).

Het is gebleken dat deze stromende laagjes zand zich gedragen als een vloeistof. Overeenkomsten kunnen worden gelegd met lawines en puinstromen (debris flows). In tegenstelling tot debris flow waar cohesie een rol speelt, is er bij turbidity current (suspenesi- en korrelstroom) geen effect van cohesie, waardoor de vloeistof zich als Newtonse vloeistof gedraagt (Mastbergen, 1988c).

Bagnold heeft regimes opgesteld met behulp van het zogenaamde Bagnoldkengetal \(Ba\). In deze regimes worden korrel- en viskeuze spanningen vergeleken, oftewel korrelstromen en suspensiestromen.

\[
Ba = \frac{\text{korrelspanning}}{\text{viskeuze spanning}} = \frac{\sqrt{\lambda \rho d^2}}{\eta_v} \frac{\partial u}{\partial z} \quad [-]
\]

(2.11)

\(\eta_v\) = dynamische viscositeit \([\text{kg/ms}]\)

\[
\lambda = \left(\frac{c_{\text{max}}}{c} \right)^{1/3} \quad [-]
\]

(2.12)

\(\lambda\) (2.12) is de lineaire concentratie welke ook het
Procesanalyse

quotiënt is van de afstand tussen bolvormige uniforme korrels en de korrel diameter. Uit zijn experimenten leidt Bagnold (1954) de volgende verschillende regimes af.

Ba < 40	"macro viskeus"	schuifspanningen vloeistof overheersen
40 < Ba < 450	"overgangsgebied"	
Ba > 450	"korrel traagheid"	schuifspanningen korrels overheersen

Om het Bagnoldkengetal te kunnen berekenen moeten een aantal parameters worden aangenomen. De dimensies van de mengselstroom zijn: $\rho_s = 2650 \text{ kg/m}^3$, $\eta_0 = 10^{-3}$ kg/ms en $c_{\text{max}} = 0.65$. De concentratie varieert tussen $0.1 < c < 0.5$. De mengselstroom is dicht bij de bodem, hierdoor kan worden aangenomen dat het mengsel in het turbulente binnengebied is. Het turbulente binnengebied, is het gebied waar turbulente schuifspanningen overheersen. Met deze aannemen kan een logaritmisch snelheidsprofiel worden gebruikt. Hiermee wordt aangenomen dat de snelheidsgradient $\frac{\partial u}{\partial z}$ varieert tussen de 10 en hooguit 100 s$^{-1}$. In hoofdstuk 3 wordt deze veronderstelling gevalideerd aan de hand van een 1-dimensionaal model. De verschillende parameters zijn gegeven om een afschatting te geven van de verschillende regimes van Bagnold.

![Diagram Bagnold kengetal](image)

figuur 2.4 Regimes Bagnold

In de bovenstaande figuur is de korrel diameter uitgezet tegen de snelheidsgradiënt; lijnen zijn opgenomen met een constant Bagnoldkengetal. Tussen de lijnen zijn kleuren gebruikt om de Bagnold regimes aan te geven. Blauw waar vloeistofschuifspanningen domineren en geelachtige tinten waar vloeistof- en korrelschuifspanningen een rol spelen.

Uit de grafiek blijkt dat het gebied van rainbowen ($d>300 \mu\text{m}$ en $c>0.3$) zich voornamelijk tussen $Ba > 40$ bevindt. In onder andere dit overgangsgebied van Bagnold moet rekening worden gehouden met zowel schuifspanningen van de vloeistof als van de korrels.

Bij de mengselstroom van de zandsluitingen werd voornamelijk een korrelgrootte van ongeveer 200 μm toegepast. Uit figuur 2.4 wordt duidelijk dat in dat geval het Bagnoldkengetal laag is en korrelspanningen van een verwaarloosbare invloed zijn bij deze korrelgrootte.
Procesanalyse

Voor de schuif- en normaalspanning (T en P) van de korrels onderling heeft Bagnold (1954) de volgende verbanden gevonden.

\[T = a_i \sin \delta_{dyn} \rho_s \lambda^2 d^2 \left(\frac{\partial u}{\partial z} \right)^2 [\text{N/m}^2] \]

\[P = a_i \cos \delta_{dyn} \rho_s \lambda^2 d^2 \left(\frac{\partial u}{\partial z} \right)^2 [\text{N/m}^2] \]

\[\delta_{dyn} \quad = \text{dynamische hoek van inwendige vrijwijging [°]} \]
\[a_i \quad = \text{coëfficiënt Bagnold [-]} \]

Aangezien in eerdere alinea’s is vastgesteld, dat het transport zich bij rainbowen in het overgangsgebied bevindt, moeten er ook turbulente spanningen kunnen worden berekend. In hoofdstuk 3 zal uitvoerig in worden gegaan op de introductie van turbulente- en korrelspanningen.

Voor zand (63<d<2000 µm) herleidt Lowe (1976) de invloed van de korrelstroom als transportmechanisme. Hierbij integreert Lowe de vergelijkingen van Bagnold (2.13) over de verticaal en deelt deze door de dispersiedruk. De dispersiedruk is de component van hydrostatische druk langs het talud. In hoofdstuk 3 wordt hierop uitgebreider ingegaan. Het snelheidsprofiel voor korrelstromen van Lowe:

\[u = \frac{2}{3} \left(\frac{c g (\rho_s - \rho_w) \sin \gamma}{a_i \sin \delta_{dyn} \rho_s \lambda^2 d^2} \right)^{0.5} \left[Z_{L,1.5} - (z - Z_{L,1.5})^{1.5} \right] [\text{m/s}] \]

\[\gamma \quad = \text{hoek van talud met horizontaal [°]} \]
\[Z_{L,1} \quad = \text{coëfficiënt Lowe [m]} \]

Straub (2001) heeft kritiek op Lowe over het gelijk stellen van de hoek van inwendige vrijwijing (± 33°) met de dynamische hoek van inwendige vrijwijing (δ_{dyn}). Door de werkelijke dynamische hoek van inwendige vrijwijing (± 15°) te gebruiken neemt de transportcapaciteit van korrelstromen toe. Straub doet meer recht aan de fysica met deze aanpassing, daarom wordt deze verbetering in dit onderzoek aangehouden. In figuur 2.5 is de uitgevoerde berekening opgenomen, met de bovenstaande waarden voor een onderwatertalud.
Mengselstroomsnelheid en mengsellaagdikte

\[c = 0.55 \text{ [-]} \]
\[\lambda = 17 \text{ [-]} \]
\[\gamma = 25 \text{ [°]} \]
\[\delta_{\text{dyne}} = 15 \text{ [°]} \]

\[h \text{ [m]} \]
\[u \text{ [m/s]} \]

\[d = 500 \text{ [µm]} \]
\[d = 1000 \text{ [µm]} \]
\[d = 2000 \text{ [µm]} \]
\[q = 0.1 \text{ [m}^2\text{/s]} \]
\[q = 1 \text{ [m}^2\text{/s]} \]
\[q = 10 \text{ [m}^2\text{/s]} \]

figuur 2.5 Laagdiktes en snelheden van korrelstromen

In de bovenstaande figuur is de mengselsnelheid tegen de laagdikte van het mengsel uitgezet. De gegeven lijnen zijn voor verschillende korreldiameters en specifieke debieten \(q \), welke zijn aangegeven in de legenda. Tegelijk wordt er een gebiedje met een transparante oranje ellips aangegeven welke bij de losmethode rainbowen waarschijnlijk wordt geacht \(300 < d < 1000 \text{ [µm]} \) en \(0.05 < q < 0.5 \text{ [m}^2\text{/s]} \). Bij grotere laagdiktes zijn zeer grote snelheden nodig. Grote snelheden zijn voor stroming onderwater door bouwkracht en wieving niet aannemelijk. Snelheden van rond de 1 à 10 m/s lijken aannemelijk. In de buurt van deze snelheid zijn de laagdiktes klein en hierdoor is ook de transportcapaciteit en de invloed van purpe korrelstromen op het gevormde zandlichaam bij rainbowen klein. Zoals eerder vermeld heeft Lowe de vergelijkingen van Bagnold voor zuivere korrelstromen bekeken.

Een zuivere suspensiestroming kan beschreven worden als een dichtheidsstroom. De dichtheidsstroom neemt door sedimentatie voortdurend af in dichtheid. De dichtheidsafname maakt de dichtheidsstroom in het algemeen superkritisch \((Fr > 1) \) \cite{Kranenburg98}. Naarmate de dichtheid verder afneemt neemt de diepte van de mengselstroom verder toe, waardoor de dichtheidsstroom als het ware oplost. Hierna geldt een suspensiestransport benadering niet meer.

Samenvattend kan worden gesteld:
Zuivere korrelstromen zijn niet significant voor de mengselstroom door de lage specifieke debieten en een te gesimplificeerde benadering van de werkelijkheid. Door de beperkte overeenstemming met de werkelijkheid in de proeven van Bagnold, worden de Bagnold regimes kritisch benaderd. Duidelijk is geworden dat volgens de regimes van Bagnold het rainbowen in het overgangsgebied plaatsvindt. Het is daardoor van belang om zowel de korrel- als vloeistofschuifspanningen mee te nemen in het model. Verderop in deze paragraaf zal specifiek worden ingegaan op suspensi- en korrelstromen. Het introduceren van korrel en turbulente schuifspanningen wordt in het volgende hoofdstuk uitgebreid beschreven.
2.1.4.2. *Wrijving*

De wrijving van een mengselstroom op een bed is afhankelijk van de korrelgrootte en de beddingsvorm. Het zand zal afhankelijk van de sediment- en stromingsparameters een beddingsvorm aannemen. In annex 2 is opgenomen welke verschillende beddingsvormen mogelijk zijn, deze zijn afhankelijk van de stroomsnelheid en de bodemschuijspansing. De bodemschuijspansing is onder andere een functie van het Chezycoëfficiënt (C). Het Chezycoëfficiënt is weer een functie van de ruwheidshoogte (k). Deze kan worden opgedeeld in:

\[k = k' + k'' \] \[(2.15) \]

Hierin is k' voor de korrelgrootte en k'' voor de beddingsvorm; beide parameters zijn in annex 2 weergegeven. In "storten van zand" ([60],[61],[62],[63]en[99]) is k'' constant gehouden, er is geen iteratie gemaakt tussen stroomsnelheid, bodemschuijspansing, korrelgrootte en beddingsvorm. Door de iteratie slagen toe te passen wordt de wrijving gecorrigeerd met de plaatselijke schuifsnelheid en ruwheidshoogte. Daarbij is er geen gebruik gemaakt van het Chezycoëfficiënt, maar van het dimensieloze wrijvingsgetal van Darcy-Weisbach. Bij het modelleren (zie: appendix F) zal verder op de wrijving moeten worden ingegaan om die beter te kunnen interpreteren. Er kan dan een betere afschatting worden gemaakt van het wrijvingsgetal.

Bij het onderzoek "storten van zand" is een beschrijving gemaakt over een terrasvormig bodemprofiel. Dit zijn anti-duinen met een dichtheidstroom erboven. Bij een terrasvormig bodemprofiel onstaat er een interne mengselsprong (zie figuur 2.6).

![figuur 2.6 Terrasvorm bodemprofiel](image)

De overeenkomsten zijn groot tussen anti-duinen en terrasvormig bodemprofiel. Het enige verschil is dat er intern superkritische stroming onstaat boven de top van de duin. In het vertragingsgebied na de watersprong gaat veel energie verloren, dit is terug te vinden in de verhoging van de Darcy-Weisbach wrijvingscoëfficiënt van 0.1 (Mastbergen, 1989).

2.1.4.3. *Geulbreedte*

Scenario I:
Evenwichtsstroming, met daarbij behorende evenwichtsheffelingen van het onderwaterstort. Bij de waterlijn stroomt het zandwater mengsel met dezelfde geulbreedte door. Deze geul zal echter regelmatig verleggen en als een staart over het onderwaterstort kwispelen.

Scenario II:
Geen evenwichtsstroming over een gegeven, vrij flauwe helling. Bij de waterlijn stroomt het zandwater mengsel met dezelfde geulbreedte door.

Scenario III:
Geen evenwichtsstroming door spreiding van de mengselstroom op het onderwaterstort onder een hoek van 30° bij een gegeven helling (Mastbergen, 1986). Evenwichtsstroming is nu niet mogelijk, tenzij de helling, uitgaande van de evenwichtshelling voordurend steiler zou worden naarmate het mengsel zich over een grotere breedte spreidt. Dit is echter zeer onwaarschijnlijk.

2.1.4.3.1. Scenario I

Bestaande vergelijkingen van de rivierwaterbouwkunde over de uiterlijke kenmerken van een rivier c.q. geul geven in de eerste plaats beschrijvingen van de evenwichtstoestand (scenario I). Vergelijkingen van de rivierwaterbouwkunde zijn toepasbaar voor een bovenwaterstort, alleen moet er wel gelet worden op de verschaling. De lengte- en tijdschaal (breedte, diepte, snelheid, etc.) worden met een factor duizend verkleind en de zandstroom blijft gelijk (Mastbergen, 1989). Belangrijke parameters bij een rivier zijn; helling, breedte en diepte van een geul in evenwicht. De handzame vergelijkingen (annex 4) met de voorgaande parameters worden onder andere afgeleid van de sedimentmassabalsansvergelijking:

\[
(1 - \varepsilon_p) \frac{\partial z_b}{\partial t} + \frac{1}{\rho_B} \frac{\partial S}{\partial x} = 0 \quad [\text{m/s}]
\]

Waarin:
\[\varepsilon_p\] = poriëngetal [-]
\[z_0\] = hoogte bodem ten opzichte van referentie niveau [m]
\[t\] = tijd [s]
\[S\] = zanddebit [kg/s]
\[B\] = breedte [m]
\[x\] = horizontale afstand [m]
Bij evenwicht geldt een stationaire uniforme stroming:

\[\frac{D}{Dt} = 0 \ [s^{-1}] \Rightarrow \frac{\partial S}{\partial x} = 0 \ [kg/ms] \Rightarrow \frac{\partial u}{\partial x} = 0 \ [s^{-1}] \Rightarrow \frac{\partial h}{\partial x} = 0 \ [-] \quad (2.17) \]

De oplossing is de evenwichtstoestand. Er worden hiermee relaties gevonden tussen debiet (Q), helling (i), diepte (h), breedte (B) en zanddebet (S). Zie annex 4 waar deze relaties zijn weergegeven. Door de korte duur van rainbowen - ongeveer een uur - is het onduidelijk of er een evenwichtssituatie optreedt. Voor scenario II en III gaat deze evenwichtsbenadering zeker niet op.

Aannemelijk is dat de geul een evenwichtsbreedte opzoekt (scenario I). Uit de Regime theorie is bekend dat de geulbreedte (B) ongeveer evenredig is met de wortel van het totale debiet (Q). Deze verbanden zijn in beginsel afgeleid van kleine irrigatiekanalen en later uitgebreid naar de grotere rivieren. Met de Regime theorie en praktijkdata (CUR 152, 1991) is een minimale geulbreedte (B_{min}) opgesteld, welke in appendix C verder wordt afgeleid.

\[\frac{B_{min}}{D_{imp}} = 0.6 \sqrt{\frac{u_m}{u_c}} \ [-] \quad (2.18) \]

\[u_c = \sqrt{\Delta gd} \quad = \text{Shields kritieke snelheid} \ [m/s] \]

De ronde straal (D_{imp}) wordt als invoerparameter gebruikt, deze verschilt voor rainbowen qua orde grootte in breedte en vorm, qua consistentie, met de situatie van storten uit een pijp. De mengselsnelheid (u_m) en kritieke mengselsnelheid (u_c) van Shields zijn de invloed voor het berekenen van de minimale breedte (B_{min}).

De maximale geulbreedte (B_{max}) is de gehele afstromende omtrek rondom de ontgrondingskuil. In formule vorm:

\[B_{max} = 2\pi r \ [m] \quad (2.19) \]

r = straal [m]

Als de stroom gelijkmatig verdeeld blijft dan kan de straal in theorie oneindig groot worden en daarmee ook de maximale geulbreedte (B_{max}). De geulbreedte varieert tussen de minimale en maximale geulbreedte.

Een hoge wandschuifspanning erodeert en verbreidt de geul en een lage wandschuifspanning sedimenteert en versmalt de geul. Binnen deze twee uitersten is er een gebied waarin de geulbreedte niet varieert, de wandschuifspanning geeft erosie noch sedimentatie (Mosselman, 2002). Deze beschrijving wordt in de volgende kwalitatieve grafiek beschreven.
De Regime theorie is in het gebied tussen deze uitersten opgesteld. In de Regime theorie wordt vaak de spreiding van de mogelijke geulbreedte verwaarloosd.

2.1.4.3.2. Scenario II & III

Voor een geul die niet in evenwicht is (scenario II & III), doordat de breedte (B) variabel is over de lengte (x), kan de volgende massabalansvergelijking worden opgesteld. In figuur 2.9 is het twee dimensionale controlegebied gegeven waarin de breedte niet is opgenomen. In vergelijking (2.20) is de differentiaalvergelijking opgesteld in het controlegebied met toevoeging van een variabele breedte.
Procesanalyse

\[(1 - \varepsilon_p) \frac{\partial z_b}{\partial t} + \frac{1}{\rho_i} \frac{\partial}{\partial x} (S \rho_i) + w(1 - \varepsilon_p) = 0 \quad [\text{m/s}] \quad (2.20)\]

Een probleem hierbij is de manier waarop de stroming verbreedt of versmalt. Een mogelijke aanname is een radiale afstroming, zodat de rivier onder een vaste hoek (\(\Psi\)) zichzelf verdeelt of concentreert. Hierdoor kan er een relatie worden gevonden voor de breedte (B) langs de geul (x).

\[B = 2(B_o + x) \tan \left(\frac{1}{2} \Psi\right) \quad [\text{m}] \quad (2.21)\]

\[B_o \quad = \text{beginbreedte} \quad [\text{m}]\]

\[\Psi \quad = \text{hoek waarmee de geul zich verdeelt} \quad [^\circ]\]

Een niet stationaire stroming meer gericht op het onderwaterstort (CUR 152, 1991) gaat ervan uit dat de stroming over de rand van de ontgrondingskuil kritisch is. Bekend is een breedte/diepte verhouding (van ongeveer 4) voor kritische niet stationaire stroming van bresvormige dijkdoorbraken (Visser, 1990). Verdere aannames van deze vergelijking zijn beschreven in appendix C. Hieruit kan voor spuiten onder water worden afgeleid (CUR 152, 1991):

\[\frac{B_{\text{min}}}{D_{\text{imp}}} = 2 \frac{u_m^{0.4}}{D_{\text{imp}}^{0.2}} \left(1 + \frac{\Delta c}{\Delta cg}\right)^{0.2} \quad [-] \quad (2.22)\]

In vergelijking met de vorige formule (2.18) van de breedte wordt hier een invloed van de concentratie meegenomen. De minimale breedte (B_{min}) is niet meer precies rechttevenredig met de diameter van de straal (D_{imp}); dit kan zeker van belang zijn bij het verschalen van deze regels naar rainbowen. Echter beide vergelijkingen (2.18) en (2.22) vertonen een macht van 0.4 á 0.5 van de snelheid.

2.1.4.4. Mengselstroom

De massabalansvergelijking van sediment die gebruikt wordt in het computerprogramma van "storten van zand onder water 6" (Mastbergen, 1989) houdt rekening met erosie, sedimentatie en zandverlies aan de waterkolom erboven. Alvorens de massabalansvergelijking kan worden gegeven, moet eerst het begrip zandverlies worden geïntroduceerd.

Zand dat de mengselstroom verliest naar de waterkolom is uit te rekenen met (Mastbergen, 1989):

\[u_{zand} = 0.125 u_m f_c \quad [\text{m/s}] \quad (2.23)\]

Geldig voor: \(R_i > 0.4\) en \(F_r < 1\)

De snelheid van de mengselstroom (u), concentratie (c) en de interne wrijvingsfactor (f) van Darcy-Weisbach, bepalen de hoeveelheid zand die verloren gaat per oppervlakte naar de waterkolom boven de mengselstroom. De afleiding is geldig voor een turbulente stabiele menglaag, waarvoor \(R_i > 0,4\) en \(F_r < 1\) (sub-kritisch). Het Richardsongetal (Ri) is gedefinieerd voor een hoogte van de mengselstroom, relatieve concentratie en een gemiddelde mengelsnelheid. In appendix E wordt het Richardsongetal benaderd.
Procesanalyse

Met het introïncieren van het zandverlies kan de volgende differentiaalvergelijking voor het behoud van massa voor het sediment worden gegeven van een dichtheidsstroom:

\[
\frac{\rho \frac{\partial h(Qc)}{B \partial x}}{\rho_s} = E - Se - u_{\text{ent}} \rho_s \quad [\text{kg/m}^2\text{s}]
\]

(2.24)

\begin{align*}
E & = \text{erosie [kg/m}^2\text{s]} \\
Se & = \text{sedimentatie [kg/m}^2\text{s]} \\
\end{align*}

Let op! De breedte is als constante aangenomen en is buiten de differentiatie gehouden. Met deze vergelijking en de vergelijkingen eerder gegeven uit de rivierwaterbouwkunde (2.20) is af te leiden dat het om een vergelijking gaat welke sterk overeenkomt (2.24). De vergelijking is op een andere manier opgeschreven en een nieuw proces is geïntroduceerd, zandverlies naar de waterkolom, waarbij met een dichtheidsstroom wel rekening moet worden gehouden. In vergelijking (2.24) is niet meegenomen hoeveel de bodem door sedimentatie omhoog komt, omdat gebruik is gemaakt van een Lagrangiaanse balans (meebewegend ten opzichte van de bodem).

Voor het opstellen van een balansvergelijking voor water, moet eerst het begrip entrainment worden ingeluid. De entrainment van water in de zandstroom is door Mastbergen (1986) afgeleid in de volgende vergelijking. In appendix E wordt de vergelijking afgeleid.

\[
u_{\text{ent}} = 0.0015 u_m Fr_i^2 \quad [\text{m/s}]
\]

(2.25)

met,

\[
\begin{align*}
\text{u}_{\text{ent}} & = \text{entrainment of aanzuigssnelheid [m/s]} \\
Fr_i & = -\frac{u_m}{\sqrt{g h}} = \text{intern Froudegetal [-]} \\
e & = \frac{\rho_m - \rho_s}{\rho_m} = \text{relatieve mengseldichtheid [-]} \\
\rho_m & = \text{dichtheid zandwatermengsel } [\text{kg/m}^3]
\end{align*}
\]

De entrainment snelheid \(u_{\text{ent}}\) is loodrecht op de mengselstroom gericht. Het intern Froudegetal is hierin gedefinieerd met de gemiddelde snelheid \(u_m\) en hoogte \(h\) van de mengselstroom. De relatieve dichtheid \(e\) is ten opzichte van het omgevingswater. Helaas is deze entrainment functie onafhankelijk van de korrel diameter.

De massabalans voor het water kan nu worden gegeven:

\[
\frac{\partial(Q(1-c))}{B \partial x} = E - Se \left(\frac{n}{1-n}\right) + u_{\text{ent}} \quad [\text{m/s}]
\]

(2.26)

\[n = \text{poriëngetal [-]}\]

De volgende quasi-stationaire impulsbalans kan worden opgesteld voor een gesuspendeerde stroming (Mastbergen, 1989). In annex 5 is de impulsbalans geschematiseerd inclusief korrelspanningen \(T_o\) welke in deze balansvergelijking (2.27) in dit hoofdstuk buiten beschouwing blijven. Deze impulsbalans is opgesteld voor zandwaterstromen met een korrel diameter van ongeveer 200 \(\mu m\) waardoor korrelspanningen buiten beschouwing zijn gelaten (zie paragraaf 2.1.4.1).
De eerste term van de bovenstaande differentiaalvergelijking (DV) is de aandrijvende kracht door de helling. Door een aannemen van quasi-stationaire stroming en homogene stroming kan de hydrostatische drukkracht berekend worden met de tweede term van de DV. Een quasi-stationaire benadering kan door de tijdschaal van het rainbowne problemen gaan geven, dit moet zeker nader worden onderzocht. De derde term is de advectief term, voor de niet-uniforme stroming. De laatste term geeft de schuifspanning met de bodem (τ_0) en intern grensvlak (τ_1) weer. In annex 5 zijn controlevolumies getekend waar de bovenstaande vergelijking uit is afgeleid. In totaal zijn er twee massabalansen (2.24) en (2.26) gegeven en een impulsbalans (2.27), oftewel drie vergelijkingen. Met deze drie vergelijkingen kunnen drie onbekenden worden berekend, te weten de concentratie (c), snelheid (u) en mengseldiepte (h) met de aanname dat zand in een homogene suspensie is.

Om het probleem van niet-homogene zand- en waterstroming te modelleren moeten er vier vergelijkingen worden geïntroduceerd. Te weten, continuïteit van water en sediment en impulsbalansvergelijkingen van water en sediment. Deze laatste vergelijking, de impulsbalansvergelijking van sediment, kan vervangen worden door een semi-empirische transportformule van bijvoorbeeld Engeland-Hansen. Bij het invoeren van deze vergelijking moet de mengselsnelheid van tevoren worden ingevoerd. Door de gehele mengselstroom te modelleren met een transportformule, hoeft de impulsbalansvergelijking van water en zand niet apart te worden opgelost.

2.1.4.5. Evenwichtshelling

Aan het begin van deze paragraaf is uitgelegd wat korrelstromen zijn. Voor een korrelstroom heeft Mastbergen (1983) een vergelijking afgeleid door de schuifkracht en de component van de zwaartekracht aan elkaar gelijk te stellen. Deze afleiding wordt gegeven aan de hand van een definitieschets en de afleiding van een krachtenbalans langs de mengselstroom.

![Figuur 2.10 Krachtenspel korrelstroom](image)

Component zwaartekracht langs de helling:

$$F_z = \rho_m g h \sin(\gamma) \quad [N]$$ (2.28)
Schuifkracht:

\[F_m = \Delta cgh \tan(\varphi) \cos(\gamma) \quad [N] \]
(2.29)

\(\varphi \) = hoek van inwendige vrijving \([^\circ] \)

Component zwaartekracht langs de helling en schuifkracht worden aan elkaar gelijk gesteld en \(\tan(\gamma) \) wordt benaderd met i:

\[\rho_{mghi} = \Delta cgh \tan(\varphi) \quad [N] \]
(2.30)

\(i \) = evenwichtsstorthelling \([-] \)

Deze vergelijking omgeschreven naar de helling (i), levert:

\[i = \tan(\varphi) \frac{\Delta c}{1 + \Delta c} \quad [-] \]
(2.31)

Korrelstromen treden alleen op bij kleine laagdiktes of hoge stroomsnelheden, aan het begin van deze paragraaf bij de uitleg van korrelstromen is dit omschreven.

In het onderzoek "storten van zand" is onder andere naar de evenwichtshelling van fijn zand gekeken voor suspensie en bodemtransport. In het onderzoek "storten van zand onder water 4“ heeft Mastbergen (1988) onder andere de sedimenttransportformule van Engelund-Hansen gebruikt om het stelsel op te lossen. Mastbergen heeft dit gedaan om de evenwichtsstorthelling te berekenen:

\[i = \left(\frac{f_0 + f_1}{8} \right)^{0.1} \left(\frac{d}{0.05} \right)^{0.6} \rho_s^{0.4} g^{0.2} \left(1 - c \right)^{1.2} \left(1 + \Delta c \right) \]
(2.32)

Geldig voor: Engelund-Hansen \(w_0 < u_*, \ 0.07 < \theta < 0 \) en \(0.19 < d_{50} < 0.93 \) mm \(\ [81] \)

\(f_i \) = interne vrijdingscoëfficiënt Darcy-Weisbach \([-] \)

\(s \) = specifieke zanddebed [kg/sm]

Let op! Het bereik van deze vergelijking is geschikt voor een Nederlands stort waar een \(d_{50} \) van ongeveer 200 \(\mu \)m aanwezig is. In appendix B wordt deze vergelijking opnieuw afgeleid, er wordt een onderzoek gedaan naar het bereik van de korreldiameter in de vergelijking.

Betrouwbaarder is het, alleen de evenredigheid tussen de parameters weer te geven.

\[i = \infty \frac{d^{0.6}}{s^{0.4}} (1 - c)^{1.2} (1 + \Delta c) \]
(2.33)

Tot de 280 \(\mu \)m is er een empirische vergelijking die de relatie tussen korreldiameter \((d) \), specifieke zandstroom \((s) \) en evenwichtshelling \((i) \) weergeeft (De Groot, 1988).

\[i = 0.0032 \Delta s^{0.4} \quad [-] \]
(2.34)

Tussen (2.32) en de bovenstaande vergelijking is enige overeenkomst waar te nemen. De macht van het specifieke zanddebed komt overeen. Echter de macht van de korreldiameter verschilt iets.
In annex 3 is de classificatie van zand opgenomen. In annex 3 zijn bovendien orde van grootte te vinden over de hellingen van een onder- of bovenwaterstort.

2.1.4.6. Sedimentatielengte

De lengte waarover een turbulente zand-watermengselstroom zich kan uitstrekken wordt bepaald door de turbulentiegraad van de stroming en de valsnelheid van de korrels (2.10). De sedimentatielengte \(L_{sed} \) voor een suspensiestroming kan worden afgeschat zonder turbulentiegraad (Mastbergen, 1988):

\[
L_{sed} = \frac{q}{w'_{o}(1-c)^{m}} \quad [m] \quad (2.35)
\]

De sedimentatielengte is gedefinieerd als de lengte waarover 90 % van het zand is gesedimenteerd. De vergelijking is opgesteld voor een korrel diameter tot 225 μm en is het nauwkeurigst voor een concentratie van 30 %, omdat de exponent \(m \) op vier is vastgesteld (Mastbergen, 1988). Door het variabel stellen van de exponent \(m \) aan de verschillende korrel diameters, is er fysisch geen bezwaar om deze vergelijking te gebruiken voor grover zand. De concentratie heeft een beperking tot 30 % door het geldigheidsgebied van Richardson en Zaki (1954) (zie appendix B), bij hogere concentraties.

![sedimentatielengte](image)

figuur 2.11 Sedimentatielengte en lengte van zandtalud

In CUR 152 (1991) wordt een hydraulisch sedimentatie kengetal gedefinieerd:

\[
L^* = \frac{\text{sedimentatie lengte}}{\text{lengte talud}} \quad [-] \quad (2.36)
\]

Wanneer \(L^* < 1 \) dan betekent dit dat het zand voor de teen van het talud al gesedimenteerd is, ofwel zettingsvloeijgingen of afschuivingen treden op. Zettingsvloeijgingen en afschuivingen zullen verder behandeld worden in de volgende paragraaf 2.1.4.7 Macroprocessen. Voor \(L^* > 1 \) sedimenteert het zand na de teen van het talud naar de bodem. In annex 6 is dit geillustreerd.
2.1.4.7. Macroprocessen

Op macroschaal zouden meerdere processen op de onderwaterhelling op kunnen treden. Afschuiving over glijvlakken is daar één van. Het vers gepakte zand met veel poriënwater en een kleine effectieve korrelspanning kan makkelijk een glijvlak vormen. In combinatie met fijne delen met een kleinere hoek van inwendige wiriving wordt de kans op afschuiving vergroot. Verder zal hier niet ingegaan worden op afschuiving, verwezen wordt naar Grondmechanica van Verruijt (1999).

Zettingsvloeiing, een ander macroproces, is zand dat vervloeit door een verstoreing. Zand gaat zich door de hoeveelheid poriënwater (oftewel losse pakking) en beweging van korrels gedragen als een vloeistof. De effectieve korrelspanningen zijn klein en de waterspanningen zijn groot. Zettingsvloeiing komt voor bij een korreldiameter \(d < 2000 \mu m \) en een uniforme korrelverdeling. Er zijn een drietal algemene mechanismen te herkennen waardoor zettingsvloeiing kan optreden (Nichols, 1995), elk mechanisme heeft zijn eigen identiteit:

- **Fluidisatie:**
 Grondwaterstroom uit het zandpakket tot de korreltjes op en vermindert de werking van de zwaartekracht. De vrijvingskracht van de stroming vermindert de effectieve grondspanning.
- **Vloeiing:**
 Door de oscillerende beweging van de korrels neemt de effectieve korrelspanning af.
- **Schuifvloeiing:**
 Een schuifspanning grijpt aan op het zandpakket en zorgt ervoor dat dit naar beneden glijdt.

Deze drie algemene mechanismen komen in werkelijkheid gecombineerd voor. In die combinatie komt een grote diversiteit voor met een interactie tussen de mechanismen. De verschillende zettingsvloeiingsmechanismen kunnen in een driehoek worden weer gegeven.

![Driehoek met scala aan mogelijkheden van zettingsvloeiing](figuur2.12)

Verhoogde waterspanningen kunnen tot zettingsvloeiing leiden. Een percentage van 1% fijn materiaal (< 63 \(\mu m \)) is al voldoende om de poriëndruk vast te houden door een verlaagde doorlatendheid. De grondwaterstroom is uiteindelijk van belang, evenals de laagdikte van het pakket en de doorlatendheid.

Zettingsvloeiing treedt op bij steile hellingen, slecht doorlatend zand door een fijne fractie en een groot poriëngehalte \((n \text{ nadert } n_{max}) \), boven de kritische waarde. Het maximale poriëngetal kann gevonden worden door een bezinkproef van los uitgestrooid zand in een cilinder. Bij de minimale dichtheid wordt het maximale poriëngehalte gevonden. Op het onderwaterstort zijn al deze eerder gegeven criteria vaak aanwezig.
Volgens Silvis (1986) werd bij zandsluiting Slak (150 –200 μm) het onderwatertalud hoofdzakelijk opgebouwd door kleine zettingsvloeibingen. Het baggerwerkzeg dat was gebruikt is een cutterzuiger. Met deze werkmethode gaat er geen fijn materiaal verloren zoals bij het laadproces van een sleeppopperzuiger. De zandstroom sedimenteert aan de bovenkant van het talud en gaat in de vorm van een zettingsvloeibing naar beneden.

figuur 2.13 Stadia I t/m III van zettingsvloeibing

In stadia I en II wordt er een steil talud opgebouwd door sedimentatie. In stadium III vloeit het talud uit tot een flauwer talud. Voor grover zand (d > 600 μm) is een zettingsvloeibing zeer onwaarschijnlijk door de grote doorlatendheid.

Voor afschuivingen en zettingsvloeibingen kunnen een aantal voorwaarden in de volgende tabel worden samengevat.

<table>
<thead>
<tr>
<th>Bezijkmechanisme</th>
<th>Doorlatendeheid</th>
<th>Waterspanning</th>
<th>Helling</th>
<th>Hoek van invendige wrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afschuiven</td>
<td>-</td>
<td>Hoog/Normaal</td>
<td>Steil/Normaal</td>
<td>Klein</td>
</tr>
<tr>
<td>Zettingsvloeibing</td>
<td>Slecht</td>
<td>Hoog</td>
<td>Steil</td>
<td>-</td>
</tr>
</tbody>
</table>

tabel 2-2 Bezijkmechanismen versus voorwaarden

2.1.5 Bovenwaterstort

Voor het zandlichaam dat boven de waterspiegel uitkomt moet men overgaan tot een beschouwing van het bovenwaterstort. Voor het bovenwaterstort zijn de beschrijvingen uit de vorige paragraaf 2.1.4 Onderwaterstort meestal bruikbaar. Hiermee is het mogelijk een korte beschrijving te geven van de evenwichtshelling (2.1.5.1), mengselstroom (2.1.5.2) en de invloed van een buldozer (2.1.5.3).

2.1.5.1. Evenwichtshelling

\[
i = \left(\frac{f_v}{8} \right)^{0.1} \left(\frac{\Delta c}{0.05} \right)^{0.6} \left(\frac{\Delta d}{q_{0.4}} \right)^{0.6} g^{0.2} \left[\cdot \right] \quad (2.37)
\]

Geldig voor: Engelund-Hansen \(w_c < u_h \), \(0.07 < \theta < 6 \) en \(0.19 < d_{50} < 0.93 \) mm (De Vriend, 1999)
Let op het bereik van de vergelijking, vooral van de valsnelheid. In appendix B wordt van deze vergelijking de afleiding herhaald om het bereik vast te kunnen stellen. Betrouwbaarder is het echter om de evenredigheid tussen de parameters weer te geven.

\[i = \frac{\Delta d}{q_o^{0.4}} \Delta c^{0.6} \]

(2.38)

In vergelijking met de onderwaterevenwichtshelling, is het specifieke zanddebit \(s \) vervangen door een specifiek waterdebit \(q \). Door de hogere stroomsnelheden op een bovenwaterstort is de invloed van het specifieke zanddebit geringer. Voor zowel de concentratie als de diameter wordt de relatieve dichtheid er voorgezet in de vergelijking.

Voor het bovenwaterstort is voor de evenwichtshelling de volgende empirische vergelijking gegeven, tot een korrel diameter van 225 \(\mu m \) (Winterwerp et al., 1990).

\[i = 0.006 \left(\frac{d}{d_0} - 1 \right) q^{-0.45} \]

[-]

\[d_0 = 65 [\mu m] \]

\[q_0 = 1 [m^3/s] \]

Als men de bovenstaande empirische vergelijking met de semi-empirische vergelijking (2.37) vergelijk, is er net zoals bij het onderwaterstort een overeenkomst te herkennen. Het specifieke debiet in de beide vergelijkingen heeft een gelijke macht, echter de macht van de korrel diameter is verschillend. De invloed van de concentratie is niet in deze empirische relatie meegenomen.

In annex 3 zijn orde grootte bovenwaterstort hellingen opgenomen voor verschillende korrel diameters.

2.1.5.2. Mengselstroom

Bij het storten van zand onder water kon een impulsbalans worden opgesteld voor gesuspendeerde stroming. Ditzelfde is gedaan voor bovenwater (Winterwerp et al., 1992). In vergelijking (2.27) is de relatieve dichtheid \(\varepsilon \) en de grensvlakschuijspansing \(\tau \) opgenomen, deze worden hier weggelaten voor bovenwater.

\[\rho_m \frac{g h}{2} \frac{\partial}{\partial x} \left(h + z_s \right) + \frac{1}{2} \rho_m B + \frac{\partial}{\partial x} \rho_m Q u - \tau_r B \]

[kg/s²]

(2.40)

helling hydrostatisch advectief schuijspansing

De uitleg gegeven over deze differentiaalvergelijking blijft gelijk, zoals bij formule (2.27) is weergegeven. Het enige verschil is dat het buoyant effect en de schuifspanning met de interne grenslaag is weggelaten.

2.1.5.3. Bulldozer

Op een bovenwaterstort is vaak een bulldozer aanwezig om het stort bij te houden. De bulldozer draagt er zorg voor om de geul die gevormd wordt breed te houden. Materiaal dat vlak voor de pijp ophoopt wordt door de bulldozer over het stort verspreid. De
Procesanalyse

bulldozer bereikt hiermee dat het uitzetten van de korrel diameters wordt geminimaliseerd (Groot, 1981). Het uitzetten van de korrel diameters, dus grove korrels bij de onttreadingskuil en fijne korrels er verder vandaan, treedt vooral op bij een brede korrelverdeling.

De cursusboeken van de Voortgezette Opleiding Uitvoering Baggerwerken (V.O.U.B., 1998) geven richtlijnen over de invloed van een bulldozer op het stort. Alvorens deze richtlijnen kunnen worden gegeven, moet eerst de relatieve porositeit (R_n) worden gedefinieerd.

$$R_n = \frac{n_{\text{max}} - n}{n_{\text{max}} - n_{\text{min}}} \ [%]$$

De waarden n_{max} en n_{min} zijn de maximale en minimale waarden van de porositeit, welke worden vastgesteld in een laboratorium. De minimale porositeit hoort bij de maximale dichtheid, visa versa hoort de maximale porositeit bij de minimale dichtheid. Nu de relatieve porositeit bekend is kunnen richtlijnen worden opgesteld welke invloed een bulldozer heeft op de relatieve porositeit.

\[\text{figuur 2.14} \quad \text{Gemiddelde relatieve porositeitswaarden (V.O.U.B., 1998)}\]

Voor de waarde in de bovenstaande grafiek moet rekening worden gehouden met een spreiding rond het gegeven gemiddelde.

Voor het rainbownen waar geen bulldozer op het stort ingezet kan worden, kan het volgende worden samengevat:

- geulvorming
- hogere stortverliezen naar het onderwaterstort
- uitzetten korrel diameters
- hogere relatieve porositeit
2.2. Straal

In de voorgaande paragraaf over het stort, zijn een aantal vragen gerezen over hoe de straal aankomt:

- onder welke hoek komt de straal aan?
- hoe ver komt de straal?
- hoeveel lucht zit er in de straal?
- wat is de snelheid- en het concentratieprofiel van de straal?

Om de vragen te kunnen beantworten wordt de straal in deze paragraaf opgebouwd in complexiteit. Een eerst simpele benadering met de wetten der ballistiek, wordt gevolgd door een analyse van een waterstraal. Uiteindelijk wordt de paragraaf afgesloten met de procesbeschrijving van een mengselstraal.

2.2.1 Ballistiek

Volgens de wetten der ballistiek, zal een kogelbaan onder invloed van een homogene voorgesteld gravitatiekrachtveld een parabool beschrijven met de symmetrieas evenwijdig aan de richting van de gravitatiekracht.

De straal die uit de tromp treedt zal in theorie eenzelfde parabolische baan maken. In figuur 2.15 wordt een begin gemaakt met de theorie van een straal door de lucht. De straal wordt als een kogel in het luchtlede voorgesteld. In figuur 2.15 wordt ook de richting van x en z vastgelegd.

\[
\begin{align*}
 u_x &= u \cos(\beta) \quad [\text{m/s}] \\
 u_z &= u \sin(\beta) \quad [\text{m/s}] \\
 \frac{dx}{dt} &= u_x \quad [\text{m/s}] \\
 \frac{dz}{dt} &= u_z \quad [\text{m/s}] \\
 \frac{du_x}{dt} &= 0 \quad [\text{m/s}^2] \\
 \frac{du_z}{dt} &= -g \quad [\text{m/s}^2] \\
 u &= \sqrt{u_x^2 + u_z^2} \quad [\text{m/s}]
\end{align*}
\]
Procesanalyse

Met: \[\begin{align*}
\beta & = \text{hoek van tromp met horizontaal afhankelijk van plaats [°]} \\
u & = \text{snelheid straal [m/s]}
\end{align*} \]

Met deze vergelijkingen en beginvoorwaarden is het stelsel op te lossen. Om de hoek te vinden waar de reikwijdte maximaal is, worden de bovenstaande vergelijkingen in de volgende vorm geschreven:

\[\text{Reikwijdte} = \frac{u_{\text{tromp}}^2 \sin(2\alpha)}{g} \quad [m] \quad (2.46) \]

\[u_{\text{tromp}} = \text{snelheid straal ter plaatse van de tromp [m/s]} \]

\[\alpha = \text{hoek van tromp met horizontaal naar boven gericht [°]} \]

In vergelijking (2.46) blijkt daadwerkelijk dat de reikwijdte maximaal is wanneer de sinus maximaal is voor hoek alfa (\(\alpha\)) van 45°.

Later zal blijken dat de hoogte waarop de straal komt ook van belang is:

\[H = \frac{u_{\text{tromp}}^2 \sin^2(\alpha)}{2g} \quad [m] \quad (2.47) \]

2.2.2 Waterstraal

Van zuiver theoretische ballistiek wordt nu een stap verder gemaakt naar de praktijk. Als de waterstraal zich niet als een kogel in het luchtedige beweegt, hoe beweegt een waterstraal zich dan door de lucht? De straal zal niet als een kogel een symmetrieas hebben evenwijdig aan het gravitatieveld. Dit komt door wrijving van de straal. Hieronder in figuur 2.16 wordt een baan weergegeven van een straal met wrijving in tegenstelling tot een baan zonder wrijving.

![Invloed van wrijving op de baan van een straal](image)

De straal die na het verlaten van de tromp door de lucht schiet wordt instabiel. Aan de rand onstaat een sinusvorm, in annex 7 is een foto van een straal opgenomen waar de sinusvorm is te herkennen. Deze sinus kan zo groot worden dat de straal uiteen valt in druppels. De lengte waarover dit voor 50% is gebeurd heet de Breakup-lengte (\(L_b\)) (Sande en Smith, 1976). Door de hoge getallen van Reynolds (Re) van \(\pm 10^6\),
RAINEUGREN

Procesanalyse

\[Re = \frac{u_{\text{tromp}} D_{\text{tromp}}}{v} \quad [-] \quad (2.48) \]

\[D_{\text{tromp}} = \text{diameter van de tromp} \ [\text{m}] \]
\[v = \text{kinematische viscositeit} \ [\text{m}^2/\text{s}] \]

kan er worden volstaan met de volgende vergelijkingen. De Break-up lengte is
gedeфиниeerd voor een verticale straal, daardoor geeft het slechts een indicatie over de
toestand van de straal op het impactpunt.

\[\frac{L_b}{D_{\text{tromp}}} = 2.7 W e_j^{0.5} \quad [-] \quad (2.49) \]

geldig voor: \(Re = \pm 10^6 \ [-] \)

Hierin is:

\[W e_j = \frac{u_{\text{tromp}}^2 D_{\text{tromp}} \rho_m}{\sigma} = \text{Webergetal voor een jet} \ [-] \]
\[\sigma = \text{oppervlaktespanning vloeistof} \ [\text{N/m}] \]

Door de range in te vullen van het rainbowen,

\[u_{\text{tromp}} = 40 \ [\text{m/s}] \quad D_{\text{tromp}} = 0.4 \ [\text{m}] \quad \rho_m = 1.8 \times 10^3 \ [\text{kg/m}^3] \quad \sigma = 0.073 \ [\text{N/m}] \quad Re = 10^7 \ [-] \]

komt naar voren dat de straal waarschijnlijk niet geheel uiteenvalt in druppels.

\[W e_j = 1.6 \times 10^7 \ [-] \quad L_b = 4300 \ [\text{m}] \]

De breakup-lengte van de straal zou zo nooit gehaald worden, de bruikbaarheid van de
vergelijking is slechts indicatief. Door de turbulentie-intensiteit aan het begin van de
straal wordt er roet in het eten gegooid. Tevens is door de korte nozzle-lengte het
logaritmische snelheidsprofiel nog niet ingesteld, waardoor de snelheid aan de buitenkant
van de straal veel groter is (Van der Schrieck, 1984).

Nu wordt wrijving van een waterstraal meegenomen, waardoor de complexiteit
toeeneemt. De bewegingsvergelijking voor een waterstraal met wrijving is gemodellieerd
voor grote brandweerspuiten (Hatton en Osborne, 1979) voor een Froudegetal (Fr) lager
dan 120.

\[Fr = \frac{u_{\text{tromp}}}{\sqrt{gD_{\text{tromp}}}} \quad [-] \quad (2.50) \]

Froude is gedeфиниeerd voor de beginsnelheid in de tromp (\(u_{\text{tromp}} \)) en de diameter van de
tromp (\(D_{\text{tromp}} \)).

\[\frac{du_x}{dt} = -ku^2 \cos(\beta) \quad [\text{m/s}^2] \quad (2.51) \]

\[\frac{du_z}{dt} = -g - ku^2 \sin(\beta) \quad [\text{m/s}^2] \quad (2.52) \]

Geldig voor: \(Fr < 120 \ [-] \)
De ruweheids parameter k kan iteratief uit de volgende formule worden afgeleid.

$$
\eta = \frac{g}{ku_{\text{trump}}} \ln \left(1 + \frac{k u_{\text{trump}}}{g} \right) \%
$$

(2.53)

Geldig voor: $32 < Fr < 120$ bij $Fr < 32$ is $k = 0.001$

Hierin is η de efficiëntie van de straal, gedefinieerd als de bereikte hoogte gedeeld door de maximaal bereikbare hoogte zonder vrijwijing. Met formules (2.43), (2.45), (2.51), (2.52) en (2.53) is het stelsel voor onbekende (k, x, z, u_1 en u_2) op te lossen.

Belangrijk hierbij is te melden dat in de gegenereerde berekeningen van grote brandweerspuiten (nozzlediameter van bijna 200 mm) de invloed van de wind terug te vinden is.

Een belangrijke kanttekening moet direct worden gemaakt: De vrijwijngescùefficiënt is een functie van het initiële Froudegetal. Deze wordt constant gehouden over de gehele straal, echter door het verlies van druppels en oppervlaktegroei zou de waarde van k moeten stijgen. In figuur 2.17 is schematisch weergegeven wat er met de oppervlaktegroei van een straal wordt bedoeld, tevens zijn de gebruikte symbolen weergegeven.

![Diagram](image)

Figuur 2.17 Schematisatie straal

Voor de verbreding van de straal moet gezocht worden naar continuïteit, zodat de oppervlaktegroei van de doorsnede bekend wordt.

$$
Q_1 + Q_k = Q_2 \quad [m^3/s]
$$

(2.54)

$$
A_1 u_1 + Q_k = A_2 u_2 [m^3/s] \Rightarrow u_1 < u_2 [m/s] \Rightarrow A_1 < A_2 [m^2]
$$

(2.55)

Het debiet lucht (Q_1) dat in de straal intreedt is te bepalen door een eenvoudig verband van Van de Sande en Smith (1973). De lucht treedt in door de instabiele grenslaag van water en lucht.

$$
\frac{D^*}{D_{\text{trump}}} = 0.085 \left(We_j \text{Re}_{\text{length}} \right)^{1/6} \quad [-]
$$

(2.56)

$$
\text{Re}_{\text{length}} = \frac{u_{\text{trump}} L_j}{\nu} \quad [-]
$$

(2.57)
Procesanalyse

\[\text{We}_j = \frac{u_{\text{tromp}}^2 D_{\text{tromp}}}{\sigma} \] \hspace{1cm} (2.58)

Geldig voor: \(Re_{\text{length}} \text{We}_j > 7.10^5 \) lange cilindrische nozzle \((l_n/D_{\text{tromp}}>50)\)

\(\text{D}^* = \) diameter straal inclusief lucht [m]

Het Froudegetal is gedefinieerd voor de snelheid in de tromp \((u_{\text{tromp}})\) en de diameter van de tromp \((D_{\text{tromp}})\). Voor de verhouding tussen de lengte van de nozzle \((l_n)\) en de diameter van de nozzle \((D_{\text{tromp}})\) wordt in elke huidig bestaande vergelijking een probleem gevonden in het geligheidsgebied. De range van het rainbowen geeft een verhouding \(l_n/D_{\text{tromp}}\) kleiner dan 10. Deze vergelijking is robuust, omdat hij goed toepasbaar is op andere laboratoriumdata van andere onderzoekers. Aan de hand van deze argumenten is er voor gekozen dat vergelijking (2.56) de beste benadering geeft over de hoeveelheid lucht die in de straal wordt opgezogen. Hier mag niet nagelaten worden te vermelden dat de bovenstaande vergelijking gebaseerd is op laboratoriumdata.

In het hoofdstuk Modelleren wordt dit verder uitgewerkt. Hieronder in figuur 2.18 is geschematiseerd hoe de straal verbreedt ten opzichte van het schip. Door de schuine inval van de straal wordt het oppervlak op de waterspiegel verder vergroot.

![Figuur 2.18 Straal van rainbowen](image)

2.2.3 Mengselstraal

Na de waterstraal wordt er nu verder ingegaan op een mengselstraal. De straal verlaat het schip met een homogene mengsel, door de grote mate van de te verwachte turbulentie-intensiteit door de vernauwing. Echter in paragraaf 2.3 zijn een aantal argumenten gegeven, welke pleiten voor een mogelijk heterogene mengsel. Deze argumenten worden hier gesommeerd:

- traagheidsverschil tussen korrels en water
- slip van korrels ten opzichte van draagvloeistof

Als er een heterogene mengsel wordt weggeschoten hebben korrels en water verschillende beginsnelheden. Hierdoor slaan ze op verschillende afstanden van elkaar in. In de praktijk vallen de grote korrels eerder uit de straal (Kerklaan, 1980). Hieruit kan geconcludeerd worden dat deze grotere korrels een kleinere snelheid hebben.

Weinig is bekend over een twee fasen jet. Despirito (2001) heeft een jet van gas en vaste delen onderzocht waarbij hij tot de conclusie kwam, dat voor hogere getallen van Stokes (St) er een stabiliserende werking optreedt in de jet door de aanwezigheid van de vaste deeltjes.

3/20/03 Pagina 52 / 163 S.H. Burgmans
Hieruit kan geconcludeerd worden dat de Break-up lengte kleiner is voor een mengsel dan voor water. Bekend is dat bij het toevoegen van vaste deeltjes aan water de viscositeit toeneemt. Lee (1969) heeft hierover de volgende empirische vergelijking geschreven voor concentraties tot c < 35 [%].

\[\eta_m = \eta_o \left(\frac{1}{1-c} \right)^{(2.5+1.92c+7.73c^2)} \] \[\text{[kg/ms]} \] \[(2.60) \]

\(\eta_m \) = dynamische viscositeit mengsel [kg/ms]

De vergelijking geeft de dynamische viscositeit (\(\eta \)) gerelateerd aan de concentratie (c), inclusief de drievoudige korrel-korrel interactie bij hoge concentraties aan. Echter bij concentraties boven de c > 35 % zal de viscositeit nog sterker toenemen door de meervoudige korrel-korrel interactie.

De viscositeit van de straal heeft invloed op de stabilitéit van een jet (Chen, Davis en ASCE, 1964). De Break-up lengte die bij de vorige paragraaf (2.2.2) was gedefinieerd, moet worden aangepast voor een tweefase stroming. In de vergelijking van de Break-up lengte (2.49) is wel de dichtheid opgenomen welke evenredig is aan de Break-up lengte. De viscositeit kent geen directe invloed op de Break-up lengte vergelijking.

Duidelijk is geworden dat de straal met water enigszins is te voorspellen, echter er is als startpunt nog weinig bekend over een straal van water en zand. In annex 7 is een straal te zien van slib, met een hogere viscositeit, welke stabiel blijft. De turbulente wervels in de pijp worden ook gedempt door de viscositeit, hierdoor zijn er in de beginvoorwaarden van de straal veel minder snelheidsfluctuaties.

De dynamische viscositeit die door de concentratie met een factor 2 tot 10 kan toenemen (2.60), heeft invloed op het Reynoldsgetal van de stroming. Naarmate de concentratie toeneemt treedt er stratificatie op waardoor wervels in de stroming worden gedempt (Booij, 1986). De demping van de turbulentie-intensiteit door stratificatie, heeft als beginvoorwaarde van een jet een extra stabiliserende werking.

Het is duidelijk, dat er in de straal vele fysische processen optreden. Hoe de straal uiteindelijk aankomt, hangt van deze processen af. De aankomst van de straal geeft een randvoorwaarde voor de bezinking van het sediment.

Een aantal parameters verschillen bij rainbowen ten opzichte van het verticaal storten van zand. Dit komt door de aankomst van de straal. Deze verschillen worden nu gesommeerd:

- Er is een hoek waarmee de straal aankomt in de verticaal.
- De straal is in de lucht wat betreft de oppervlakte gegroeid, komt aan over een groot oppervlak.
- Door de beginsnelheidsverschillen tussen water en korrels zou het water een grotere reikwijdte kunnen hebben dan de korrels.

Er zijn een aantal verklaringen gevonden over de verschijnselen waargenomen op plaatjes van rainbowen. Eerder is in paragraaf 2.1.2 Zand-lucht-waterkolom, vanuit plaatjes een analyse opgesteld met daarin de karakteristieken waarin een straal aankomt.
2.3. Schip

Voornamelijk wordt er gerainbowd door Sleephopperzuigers. Zoals eerder is aangegeven, zijn dit zelfstandig varende, ladende en lossende beunschepen (zie paragraaf: 1.1.1 Sleephopperzuiger). Rainbowen is het lossen van een sleephopperzuiger door de lading over de boeg enkele tientallen meters weg te spuiten (zie paragraaf: 1.1.2 Rainbowen). Aan boord van de sleephopperzuiger is er gekozen om het proces op te delen in drie delen: Het eerste deel begint bij de pomp, daarna de leiding en het proces eindigt bij de tromp, opnieuw wordt er gebruik gemaakt van een geometrische verdeling.

2.3.1 Pomp en aandrijving

De pomp en aandrijving zijn opgenomen in appendix A, zodat hier direct wordt overgegaan op de boordleiding.

2.3.2 Boordleiding

In de leiding van de pomp tot de vernauwing vindt het hydraulisch transport plaats. In de leiding vindt dissipatie van energie plaats in de vorm van drukverlies. De drukval treedt op door locale verliezen (bochten, t-stuks, enz.) en wrijvingsverliezen met de wand. Zij spelen een minime rol in de leiding karakteristiek, aangezien de vernauwing aan het eind van de leiding veel energie kost.

In de bochten van het leidingtracé vindt door centrifugale kracht \(F_C \) op het mengsel segregatie plaats. Aangezien voor de tromp meestal een bocht zit, kan een heterogene mengsel ontstaan. Dit proces is met de volgende krachten evenwicht (2.61) te benaderen, waarbij de centrifugaalkracht en de wrijvingskracht aan elkaar gelijk worden gesteld. Traagheidskracht en hinderd settling worden even buiten beschouwing gelaten. In het onderstaande plaatje is de situatie weergegeven.

\[
F_C = F_D \Rightarrow \frac{\pi d^3}{6} (\rho_s - \rho_f) \frac{v_{b, leiding}}{R}^2 = \frac{C_D \pi d^2 w_o^2 \rho_f}{8} [N]
\] (2.61)

Hierin is:
- \(F_C \) = centrifugaalkracht [N]
- \(F_D \) = wrijvingskracht [N]
- \(v_{b, leiding} \) = snelheid in de boordleiding [m/s]
- \(R \) = straal bocht [m]
- \(C_D \) = wrijvingscoëfficiënt [-]

\[\text{figuur 2.19 Schets krachtenspel in een bocht}\]
Procesanalyse

Er kan nu de volgende voorbeeldberekening worden gemaakt om vast te stellen wat de invloed van de centrifugaalkracht is op de segregatie van korrels in de bocht.

Gegevens:
- $d=500 \, [\mu m]$
- $R=2 \, [m]$
- $v_{b,\text{leiding}}=7 \, [m/s]$
- $\rho_s=2650 \, [kg/m^3]$
- $\rho_w=1000 \, [kg/m^3]$
- $v=1*10^{-5} \, [m^2/sec]$

Berekening:
- $Re_p = \frac{w_o \cdot d}{\nu} = 35000 \, [\cdot] \quad \Rightarrow \quad C_D=0.4 \, (grafiek annex 8) \quad \Rightarrow \quad w_o=7 \, [cm/s]$

Bij het invullen van de bochtstraal (zoals hierboven), snelheid en valsnelheid, blijkt dit proces van weinig invloed. De grootte van de valsnelheid vermenigvuldigd met de verblijftijd van het korreltje in de bocht geeft de afstand waarover het korreltje zich verplaatst. Er is geen hinderd settling en traagheid meegenomen, welke een verdere afname van de verplaatsing zouden betekenen. Conclusie hier is dat segregatie door bochten mag worden verwaarloosd.

Na de pomp kan worden aangenomen dat er een homogeen mengsel ontstaat. Na enkele tientallen meters pijnleiding van pomp tot vernauwing is dat nog maar de vraag. Na ongeveer 50xD na de pomp zijn de heterogene mengsels uitgezet naar hun evenwichtsconcentratie- en snelheidsprofiel.

2.3.3 Tromp

De tromp is de vernauwing aan het eind van de leiding. In figuur 2.20 is een tekening weergegeven van een tromp.

![Schematisatie tromp](image)

Figuur 2.20 Schematisatie tromp

Voor het berekenen van de reikwijdte en het gedrag van de straal, is het van belang om de uittreedsnelheid (u_{tromp}) bij de tromp te berekenen. De snelheid aan boord in een brede leiding ($u_{b,\text{leiding}}$) verhoudt zich op de volgende wijze tot de uittreedsnelheid uit de tromp volgens de continuiteitswet.

$$ \frac{u_{\text{tromp}}}{u_{b,\text{leiding}}} = \left(\frac{D_{b,\text{leiding}}}{D_{\text{tromp}}} \right)^2 \quad [\cdot] \quad (2.62) $$

$D_{b,\text{leiding}}$ = diameter van boordleiding [m]

Nu de snelheid bekend is kan ook het kengetal van Reynolds berekend worden. Het getal van Reynolds geeft het regime van stroming aan, anders gezegd het gedrag van de vloeistof.
De tophoek waarmee de leiding overgaat in het spuitstuk is belangrijk voor het lokale drukverlies. Met deze hoek wordt bovendien de mate van contractie bekend. De contractie is de samensnoering van stroomlijnen. In de laatste plaats wordt met de tophoek van het spuitstuk, iets over de turbulentie-intensiteit van de straal bij uittrede bepaald. Bekend is dat Van Oord ACZ een tophoek hanteert van 4°, de anderen een tophoek van 30-45°.

De positie van het schip is van belang, voor de plaats vanwaar wordt gespoten. Het schip zal tijdens het rainbowen niet stilliggen zij is onderhevig aan: stromingen, wind, golven, enz. Bij rainbowen is het vaak interessant om het schip zo dicht mogelijk bij het stort te houden. Wanneer het schip uit het water stijgt, door het lossen, kan de hopper steeds meer het talud op. De "Vasco da Gama" van Jan de Nul beweegt opzettelijk om heuvelvorming op het stort tegen te gaan.

Het mengsel krijgt de laatste decimeters voor het lanceren een versnelling mee, door de vernauwing. De vloeistof en korrels hebben een verschillende massa en daardoor een verschillende traagheid. Hier kan worden gesproken van een eventueel tangentiële snelheidsverschil van de korreltjes ten opzichte van de vloeistof (Azzopardi, 1999). In het onderzoek van Azzopardi is gewerkt met lucht en lage volume concentraties. Bij hoge concentraties zoals bij rainbowen gebruikelijk is, is de korrel-korrel interactie een proces dat de snelheid van de korrels waarschijnlijk doet opvoeren.

Slip is het verticaal snelheidsverschil tussen draagvloeistof en korrels (Matousék, 1997), dit is een algemene eigenschap van hydraulisch transport van korrels, zeker geldig voor leidingtransport. Slip neemt af naarmate de snelheid toeneemt, aangezien het een homogener mengsel wordt.

Als het een heterogeen mengsel betreft, wat de tromp binnen treedt, dan is er een verschillende beginsnelheid tussen bed en zwevend transport. Bed en zwevend transport kunnen na de tromp ook nog in het concentratieprofiel terug te vinden zijn.

3. Turbulente- en korrelspanningen in een zandwater-stroming

In het voorgaande hoofdstuk zijn in paragraaf 2.1.4 de korrelspanning behandeld. Met het getal van Bagnold is in te schatten welke spanningen een hoofddrol spelen. Duidelijk is geworden dat zowel de korrelspanning als de vloeistofspanning een rol spelen, daardoor is het aannemelijk dat zowel turbulente- en korrelspanningen een rol spelen. De rol van beide spanningen wordt in hierop volgende model beschreven.

In dit hoofdstuk wordt de korrelspanning geïntroduceerd in een snelheids- en concentratieprofiel. Voor het snelheidsprofiel wordt met behulp van de mengweglengte theorie de turbulente spanning afgeleid. Hierna worden ook de korrelspanningen geïntroduceerd. Voor het concentratie profiel wordt gebruik gemaakt van de convectie diffusie vergelijking (2.10).

Hiermee wordt de mogelijkheid gecreëerd om de korrelspanning in bestaande modellen op te nemen. In de literatuur zijn op dit punt weinig analytische modelleringen gemaakt, daarom wordt in dit onderzoek extra aandacht gevraagd voor dit deelproces.

3.1. Snelheidsprofiel

In de afleiding van het snelheidsprofiel wordt gebruik gemaakt van de mengweglengte theorie om de turbulente spanning af te leiden. Verder in deze afleiding worden korrelspanning meegenomen en vergeleken met de turbulente spanning. Beginnen wordt met het geven van het kengetal van Richardson, dat een beschrijving geeft over de stabiliteit van de stroming.

\[
Ri = \frac{\text{zwaartekracht}}{\text{traagheidskracht}} = \frac{-g \frac{\partial \rho}{\partial z}}{\rho \left(\frac{\partial u}{\partial z} \right)^2} [-] \quad (3.1)
\]

In appendix E waar het Richardsongetal verder wordt afgeleid naar de volgende benadering. In deze afleiding wordt het Richardsongetal constant gehouden over de verticaal. Er wordt een lineair snelheids- en concentratieprofiel aangenomen met over de verticaal gemiddelde waarden. Het Richardsongetal is dan als volgt te schrijven:

\[
Ri = \frac{\rho g h}{u^2} [-] \quad (3.2)
\]

De turbulente viscositeit \(\nu_t \) is volgens de mengweghypothesen van Prandtl als volgt te schrijven:

\[
\nu_t = l_m^2 \frac{\partial u}{\partial z} \quad [m^2/s] \quad (3.3)
\]
De mengweg lengte (l_{m_0}) is een parameter welke de grootte van de wervels vertegenwoordigt. Prandtl mengweg lengte met coördinaat z de afstand tot de bodem.

\[l_{m_0} = \kappa z \quad [m] \quad (3.4) \]

\[\kappa = 0.4 \quad = \text{constante van Von Karman} [-] \]

Aangezien de stratificatie (dichtheidsgelaagdheid) van de stroming de grootte van de turbulente wervels dempt, wordt er een relatie toegepast welke de mengweg lengte verkort. De meeste relaties in de literatuur maken gebruik van het Richardson getal en geven een verkleining van het turbulente Prandtl-Schmidt getal. Het turbulente Prandtl-Schmidt getal geeft een waarde voor de mate van turbulente diffusie. Alle beschikbare empirische vergelijkingen zijn slecht in staat een correcte beschrijving te geven van de werkelijke demping. De demping van de mengweg lengte en turbulente Prandtl-Schmidt getal kunnen met elkaar worden vergeleken (zie annex 10).

De trends van de dempingvergelijkingen weergegeven in annex 10 vertonen een grote gelijkheden. Gekozen wordt om een conservatieve aanpassing van de mengweg lengte toe te passen waarmee de mengweg lengte minimaal wordt verkleind bij hogere Richardsongetallen.

De relatie van Mamayev wordt toegepast om de mengweg lengte te verkorten, welke gefit is voor het turbulente Prandtl-Schmidt getal. In een onderzoek over vrije turbulentie in de Waterweg wordt de Mamayev aangeraden voor het turbulente Prandtl-Schmidt getal (Uittenbogaard, 1993). Zie annex 10 waar de verschillende relaties zijn opgenomen met verschillende laboratorium data, waar een grote spreiding in de gemeten data is waar te nemen. Voor de mengweg lengte zijn twee rode lijnen in de graafiek bijgetekend voor de Munk-Anderson relatie (1-7R1 en 1-Ri). De eerste vergelijking wordt algemeen gebruikt. Pugh (1995) heeft de tweede vergelijking opgesteld door de coëfficiënt aan te passen (van de gebruikelijke 7 naar 1) voor hogere Richardsongetallen bij sheet flow. Door de minimale demping is het geoorloofd om een constant Richardson getal in te voeren over de verticaal.

Bij hogere Richardsongetallen (Ri ≈ 1) treedt er niet alleen diffusie op door de turbulentie, maar kunnen ook interne golven zorgen voor een horizontale impulswisseling in verticale richting (Kranenburg, 1998). Dit is een aandachtspunt voor verder onderzoek, in deze modellering wordt dit niet verder onderzocht.

De Mamayev relatie om conservatief de mengweg lengte te verkorten voor gestrategoefende stroming:

\[\frac{l_{m}}{l_{m_0}} = e^{-0.4R1} \quad [-] \quad (3.5) \]

Geldig voor: Ri > 0

In annex 10 is de mengweg lengte verkorting grafisch weergegeven. Het Richardson getal wordt door de minimale invloed in het model als constant aangenomen en niet als een functie van de verticale coördinaat (z).

De snelheidsgadiënt $\left(\frac{\partial U}{\partial z} \right)$ voor het turbulente binnengebied, waarbij de turbulente schuifspanning overheerst, kan worden opgesteld met de mengweghyptose en de Mamayev relatie:
Turbulente- en korrelspanningen

\[
\frac{\partial u}{\partial z} = u_* \frac{1}{e^{-0.4Ri} k z} \quad [\text{s}^{-1}]
\]

\[u_* = \text{schuifsnellheid} \ [\text{m/s}] \]

\text{Geldig voor: turbulent binnengebied } z^+ > 30 \quad [-] \quad z^+ = u_* z / \nu \quad [-]
\]

\text{(Booij, 1986)}

Door integratie van de snelheidsgradiënt over hoogte \((z)\) wordt een logaritmische snelheidsprofiel verkregen.

\[u = \left(\frac{u_*}{e^{-0.4Ri} \nu^2 \kappa / z_o} \right) \ln \left(\frac{z}{z_o} \right) \quad [\text{m/s}] \]

\[(3.7) \]

De integratie constante \((z_o)\) is gefit voor een hydraulisch ruwe bodem \text{(Booij, 1986)}. De korrelspanning op een hydraulische bodem steken buiten de viskeuze sublaag uit, waardoor de viskeuze schuifspanning aan de bodem niet overheerst. Op een hydraulisch ruwe wand zijn hoofdzakelijk de drukkrachten \text{(i.v.m. loslating)} van invloed op de impulsoverdracht naar de bodem.

\[z_o = \frac{k}{33} \quad [\text{m}] \]

\[(3.8) \]

\text{Geldig voor: } k > 70 \frac{\nu}{|u_*|} \quad [\text{m}] \quad \text{(Jansen, 1994)}

\[k = \text{ruwheidshoogte} \ [\text{m}] \quad \text{(zie appendix F)} \]

Aangenomen is een hydraulisch ruwe bodem. Met de volgende berekening is deze veronderstelling te valideren, waarbij de ruwheidshoogte van Van Rijn (1993) wordt gebruikt. Hierbij wordt een reëel viscositeit \((\nu)\), kleine korrendiameter \((d_{90})\), hoge wrijving \((f_o)\) en lage snelheid \((u)\) ingevoerd om de ondergrons van een hydraulische ruwe bodem te berekenen.

\text{Gegeven:}

\[\nu = \text{10}^{-6} \quad [\text{m}^2/\text{s}], \quad d_{90} = 300 \quad [\mu\text{m}], \quad f_o = 0.3 \quad [-] \text{ en } u = 0.5 \quad [\text{m/s}] \]

\text{Berekend:}

\[u_* = \frac{f_o}{8} (u)^2 = 0.097 \quad [\text{m/s}], \quad \theta = \frac{u_*^2}{g \Delta d} = 1.93 \quad [-], \quad k = 3 \theta d_{90} = 1.74 \times 10^{-3} \quad [\text{m}] \]

\[70 \frac{\nu}{|u_*|} = 1.03 \times 10^{-5} \quad [\text{m}] \text{ dus } k > 70 \frac{\nu}{|u_*|} \quad [\text{m}] \text{ voldoet ruim.} \]

Deze berekening toont een hydraulische ruwe bodem aan, de aanname is correct. Het logaritmisch gedempte snelheidsprofiel is nu opgesteld.

De turbulente schuifspanning \((\tau)\) kan worden gegeven met behulp van de mengweglengte theorie.

\[\tau = \rho_s \left(\nu + v_\tau \right) \frac{\partial u}{\partial z} \quad [\text{N/m}^2] \]

\[(3.9) \]
Turbulente- en korrelspanningen

Uit het bovenstaande is de turbulente schuifspanning te berekenen. De viscositeit van de vloeistof is veel kleiner dan de turbulente viscositeit \((\nu << \nu_t) \), dit geldt voor buiten de viskeuze sublaag. Door de hydraulisch ruwe wand bestaat er geen viskeuze sublaag. De viscositeit van de vloeistof is dan ook te verwaarlozen. Met de vergelijkingen (3.3) tot en met (3.5) en (3.9) is de turbulente schuifspanning als volgt te schrijven.

\[
\tau = \rho_w \left(\kappa z e^{-0.4k} \right)^2 \left(\frac{\partial u}{\partial z} \right)^2 \text{ [N/m}^2\text{]} \tag{3.10}
\]

De turbulente schuifspanning vormt samen met de korrel schuifspanning de totale schuifspanning. De sommatie van de twee schuifspanningen is de kern van deze modellering. Door wisselwerkingen van beide schuifspanningen op elkaar is het een onderzoeksvraag in hoeverre deze sommatie correct is. Deze totale schuifspanning wordt gelijk gesteld aan de locale dispersie schuifspanning \(\tau_{\text{dispersie}} \), hiermee wordt de schuifspanning gecorrigeerd met de hydrostatische druk in de richting van de schuifspanning.

\[
T + \tau = \tau_{\text{dispersie}} \text{ [N/m}^2\text{]} \tag{3.11}
\]

De korrel schuifspanning is volgens Bagnold (1954) te schrijven als:

\[
T = a_i \sin(\delta_{\text{dyn}}) \rho_s \lambda(z)^2 d^2 \left(\frac{\partial u}{\partial z} \right)^2 \text{ [N/m}^2\text{]} \tag{3.12}
\]

\[
\delta_{\text{dyn}} = \text{ dynamische hoek van inwendige wrijving van zand [}^\circ\text{]}
\]

\[
\lambda = \frac{1}{\left(\frac{c_{\text{max}}}{c} \right)^{1/3}} \text{ = lineaire concentratie [-]}
\]

De locale dispersie schuifspanning kan als volgt worden beschreven volgens Lowe (1976) (hydrostatische druk maal de sinus van de hoek van het talud):

\[
\tau_{\text{dispersie}} = c(z)g \left(\rho_s - \rho_w \right)(z - Z_L) \sin \gamma \text{ [N/m}^2\text{]} \tag{3.13}
\]

Met de substitutie van (3.10) en (3.13) in (3.11) wordt de snelheidsgradiënt verkregen voor stationaire uniforme stroming.

\[
\frac{\partial u}{\partial z} = \frac{c(z)g \left(\rho_s - \rho_w \right) \sin \gamma}{a_i \sin(\delta_{\text{dyn}}) \rho_s \lambda(z)^2 d^2 + \rho_w \left(\kappa z e^{-0.4k} \right)^2} \left(z - Z_L \right)^0.5 \text{ [s}^{-1}\text{]} \tag{3.14}
\]

Om het snelheidsprofiel op te lossen kan de bovenstaande vergelijking worden geïntegreerd over de hoogte \((z) \). De randvoorwaarden \(z=0 \) voor \(u=0 \) moeten hierbij worden ingevoerd. Door de coördinaat \(z \) onder de noemer, kan de vergelijking niet eenvoudig analytisch worden opgelost. Met een Euler-Cauchy algoritme is de bovenstaande vergelijking met een kleine plaatsstap op te lossen. Ook moet de berekening door de \(z \) in de noemer op een kleine afstand van de bodem beginnen.
Turbulente- en korrelspanningen

Lowe (1976) heeft ditzelfde gedaan alleen voor korrelspanningen. Door het ontbreken van de coördinaat z in de noemer is de integraal eenvoudig analytisch op te lossen voor stationaire uniforme stroming:

\[
u = \frac{2}{3} \left(\frac{\epsilon g (\rho_h - \rho_{aw}) \sin \gamma}{a_i \sin (\delta_{dym}) \rho_{aw} \Lambda (z)^2} \right)^{0.5} \left[Z_t^{1.5} - (z - Z_t)^{1.5} \right] \text{ [m/s]} \quad (3.15)
\]

De snelheidsprofielen zijn nu bekend:

<table>
<thead>
<tr>
<th>Auteur</th>
<th>Vergelijking</th>
<th>Inhoud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mamayev</td>
<td>(3.7)</td>
<td>Turbulent gedempt</td>
</tr>
<tr>
<td>Lowe & Mamayev</td>
<td>(3.14)</td>
<td>Turbulent gedempt en korrelspanningen</td>
</tr>
<tr>
<td>Lowe</td>
<td>(3.15)</td>
<td>Korrelspanningen</td>
</tr>
</tbody>
</table>

tabel 3-1
Opsomming snelheidsprofielen

De volgende waarden voor de coëfficiënten gebruikt Bagnold (1954) en Lowe (1976) voor zand onder water:

\[a_i \approx 0.24 \text{ [-]} \]

\[Z_t \approx 0.457z \text{ [m]} \]

De vergelijkingen (3.14) en (3.15) kunnen verder worden vereenvoudigd door het invullen van de coëfficiënten. Voor het samengestelde snelheidsprofiel (3.14) kunnen vraagtekens bij de bovenstaande coëfficiënten worden gezet. Gewenst zouden experimenten zijn, waarin de bovenstaande coëfficiënten kunnen worden gekalibreerd.

3.2. Concentratieprofiel

Met het eerder gegeven snelheidsprofiel is het mogelijk een concentratieprofiel op te stellen. Voor het concentratieprofiel is de convectie diffusie vergelijking beschikbaar eerder gegeven in paragraaf 2.1.4.1. De convectie diffusie vergelijking is zonder de invloed van de korrelspanning opgesteld.

De korrelspanning heeft invloed op de valsnelheid van de korrels. Hierdoor werken behalve de zwaarte- en wrijvingskracht ook de korrel-korrelkracht op het korreltje. De volgende schematisatie kan er worden gemaakt:

![Figuur 3.1: Krachtenbalans korrel](image)

De krachtenbalans van zwaarte- (\(F_G\)), wrijvings- (\(F_D\)) en korrel-korrelkracht (\(F_K\)) kan worden opgesteld:
Turbulente- en korrelspanningen

\[\sum F = -F_G + F_D + F_K = 0 \quad [N] \] \hspace{1cm} (3.16)

Deze krachtenbalans kan worden uitgeschreven:

\[\sum F = -\frac{\pi}{6} d^3 (\rho_s - \rho_w) g + \frac{\pi d^2}{8} w^2 \rho_w + \frac{\pi}{6} d^3 \frac{\partial P}{\partial z} = 0 \quad [N] \] \hspace{1cm} (3.17)

De korrel-korrelkracht is verondersteld gelijk te zijn aan de gradiënt van de korrel normaalspanning \(\frac{\partial P}{\partial z} \) vermenigvuldigd met het volume van de korrel \(\text{(Van Rhee, 2003)} \).

In de volgende figuur wordt de invloed van de gradiënt korrel normaalspanning gevisualiseerd. De korrel normaalspanning wordt uitgezet tegen de verticale afstand \(z \). In de grafiek wordt ook een korrel getekend en de korrel normaalspanning \(P \) wordt met een vector aan weerszijde van de korrel erin getekend aan de hand van de functie van \(P(z) \).

![Diagram](image)

Figuur 3.2 Invloed van de gradiënt korrel normaalspanningen op een korrel

De totale normaalspanning die op een korrel werkt is \(\frac{P(z_1) - P(z_2)}{z_1 - z_2} \), anders geschreven \(\frac{\partial P}{\partial z} \).

De volgende vergelijking wordt gevonden uit de krachtenbalans voor de ongehinderde valsnelheid:

\[w_v = \sqrt{\frac{4}{3} d \left(\rho_s - \rho_w \right) g - \frac{\partial P}{\partial z}} \quad \frac{\partial P}{C_D(w) \rho_w} \] \hspace{1cm} [m/s] \hspace{1cm} (3.18)

Waarin de wrijvingscoëfficiënt \(C_D \) iteratief voor verschillende intervallen van korrel Reynoldsgetal \(\text{(Re}_p) \) moet worden opgelost.
Turbulente- en korrelspanningen

\[C_D = \frac{24}{\text{Re}_p} \quad \text{[-]} \quad \text{Re}_p \leq 1 \quad \text{[-]} \]

\[C_D = \frac{24}{\text{Re}_p} + \frac{3}{\sqrt{\text{Re}_p}} + 0.34 \quad \text{[-]} \quad 1 < \text{Re}_p < 2000 \quad \text{[-]} \quad \text{(3.19)} \]

\[C_D = 0.4 \quad \text{[-]} \quad \text{Re}_p \geq 2000 \quad \text{[-]} \quad \text{(Van Rhee, 2002)} \]

Het korrel Reyloldsgetal:

\[\text{Re}_p = \frac{w_o d}{v} \quad \text{[-]} \quad \text{(3.20)} \]

Een vervelende vergelijking wordt hier opgesteld aangezien de sleepcoëfficiënt \(C_D \) een functie is van de ongeregende vervalshheid \((w_o) \). De sleepcoëfficiënt moet worden opgedeeld in het laminaire gebied \((\text{Re}_p \leq 1) \), overgangsgebied \((1 < \text{Re}_p < 2000) \) en turbulente gebied \((\text{Re}_p \geq 2000) \). Hierdoor moet de vergelijking iteratief worden opgelost. De korrel normaalspanning \((P)\) is weer een functie van de verticale coördinaat \((z)\).

Voor de gehinderde vervalshheidsgroeiing \((w)\) wordt ook een vormfactor meegenomen welke gelijk is gesteld aan 0.7 en onder het wortelteken weg geschreven. De vormfactor transformeert de vervalshheid van een ronde bol naar een hoekige korrel.

Tevens wordt hindered settling meegenomen. In principe is hindered settling een empirische procesbeschrijving van het zog achter een vallende korrel, dit zog stoort de vervalshheid van de volgende korrel. Echter het is niet ondenkbaar dat in deze empirische relatie ook korrel-korrel contacten worden meegenomen. Hierdoor zouden de hindered settling en de korrelspanningen elkaar deels kunnen overlappen en een te lage vervalshheid simuleren.

De vormfactor en hindered settling worden in de gehinderde vervalshheidsgroeiing opgenomen.

\[w = (1 - c)^m \sqrt{\frac{0.93d \left(\rho_s - \rho_w \right) g}{C_D(w) \rho_w}} \quad \text{[m/s]} \quad \text{(3.21)} \]

De korrel normaalspanning wordt gevonden door de korrel schuifspanning te delen door de tangens van de dynamische hoek van inwendige wrijving van zand \((2.13) \).

\[P = a_s \sin(\delta_{dyn}) \rho_s d^2 \left(\frac{\partial u}{\partial z} \right)^2 \quad \text{[N/m}^2\text{]} \quad \text{(3.22)} \]

Bij het oplossen van de convectie diffusie vergelijking moet de turbulente diffusie zijn gegeven, welke een quotiënt is van de turbulente viscositeit \((\nu_t)\) en het turbulente Prandtl-Schmidt getal \((\sigma_{p_t})\).

\[\varepsilon_r = \frac{\nu_t}{\sigma_{p_t}} \quad \text{[m}^2/\text{s]} \quad \text{(3.23)} \]

\(\sigma_{p_t} \) = turbulente Prandtl-Schmidt getal variërend voor menglagen tussen 0.5 < \sigma_p < 0.7.
Turbulente- en korrelspanningen

Om rekening te houden met het buoyant effect wordt het turbulente Prandtl-Schmidt getal aangepast met nogmaals de Mamayev formule:

$$\frac{\sigma_r}{\sigma_p} = e^{-0.4 R_i} \quad [-]$$ \hfill (3.24)

Welke met het benaderde Richardsongetal is te vereenvoudigen in de volgende vorm:

$$\frac{\sigma_r}{\sigma_p} = e^{-0.4 R_i} \quad [-]$$ \hfill (3.25)

De turbulente diffusie is dan samen te stellen voor gestratificeerde stromen met (3.23) en (3.25):

$$\varepsilon_T = \frac{(kz)^2 \frac{\partial u}{\partial z}}{\sigma_p e^{-0.4 R_i \frac{u^*}{u^*}}} \quad [m^2/s]$$ \hfill (3.26)

De concentratiegradiënt is afgeleid uit de convectie diffusievergelijking (2.10) voor een stationaire situatie. Hierbij wordt een minteken voor de valsnelheid geplaatst, door de tekenafsprak van de richting z.

$$\frac{\partial c}{\partial z} = - \frac{wc}{\varepsilon_T} \quad [m^{-1}]$$ \hfill (3.27)

Door het invullen van de aangepaste gehinderde valsnelheid (3.21) en de turbulente diffusie (3.26) is de volgende vergelijking te vinden:

$$\frac{\partial c}{\partial z} = (1-c)^m \sqrt{ \frac{0.93 d \left(\rho_r - \rho_w \right) g \frac{\partial P}{\partial z} - c}{C_p(w) \rho_w} } \times \frac{\left(\frac{\partial u}{\partial z} \right)^2}{\sigma_p e^{-0.4 R_i \frac{u^*}{u^*}}} \quad [m^{-1}]$$ \hfill (3.28)

Deze differentiaalvergelijking is op te lossen met een gegeven snelheidsgradiënt en de randvoorwaarden $z=0$ en $c=0.6$. De concentratie aan de bodem wordt hiermee gelijk gesteld aan de maximale porositeit.

3.3. Bodemtransport

Door het afleiden van de korrelspanningen en de turbulente spanningen is bovendien een vergelijking op te stellen waarin het bodemtransport wordt berekend afhankelijk van deze spanningen (Wilson, 1987). Let op de empirische coëfficiënt 1.51 die is opgesteld voor pijptransport met een andere samenstelling van de korrel en turbulente schuifspanningen.
RASMELEN

Turbulente- en korrelspanningen

\[q_h = \frac{1.51}{\kappa g} \left(\frac{\rho_a}{\rho_w} - 1 \right) \tan(\delta_{dn}) \left(\frac{\tau + T}{\rho_w} \right)^{1.5} \quad [\text{kg/ms}] \]

(3.29)

Met het invullen van de turbulente en korrelspanningen kan de volgende vergelijking worden verkregen, welke niet verder is te vereenvoudigen.

\[\tau + T = \left(\rho_w (\kappa z e^{-0.4R}) \right)^2 + a_i \sin(\delta_{dn}) \rho_i \lambda^2 d^2 \left(\frac{c_g (\rho_s - \rho_w) \sin \gamma}{a_i \sin(\delta_{dn}) \rho_i \lambda^2 d^2 + \rho_w (\kappa z e^{-0.4R})^2} \right) (z - Z_e) \right)^2 \quad [\text{N/m}^2] \]

(3.30)

Met deze vergelijking is het mogelijk om een taludhelling (\(\gamma \)) te berekenen, op dezelfde manier als in appendix B wordt getoond.

3.4. Discussie

In de voorgaande paragrafen is een 1D model samengesteld voor een zand waterstroming, waarbij ook rekening wordt gehouden met de korrelspanning. Door gebruik te maken van het bovenstaande model worden vele parameters meegenomen. Hierdoor is het mogelijk een beter procesbegrip te krijgen, waarin hoofdzaken van bijzaken gescheiden kunnen worden. Echter door het niet kunnen kalibreren van de coefficients en het valideren van het model met laboratoriumdata is niet mogelijk realistische berekeningen uit te voeren met het 1D model.

Bij het berekenen van het model komt het aangepaste snelheidsprofiel niet boven de 2 m/s. De oorzaak hiervan zou kunnen liggen bij de ongekalibreerde coefficients. Wellicht zou het de wisselwerking van de twee schuifspanningen op elkaar kunnen zijn. Hierover is in dit onderzoek geen duidelijkheid te verschaffen, nader onderzoek zal het model moeten valideren en kalibreren.
4. Modelleren

Achter een volgens bekijken we de modellen van eerst de straal, dan de ontgrondingskuilt, en tenslotte van onder andere een dichtheidsstroom. De volgende aannames en uitgangspunten zijn opgesteld die voor de modellen geldig zijn, mits deze relevant zijn voor het model.

4.1. Algemene aannames

4.1.1 Fysische aannames

- 100<d<2000 μm
- niet-cohesief materiaal
- onsamendrukbare vloeistof
- isotrope turbulentie
- quasi stationaire stroming
- niet uniforme stroming

4.1.2 Aannames omtrent natuurlijke factoren

- geen invloed van de wind
- geen invloed van de stroming
- geen invloed van golven
- geen invloed van het getij

4.1.3 Praktische uitgangspunt

- opspuiten met een sleepopperzuiger op een bovenwatertalud, waarbij voornamelijk een onderwatertalud wordt gevormd
4.2. **Straal**

Het doel van het modelleren van de straal is om de volgende grootheden te berekenen:
- de baan van de straal
- oppervlakte straal bij aankomst
- snelheids- en concentratieprofiel

4.2.1 **Ballistiek**

In de paragraaf 2.2.1 Ballistiek van het hoofdstuk Procesanalyse wordt een model gepresenteerd waarmee zonder wrijving de baan van een kogeltje berekend kan worden. Dit model zal worden berekend om de volgende complexere modellen te valideren en kalibreren.

4.2.2 **Hatton**

In de literatuur is een model gevonden van Hatton voor grote brandweerstralen waar gebruik wordt gemaakt van een initiële wrijvingscoëfficiënt. Dit model is in het hoofdstuk Procesanalyse in paragraaf 2.2.2 Waterstraal weergegeven. In de werkelijkheid zal de wrijvingscoëfficiënt toenemen naarmate de straal opbreekt.

4.2.3 **Luchtentrainment**

Als uitbreiding op de bestaande modellen is gekozen om de luchtentrainment van de straal mee te nemen. Door luchtentrainment is het mogelijk om de wrijving van de groeiende straal nauwkeuriger te berekenen.

Voor het model is een impulsbalans opgesteld met vertraging. Wederom moeten er concessies worden gedaan in de vorm van aannames om de werkelijkheid te kunnen modelleren. De wrijving wordt afhankelijk gesteld van de oppervlaktestrequiet. Aangenomen wordt dat de lucht in de straal dezelfde snelheid heeft als de straal, wrijving treedt alleen op aan het oppervlakte. Gekozen is voor een initiële ruwheidscoëfficiënt. In de werkelijkheid zal bij het opbreken van de straal de ruwheidscoëfficiënt toenemen. De massa van lucht die treedt is te verwaarlozen ten opzichte van de massa van het mengsel. Aangenomen wordt dat de massa van de straal langs de baan constant blijft.

De tweede wet van Newton kan als volgt geschreven worden:

\[
\frac{\partial u}{\partial t} = \frac{F}{M} \quad [m/s^2]
\]

(4.1)

\(F\) = kracht [N]
\(M\) = massa [kg]

De impulsbalans in de x-richting inclusief de wrijvingskracht:

\[
\frac{\partial u_x}{\partial t} = \frac{k \rho (x) \cos(\beta) u_x^2}{M} \quad [m/s^2]
\]

(4.2)

\(A(x)\) = oppervlakte straal als functie van de coördinaat \(x\) [m²]
Het oppervlak van de straal wordt loodrecht op de richting van de straal berekend.

De impulsbalans in de y-richting:

\[
\frac{\partial u_y}{\partial t} = -g - \frac{k \rho_A(y) \sin(\beta) u_y^2}{M} \quad [m/s^2]
\]

De oppervlakte van de straal afhankelijk van het Reynolds lengte getal \((Re_{length}) \).

\[
A = 0.25\pi \left(0.085 D_{trump} \left(Re_{length} We_j \right)^{1/6} \right)^2 \quad [m^2]
\]

Het Reynolds lengte getal is gedefinieerd afhankelijk van de beginsnelheid, de viscositeit van het mengsel en de lengte van de straal \((L_{straal}) \). De lengte van de straal wordt berekend door de integraal van de snelheid te nemen zodat de totale weg van de straal wordt berekend.

\[
Re_{length} = \frac{u_{trump} L_{straal}}{v_m} = \frac{u_{trump} \int_{t=0}^{t} \sqrt{u_x^2 + u_y^2} \, dt}{v_m} \quad [-]
\]

Vergelijkingen (4.2) en (4.3) zijn twee differentiaalvergelijkingen afgeleid van een krachtenbalans, waarin traagheid en wrijving zijn opgenomen. De oppervlakte en de snelheid zijn afhankelijk van de tijd.

De empirische vergelijking gebruikt in (4.4) van Van de Sande (2.56) moet kritisch worden benaderd. De getallen 0.085 en 1/6 zijn empirische coëfficiënten. Door buiten het geldigheidsgebied de vergelijking te gebruiken, is het waarschijnlijk dat de vergelijking opnieuw geijkt moet worden. Dit door het niet nakomen van de eis dat de nozzle diameter kleiner is ten opzichte van de lengte van de nozzle \((l_n/D_{trump}>50) \). In vergelijking (4.5) is het Reynolds lengte getal gedefinieerd, dat afhankelijk is van de tijd. In paragraaf 2.2.3 is gebleken dat de viscositeit een stabiliserende werking heeft op de straal. Daarom is er gekozen om de viscositeit van het mengsel in plaats van de vloeistof water in de \(Re_{length} \) te gebruiken. Door het invoeren van de viscositeit van het mengsel neemt de luchtentrainment af en de straal is daardoor stabilier.

Aangenomen wordt een initiële ruwheidsefficiënt, aangezien de ruwheid moeilijk te bepalen is. In de literatuur is hierover geen informatie gevonden.

Conclusies:

- Ijk en valideer de empirische vergelijking voor luchtentrainment.
- Breid de vergelijkingen uit door de ruwheid van de straal te koppelen aan de hoeveelheid lucht die is ingeslagen. Aannemelijk is een correlatie tussen luchtentrainment en oppervlakteruwwheid van de straal.

4.3. Stort

Het stort wordt in het model in drie gebieden opgedeeld. Daarbij wordt de geulbreedte in de eerste plaats bepaald door de breedte van de straal, wat verder beschreven wordt in de volgende paragraaf Ontgrondingskuit. Hierna wordt verondersteld dat er spreiding optreedt van de mengselstroom over het stort. De dichtheidsstroom zal uiteindelijk als in een evenwichtsstroming verder gaan en daarbij langzaam sedimenteren. In figuur 4.1 is
een schematisatie gegeven van het bovenaanzicht en zijwaarts van de gebiedsverdeling op het stort.

![Diagram van bovenaanzicht en zijwaarts](image)

figuur 4.1 Gebiedsverdeling van het stort

Het doel van de berekeningen over het stort is een benadering te kunnen geven van de gevormde zandluchten op het stort. Hierbij worden de sedimentatielengte, geulbreedte en evenwichtshelling als belangrijkste uitkomsten gezien. Eventueel is aan de hand van een ontgrondingskuil-model en een impulsbalans een nauwkeurigere oplossing te genereren. Begonnen wordt bij de modellering aan het begin waar de straal aankomt oftewel de ontgrondingskuil.

4.3.1 Ontgrondingskuil

In paragraaf 2.1.3 zijn een aantal vergelijkingen aangegeven voor het berekenen van de ontgrondingskuil. Het uitrekenen van een ontgrondingskuil is geldig voor een consistente straal zonder luchtinslag. Door de inslag van lucht in de straal wordt de complexiteit van het proces vergroot, de gemiddelde snelheid is niet meer representatief voor de werkelijkheid. Om dit aan te tonen wordt de volgende berekening gemaakt, met de ontgrondingskuil-vergelijking van Van Rhee.

Gegeven:

\[u_v = \sqrt{gh} = \sqrt{9.81 \times 25} = 16 \text{ [m/s]}, \beta_{imp} = 45^\circ, L_j = 0 \text{ [m]}, D_{imp} = 15 \text{ [m]} \text{ en } d = 1000 \text{ [\mu m]} \]

\[h_k = 0.557 \frac{u_v \sin(\beta_{imp}) D_{imp}^{0.45}}{d^{0.10}} - L_j \text{ [m]} \]

Berekend:

\[h_k = 43 \text{ [m]} \]

Een vergelijking met alleen de snelheid van de straal wordt met de bovenstaande berekening ongeldig verklaard. De uitkomst spreekt voor zich, kullen van ± 40 m diep worden zo berekend.
De snelheid over de oppervlakte is gemiddeld erg klein, echter de snelheid berekend door middel van de valhoge is groot. Het snelheidsprofiel zou berekend kunnen worden door middel van een Gaussische verdeling. Echter door de onbruikbaarheid van de Break up lengte is niet te voorspellen in welke mate de kern van de straal intact blijft. De Break up lengte is gedefinieerd in paragraaf 2.2.2 Waterstraal. De valsnelheid van druppels is te berekenen met een vorm wrijvingscoëfficiënt (C_n) van Seginer’s (1965) afhankelijk van de druppeldiameter ($D_{druppel}$).

Gegeven:

\[D_{druppel} = 1..10 \text{ [mm]} \quad g = 9.81 \text{ [m/s}^2] \quad \rho_w = 1000 \text{[kg/m}^3] \]

\[C_n = 0.4671 D_{druppel}^{-0.9859} \quad [-] \quad (4.7) \]

\[u = \sqrt{\frac{\frac{1}{6} \rho_w D_{druppel}^{3} g}{C_n}} \quad [\text{m/s}] \quad (4.8) \]

Berekend:

\[u = 10^{-4}..10^{-2} \text{ [m/s]} \]

Bij het opbreken van de straal worden druppels gevormd. Uit de bovenstaande berekening blijkt hoe belangrijk de snelheid van de omgevingslucht is op de snelheid van de druppels. De snelheid van de druppels is veel te laag. Doordat de lucht meebeweegt is het onnauwkeurig om bijvoorbeeld een Gaussisch snelheidsprofiel op te stellen. Complexere modellen zouden moeten worden gebruikt om een snelheidsprofiel te berekenen. Zonder snelheidsprofiel en bruikbare Break up lengte is het onmogelijk een nauwkeurig concentratieprofiel op te stellen.

De snelheid is hierdoor geen correcte invoerparameter in het model (zie berekeningen bij vergelijkingen (4.6) en (4.7)).

De ontgrondingskuil is interessant aangezien deze een randvoorwaarden geeft voor het verdere proces. De aankomst van de straal wordt in het onderstaande plaatje geschematiseerd zodat het in een symbolisch model kan worden beschreven. Hierbij wordt de grootte van de ontgrondingskuil gelijk aan de aankomst breedte van de straal verondersteld.

![Schematisatie bovenaanzicht ontgrondingskuil](figuur 4.2)

De straal komt op het stort aan in een ellips welke wordt benaderd door een cirkel (figuur 4.2). In vergelijkingen (4.4) en (4.5) wordt het oppervlak of de diameter berekend.
waarmee de straal aankomt. De breedte waar de stroom als het ware afstromt is een halve cirkel. Gekozen wordt hier voor een halve cirkel aangezien er van uitgegaan is dat er op een talud wordt gespoten. Met die hypothese kan de maximale geulbreedte worden gedefinieerd.

\[B_{\text{max}} = \pi r_c \quad [\text{m}] \quad (4.9) \]

De grootheid maximale geulbreedte is nodig om de gegenereerde oplossing straks te kunnen interpreteren. De ontgrondingskuil is nu gedefinieerd. In appendix C zijn afleidingen gegeven van de minimale geulbreedte. De minimale geulbreedtes zijn direct aan de rand van de ontgrondingskuil afgeleid. De aannames zijn mogelijk bruikbaar bij het opbouwen van een model voor rainbowen. In de procesanalyse zijn de vier onbekenden \((c_k, u, h, r_k) \) al naar voren gekomen in het model Van Rhee. Om dit stelsel op te kunnen lossen zijn er ook vier vergelijkingen nodig, welke hieronder individueel worden besproken.

Mengselbalans

\[\Sigma Q = \pi r_k^2 u_{\text{gem}} - \pi r_k^2 w(1-c_k)^m - u_k h \pi r_k = 0 \quad [\text{m}^3/\text{sec}] \quad (4.10) \]

Aannames:
- Bij onderwater storten is het mogelijk dat er water uit de ontgrondingskuil treedt, welke de filtersnelheid wordt genoemd. Water treedt uit de ontgrondingskuil door het vallen van de korrels waardoor de concentratie toeneemt. Door het praktische uitgangspunt van storten op een bovenwaterstort vervalt deze term.
- Homogene concentratie over de gehele kuil.
- Invloed van lucht in de ontgrondingskuil wordt verwaarloosd.
- Uniforme verdeling van de snelheid over de rand.
- Grondwaterstroom te verwaarlozen (zie annex 9).

Zandbalans

\[\Sigma S = c_{\text{imp}} Q_{\text{imp}} - \pi r_k h u c_k - \pi r_k^2 w(1-c_k)^m = 0 \quad [\text{m}^3/\text{s}] \quad (4.11) \]

Aannames:
- Sedimentatie in de ontgrondingskuil wordt meegenomen.
- Homogene sedimentatie over de gehele kuil.

Kritische stroming op de kuilrand

\[u^2 - \frac{gh_r}{1 + \frac{1}{\Delta c_i}} = 0 \quad [\text{m}^2/\text{s}^2] \]

ONDER WATER

\[u^2 - gh_r = 0 \quad [\text{m}^2/\text{s}^2] \quad (4.12) \]

BOVEN WATER

Aannames:
- Dat de straalbreedte op het stort zo smal aankomt dat op de rand van de ontgrondingskuil kritische stroming mogelijk wordt gemaakt. Echter deze aannamen moet wel gecontroleerd worden, aangezien het niet onwaarschijnlijk is dat er geen kritische stroming optreedt.
- Natuurlijk moet met het Froudegetal wel onderscheid gemaakt worden tussen onder- en bovenwater.
In de procesanalyse zijn de vier onbekenden (c_k, u, h_k en r_k) al naar voren gekomen. Dus er ontbreekt zeker nog een vergelijking om het stelsel op te lossen. In appendix C is naar voren gekomen dat er twee aannames worden gebruikt om de geulbreedte (afstromende rand van de kuil) met behulp van het stelsel vergelijkingen op te lossen: de Regime theorie en een aanname over breedte- diepte verhouding van Visser (1990) voor kritische stroming. Uit de ontgrondingskuil-theorie van Van Rhee (1988) is gebruik gemaakt van het gelijk stellen van de erosie aan de sedimentatie. Alle drie de aannamen om het probleem op te lossen worden nu beschreven.

I. De Regime theorie is in appendix C kritisch omschreven. Kort samengevat: ijk de empirische vergelijking, voor grover zand, hogere concentraties en voor onderwater geulen. Tevens moet er rekening worden gehouden met een spreiding rond de gegonereerde oplossing. De berekende geulbreedte is voor evenwichtsstroming welke niet kritisch is. Hierdoor vervalt de aanname van kritische stroming. Het zou puur toeval zijn dat het mengsel direct na de ontgrondingskuil in een evenwichtstoestand gaat stromen.

II. De empirische theorie van Visser (1990) is opgesteld voor dijken die doorbreken met een korrel diameter van ongeveer 200 µm. Bij het doorbreken van dijken vormt zich een volkomen overlaat, oftewel kritische stroming. De mogelijke empirische relatie tussen de parameters moet opnieuw worden gevalideerd en gekalibreerd voor grover zand. De noodzaak van kritische vorming is voor de geldigheid van deze relatie in de werkelijkheid waarschijnlijk een probleem. De toepassing van deze vergelijking is niet breed getoetst.

III. In de ontgrondingskuil-theorie van Van Rhee (1988) wordt de erosie gelijk gesteld aan de sedimentatie. Een aannamen die voor de grovre korrel diameter niet op gaat, door de sedimentatie die plaats vindt op de rand.

Kortom geen van deze bovenstaande vergelijkingen is geschikt voor de omstandigheden van het rainbow.

Bij het rainbowen komt de straal over een bepaalde breedte aan. Dit zou een interessante randvoorwaarde kunnen zijn voor de verdere berekening. Wordt er aan de hand van de straalberekening een breedte gevonden waarover de straal op het stort aankomt dan kan hiermee verder worden gerekend. Hierdoor kan er worden gekozen voor het oplossen van het stelsel met drie variabelen (c_k, r_k en q).

4.3.2 Spreiding

In het onderzoek "storten van zand" is de stortbreedte berekend door gebruik te maken van een vaste hoek waarover het stort zich verspreidt. Met vergelijking (2.21) is de stortbreedte te berekenen.

4.3.3 Evenwichtsstroming

De evenwichtsstroming is quasi stationair aangezien de geul zich al sedimenterend over het stort verplaatst. Door de sedimentatie zullen de debieten van de dichtheidsstroom afnemen. Door een kleine sedimentatie te verwachten ten opzichte van het totale debiet is het mogelijk de mengselstrom te benaderen als een evenwichtsstroming.
4.3.4 Geulbreedte

Bij evenwichtsstroming is de geulbreedte af te schatten met de Regime theorie, opnieuw wordt een kritische benadering gevraagd, zoals deze in appendix C is beschreven.

\[B_{\text{min}} = C_1 \sqrt{Q} \quad [\text{m}] \quad (4.13) \]

De bovenstaande relatie is te ijken door het vaststellen van één constante. De maximale geulbreedte wordt wel als gedachtgoed bij de interpretatie van de bovenstaande benadering gehouden, maar verder niet gekwantificeerd.

4.3.5 Evenwichtshelling

De volgende vergelijkingen zijn uit te rekenen om de evenwichtshelling van het stort te berekenen.

Evenwichtshelling voor dispersiestromen:

\[i = \tan(\varphi) \frac{\Delta c}{1 + \Delta c} \quad [-] \quad (4.14) \]

Als referentie voor de andere hellingen zal de korrelstroomhelling de minimale helling moeten weergeven.

Semi empirische vergelijking van Engelund-Hansen (Mastbergen, 1988) en aanvulling van appendix B:

\[i = \left(\frac{f_0 + f_i}{8} \right)^{0.1} \left(\frac{d}{0.05} \right)^{0.6} \rho_s^{0.4} g^{0.2} \left(1 - c \right)^{0.6n} \left(1 + \Delta c \right)^{0.4} \quad [\text{-}] \quad (4.15) \]

n = correctie coëfficiënt overgangsgebied [\text{-}]

In deze vergelijking van Engelund-Hansen wordt zowel het bodemtransport als zevend transport berekend. In appendix C is de invloed van zevend transport onderzocht. Door de grotere suspensieterallen is de conclusie getrokken dat zevend transport met verwaarloosbare hoeveelheden optreedt. De Engelund-Hansen vergelijking is daardoor beperkt geldig.

Empirische vergelijking (De Groot, 1988) tot 225 μm:

\[i = 0.0032 d s^{-0.4} \quad [-] \quad (4.16) \]

De semi-empirische vergelijkingen van Van Rijn (1987) alleen voor bodemtransport zijn vertaald naar de evenwichtshelling op een gelijke wijze als in appendix B:

\[i = \left(\frac{S}{0.053 \sqrt{\Delta g d^{1.4} D^{0.3}}} \right)^{0.48} \frac{u_{\text{cr}}^2 + u_{\text{c}}^2}{\varepsilon g h} \quad [\text{-}] \quad (4.17) \]
Modelleren

\[D_x = d \left(\frac{A g}{v^2} \right)^{\frac{1}{3}} \]

= dimensieloze korrelparameter [-]

\[u_c = \sqrt{\frac{(f_o + f_i)}{8}} u_c^2 \]

= Shields kritieke schuifsnelheid [m/s]

\[u_c = \sqrt{A g d (1 - c)^{\mu_m}} \]

= Shields kritieke snelheid [m/s]

Voor de wrijving wordt de ruwheidshoogte van Van Rijn gebruikt zoals weergegeven in appendix D. In principe mag de Darcy-Weisbach coëfficiënt niet de wrijving van de dynamische hoek van inwendige wrijving overschrijden. In symbolische vorm kan het als volgt worden geschreven:

\[f(\delta_{dyn}) \quad [\cdot] \quad \tau_o > T_o \quad [N/m^2] \]

\[f(k) \quad [\cdot] \quad \tau_o \leq T_o \quad [N/m^2] \] \hspace{2cm} (4.18)

De korrel schuifslasspanning (\(T_o\)) en bodemenschuifslasspanning (\(\tau_o\)) over de mengseldiepte gemiddeld kunnen als volgt worden uitgeschreven.

\[T_o = \tan(\delta_{dyn}) \kappa g h (\rho_s - \rho_w) \quad [N/m^2] \] \hspace{2cm} (4.19)

\[\tau_o = \frac{1}{8} f_o \rho m u_m^2 \quad [N/m^2] \] \hspace{2cm} (4.20)

Deze twee vergelijkingen kunnen aan elkaar gelijk worden gesteld om te vinden waar de korrelspanningen gelijk zijn aan bodemspanningen. De volgende vergelijking kan dan na enige vereenvoudiging worden gegeven:

\[f_o = f_o \]

\[f_o < \frac{\tan(\delta_{dyn}) \kappa g h}{u_m^2} \]

\[f_o = \frac{\tan(\delta_{dyn}) \kappa g h}{u_m^2} \]

\[f_o \geq \frac{\tan(\delta_{dyn}) \kappa g h}{u_m^2} \] \hspace{2cm} (4.21)

Door het invoeren van deze vergelijking wordt de wrijving gelimiteerd. Het is echter de vraag of de Van Rijn vergelijking nog geldig is voor deze hoge concentraties waar korrelspanningen een grotere rol gaan spelen.

De meeste andere bodemtransportvergelijkingen (opsomming uit \(Van Rijn, 1993\)), zoals Meyer-Peter Mueller (1948), Frijlink (1952), Bagnold (1966), bevatten een hoge mate van empirische coëfficiënten en minder fysische invoerparameters. Waardoor aanpassingen voor een hoge concentratie mengselstroming niet makkelijk zijn uit te voeren.
4.3.6 Mengselstroom

In appendix D is het proces zandverlies nagelopen, hier is de conclusie getrokken dat dit proces bij grotere korreldiameter geen rol meer speelt. In het model hieronder gepresenteerd wordt zandverlies buiten beschouwing gelaten.

In appendix E is de afleiding van het proces entrainment opgesteld. Deze afleiding laat zien dat de vergelijkingen deels afkomstig zijn van zout-zout dichtheidsstromen, echter deze vergelijkingen zijn ook eerder toegepast voor zanddichtheidsstromen.

In het vorige hoofdstuk werd onderzocht welke invloed de korrelspanningen op het snelheidsprofiel hebben en dus op het proces. Hieruit blijken de korrelspanningen een maatgevende rol te vervullen. In de impulsbalans worden de korrelspanningen dan ook meegenomen.

Waterbalans

\[
\frac{\partial (Q(1-c))}{B \partial x} = \frac{E - S \varepsilon}{\rho_s} \left(\frac{n}{1-n} \right) + u_{ref} \quad [\text{m/s}]
\]

Waarbij een aantal parameters niet direct te bepalen zijn.

\[
\Phi = \frac{E}{\rho_s \sqrt{g \Delta d}} \quad [-] \quad \text{erosieparameter}
\]

\[
\Phi = 0 \quad [-]
\]

geldig voor: \(0 < \theta < B^2 \quad [-]

\[
\Phi \left(1 - \tan \left(\frac{\gamma}{\tan(\rho)}\right)\right) = A(\theta^0.5 - B) \Delta d^{0.3} \quad [-]
\]

geldig voor: \(\theta > B^2 \quad [-]

\[
\Phi_{max} = 0.033 \frac{1-n-c}{c} \quad \text{hindered erosion}
\]

geldig voor: \(\Phi_{max} = \Phi \text{ als } \Phi \geq \Phi_{max} \quad [-]

\[
\theta = \frac{u_s^2}{g \Delta d} \quad [-] \quad \text{Shieldsparameter}
\]

\[
A = 0.012 \quad \text{experimentele coëfficiënt}
\]

\[
B = 1.3 \quad \text{experimentele coëfficiënt}
\]
Modelleren

\[S_e = \rho_s w_s c (1-c)^m \quad [\text{kg/m}^2] \]

Hierin moet de valsnelheid van de korrels ingevoerd worden. De gradiënt van de korrelspanningen is afhankelijk van de plaats (x en z) en door de wrijving moet de valsnelheid iteratief worden opgelost. Dit zal het stelsel zeker niet eenvoudiger maken om op te lossen. De erosiefunctie hierboven is een empirische vergelijking welke in het laboratorium is ontwikkeld voor een korreldiameter van ongeveer 200 \(\mu \text{m} \). Voor het toepassen van deze vergelijking bij grotere korreldiameters moeten grote vraagtekens worden gezet.

\[u_{\text{set}} = 0.0015 u F_{r_i}^2 \quad [\text{m/s}] \]

Zandbalans

\[\frac{\partial \rho_s (Qc)}{B \partial x} = E - S_e \quad [\text{kg/m}^2] \]

Impulsbalans

\[\rho_s g h B \frac{\partial}{\partial x} \left(h + z_b \right) + \frac{1}{2} \rho_s g h^2 \frac{\partial}{\partial x} \rho_s B + \frac{\partial}{\partial x} \rho_m Q u - \left(r_o + r_i + T_o \right) B \quad [\text{kg/s}^2] \]

\[r_o = \frac{1}{8} f_o \rho_m u^2 \quad [\text{N/m}^2] \]

\[r_i = \frac{1}{8} f_i \rho_m u^2 \quad [\text{N/m}^2] \]

\[T_o = \frac{\int_{-\infty}^{\infty} \alpha \sin(\delta_{\text{int}}) \rho_s \lambda(z)^2 \left(\frac{\partial u}{\partial z} \right)^2 dz}{h} \quad [\text{N/m}^2] \]

Vergelijking (4.36) is niet analytisch te integreren naar een verticaal gemiddelde normaal korrelspanning. Dit door de functie van lambda met de coördinaat \(z \). Voor een verticaal gemiddelde korrelspanning kan ook een eenvoudigere vergelijking worden gebruikt, zoals in paragraaf 4.3.5 vergelijking (4.19).

De korrelspanningen zijn geïntroduceerd in de impulsbalans, hiermee wordt een fout aangebracht in de term van de hydrostatische drukgradiënt (2\(^{\text{de}}\) term). De korrels worden niet alleen door de vloeistof gedragen maar ook door de andere korrels. Hierdoor is de hydrostatische term in de bovenstaande impulsbalans waarschijnlijk groter dan de werkelijkheid. In dit onderzoek wordt geen oplossing gevonden voor dit probleem.

Voor bovenwater gelden dezelfde vergelijkingen. Met de volgende aangepaste parameters:

\[u_{\text{rel}} = 0 \quad [\text{m/s}] \quad f_i = 0 \quad [-] \quad \varepsilon = 1 \quad [-] \]

De wrijving met lucht kan verwaarloosd worden. Het buoyant effect van de lucht, kan door de kleine massadichtheid van de lucht ook worden verwaarloosd.
In appendix F wordt de willekeur van de wrijvingscoëfficiënt aangetoond. Het is zeker geen heldere wetenschap zoals deze coëfficiënt wordt verkregen door de bandbreedte die in de literatuur wordt gepresenteerd. De wrijvingscoëfficiënt vertegenwoordigt de turbulentie spanningen.

In de schuifspanningsterm is tevens de korrelspanningsterm opgenomen. In de korrelspanningsterm bevindt zich de snelheidsgradiënt, waardoor het stelsel minder eenvoudig is op te lossen. Het model is hierboven weergegeven, maar zal verder niet worden berekend. Het model heeft de auteur de nodige handvaten verschafte om de verschillende processen te onderzoeken. Om dit model geschikt te maken voor grovere korrel diameters zullen de volgende processen nader moeten worden onderzocht:

- korrelspanningen
- hydrostatische druk
- entrainment
- erosie

Deze gesommeerde processen zijn onvoldoende beschreven voor een grovere korrel diameter. Op de korrelspanningen is uitoeferig ingegaan in dit verslag waar welke invloed wordt verwacht. De hydrostatische druk moet verminderd worden met de korrel korrel druk. De entrainment functie is onafhankelijk van de korrel diameter, dit lijkt geen juiste benadering (appendix E). Het zou logisch zijn om vast te stellen dat de grootte van de korrel diameter van invloed is op de entrainment. De erosiefunctie is opgesteld voor zand van ongeveer 200 μm in een laboratorium, in hoeverre deze vergelijking geldig is voor grover zand zal nader onderzocht moeten worden.

4.3.7 Sedimentatielengte

In paragraaf 2.1.4 is een sedimentatielengte gegeven. Deze sedimentatielengte is opnieuw afgeleid in appendix G. Er is hiermee een sedimentatielengte verkregen welke rekening houdt met het hindered settling effect. Hierdoor wordt de sedimentatielengte verlengd.

\[
\frac{\partial c}{\partial x} = \frac{-(1-c)^n w_c c}{q_o} \quad [m^{-1}] \quad (4.38)
\]

Deze differentiaalvergelijking is op te lossen met de volgende randvoorwaarden:

\[
x = 0 \quad [m] \quad c = c_o \quad [-] \quad q = q_o \quad [m^3/s] \quad (4.39)
\]

\[
x = L_{sed} \quad [m] \quad c/c_o = 10 \quad [%]
\]

Voor het rainbowen wordt doorgaans een grove korrel diameter gebruikt. De zeekrommes van de korrel diameters zijn niet steeil. In combinatie met de sedimentatie lengte wordt duidelijk dat er onzichtbaar plaats vindt op het stort. Om hiermee rekening te houden wordt er voor gekozen om dit in de vergelijkingen mee te nemen.

Voor elke 10% (d_{10}:d_{50} \rightarrow i = 1:n) wordt het stelsel vergelijkingen berekend. Waarmee door de niet lineairiteit beter berekend kan worden wat de invloed van de zeekromme is in plaats van alleen de d_{50}.

3/20/03 Pagina 77 / 163 S.H. Burgmans
De som van de concentraties per korrelfractie \(c_i \) is de totale concentratie \(c_t \).

\[
c_t = \sum_{i=1}^{n} c_i \quad [\text{-}]
\]

(4.40)

In de volgende aangepaste sedimentatielengte vergelijking is de bovenstaande aanpassing aangegeven. De valsnelheid \((w_i) \) wordt per fractie iteratief berekend aan de hand van de wrijvingscoëfficiënt \((C_o) \). Voor de vergelijkingen van de valsnelheid bekijk paragraaf 3.2. Eveneens wordt de Richardson-Zaki coëfficiënt \((m_i) \) bepaald per fractie. De gradiënt van de concentratie per fractie:

\[
\frac{\partial c_i}{\partial x} = -\left(1 - c_i \right)^n \frac{w_i c_i}{q_o} \quad [\text{m}^{-1}]
\]

(4.45)

De sedimentatielengtes zijn gegeven welke aan de hand van praktijkdata kunnen worden gevalideerd.
5. Model resultaten

In de voorgaande hoofdstukken is getracht systematisch naar de volgende modellen toe te stappen. Telkens blijken de details verloren te gaan, door de noodzaak van het doen van aannamen bij het maken van een model. De modellen worden indien mogelijk direct vergeleken met data uit de praktijk.

5.1. Straal

De vergelijkingen zijn gebruikt welke eerder gegeven zijn in de voorgaande hoofdstukken. De volgende invoer is gebruikt:

\[\rho_m = 1.600 \text{ [kg/m}^3\text{]}, \ D_{b, leiding} = 1.2 \text{ [m]}, \ u_{b, leiding} = 5.0 \text{ [m/s]}, \ D_{tromp} = 0.45 \text{ [m]}, \ \alpha = 45 \text{ [°]} \text{ en} \ k = 1.2 \times 10^{-3} \text{ [L]} \]

Bij het luchtentrainment model (LE-model) moet gebruik worden gemaakt van een ruwheidsgetal. In de procesanalyse is gebleken dat aan de rand van de straal de instabiliteit groeit. In principe moet dus worden uitgegaan van groei van het ruwheidsgetal naarmate de straal door de lucht reist. In de literatuur wordt geen ruwheidsgetal gegeven. Het ruwheidsgetal wordt gebruikt om het model te lijken.

De baan voorspelt door de verschillende modellen:

![Traject van de straal](image)

figuur 5.1 Modellen van de straal

In de bovenstaande figuur wordt de straal uitgezet tegen de horizontale en verticale afstand. De modellen worden doorgerekend tot \(z = -10 \text{ m} \), hiermee wordt de hoogte van het schip boven de waterspiegel gemodelleerd.

De ballistische berekening geeft door het verwaarlozen van de wrijving de grootste reikwijdte.

Het Hatton (1979) model geeft een kleine reductie op de ballistische reikwijdte. Het model van Hatton is ontwikkeld voor brandweerspuiten welke een langere hydrodynamische
nozzle hebben, waardoor de straal minder ruw uit de nozzle komt. Daarbij worden ook kleinere nozzlediameters gmodelleerd, waardoor het initieel Froudegetal groter is en gebruik kan worden gemaakt van de empirische wrijvingsfunctie. Bij deze berekening was het initiële Froudegetal 17 (Fr=utromp/(g*D_tromp)), ofwel k=0.001 (2.53) en daardoor wordt geen gebruik gemaakt van de wrijvingsfunctie. Kortom het Hatton model geeft onvoldoende wrijving.
Het luchtentrainment model (LE-model) geeft door het invoeren van de oppervlaktegroei de mogelijkheid om beter de werkelijkheid te simuleren. Het LE-model kan door oppervlaktegroei en hiermee de wrijvingsgroei beter voorstellen. Met het LE-model zijn met dezelfde gegevens, zoals hierboven, de hoek van de tromp met de horizontaal gevarieerd (α):

figuur 5.2 Luchtentrainment model waarbij de tromp hoek (α) is gevarieerd

In de bovenstaande grafiek wordt de uitkomst van het LE-model getoond met een gevarieerde tromp hoek (α=20° - 50° - 45°). De reikwijdte van de straal wordt nauwelijks verkleind bij een tromp hoek tussen de 30° en 45°. In de grafiek is zelfs waar te nemen dat de reikwijdte bij α= 45° iets kleiner is.
Het voordeel van een kleinere tromp hoek is voornamelijk de kleinere hoek van inslag. Dit voordeel betekent een kleinere ontgrondingskuil (zie 2.1.3 Ontgrondingskuil), een hoek van inslag van 42° voor α=30° naar 50° voor α=45°. Door de evenredigheid te gebruiken zoals in vergelijking (2.8) is aangegeven, betekent dit een ontgrondingskuil diepte-reductie van ongeveer 15 %.
Een bijkomend voordeel wordt behaald door een kleinere hoek van inslag is de grotere tangentiële impuls van de straal op het bovenwaterstort.
Model resultaten

figuur 5.3 Tangentiële impuls van de straal op het stort

De tangentiële impuls is in figuur 5.3 met een pijl evenwijdig aan het talud geschematiseerd. Bij een kleinere hoek van inslag neemt de tangentiële impuls toe. Deze tangentiële impuls zal het zand-watermengsel verder het talud op duwen, waardoor de reikwijdte van het zand verder toeneemt!

De hoek van de tromp met de horizontaal van 45° geeft geen optimale reikwijdte. Door onder een kleinere hoek te spuiten komen extra voordelen naar voren. Door de reikwijdte, de ontgrundingskuil en de plaatsingslocatie van het zand moet worden gepleit voor een tromfoek van 30° à 35°.

5.2. Ontgrundingskuil

Voor de ontgrundingskuil is het niet mogelijk om praktijkdata te gebruiken. Op het bovenwaterstroport wordt direct na elk schip de ontgrundingskuil glad gestreken met behulp van een bulldozer. De ontgrundingskuil geeft een representatie van de laatste straal condities. De laatste straalcondities worden voornamelijk gegeven door het opschonen van de hopper, waar lagere concentraties en hogere snelheden worden gebruikt. Deze straalcondities geven flauwere hellingen en een diepere kuil en zijn niet representatief voor het proces rainowen.

Vergelijkingen (2.8) (Van Rhee, 1988) en (2.9) (Breusers, 1991) zouden kunnen worden gebruikt na het opnieuwijken van de empirische coefficienten. In paragraaf 4.3.1 Ontgrundingskuil is al wel aangegeven dat de snelheid en de vorm van de straal anders zijn dan waarvoor de bovenstaande vergelijkingen zijn bedoeld.

De evenredigheid van de hoek van inslag met de diepte van de ontgrundingskuil (2.8), is in de bovenstaande paragraaf gebruikt.

5.3. Evenwichtshelling

Voor het bepalen van de evenwichtshelling zijn er een aantal vergelijkingen gegeven in paragraaf 4.3.5 Evenwichtshelling. Allereerst kan begonnen worden met een simpele evenwichtshellingvergelijking voor dispersiestromen (4.14) waar de component van de zwaartekracht gelijk gesteld is aan de schuifkracht. Daarna worden enige riviertransport vergelijkingen toegepast, hierbij worden berekeningen gemaakt en getoetst aan de te verwachten trend en orde grootte.

De dispersiestromingsvergelijking is opgesteld voor korrelstromen en hierdoor zou deze vergelijking de ondergrens aangeven. Met de ondergrens wordt een minimale mengseldiepte en snelheid gevonden, zodat de turbulentie minimaal is. De helling van de korrelstromen is voornamelijk een functie van de hoek van inwendige wrijving en de volumeconcentratie (i(θ,c)).
figuur 5.4 Helling korrelstromen

In de bovenstaande figuur is de trend af te lezen van een hogere concentratie geeft een steilere helling. Dit is een zeer belangrijke trend voor korrelstromen! Tegelijk is waar te nemen dat de hellingen van korrelstromen geen ondergrens aangeven. In de praktijk worden hellingen bereikt met rainbowen van $i=2 \pm 7$.

In de bovenstaande vergelijking is de statische hoek van inwendige wrijving gebruikt, voor dynamische korrelstromen is het logischer de dynamische hoek van inwendige wrijving te gebruiken zoals eerder is voorgesteld in 2.1.4.1. Echter door het toepassen van de dynamische hoek van inwendige wrijving wordt de helling flauwer, waardoor oplossing niet met de praktijk overeenkomt.

Voor het bepalen van de evenwichtshelling met het gebruik van riviertransportvergelijkingen is het van belang om een orde van grootte af te schatten van de geleverde debieten van sleepopperzuigers bij het rainbowen.
Voornamelijk wordt er gerainbowd met de mega en middelgrote sleeppopperzuiger, waardoor het debiet op 2-8 m³/s kan worden vastgesteld.

In het bovenstaande is het debiet voor het rainbowen afgeschat. Met behulp van de Regime theorie kan een minimale geulbreedte worden berekend. Daarnaast zijn er nog twee invoerparameters nodig. Mengseldiepte waar met behulp van Lowe een onderngrens kan worden gevonden als er pure korrelstroming plaats vindt (zie paragraaf 2.1.4.1 figuur 2.5). Een range van 0.2 tot 0.5 m lijkt acceptabel voor de mengseldiepte met een snelheid van 2 tot 10 m/s. Daarbij moet de concentratie ook worden afgeschat zoals bij het rainbowen gebruikelijk is, dit is 1300 tot 1800 kg/m³ zoals door de sleeppopperzuiger wordt aangeboden.

Het onderzoeksveld van rainbowen is met de bovenstaande aannames kwantitatief verkleind. Voor de evenwichtshelling wordt gebruik gemaakt van riviertransportvergelijkingen. In de eerste plaats wordt er gebruik gemaakt van de bodemtransportvergelijking van Van Rijn. De concentratie wordt gevarieerd zodat een vergelijking kan worden gemaakt met de korrelstroomberekening.

Voor de berekening is de volgende invoer gebruikt:
\[\rho_m = 1001:10:1850 \text{ [kg/m}^3\text{]}, \quad d_{mf} = 520 \text{ [µm]}, \quad d_{g90} = 1677 \text{ [µm]}, \quad Q_m = 6 \text{ [m}^3\text{/s]}, \quad C_l = 7.5 [-] \text{ en} \quad h = 0.2:0.05:0.4 \text{ [m]}. \]

De invoer geeft de volgende grafiek, waar de concentratie uitgezet is tegen de helling:
In de bovenstaande grafiek komt een vrij gecompliceerd plaatje beschikbaar. De rode lijnen in figuur 5.5 geven de hellingen weer zoals deze in Palm Island (W7) zijn gemeten. Bij lage concentraties neemt de helling af naarmate de concentratie toeneemt. Hierop volgt een traject voor de bodemhelling welke voor elke mengseldiepte verschillend is. Naarmate de mengseldiepte toeneemt neemt de helling toe. Dit kan verklaard worden door de grotere turbulentie die tot uitdrukking komt in het model. Naarmate de mengseldiepte afneemt wordt bij een lagere concentratie een korrelstroom gesimuleerd. Voor een mengseldiepte van 0.2 m wordt al bij een concentratie van 0.2 de wrijvingscoëfficiënt gebruikt welke een functie is van de dynamische hoek van inwendige wrijving. Bij het toepassen van de wrijving door dispersie wordt een slechte voorspelling gemaakt welke niet dezelfde trend volgt als in figuur 5.4. De dispersie van wrijving geeft een sprong in de lijn, waardoor er vraagtekens bij de juistheid moeten worden gezet. Mengselstromen met hogere concentraties kunnen niet met het empirische verband van Van Rijn worden voorspeld, hiermee is de lijn met wrijving door dispersie ongeldig. Het Van Rijn bodemtransport model reageert heftig op de wijziging van de mengselstroomdiepte. Hierdoor is de Van Rijn bodemtransport vergelijking niet robuust genoeg om toe te passen bij het voorspellen van de evenwichtshelling van een medium en grof zandwaterstroom. De heftige reactie op de mengselstroomdiepte zou juist kunnen zijn, echter door de onbekendheid van de werkelijke dimensies van een medium en grof zand mengselstroom onderwater is het onmogelijk een nauwkeurige voorspelling te maken.

De bodem- en zwevendtransportvergelijking van Engelund Hansen is in appendix B aangepast voor medium en grof zand. Mastbergen en Leeuwestein (1986) hebben deze vergelijking toegepast voor fijn zand. Met dezelfde parameters als bovenstaand met h=0.3 m is de volgende berekening gemaakt:
Model resultaten

figuur 5.6 Evenwichtshelling bodem en zwevendtransportvergelijking Engelund Hansen

In de bovenstaande grafiek is de concentratie uitgezet tegen de evenwichtshelling. Beiden taludhellingen worden in de bovenstaande vergelijking veel te groot (10 tot 100) voorspeld in verhouding tot de gevonden praktijkdata, zie figuur 5.5. De oorzaak hiervan zal deels liggen bij de het niet empirisch meenemen van korrelspanningen. De trend van een steilere helling naarmate de concentratie toeneemt wordt ook niet juist voorspeld. De sprong in de Mastbergen en Leeuwenstein lijn wordt veroorzaakt door overgaan op wrijving door dispersie in plaats van Darcy-Weisbach wrijving. De beide Engelund Hansen modellen zijn door de trend en de grootte van de evenwichtshelling niet geschikt voor het gebruik om de evenwichtshelling te voorspellen.

Voor de evenwichtshelling is gebruik gemaakt van een continuümbenadering voor korrelstromen. De trend gegeven met deze vergelijking is juist. De oplossingen vergeleken met praktijkdata geven te flauwe hellingen. Van de semi-empirische riviertransportvergelijkingen welke gebruikt zijn, lijkt de Van Rijn bodemtransport vergelijking enigszins een juiste voorspelling te maken. Echter de invloed van de mengseldiepte wordt te sterk meegenomen. De evenwichtshelling is aan de hand van de eerder gegeven vergelijking niet nauwkeurig te voorspellen. Met praktijkdata kan een analyse worden gemaakt naar de relatie tussen de geïntroduceerde parameters in de riviertransportvergelijkingen op de evenwichtshelling.

5.4. Sedimentatielengte

De sedimentatielengte is in totaal op drie verschillende manieren weergegeven in dit verslag. In de vergelijkingen (2.35), (4.38) en (4.45) wordt stapsgewijs de complexiteit van de sedimentatielengte vergroot. In vergelijking (2.35) wordt een constante concentratie gebruikt (c), in (4.38) en (4.45) wordt de concentratie variabel over de lengte (c(x)). In vergelijking (4.45) wordt per fractie (d) de valsnelheid en de concentratie berekend. De vergelijkingen zijn opgelost in Matlab. In de volgende tabel worden voor de verschillende projecten de sedimentatielengten berekend, aan de hand van de zeefkromme en invoerparameters $\rho_m=1700 \text{ kg/m}^3$ oftewel c=0.43 en een $q_w=0.5 \text{ m}^3$/sec.
Model resultaten

<table>
<thead>
<tr>
<th>Project</th>
<th>Wingebed</th>
<th>Dumpgebied</th>
<th>d_{50}</th>
<th>d_{mf}</th>
<th>d_{90}/d_{10}</th>
<th>L_{sed} c(d_{50})</th>
<th>L_{sed} c(x),d_{50}</th>
<th>L_{sed} c(x),d_{L}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palm Island</td>
<td>E en W</td>
<td>0.314</td>
<td>0.426</td>
<td>11.2</td>
<td>3.9</td>
<td>87.8</td>
<td>65.3</td>
<td>99.4</td>
</tr>
<tr>
<td></td>
<td>W7</td>
<td>0.439</td>
<td>0.520</td>
<td>13.5</td>
<td>3.9</td>
<td>48.8</td>
<td>39.2</td>
<td>71.9</td>
</tr>
<tr>
<td></td>
<td>W9</td>
<td>0.5</td>
<td>1.626</td>
<td>60.6</td>
<td>4.1</td>
<td>39.8</td>
<td>32.8</td>
<td>48.3</td>
</tr>
<tr>
<td>Penny’s Bay</td>
<td>Wai Ling Ding</td>
<td>0.275</td>
<td>0.283</td>
<td>5.2</td>
<td>3.2</td>
<td>113.0</td>
<td>81.7</td>
<td>116.0</td>
</tr>
<tr>
<td></td>
<td>West-Po Toi W5</td>
<td>0.621</td>
<td>0.817</td>
<td>17.0</td>
<td>5.2</td>
<td>29.0</td>
<td>24.9</td>
<td>41.9</td>
</tr>
<tr>
<td></td>
<td>West-Po Toi W5</td>
<td>0.621</td>
<td>0.817</td>
<td>17.0</td>
<td>5.2</td>
<td>29.0</td>
<td>24.9</td>
<td>41.9</td>
</tr>
<tr>
<td></td>
<td>Lamma W2</td>
<td>0.976</td>
<td>1.290</td>
<td>13.1</td>
<td>4.9</td>
<td>16.3</td>
<td>15.1</td>
<td>22.5</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td></td>
<td>1.081</td>
<td>1.575</td>
<td>11.9</td>
<td>4.3</td>
<td>14.6</td>
<td>13.7</td>
<td>18.0</td>
</tr>
</tbody>
</table>

tabel 5-2
Sedimentielengte voor de verschillende projecten

De sedimentielengtes voor andere specifieke debieten zijn simpel te berekenen door:

\[
L_{sed}(q_o') = L_{sed}(q_o) \frac{q_o}{q_o'}, [m]
\]

(5.1)

Voor een andere concentratie kan het model in Matlab worden gebruikt. Tijdens het rainbownen kan de sleepopperzuiger een dik mengsel draaien van 1700 kg/m³.

In de bovenstaande tabel is een verschil waar te nemen tussen de verschillende methodes om de sedimentielengte te berekenen. De sedimentielengte afhankelijk van de concentratie en per fractie, geeft de grootste sedimentielengte. In geval van Palm Island W7 wordt de sedimentielengte bijna verdubbeld van een simpele benadering naar een berekening per fractie.

Door de concentratie te berekenen per fractie over de lengte, is het ook mogelijk om de d_{mf} te berekenen over de lengte. In dwarsprofielen, waargenomen bij het rainbownen is te zien hoe de helling in steilheid afneemt naar de teen toe. Door een bodemtransportvergelijking te gebruiken is waar te nemen hoe de helling afneemt naarmate de korrel diameter afneemt. Door een d_{mf} te geven over de helling kan een voorspelling worden gegeven van de helling op een bepaalde plaats in het talud. Van de projecten Sri Lanka en Palm Island dumpgebied W7 worden hieronder de sedimentielengtes gegeven.
In de bovenstaande grafieken zijn een drietal soorten lijnen opgenomen. De dikke zwarte lijn geeft de totale concentratie (c_t) weer. De dunnere gekleurde lijnen zijn de concentraties per fractie (c_f). De dikke blauwe lijn geeft de d_{mf} weer, waar aan de rechterzijde van de grafiek een apart assenstelsel voor is aangemaakt. Let op! Palm Island W7 is over een lengte van 100 m uitgetekend en Sri Lanka over 50 m.

Gekozen is om de projecten Sri Lanka en Palm Island te vergelijken, waarbij de uiterste van de korrel grootte wordt vergeleken. Bij Sri Lanka kwamen steile hellingen voor, oftewel een korte sedimentatielengte. Ook kwamen in de dwarsprofielen van Sri Lanka...
Model resultaten

geen flauwe hellingen voor. Dit kan worden verklaard door de hoge d_{mf} bij een hoge concentratie. Bij een lagere d_{mf} is er geen concentratie meer, zodat er geen flauwe helling kan worden gevormd.
In figuur 5.8 is te zien hoe de fractie d_{50} (de dunne groene lijn) direct naar de bodem zakt en zo uit de berekening valt. De fracties d_{16} en d_{25} zorgen voor een grote sedimentatielengte, deze blijven lang in de mengselstroom hangen. De dunne groene en blauwe dunne lijn geven dit goed weer.

Voor de sedimentatielengte wordt vastgesteld dat de invloed van de korrelverdeling groot is op de fijnere fractie.

Met een zeefkromme kan de sedimentatielengte dan worden geïnterpreteerd. Naarmate de fijne fractie groter is, kan er een grotere sedimentatielengte worden gevonden dan de d_{50} berekening aangeeft. Bij het verwarlozen van de zeefkromme kan de berekening 200% verschil geven.

5.5. Discussie

De theoretische resultaten zijn zeer summier. De processen van Rainbowen worden sterk beïnvloed door dynamische processen. De reikwijdte van de straal is door het gegeven model niet veel beter te voorspellen echter het gedrag van de straal wordt wel duidelijk. Een relatie voor de ontgrondingskuil is alleen in een laboratorium vast te stellen aangezien hier de laatste straal condities kunnen worden geregeld. Voor de evenwichtshelling is geprobeerd een relatie te geven welke bruikbaar is om de mogelijke evenwichtshelling te voorspellen. Echter de Van Rijn bodemtransportvergelijkning bleek hier niet geschikt voor. Voor laminaire korrelstromen is een belangrijke trend vast te stellen dat naarmate de concentratie toeneemt de helling steiler wordt. De sedimentatielengte blijkt een bruikbaar model te zijn om te voorspellen wat de fijne fractie van het zand voor een gevolg heeft op het talud.
Ondanks het niet exact kunnen voorspellen van de gevormde zandlichamen is het wel mogelijk om bepaalde trends te ontdekken in de praktijk. Met behulp van praktijkdata wordt in het volgende hoofdstuk een nadere analyse gemaakt naar de verklaring van de veldmetingen.
6. Praktijkanalyse

Ballast Ham Dredging bv. is een internationaal bedrijf. Over de hele wereld, met allerlei zandsoorten, doet BHD ervaring op met rainbowen. Verschillende projecten over de wereld hebben data opgestuurd welke is geanalyseerd. Tevens is uitgebreidere data geadjusteerd van het project Palm Island in Dubai.

6.1. Wereldwijd

Aan de hand van de voorgaande theorie van het Rainbowen van medium en grof zand is een analyse gedaan naar de manier waarop dit in de praktijk is terug te vinden. Van verschillende projecten over de wereld zijn grondgegevens en dwarsprofielen nader geadjusteerd. In annex 15 zijn voor 11 verschillende zandsoorten van vier projecten, waarbij 170 dwarsprofielen zijn onderzocht. Hierbij is gekeken naar: onderwater taludhelling en sedimentatiehelling. De zeehommels van de zandsoorten zijn gegeven in annex 16.

6.1.1 Onderwater taludhelling

De onderwater taludhelling die direct na de waterlijn wordt gevonden kan in een grafiek worden uitgezet tegen de korrel diameter, voor de d_{50} en de d_{mr}.

![Gerealisereerde taludhellingen over de wereld met een d_{50}](image)

figuur 6.1 Gerealisereerde taludhellingen over de wereld met een d_{50}

In de bovenstaande grafiek wordt de d_{50} tegen de taludhelling uitgezet. Behalve de taludhellingen die in de praktijk zijn waargenomen, wordt er ook een trendlijn in de grafiek gebruikt om het zwaartepunt van alle punten weer te geven.
Voor de d_{mf} is ditzelfde gedaan:

\[
\begin{align*}
\text{taludhelling (}1+n\text{)[]} & \quad d_{mf}[^{\mu}m] \\
0 & \quad 200 \\
1 & \quad 400 \\
2 & \quad 600 \\
3 & \quad 800 \\
4 & \quad 1000 \\
5 & \quad 1200 \\
6 & \quad 1400 \\
7 & \quad 1600 \\
8 & \quad 1800
\end{align*}
\]

\[\text{figuur 6.2} \quad \text{Gerealiseerde taludhellingen over de wereld met een } d_{mf}\]

Wederom is de korreldiameter ditmaal de d_{mf} uitgezet tegen de taludhelling. Het zwaartepunt van alle taludhellingen is opgenomen met een trendlijn. Zowel figuur 6.1 als figuur 6.2 laat de trend zien van een stellere helling naarmate de korreldiameter toeneemt. Beide grafieken laten ook zien dat naarmate de korreldiameter toeneemt de spreiding rond de trendlijn afneemt. Dit is ook te zien in de tabel gegeven in annex 15 waarbij de standaard deviatie toeneemt bij een kleinere korreldiameter.

Bekend is van de zandsluiting Slaak ($d_{50}=\pm 200 \, ^{\mu}m$) dat de onderwaterstorthelling voornamelijk werd gevormd door zettingsvloevingen. Dit zou een eerste verklaring kunnen geven over de grotere spreiding bij een fijnere korreldiameter. Tevens zal de initiële stortvorm en werkwijze van grotere invloed zijn op de gevormde storthelling van fijner zandsoorten. Voor de onderwaterstorthelling is het specifieke zandleebiet en de concentratie naast de korreldiameter een belangrijke procesparameter.

6.1.2 Sedimentatielengte

In annex 15 zijn behalve de eerder getoonde taludhellingen ook de sedimentatielengtes geanalyseerd. De sedimentatielengtes zijn hier gedefinieerd als de horizontale afstand vanaf de waterspiegel. Uit de tabel blijken de taludhellingen af te nemen bij een toegenomen sedimentatielengte. Bij een fijnere korreldiameter wordt de taludhelling op een kortere afstand van de waterlijn flauwer.
6.1.3 Discussie

In de bovenstaande data is een grote spreiding gevonden. De spreiding is gegeven door de parameters van de werkwijze en de initiële stortvorm. De afwijking kan worden geminaliseerd door meer parameters mee te nemen in de interpretatie van de data. In de volgende paragraaf is door een bezoek aan een site meer specifieke data verzameld over de ontstane zandlichamen.

6.2. Palm Island

In Dubai wordt een gigantisch eiland gerealiseerd in de vorm van een palmboom. Het eiland wordt gerealiseerd met voornamelijk sleephopperzuigers die het zand dumpen en rainbowen. De laatste werkwijze zal in de volgende paragrafen nader onderzocht worden. Hierbij is er geprobeerd zoveel mogelijk relevante data te verzamelen van twee trips over het proces rainbowen. Aan de hand van de gegeven data kunnen verklaringen worden gegeven. Tenslotte wordt het hoofdstuk afgesloten met een interview op de site en hoofdzakelijk praktische conclusies en aanbevelingen.

6.2.1 Trip 411 Volvox Delta

Gerekend is naar trip 411 van de Volvox Delta op 14/01/03. Beschreven zal worden de situatie, de taludhellingen en de vorm van het stort.

Op 14/01/03 is tussen 11:35 en 12:40 gerainbowd. Hierbij trad een getijverschil op van 0.3 m. De getijamplitude is voor de kust van Dubai ongeveer 2 m. De wind was voor deze dag maximaal 14 knopen. De stortlocatie is aangegeven op de onderstaande tekening van Palm Island. De grootte van het eiland is 5 km lang en 5 km breed!

![stort Volvox Delta](image)

figuur 6.3 Stortlocatie van Volvox Delta

Op de locatie van het stort wordt een grid aangemaakt waarmee de plaats kan worden bepaald.
Praktijkanalyse

figuur 6.4 Locatie straal Volvox Delta

In figuur 6.4 is met stippellijn het grid aangegeven. In de figuur is de locatie van de straal aangegeven en de laatste locatie van de Volvox Delta.

6.2.1.1. Taludhellingen

Uit de dwarsprofielen kunnen de taludhellingen over de breedte worden weergegeven. De volgende grafiek is met behulp van deze informatie gemaakt.

figuur 6.5 Hellingen over de breedte van het stort van de Volvox Delta

In de bovenstaande grafiek is de y-coördinaat tegen de helling uitgezet. Dichtbij de locatie van de ontgrondingskuil (zie figuur 6.4) wordt de bovenwater storthelling steiler en de onderwater storthelling flauwer. Met behulp van een schematisatie van
Praktijk analyse

de waarnemingen op het bovenwaterstort en een foto ter verduidelijking, kunnen de bovenstaande waarnemingen worden verklaard.

figuur 6.6 Schematisatie bovenaanzicht stort Volvox Delta

In de bovenstaande figuur is met behulp van blauwe pijlen de grootte en locatie van het mengseldebit weergegeven. De gele pijlen op het onderwaterstort geven de zanddebieten aan welke waarschijnlijk zijn voor het onderwaterstort. De bovenstaande schematisatie is tot stand gekomen na het visueel bestuderen van het bovenwaterstort. Het bovenwaterstort zag er als volgt uit:

figuur 6.7 Stort Volvox Delta

Voor de uitleg van figuur 6.5 kan de volgende theorie worden gegeven. Voor de taludhelling van het bovenwaterstort is het specifieke mengseldebit (m³/s/m) van belang. Aan weerskanten van de ontgrondingskuil is het specifieke mengseldebit groter dan in het midden van het stort onder de straal. Dit is enigszins waar te nemen op de bovenstaande foto (figuur 6.7) en duidelijk afgebeeld in figuur 6.6. Hoe groter het specifieke mengseldebit, hoe flauwer de helling. Dit is de trend getoond in figuur 6.5.
Voor de onderwaterstorthelling is het specifieke zanddebit (m³/s/m) van belang. Naarmate de mengselstroom een grotere afstand aflegt over het bovenwaterstort neemt de concentratie oftewel specifiek zanddebit af, omdat een zelfde hoeveelheid water in de mengselstroom blijft. Door een lager specifiek zanddebit neemt de helling toe. Deze trend is eveneens te herkennen in figuur 6.5. Een laag specifiek zanddebit is natuurlijk niet hetzelfde als een lage concentratie. Theoretisch is te verwachten dat naarmate de concentratie hoger is, steilere hellingen ontstaan. Dit komt door de demping van turbulentie en het opwekken van korrel-korrel contacten, welke voor een grotere wrijving met de bodem zorgen.

6.2.1.2. Vorm van het stort

Het stort is ingesurveyd met een multibeam echosounder (430 kHz). Hierdoor is het mogelijk geworden om het volgende 3D plaatje te geven:

![Figuur 6.8: Insurvey stort Volvox Delta](image)

De initiële vorm van het stort is een belangrijke beginvoorwaarde voor waar de lading bezinkt. In figuur 6.8 wordt de vorm van het stort getoond. Hierbij zijn enige dumpladingen aan de teen van het talud waar te nemen. Op het bovenwaterstort zijn de stortkades opgebouwd met behulp van bulldozers, deze zijn moeilijk te herkennen in figuur 6.8, beter in figuur 6.7. Enkele uren na het rainbowen van de Volvox Delta is wederom een survey gemaakt waarmee het volgende plaatje is waar te nemen:
Praktijkanalyse

Figuur 6.9 Uitsurvey stort Volvox Delta

Aangezien het moeilijk waar te nemen is waar de lading is geplaatst, wordt de uitsurvey van de insurvey afgetrokken, waarmee de volgende figuur kan worden getoond.

Figuur 6.10 Verschil in- en uitsurvey stort Volvox Delta

De bovenstaande figuur is ook in helikopterview te tonen:
In de bovenstaande figuren is een grid getekend voor de plaatsbepaling (figuur 6.10). Hierdoor wordt het mogelijk de bovenstaande informatie te combineren met de gegevens over het impactpunt van de straal (figuur 6.4). Bij de coördinaat \((x,y)\), \((80,60)\) is de erosie te herkennen van de ontgrondingskuil. De ontgrondingskuil heeft een erosie van 70 cm diep in een ellipsvorm van 10 m breed \((y)\) en 15 meter lang \((x)\). De Volvox Delta spuit gemiddeld onder een hoek van 30° met een reikwijdte van 70 m en een snelheid in de tromp van 20 m/s. De gegeven onttongdingskuil is waarschijnlijk het product van de laatste straalcondities. Het zand sedimenteert nog 20 m voorbij de onttongdingskuil waarbij het verder door een stortkade wordt tegen gehouden.

Op de lijn \(x=60\) m, ongeveer de waterlijn, heeft veel sedimentatie plaatsgevonden. Bij de waterlijn verliest het zand voornamelijk zijn aandrijving door het water. De dichtheid van de mengselstroom wordt met de dichtheid van het zeewater gereduceerd \((1400 \text{ a } 1200 \text{ kg/m}^3 \text{ wordt } 375 \text{ a } 175 \text{ kg/m}^3\text{ een factor } 3.7 \text{ tot } 7)\). Ook ontstaat er wrijving met de waterschil boven de mengselstroom. Meestal wordt deze laatste term als hoofdzaak gezien echter dit is niet altijd het geval (hooguit een factor 4)!

Dit procesbegrip wordt interessant als een mengselstroom met een grote beginsnelheid in het water wordt gebracht. Door de overschatte wrijving komt de mengselstroom verder dan men vaak denkt.

De stortbreedte wordt van ongeveer 40 m vergroot naar 80 m onder een spreidingshoek van \(\pm 60^\circ\). De grote spreidingshoek is deels te verklaren door de beweging van de straal over het stort en het kwispelen van de geul over het stort. Bij het storten van fijn zand werd vaak een spreidingshoek van ongeveer 30° gevonden. In figuur 6.4 is de beweging van de straal te zien gemeten als een vast punt ten opzichte van de Volvox Delta. Door de snelheidsfluctuaties van de straal en de wind zal de straal zich nog verder dan de gegeven 20 m over het stort spreiden. De snelheidsfluctuaties van de straal zouden in de positie van de straal verrekend kunnen worden.
De lading was grover dan de vorige, waardoor de lading stelgere hellingen maakte. Dit betekent dat de massa stroom van grof zand door de flauwe helling weinig aangedreven wordt door de zwartekracht. Door de lagere snelheid zal het zand snel sedimenteren. Wordt er fijn zand op grof zand aangebracht, dan mag worden aangenomen dat door de steile helling van het grove zand de mengselstroom veel aandrijving krijgt waardoor de snelheid relatief hoog is en het fijnere zand later sedimenteert dan wanneer begonnen wordt op een flauwere helling. Fijn op grof zand is voor een steile helling niet gunstig!

<table>
<thead>
<tr>
<th>Beuivolume [m³]</th>
<th>Duur rainbowen [min]</th>
<th>Concentratie [kg/m³]</th>
<th>Productie [m³/min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5389</td>
<td>65</td>
<td>1350</td>
<td>83</td>
</tr>
</tbody>
</table>

Tabel 6.1 Trip 411 Volvox Delta

In de bovenstaande tabel worden enige gemiddelde gegevens weergegeven. De concentratie in vergelijking met andere hoppers is laag. Dit is een resultaat van het leegzuigproces in het beun.

6.2.2 Trip 431 HAM317

Een analyse van de trip 431 van de HAM317 zal in deze paragraaf worden beschreven. Na een korte situatiebeschrijving, wordt er achtereenvolgens een beschrijving gemaakt over vorm van het stort, straal, ontgrondingskuil en tenslotte sedimentatielengte en segregatie.

Op 16/01/03 is het stort van de HAM317 ingesurveyed. De windsnelheid was enigszins hoger dan de vorige meting door een kleine Shamal welke een windsnelheid gaf van maximaal 17 knopen. Voor deze trip is een locatie op het stortvak gevonden waar 1 lading kon worden geplaatst. Hierna was er op deze locatie voldoende tijd om grondmonsters te nemen met behulp van duikers. De locatie van het stort is weergegeven in de onderstaande figuur.

Figuur 6.12 Stortlocatie HAM317

Voor deze exercitie is gekozen om de HAM317 te gebruiken aangezien deze een relatief stationair leegzuigproces heeft ten opzichte van de andere hoppers. Het
leegzuigproces is relatief stationair door de beunvorm, welke niet ondervoordeeld is in compartimenten zoals bij de meeste andere hoppers. In de onderstaande tabel 6-2 is de gemiddelde concentratie en snelheid in de tromp opgenomen.

<table>
<thead>
<tr>
<th>Tijd [hr:min]</th>
<th>Dichtheid [kg/m³]</th>
<th>Snelheid in tromp [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>18:45</td>
<td>1.55</td>
<td>21</td>
</tr>
<tr>
<td>18:50</td>
<td>1.55</td>
<td>21</td>
</tr>
<tr>
<td>18:55</td>
<td>1.60</td>
<td>21</td>
</tr>
<tr>
<td>19:00</td>
<td>1.50</td>
<td>21</td>
</tr>
<tr>
<td>19:05</td>
<td>1.45</td>
<td>23</td>
</tr>
<tr>
<td>19:10</td>
<td>1.40</td>
<td>23</td>
</tr>
<tr>
<td>19:15</td>
<td>1.25</td>
<td>23</td>
</tr>
<tr>
<td>19:20</td>
<td>1.20</td>
<td>26</td>
</tr>
<tr>
<td>19:25</td>
<td>1.15</td>
<td>26</td>
</tr>
</tbody>
</table>

tabel 6-2 Gemiddelde rainbow proces eigenschappen HAM317

De locaties van de straal van de HAM317 zijn inclusief de tijd opgenomen in de onderstaande figuur 6.13.

![Figuur 6.13 Locatie straal HAM317](image)

Figuur 6.13 Locatie straal HAM317

De locatie van de straal wordt vast op een afstand van 60 m voor de tromp berekend. Echter door snelheidsfluctuaties van de straal en wind geeft dit slechts een indicatie. De positie van de straal geeft natuurlijk niet de richting van de straal weer, door het draaien van het schip is de richting ook variabel. In de bovenstaande figuur is de laatste locatie van het schip weergegeven tijdens het rainbowen.

6.2.2.1. Vorm van het stort

Zoals eerder bij de trip van de Volvox Delta staat vermeld is de initiële vorm van het stort van groot belang op de precieze plaatsing van de lading. Deze keer wordt er niet op een talud gespoten zoals bij de vorige trip, maar op een uiteinde van een palmblad. De vorm van het zandlichaam is in de onderstaande figuur waar te nemen.
Praktijkanalyse

figuur 6.14 Uitsurvey stort HAM317

De uitsurvey wordt hier getoond om de vorm van het stort te bepalen. Door het ontbreken van duidelijke herkenningspunten is het niet mogelijk de x en y coördinaten in te tekenen. Wederom is de uitsurvey van de insurvey afgetrokken waardoor de volgende figuur kan worden getoond.

figuur 6.15 Verschil in- en uitsurvey stort van de HAM317

De bovenstaande figuur 6.15 is ook vanuit een bovenaanzicht te laten zien in de volgende figuur 6.16.
figuur 6.16 Bovenaanzicht in- en uitsurvey stort HAM317

In de bovenstaande figuur 6.15 en figuur 6.16 zijn de verschil hoogtes opgenomen van de plaats, x en y. Bij de coördinat (40, 80) is een ontgrondingskuil te herkennen. Deze kuil is groter qua oppervlakte dan die van de Volvox Delta. Met behulp van het analyseren van de straal en de ontgrondingskuil is deze waarneming te verklaren.
Praktijkanalyse
6.2.2.2. **Ontgrondingskuil**

Door het grotere oppervlak waarmee de straal van de HAM317 aankomt, ontstaat er een groter oppervlak ontgrondingskuil. Tevens heeft de straal van de HAM317 meer over het stort gewandeld dan die van de Volvox Delta (zie figuur 6.4 en figuur 6.13). De initiële stortvorm komt ook niet overeen. Uit figuur 6.10 en figuur 6.15 blijkt de sedimentatie op het bovenwaterstort van de HAM317 klein te zijn. Het is daardoor meer van belang een ontgrondingskuil aan te houden zonder met de straal over het stort te zwalken. Uit de ontgrondingskuil theorie is bekend dat in de kuil een hoog geconcentreerde soep ontstaat welke de straal afremt.

6.2.2.3. **Sedimentatielengte en segregatie**

Op het boven- en onderwaterstort zijn grondmonsters genomen om de verwachte segregatie te verifiëren. Eveneens zijn er grondmonsters uit het beun van de HAM317 genomen. De drie grondmonsters uit het beun, 10 cm onder de toplaag verspreid over het beun, hebben een gemiddelde d_{50} van 532 μm en een d_{mv} van 625 μm van drie monsters. De spreiding die al in het beun te vinden is, wordt voornamelijk veroorzaakt door het niet homogene wingebied. De volgende dag na de lading van de HAM317 hebben duikers grondmonsters uit het talud genomen. Op het bovenwaterstort zijn de grondmonsters 10 cm onder de toplaag genomen. Alleen op de waterlijn is gebruik gemaakt van een 1 m lange zuigerboor. De volgende gegevens zijn daarbij binnen gehaald.
figuur 6.20 Gemiddelde korreldiameter in een dwarsprofiel stort HAM317

In de bovenstaande figuur 6.20 is de dwarsdoorsnede afgedrukt met daarin de locaties van de grondmonsters. De bovenste lijn is de uitsurvey en de onderste lijn van het talud is de insurvey. Dit bemonterde dwarsprofiel is maar met een kleine hoeveelheid van de lading opgehoogd. Bij de locaties van de grondmonsters in het dwarsprofiel zijn met een aparte as de korreldiameters (d_{50} en d_{mf}) ingetekend.

Onverklaarbaar is de fijne korreldiameter welke werd aangetroffen op het bovenwaterstort. Diepere grondmonsters zouden kunnen uitwijzen in hoeverre deze grondmonsters representatief waren.

Vanaf de waterspiegel is een neergaande trend te zien in figuur 6.20 van de d_{50} en d_{mf}. De grondmonsters zijn niet alleen van de lading van de HAM317 maar zullen ook van ladingen vanuit andere winvakken zijn. De bovenstaande gegevens zijn te vergelijken met de theoretische sedimentatielengte uit paragraaf 4.3. Het specifiek mengseldebiet moet worden afgeschat. Het gemiddelde mengseldebiet gegeven door de HAM317 is 3.0 m³/s. Stortbreedte wordt op 40 m gehouden zoals waargenomen op het bovenwater stort. Het specifieke mengseldebiet wordt dan 0.075 m³/s/m. De gemiddelde grondgegevens van het beun over drie grondmonsters zijn:

<table>
<thead>
<tr>
<th>d_{10} (µm)</th>
<th>d_{25} (µm)</th>
<th>d_{50} (µm)</th>
<th>d_{75} (µm)</th>
<th>d_{90} (µm)</th>
<th>d_{95} (µm)</th>
<th>d_{99} (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>178</td>
<td>259</td>
<td>347</td>
<td>430</td>
<td>532</td>
<td>657</td>
<td>826</td>
</tr>
<tr>
<td>106</td>
<td>1384</td>
<td>1384</td>
<td>1384</td>
<td>1384</td>
<td>1384</td>
<td>1384</td>
</tr>
<tr>
<td>1016</td>
<td>1384</td>
<td>1384</td>
<td>1384</td>
<td>1384</td>
<td>1384</td>
<td>1384</td>
</tr>
<tr>
<td>1384</td>
<td>1384</td>
<td>1384</td>
<td>1384</td>
<td>1384</td>
<td>1384</td>
<td>1384</td>
</tr>
<tr>
<td>1384</td>
<td>1384</td>
<td>1384</td>
<td>1384</td>
<td>1384</td>
<td>1384</td>
<td>1384</td>
</tr>
<tr>
<td>1384</td>
<td>1384</td>
<td>1384</td>
<td>1384</td>
<td>1384</td>
<td>1384</td>
<td>1384</td>
</tr>
</tbody>
</table>

tabel 6-3 Grondgegevens lading HAM 317

Met de gegeven data is het mogelijk een berekening te maken voor het bepalen van de theoretische sedimentatielengte. De uitvoer van deze berekening ziet er als volgt uit:
In de bovenstaande figuur 6.21 is de uitkomst van de berekening opgenomen. De lengte \(x \) staat tegen de concentratie uit, aan de rechterzijde staat de \(d_{mf} \) opgenomen. De sedimentatielengte berekend (5.3 m) waar 90% van het zand is gesedimenteerd is veel te kort. Dit is te verklaren door het verwaarlozen van de turbulentie en vooral de geulvorming. In de berekening wordt aangenomen dat de stroming zich over het gehele stort verspreidt, echter op het stort treedt vaak geulvorming op.

De berekende \(d_{mf} \) laat de 200 \(\mu m \) zien welke aan de onderzijde van het talud is waargenomen. Aan de bovenzijde van het talud is een \(d_{mf} \) berekend van 600 \(\mu m \) en een 700 \(\mu m \) waargenomen. Dit verschil kan worden verklaard doordat er op het bovenwaterstort een lage \(d_{mf} \) is aangetroffen. Door het uitwassen van de fijne fractie is de \(d_{mf} \) onder de waterspiegel hoger.

6.2.3 Interview

Uit gesprekken met de werknemers op de site van Palm Island, bleken misvattingen te bestaan over het afremmen van een mengselstroom in het water. Voor de duidelijkheid:

De snelheid van de mengselstroom onderwater wordt vaak niet hoofdzakelijk door de wrijving verkleind, maar hoofdzakelijk door de verkleinde aandrijving van de zwaartekracht.

Deze proceskennis wordt interessant wanneer een mengselstroom met hoge beginsnelheid in het water wordt gespoten, men schat vaak de afstand waarbinnen het zand bezint te kort in.

6.3. Conclusies en aanbevelingen

Aan de hand van de voorgaande figuren zijn verklaringen gegeven over de waarnemingen. De verklaringen zullen hier verder worden samengevat en waar mogelijk worden aanbevelingen gemaakt dan wel conclusies getrokken.

Uit de waarnemingen op Palm Island zijn een aantal *conclusies* te trekken:
Spuiten onder 30°–35° met de horizontaal, waardoor de mengselstroom voornamelijk verder het talud wordt opgeduwd.

Sterke segregatie van de korreldiameters op het onderwaterstort is een feit. De korrel diameter heeft door de flauwe helling van de zeekromme (d_{50}/d_{10} en d_{90}/d_{10} zijn groot) een grote invloed op de geleverde hellingshoeken.

Houdt de straal op een klein bovenwaterstort, zonder stortkaden zoveel mogelijk op één locatie, zodat de erosie van zand op het bovenwaterstort wordt geminimaliseerd.

Liever geen fijn zand op grof zand aanbrengen in verband met de taludhelling.

Voor het berekenen van de sedimentatielengte kunnen turbulentie en geulvorming een grote rol spelen.

De volgende aanbevelingen kunnen worden gedaan.

Onderzoek of de straal beter in een compacte vorm op het stort aan moet komen of een in uitgewaaierde vorm. Voor de ontgrondingskuil en de stort breedte lijkt een compacte straal favoriet! Door de grotere impuls van een compacte straal op het stort wordt de mengselstroom hoger op het talud geduwd en stroomt daardoor breder en over een grotere lengte af. Door de grotere breedte en de lengte waarover de mengselstroom afstroomt, nemen de specifieke debieten af en daarmee wordt de taludhelling stiler.

Het impactpunt van de straal wordt als een vaste positie vanaf de SHZ gegeven. Deze kan afhankelijk van de snelheid worden gemaakt, waardoor er een grotere nauwkeurigheid in de plaatsbepaling van het impactpunt op het stort wordt mogelijk gemaakt. De fout kan met enkele tientallen meters worden verkleind, mits de positie van het impactpunt afhankelijk van de snelheid wordt.
7. Conclusies en aanbevelingen

7.1. Conclusions

De conclusies van dit afstudeerverslag zijn per proces onderdeel opgeschreven met een korte introductie. Begonnen wordt op het schip en hiervandaan wordt de mengselstroom gevolgd.

7.1.1 Schip

7.1.2 Straal

- De bestaande modellen voor een waterstraal, zoals het ballistische en het Hatton model voor brandweerstralen, houden onvoldoende rekening met de vrijwending.
- Met behulp van het luchtentrainment model is een betere simulatie te maken van de straal. Het opnemen van lucht in de straal vergroot de vrijwending. Uit simulaties met een luchtentrainment model blijkt een de tromp onder een hoek van 30° á 35° optimaal. Het model geeft geen reductie van de reikwijdte in vergelijking tot 45°, echter voornamelijk een reductie van de hoek van inslag met de horizontaal. Met de kleinere hoek van inslag met de horizontaal houdt de mengselstroom meer impulsen over om verder het talud op te stromen en daardoor hoger op het talud te bezinken.

7.1.3 Ontgrondingskuil

- Bestaande ontgrondingskuilmodellen gaan uit van een homogene zandwater straal en zijn dus ongeldig voor stralen met lucht.
- De ontgrondingskuildiepte blijkt lineair van de verticale snelheidscomponent bij inslag af te hangen.

7.1.4 Stort

- In een hoog geconcentreerde mengselstroom van medium en grof zand dat over een stort stroomt, treden behalve vloeistof spanningen ook korrelspanningen op! De korrelspanningen verlagen de bezinsnelheid van de korrels en generen extra bodem vrijwending
- Bij een mengselstroom met medium zand wordt de bovenwaterhelling steiler bij een lager specifiek mengseldebit en/of een hogere concentratie. Door een hoge concentratie wordt de turbulentie gedempt en wordt de korrelspanning wordt vergroot. De vergrote korrelspanning levert een grotere vrijwending met de bodem.
- De onderwaterhelling gevormd door een voornamelijk medium zand mengselstroom, wordt steiler bij een lager specifiek zanddebit en een hogere concentratie.
- Het is aan te bevelen om bij het vormen van het ontwerpprofiel geen fijnere zand op grover zand plaatsen op een stort. Dit in verband met het ontstaan van een zandwater mengselstroom op de steilere helling van het grovere zand, die het fijnere zand tot aan of voorbij de teen van het talud brengt.
Conclusies en aanbevelingen

- Bij fijnere zandsoorten is in de praktijk de invloed op de taludhelling van de initiële stortvorm, de specifieke debieten en de concentraties duidelijk terug te vinden. Voor grovere zanden is de invloed van de eigenschappen van stort en mengselstroom op de taludhelling van minder belang.
- Door de doorgaans goed gegradeerde korrelverdelingen (vlakke zeekromme) ontstaat een variatie in korreldiameters langs het talud, hierdoor treden langs het talud verschillen in taludhelling op.
- Riviertransportvergelijkingen zijn niet geschikt om de taludhellingen van medium en grof zand te berekenen. De bodem- en zwevend-transportvergelijkingen van Engelund Hansen geeft een onjuiste voorspelling en onder andere tegenovergestelde trend bij toenemende variatie in de concentratie. De bodem transportvergelijking van Van Rijn reageert heftig op de parameters van de mengselstroom (breedte en diepte) en is daardoor niet geschikt om het gedrag van een medium en grof zandwater mengselstroom te kunnen voorspellen.
- Voor de geulbreedte van een zandwater mengselstroming op een onderwatertalud is geen bevredigende oplossing gevonden. Voorlopig is hier alleen de zogenaamde Regime theorie beschikbaar. Deze is echter niet gelijk op de situatie bij rainbowen maar geldt voor stationaire uniforme rivierstromingen zonder bochten.

7.2. Aanbevelingen

- Kalibreer het luchtentrainment model van de straal in de lucht. Hierdoor zou het mogelijk kunnen worden een betere inschatting van de reikwijdte van de straal te maken. Het luchtentrainment model kan gebruikt worden voor het procesbeprik van de straal.
- Door de grote hoeveelheid lucht in de straal zijn de ontgrondingskuismodellen ongelijk. Door het opnieuwijken van de empirische coëfficiënten uit deze modellen zou het mogelijk kunnen zijn om de bestaande modellen toch toe te passen.
- Kalibreer en valideer de vergelijkingen van Bagnold in het gegeven 1D-model met modelproeven met een medium en grof zand korrelstromen. De eigenschappen van het zand, zoals korrelvorm en elasticiteit zouden waarschijnlijk moeten worden ingevoerd. Het 1D model geeft een kwalitatieve beschrijving van de invloed van korrelspanningen aan, kwantitatief is het model nog niet bruikbaar.
- Introduceer de korrelspanning in een numeriek stromingsmodel, waardoor beter nagegaan kan worden welke invloed hieraan kan worden toegedacht.
- Voor het ontwikkelen van een verticaal geïntegreerd 2D-model, waarin een mengselstroom met medium en grof zand wordt berekend, zou meer onderzoek moeten worden gedaan naar de processen: entrainment, erosie en korrel-korrel interactie.
- Het model ‘sedimentatielengte’ geeft de langere sedimentatielengte van de fijnere fracties aan. Verder onderzoek naar geulvorming, turbulentie en korrelspanning maken het mogelijk de werkelijke sedimentatielengte te berekenen.
- De geulbreedte oplossen met behulp van de schuifspanningen aan de wand volgens Parker.
- Onderzoek of de straal beter in een compacte vorm op het stort aan moet komen of in een uitgewaaierde vorm. Voor de ontgrondingskuil en de stortbreedte lijkt een compacte straal favoriet! Door de grotere impuls van een compacte straal op het stort wordt de mengselstroom hoger op het talud geduwd en stroomt daardoor breder en over een grotere lengte af. Door de grotere breedte en de lengte waarover de mengselstroom afstromt, nemen de specifieke debieten af en daarmee worden de taludhellingen steiler.
Literatuurlijst

[22] Chien L.K. en Oh Y.N., For mechanical behavior of reclamations soils, Geotechnical engineering journal vol. 29 no. 1, National Taiwan Ocean University, Keelung, juni 1998.

Literatuurlijst

Literatuurlijst

[68] Meerdere auteurs, Storten onder water, Ham, maart 1985, inclusief praktijk gegevens 02-1080
[69] Meerdere auteurs, Taludhellingen onderwater bij persbedrijf, Ham,02-1059
[72] Nakagawa H., Tsujimoto T. en Murakami S., Non-equilibrium bed load transport along slide slope of an alluvial stream, 3th international symposium on river sedimentation p.885, University of Mississippi, maart 1986.
Literatuurlijst

Appendices

Inhoudsopgave

Appendix A Pomp en aandrijving ... 114
Appendix B Afleiding evenwichtshelling ... 116
Appendix C Minimale geulbreedte ... 122
Appendix D Zandverlies .. 125
Appendix E Afleiding entrainment ... 128
Appendix F Wrijvingscoëfficiënt ... 130
Appendix G Sedimentatielengte ... 134

Lijst van figuren

figuur A.1 Pompkarakteristiek; dieselaandrijving en constant vermogenregeling 114
figuur A.2 Pomp- en leidingkarakteristiek met werkpunkt.. 115
figuur A.3 Geulbreedte door breedte en diepe verhouding .. 124
figuur A.4 Definitie schema menglaag .. 125
figuur A.5 Suspensiegetal en dimensieloze korreldiameter 126
figuur A.6 Concentratieprofiel zwevend transport .. 127
figuur A.7 Mobiliteitsparameter van Shields ten opzichte van de beddingsvorm 132

Tabellen

tabel A.1 Coëfficiënt m van Richardson-Zaki .. 117
tabel A.2 Korreldiameter, valsnelheid, correctie coëfficiënt (n) en Richardson-Zaki (m) .. 119
tabel A.3 Invoer waarden concentratieprofiel .. 126
Appendix A Pomp en aandrijving

Aan boord van de hopperzuiger heeft men de keuze om meerdere pompen serie of parallel te schakelen en zo de opvoerhoogte en/of het debiet te vergroten. Echter door de minimale weerstand van de dekleiding en tromp, gaat de aandrijving naar een minimaal toerental (diesel aandrijving) en kunnen twee pompen serie maximaal zijn. Onderstaande figuur is een pompkarakteristiek getekend voor een centrifugaalpomp met een dieselaandrijving en een constant vermogenregeling.

![Diagram](image)

figuur A.1 Pompkarakteristiek; dieselaandrijving en constant vermogenregeling

Een simpele ingreep in het pomproces is het toerental van de aandrijving aan te passen. Met behulp van de affiniteitregels kan dan een inschatting worden gemaakt van de nieuwe pompkarakteristiek. Er zijn tal van andere ingrepen mogelijk om de vorm van de pompkarakteristiek te veranderen, echter deze worden niet als interessant gezien binnen dit onderzoek.

Met de energiebalansvergelijking voor water van Bernoulli is het drukverlies te berekenen over de tromp in het versnellingsgebied.

\[
\Delta H = \frac{v_{\text{tromp}}^2 - v_{\text{b.leiding}}^2}{2g} \quad [\text{mwk}]
\]

\[\Delta H = \text{waterkolom verschil} \quad [\text{mwk}]\]

Het drukverlies van de tromp en een beetje van het stukje leiding, kan nu gebruikt worden om de leidingkarakteristiek te tekenen. Het werkpoint, of wel het snijpunt tussen de pompkarakteristiek en de leidingkarakteristiek, geeft een druk en een debiet.
Het debiet is een belangrijke invoerparameter voor de verdere procesbeschouwing. Deze appendix is bedoeld om de lezer heel even een ontmoeting te laten maken met de werktuigbouwkundige kant van het rainbowen. Het zijn uiteindelijk de pomp en de aandrijving die het zand op het stort spuit.
Appendix B Afleiding evenwichtshelling

Onderwaterstort

Geprobeerd wordt hier te achterhalen in hoeverre de evenwichtshellingvergelijking van "Storten van zand onder water" bruikbaar is voor een grovere korreldiameter (d) dan 225 µm. Uit Mastbergen (1989) "Storten van zand onder water, 4" bladzijde 80 wordt een vergelijking gevonden (B.13) door het samenstellen van de volgende vergelijkingen ((B.1) t/m (B.8)):

\[
\begin{align*}
\text{s} &= \rho_c q_c \quad [\text{kg/ms}] \\
\text{q} &= uh \quad [\text{m}^2/\text{s}] \\
\text{u}_* &= \sqrt{\text{gh}_i} \quad [\text{m/s}] \\
\text{u}_s &= \sqrt{\frac{f_s + f_l}{8}} u \quad [\text{m/s}] \quad \text{(Mastbergen, 1986)} \\
\text{Geldig voor: } &\quad 500 < \text{Re}_c = q/v < 10^7 \\
\text{s} &= 0.05 \rho_s \frac{\left(u_0\right)^2}{(\Delta g)^2 d} u \quad [\text{kg/ms}] \quad \text{Engelund-Hansen} \\
\text{Geldig voor: } &\quad w_0 < u_*, 0.07 < \theta < 6 \text{ en } 0.19 < d < 0.93 \text{ mm} \quad \text{(De Vriend, 1999)} \\
\text{w}_s &= w_0 \left(1 - c\right)^m \quad [\text{m/s}] \quad \text{(Richardson en Zaki, 1954)} \\
\text{De volgende standaard definities moeten ook worden gebruikt:} \\
\rho_m &= \rho_w \left(1 + \Delta c\right) \quad [\text{kg/m}^3] \\
\varepsilon &= \frac{\rho_m - \rho_w}{\rho_m} \quad [\text{}] \\
\text{De evenwichtshelling-formule wordt als volgt verkregen.} \\
\text{Substitutie van (B.7) in (B.8):} \\
\varepsilon &= \frac{\rho_m - \rho_w}{\rho_m} = \frac{\rho_w(1 + \Delta c) - \rho_w}{\rho_m (1 + \Delta c)} = \frac{\Delta c}{1 + \Delta c} \quad [\text{]} \quad \text{(B.9)}
\end{align*}\]

3/20/03 Pagina 116 / 163 S.H. Burgmans
In vergelijking (B.2) wordt (B.1) en (B.4) gesubstitueerd, zodat de diepte \(h \) verderop in de berekening kan worden geëlimineerd.

\[
h = q \frac{s}{u} \rho_c \frac{8}{f_o + f_i} \text{[m/s]} \quad (B.10)
\]

In vergelijking (B.3) wordt (B.9) als eerst gesubstitueerd, daarna (B.10):

\[
u_\ast = \sqrt{\left(\frac{\Delta c}{1 + \Delta c}\right) g h i} = \left(\frac{\Delta c}{1 + \Delta c}\right) g i \frac{s}{\rho_c} \frac{f_o + f_i}{8} \text{[m/s]} \quad (B.11)
\]

Vergelijking (B.11) en (B.4) worden in (B.5) gesubstitueerd:

\[
s = 0.05 \rho_s \frac{8}{f_o + f_i} \left(\frac{u_\ast}{\Delta g}^2 d\right)^{\frac{8}{5}} = 0.05 \rho_s \frac{8}{f_o + f_i} \left(\frac{\Delta c}{1 + \Delta c}\right) g i \frac{s}{\rho_c} \frac{f_o + f_i}{8} \left(\Delta g^2 d\right)^{\frac{8}{5}} \text{[kg/ms]} \quad (B.12)
\]

In vergelijking (B.12) wordt de helling \(i \) naar voren gehaald:

\[
i = \left(\frac{f_o + f_i}{8}\right)^{1/10} \left(\frac{d}{0.05}\right)^{3/5} \rho_s \frac{2/5}{g^{1/5}} \frac{1 + \Delta c}{\Delta^{1/5} s^{2/5}} \text{[-]} \quad (B.13)
\]

De korrelvolumeter, in de transportvergelijking vertegenwoordigt de bezinkingssnelheid \(w_o \) van de korrels. Door de hogere concentratie wordt de valsnelheid van de korrels gehinderd met bezinken, Richardson en Zaki (1954) hebben dit hinderd settling genoemd.

\[
w = w_o (1 - c)^m \text{[m/s]} \quad (B.14)
\]

<table>
<thead>
<tr>
<th>Re_p , Re > 0.2</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2 < Re < 1</td>
<td>4.4 Re^{-0.03}</td>
</tr>
<tr>
<td>1 < Re < 500</td>
<td>4.4 Re^{-0.1}</td>
</tr>
<tr>
<td>Re > 500</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Tabel A.1 Coëfficiënt \(m \) van Richardson-Zaki

Mastbergen en Leeuwesteijn (1986) hebben dit proces op de volgende wijze de evenwichtssnelheid-vergelijking gehaald om de valsnelheid te compenseren:

\[
w_o = \frac{1}{18} \frac{\Delta g}{\nu} d^2 \text{[m/s]} \quad (B.15)
\]

Geldig voor: \(d < 100 \mu m \).
Appendices

Stokes valsnelheid geldig voor een korreldiameter kleiner dan een tiende millimeter. In de valsnelheid vergelijking wordt de hindered settling van Richardson en Zaki (1954) toegevoegd.

\[d = \sqrt{\frac{18\nu_w}{\Delta g}} = \sqrt{\frac{18\nu(1-c)^4}{\Delta g}} \approx d_o (1-c)^2 \quad [\text{m}] \]

(B.16)

De coëfficiënt van Richardson en Zaki (m) wordt op 4 gehouden, welke overeen komt met een korreldiameter (d) van ongeveer 150 μm. Deze vergelijking (B.16) kan worden ingevoerd in (B.13), welke leidt tot:

\[i = \left(\frac{f_d + f_s}{8} \right)^{0.1} \left(\frac{d_o}{0.05} \right)^{0.6} \rho_i^{0.4} g^{0.2} \left(\frac{1-c}{1+c} \right)^{1.2} \frac{(1+c^2)}{\Delta g^{0.5} s^{0.4}} \quad [-] \]

(B.17)

Echter in deze vergelijking wordt nu de laminaire valsnelheid opgelost met betrekking tot de hindered settling problematiek. In de proeven (Mastbergen, 1988) is er gekeken naar 135 < d < 200 μm, oftewel dichtbij het laminaire gebied (d < 100 μm). Er is geen berekening gemaakt voor een korreldiameter die met een valsnelheid valt in het overgangsgebied. Wel is voortkomend uit deze vergelijking en herhaalde proeven met een grotere korreldiameter tot d < 225 μm een empirische vergelijking gecreëerd (De Groot, 1988).

\[i = 0.0032\nu d^{-0.4} \quad [-] \]

(B.18)

In vergelijking met de semi-empirische vergelijking (B.17), staat er een zelfde exponent boven het specifieke zanddebel. De exponent van de korreldiameter komt echter niet overeen, hij heeft een waarde van 0.6 in de semi-empirische vergelijking (B.17) en een waarde van 1 in de empirische vergelijking (B.18).

Op de manier waarmee de hindered settling eerder in de vergelijking is gehaald voor kleinere korreldiameters, wordt dit nu herhaald voor het overgangsgebied van de valsnelheid van een korreltje.

\[w_o = \frac{10\nu}{d} \sqrt{\frac{\Delta g d^3}{100\nu^2}} - 1 \quad [\text{m/s}] \]

(B.19)

Geldig voor: 100 < d < 1000 μm

Het gaat om de relatie tussen de valsnelheid en de korreldiameter. Die relatie kan worden benaderd in het bereik van 100 < d < 1000 μm met:

\[d \approx w_o^n \rightarrow d \approx d_o (1-c)^n \quad [\text{m}] \]

(B.20)

De coëfficiënt (n) verandert door het overgangsgebied, echter in het laminaire gebied niet. De coëfficiënt van Richardson en Zaki (m) is een variabele van de korreldiameter. De range wordt in de volgende tabel weergegeven:
De relatie van de exponent \(n \) met de valsnelheid is weergegeven in de bovenstaande tabel en als volgt te beschrijven in een empirische relatie voor:

\[
n = 0.5 \quad \text{[-]} \quad d \leq 100 \, [\mu m]
\]

\[
n = \left(\frac{wd}{10v} \right)^{1/4} \quad \text{[-]} \quad 100 < d < 1000 \, [\mu m] \quad (B.21)
\]

\[
n = 2 \quad \text{[-]} \quad d \geq 1000 \, [\mu m]
\]

Uit tabel A.2 is de trend af te lezen dat naarmate de korrel diameter toeneemt het effect van hindered settling toeneemt. Voor de korrel diameter \(d \) wordt als voorbeeld 1000 \(\mu m \) aangenomen en dus een Richardson en Zaki coëfficiënt \(m \) van 2.65. Hierdoor is het van belang om deze \(m \) afhankelijkheid in de vergelijking te verwerken. Dit \((B.20) \) wordt ingevuld in vergelijking \((B.13) \) en levert:

\[
i = \left(\frac{f_0 + f_i}{8} \right) 0.1 \left(\frac{d_0}{0.05} \right)^{0.6} \rho \gamma^{0.4} \frac{(1-c)^{0.6nm}}{\Delta_s^{0.2} y^{0.4}} \quad \text{[-]} \quad (B.22)
\]

Een kleine wijziging in de factor \((1-c) \), waar de macht van 1.2 met laminaire stroming om het korreltje \((B.17) \) naar 0.6nm met de overgangstroming rond het korreltje \((B.22) \) verandert. De vergelijking \((B.22) \) heeft duidelijk gemaakt dat er een mogelijkheid bestaat dat er geen fysische bezwaren zijn om de evenwichtshellingvergelijking uit te breiden naar grovere zanden. Deze vergelijking blijkt toepasbaar te zijn voor een korrel diameter tot 1000 \(\mu m \). Bovendien moet de vergelijking geldig blijven voor hoofdzakelijk bodemtransport.
Bovenwaterstort

Voor het bovenwaterstort gelden aangepaste vergelijkingen. Het buoyancy effect moet worden weggelaten en de wrijving met het interne grensvlak. Hierdoor worden de volgende vergelijkingen vereenvoudigd:

\[u_* = \sqrt{gh} \] \quad [m/s] \quad \text{(B.23)}

\[u_* = \sqrt{\left(\frac{f_o}{8}\right)u} \] \quad [m/s] \quad \text{(B.24)}

In vergelijking (B.2) wordt vergelijking (B.24) gesubstitueerd.

\[h = \frac{q}{u} = \frac{q}{u_* \sqrt{\frac{8}{f_o}}} \] \quad [m] \quad \text{(B.25)}

In vergelijking (B.23) wordt (B.25) ingevoerd om de diepte (h) te elimineren.

\[u_* = \sqrt[1/3]{gh} = \left(giq\sqrt{\frac{f_o}{8}}\right)^{1/3} \] \quad [m/s] \quad \text{(B.26)}

In de transportformule van Engelund-Hansen (B.5) wordt (B.24) en (B.26) ingevoerd.

\[s = 0.05 \rho \frac{f_o}{(\Delta g)^2} \frac{8}{d} = 0.05 \rho \frac{g i q \sqrt{f_o}}{(\Delta g)^2 d} \] \quad [kg/sm] \quad \text{(B.30)}

Alvorens de helling (i) voor het bovenwaterstort wordt verkregen, moet eerst het specifieke zanddebit worden geëlimineerd, met vergelijking (B.1). Daarna kan de helling voor het is gelijk teken worden gehaald:

\[i = \left(\frac{f_o}{8}\right)^{0.1} \frac{\Delta c}{0.05} \frac{(\Delta d)^{0.6}}{q^{0.4}} \frac{g^{0.2}}{} \] \quad [-] \quad \text{(B.31)}

Wederom is hindered settling in deze vergelijking opgenomen:

\[d = \sqrt{\frac{18w_i}{\Delta g}} = \sqrt{\frac{18w_i(1-c)^4}{\Delta g}} \approx \frac{d_o}{2}(1-c)^2 \] \quad [m] \quad \text{(B.32)}

Dit invullen in (B.31) levert:

\[i = \left(\frac{f_o}{8}\right)^{0.1} \frac{\Delta c}{0.05} \frac{(\Delta d)^{0.6}}{(1-c)^{0.6}} \frac{g^{0.2}}{q^{0.4}} \] \quad [-] \quad \text{(B.33)}
De verhouding tussen de korreldiameter en valsnelheid wordt overgenomen uit (B.20). Uit tabel A.2 wordt weer de trend afgelezen dat naarmate de korreldiameter toeneemt het effect van hindered settling toeneemt. Dit wordt ingevuld in vergelijking (B.31) en levert:

\[
i = \left(\frac{f_o}{8} \right)^{0.1} \left(\frac{\Delta c}{0.05} \right)^{0.6} \left(\frac{\Delta d}{0.6} \right)^{0.6} \left(\frac{1-c}{g} \right)^{0.2} \left[- \right]
\]

Een kleine wijziging in de factor (1-c), waar de macht van 1.2 met laminaire stroming om het korreltje (B.33) naar 0.6nm (2.3<nm<5.3) voor een korreldiameter van 100 μm tot 1000 μm met overgangsstroming rond het korreltje (B.34) verandert.

Wederom kan er worden vast gesteld dat er fysisch geen bezwaren zijn om de evenwichtshelling voor het bovenwaterstort uit te breiden naar een grover zand tot 1000 μm.

Voor het bovenwaterstort is er ook een empirische vergelijking opgesteld van 120<d<225 μm (Winterwerp, 1990):

\[
i = 0.006 \left(\frac{d}{d_o} - 1 \right) q^{-0.45} \left[- \right]
\]

\[
d_o = 65 \times 10^{-6} [m]
\]
\[
q_o = 1 [m^2/s]
\]

De korreldiameter (d) wijkt tussen de semi-empirische (B.33) en empirische vergelijking (B.35) op een zelfde wijze als bij het onderwaterstort. Het specifieke debiet (q) kent een kleine afwijking in de exponent.
Appendices

Appendix C Minimale geulbreedte

Bij de eerste methode om een vergelijking te verkrijgen voor de minimale geulbreedte is gebruik gemaakt van de Regime theorie. De Regime theorie is ontstaan in India, waar men op zoek was naar een relatie tussen de geulbreedte en het debiet zodat irrigatiekanaalen minder zouden sedimenteren. De Regime theorie is een empirische vergelijking met weinig draagvlak in Europa. Blench die veel aan de Regime theorie heeft onderzocht schreef in zijn boek "Mobile-bed fluviology" (1969) in paragraaf 3.5 "Formula as described (C.2) cannot be expected to represent physical laws except by accident".

Met deze gedachte in het achterhoofd, wordt de volgende vergelijking afgeleid met behulp van de Regime theorie:

\[Q = \frac{\pi}{4} u_{gem} D_{imp}^2 \text{ [m}^3/\text{s}] \] \hspace{1cm} (C.1)

\[B_{\text{min}} = C_1 \sqrt{Q} \text{ [m]} \] \hspace{1cm} (C.2)

De verhouding van de breedte tot het debiet is vele malen gemeten in allerlei onderzoeken, aldus de opsomming van Cao (1996). Kleine variaties zijn gevonden in de macht van 0.5 voor het debiet (Q) bij rivieren in zandgrond. Voor de constante (C_1) die voor het debiet staat is meer variatie gevonden. De vergelijking is geënt op metingen bij het Marollegat, met de data verkregen van deze metingen is de constante af te schatten op 2 a 2.5. Duidelijk moet het wel bij de lezer zijn dat het gaat om een indicatie, geen bepaling maar een benadering.

Invullen van (C.1) in (C.2):

\[B_{\text{min}} = C_1 \sqrt{\frac{\pi}{4} u_{gem} D_{imp}^2} \text{ [m]} \] \hspace{1cm} (C.3)

De straal diameter naar voren halen en constantie vervangen voor een nieuwe (C_2):

\[\frac{B_{\text{min}}}{D_{imp}} = C_2 u_{gem} \text{ [-]} \] \hspace{1cm} (C.4)

De Shields schuifsnelheid wordt nu ingevoerd (CUR152, 1991):

\[u_c = \sqrt{g\Delta d} \text{ [m/s]} \rightarrow \frac{B_{\text{min}}}{D_{imp}} = C_2 \sqrt{\frac{u_{gem}}{u_c}} \text{ [-]} \] \hspace{1cm} (C.5)

De constante C_2 is voor de metingen op het onderwater stort Speelmansplaten (Marollegat) bekend dat de geuldiepte varieerde van 3.8 tot 5 m bij een debiet van 2.9 m^3/s en een korrel Diameter van 150 µm. Met deze gegevens is C_2 te berekenen op ongeveer 0.6.
Bij de tweede methode wordt er gebruik van gemaakt dat op de rand van de ontgrondingskuil er een volkomen overlaat optreedt met intern kritische stroming oftewel \(Fr = 1 \). Uit een onderzoek van onder andere Visser (1990) is op te maken dat de geulbreedte zich verhoudt tot 1:4 met de geuldiepte, bij kritische niet stationaire stroming bovenwater. De verhouding is 1:1 vertaald naar interne kritische stroming. Naarmate de zandstrook verder van de ontgrondingskuil is, zal het intern Froudegetal afnemen en daarmee ook zal de breedte: diepe verhouding toenemen tot 10 á 15 (Mastbergen, 1989). De volgende vergelijkingen kunnen nu worden opgesteld voor de rand van de ontgrondingskuil:

\[
Q = \frac{\pi}{4} u_{geom} D_{imp}^2 = u_k h B_{min} \quad [m^3/sec]
\]
(C.6)

\[
Fr_i = \frac{u_k}{\sqrt{g h}} = 1 \quad [-]
\]
(C.7)

\[
B = 4h \quad [m]
\]
(C.8)

De relatieve dichtheid wordt net zoals in appendix B omgerekend naar de concentratie.

\[
\varepsilon = \frac{\rho_m - \rho_w}{\rho_w} = \frac{\rho_w (1 + \Delta c) - \rho_w}{\rho_w (1 + \Delta c)} = \frac{\Delta c}{1 + \Delta c} \quad [-]
\]
(C.9)

Vergelijking (C.8) wordt in (C.6) ingevoerd en de snelheid uit de kuil \((u_k) \) komt er voor te staan.

\[
u_k = \frac{\pi u_{geom} D_{imp}^2}{B_{min}^2} \quad [m/s]
\]
(C.10)

Vergelijking (C.10) in wordt (C.7) en (C.8) ingevoerd:

\[
\frac{\pi u_{geom} D_{imp}}{4} \frac{D_{imp}^2}{B_{min}^2} = 1 \quad [-]
\]
(C.11)

De minimale geulbreedte \((B_{min}) \) en straal diameter op het impactpunt \((D_{imp}) \) wordt naar voren gehaald en vergelijking (C.9) wordt ingevoerd.

\[
\frac{B_{min}}{D_{imp}} = 2.08 \frac{u_{geom}^{0.4}}{D_{imp}^{0.2}} \left(\frac{1 + \Delta c}{\Delta c g} \right)^{0.2} \quad [-]
\]
(C.12)

Deze vergelijking wordt in de volgende grafiek gezet.
figuur A 3 Geulbreedte door breedte en diepte verhouding

In de bovenstaande grafiek wordt de gemiddelde snelheid uitgezet tegen een verhouding van de geulbreedte en de straaldiameter. Voor verschillende concentraties zijn lijnen in de grafiek opgenomen. Duidelijk is geworden dat beide benaderingen geen deterministische achtergrond hebben en weinig data om te worden bewezen. Uit de bovenstaande vergelijkingen is wel het volgende duidelijk geworden.

\[B_{\text{min}}(c,d,u) \quad [\text{m}] \] \hfill (C.13)

De minimale geulbreedte is een functie van de concentratie, korrel diameter en snelheid. Echter beide vergelijkingen (C.4) en (C.12) hebben niet al deze parameters opgenomen.
Appendices

Appendix D Zandverlies

De mengselstroming onder water kan zand verliezen door het interne grensvlak, ook wel menglaag genoemd. De afleiding van het zandverlies wordt wederom nagelopen om het effect van de korreldiametervergroting na te gaan.

![Diagram of zandverlies](image)

figuur A.4 Definitie schema menglaag

Voor de bovenstaande schematisatie is een logaritmisch snelheidsprofiel te berekenen. Door Rouse is een concentratieprofiel gegenereerd door een logaritmisch snelheidsprofiel en de eerst orde convectiediffusievergelijking (2.10) aan elkaar te koppelen. Ditzelfde is gedaan door Mastbergen (1986) voor de bovenstaande situatie. Het concentratieprofiel wordt met de volgende vergelijking beschreven:

\[
c(z) = c(z_o) \left(\frac{H - z_o}{h} \left(\frac{h + H + z}{z - z_o} \right) \right)^z \quad [\text{-}]
\]

Waarín de exponent \(Z \) het aangepaste suspensiegetal is,

\[
Z = \frac{w}{\kappa \mathbf{u} \sqrt{f_i \frac{1}{f_o + f_i}}} \quad [\text{-}]
\]

en \(c(z_o) \) de referentieconcentratie op de hoogte \(z_o \):

\[
c(z_o) = \frac{\bar{c}}{1 + \kappa Z \sqrt{\frac{8}{h} \frac{h + H - z_o}{h}}} \quad [\text{-}]
\]

Hierin is \(\bar{c} \) de gemiddelde concentratie van de dichtheidsstroom, oftewel de concentratie van het bodemtransport.

Naarmate de exponent het suspensiegetal toeneemt (\(Z \)) neemt het zwevend transport af. In de volgende grafiek is de korreldiameter dimensieloos gemaakt met de korrelvalsnelheid en de viscositeit. De dimensieloze korreldiameter is in een range van
100 tot 1000 μm opgelost met een viscositeit van 10^{-5}. Met $f_o=0.15$ en $f_i=0.007$ kan de volgende grafiek worden getoond:

\[\text{figuur A.5} \quad \text{Suspensiegetal en dimensieloze korreldiameter}\]

In de hierboven getoonde grafiek wordt duidelijk dat het suspensiegetal (Z) voor medium en grof zand groter is dan 2, doordat het dimensieloze korreldiameter op x-as groter dan 1 is. Hiermee wordt de uitkomst (van (D.1)) met een klein getal onder exponent van het suspensiegetal (Z) gelijk aan nul.

Aan de hand van een rekenvoorbeeld is met een uiterste waarde gekeken naar concentraties zand die als zwevend transport worden vervoerd. De invoer wordt in onderstaande tabel aangegeven (tabel A.3), in de rechter kolom wordt aangegeven hoe de uiterste waarde wordt gevonden.

<table>
<thead>
<tr>
<th>Beschrijving</th>
<th>Symbool</th>
<th>Waarde</th>
<th>Eenheid</th>
<th>Commentaar</th>
</tr>
</thead>
<tbody>
<tr>
<td>diepte</td>
<td>H</td>
<td>2</td>
<td>[m]</td>
<td>kleine diepte</td>
</tr>
<tr>
<td>snelheidsmengsel</td>
<td>u_m</td>
<td>3</td>
<td>[m/s]</td>
<td>hoge snelheid</td>
</tr>
<tr>
<td>diepte mengselstroom</td>
<td>h</td>
<td>0.4</td>
<td>[m]</td>
<td></td>
</tr>
<tr>
<td>nulpunt in mengselstroom</td>
<td>z_o</td>
<td>0.32</td>
<td>[m]</td>
<td></td>
</tr>
<tr>
<td>concentratie bodemtransport</td>
<td>c</td>
<td>0.42</td>
<td>[-]</td>
<td>hoge concentratie</td>
</tr>
<tr>
<td>interne wrijvingscoëfficiënt</td>
<td>f_i</td>
<td>0.15</td>
<td>[-]</td>
<td></td>
</tr>
<tr>
<td>wrijvingscoëfficiënt</td>
<td>f_s</td>
<td>0.007</td>
<td>[-]</td>
<td></td>
</tr>
<tr>
<td>korreldiameter</td>
<td>d</td>
<td>...</td>
<td>[m]</td>
<td>$100 < d < 1000 \mu$m</td>
</tr>
</tbody>
</table>

\[\text{tabel A.3} \quad \text{Invoer waarden concentratieprofiel}\]

De korreldiameter is met een stappen van 100 μm vergroot in de range van 100$<d<1000$ μm. In figuur A.6 is steeds een lijn weergegeven voor elke van 100 μm. In de grafiek wordt de coördinaat (z) uitgezet tegen de concentratie (c).
Uit de bovenliggende grafiek kan worden geconcludeerd dat zwevend transport bij grovere korreldiameters (d>200 µm) minimaal is. Het zandverlies is gedefinieerd als de hoeveelheid zand die de dichtheidsstroom verlaat door de grenslaag naar de waterkolom (zie annex 5, balansen). Aangezien er bijna geen grover zand als zwevend transport is, kan worden aangenomen dat het zandverlies is te verwaarlozen.

\[
v_{\text{zand}} = 0 \quad [\text{m/s}] \quad (D.4)
\]

De afleiding van het zandverlies is binnen dit onderzoek afgerond.
Appendices

Appendix E Afleiding entrainment

Entrainment is het intreden van omgevingswater in de dichtheidsstroom. Voor het afleiden van de entrainment zijn de volgende vergelijkingen nodig:

\[Ri = -\frac{g}{\rho} \frac{\partial \rho}{\partial z} \left(\frac{\partial \bar{u}}{\partial z} \right)^2 \] \hspace{1cm} (E.1)

\[Fr_i = \frac{u}{\sqrt{gh}} \] \hspace{1cm} (E.2)

Ashida en Egashire (1975) hebben de volgende vergelijking afgeleid voor het toetreden van zoutwater in een zout/zoutdichtheidsstroom.

\[E_w = \frac{0.0015}{Ri} \] \hspace{1cm} (E.3)

\[E_w \] = dimensieloze entrainment parameter [-]

Per definitie geldt:

\[E_w = \frac{u_{en}}{u} \] \hspace{1cm} (E.4)

Het Richardsongetal en het intern Froudegetal worden gecombineerd. Tevens wordt er aangenomen: een lineair concentratieprofiel, een snelheidsgradiënt met een gemiddelde laagdikte van de menglaag (\(\delta \)), gemiddelde dichtheid van \(\bar{\rho} = \rho_m \), gemiddelde snelheid \(\bar{u} = u \) en een diepte van de dichtheidsstroom van h. Voor de waterkolom boven de dichtheidsstroom geldt: een gemiddelde dichtheid van \(\bar{\rho} = \rho_w \), een gemiddelde snelheid van \(\bar{u} = 0 \). Bovenstaande aannamen staan geschematiseerd in figuur A.3. Als deze aannames en vergelijking (E.1) en (E.2) worden ingevuld dan levert dit:

\[Ri = -\frac{g}{\rho_w} \frac{\rho_m - \rho_w}{\bar{u}} \frac{\delta}{\bar{u}^2} = \frac{gh \delta}{\bar{u}^2 h} = Fr_i^{-2} \frac{\delta}{h} \] \hspace{1cm} (E.5)

De dichtheidsstroom kent eigenschappen om door grotere snelheidsverdichten, kleinere dichtheidsverdichten enz., een instabiel gedrag te verkrijgen. Door de wrijving van de mengselstroom op de bovenliggende waterkolom ontstaan interne golven in de interne menglaag. In de literatuur van dichtheidsstromen worden dit Kelvin-Heilholz instabiliteiten genoemd. Deze interne golven ontstaan bij een Richardsongetal van 0.25. Ook kan de verhouding van de menglaag (\(\delta \)) ten opzichte van de diepe mengselstroom (h) een rol gaan spelen. Alles samenvattend heeft Thorpe (1973) een gebied aangegeven waar de stroming stabiel is.
Appendices

\[0.25 F_r \leq \frac{\delta}{h} \leq 2 \quad [-] \quad (E.6) \]

Dit gebied impliceert dat het intern Froudegetal niet boven de 8 mag komen. Aangezien bij een sterk super kritische strooming de mengselstroming desintegreert.

Door substitutie van het Richardson flux getal (E.5) in (E.3).

\[E_{\infty} = \frac{0.0015}{F_r^{-2} \frac{\delta}{h}} \quad [-] \quad (E.7) \]

Vergelijking (E.7) wordt in definitie (E.4) gesubstitueerd, tevens wordt er aangenomen dat de menglaag en diepe mengselstroming zich 1:1 verhouden (\(\delta/h = 1 \)). Hiermee resulteert het in de volgende vergelijking:

\[u_{\text{meng}} = 0.0015 u F_r^2 \quad [\text{m/s}] \quad (E.8) \]

Dezelfde benadering heeft Fukushima (1985) gebruikt om een dichtheidsstrom te modelleren in onderzeese grotten. Het grote verschil is de initiator welke golfjes in zijn geval waren in plaats van een actieve dichtheidsstrom.

Bij het afleiden van deze vergelijkingen is geen afhankelijkheid van de korreldiameter waargenomen. Doordat de oorsprong van deze vergelijking uit het zoet-zout onderzoeks veld komt, is het logisch dat de korreldiameter niet in de vergelijkingen is terug te vinden. Echter fysisch is het wel aannemelijk dat de hoeveelheid water die in de dichtheidsstroming treedt afhankelijk is van de korreldiameter van het mengsel. De korreldiameter mede bepaalt of suspensie stroming en/of korrelstroming optreedt, de entrainment vergelijking is voor een zuivere suspensiestroming opgesteld.
Appendix F Wrijvingscoëfficiënt

In deze appendix worden de wrijvingscoëfficiënten onder de loep genomen. Een tweesplitsing is te maken in de wrijvingscoëfficiënt voor de interne grenslaag en de wrijvingscoëfficiënt met de bodem.

Bodemwrijving

In de rivierwaterbouwkunde wordt vaak gebruik gemaakt van een Chezywaarde die de wrijving voorspelt. In de pijpstromingen wordt er gebruik gemaakt van de dimensieloze Darcy-Weisbach coëfficiënt, de dimensieloosheid kent zijn voordelen. De relatie tussen Chezy en Darcy-Weisbach wordt hieronder gegeven:

\[f_o = \frac{8g}{C^2} \quad [-] \quad (F.1) \]

In "Storten van zand onder water 6" (Mastbergen, 1986) wordt gebruik gemaakt van de Darcy-Weisbach wrijvingscoëfficiënt welke uit het pijpleidingtransportonderzoek is ontstaan.

\[f_o = \frac{1}{\left(-2 \log \left(\frac{k}{14.8R} + \frac{2.51}{Re \sqrt{f_o}} \right) \right)^2} \quad [-] \quad (F.2) \]

\[R = \frac{A}{O} \quad = \text{hydraulische straal [m]} \]
\[O = \text{omtrek [m]} \]
\[Re = \frac{u_o h}{v} \quad = \text{Reynoldsgetal [-]} \]

De hydraulische straal (R) is bij een pijpleiding ¼D. Met deze hydraulische straal is terug te rekenen naar de formule uit de pijpleidingtransport waar deze vergelijking is ontstaan.

Nu volgt er een opsomming van verschillende dimensieloze wrijvingscoëfficiënten relevant voor een dichtheidsstroom zoals die bij rainbowen van het talud stroomt.

Voor rivieren met een helling steller dan 0.4 % heeft Bathurst (1985) de volgende vergelijking opgesteld:

\[f_o = \frac{1}{\left(4 + 5.62 \log \left(\frac{h}{k} \right) \right)^2} \quad [-] \quad (F.3) \]

Om van een Chezygetal naar een dimensieloze wrijvingsparameter te gaan wordt er een afleiding gemaakt met invoering van een relevante parameter die bij dichtheidsstromen voorkomen.

\[C = 18 \log \left(\frac{h}{k} \right) \quad [m^{0.5} \text{s}] \quad (F.4) \]
Winterwerp (1990) heeft het effect van hoog geconcentreerde stroming op de wrijving onderzocht en paste het Chezygetal toe. Hierbij doet de viscositeit van het mengsel zijn intrede:

\[
C = 18 \log \left(\frac{h}{k + 3.3 \frac{v_m}{u_*}} \right) \quad [m^{0.5} s] \quad (F.5)
\]

Dit kan als een dimensieloze wrijvingscoëfficiënt worden geschreven met vergelijking (F.1):

\[
f_o = \frac{2g}{9 \log \left(\frac{h}{k + 3.3 \frac{v_m}{u_*}} \right)^2} \quad [-] \quad (F.6)
\]

Dit dimensieloos wrijvingsgetal is afhankelijk van de mengsellaagdiepte, schuifsnelheid, viscositeit van het mengsel en ruwheidshoogte. De afhankelijkheid van de ruwheidshoogte wordt nu nader onderzocht.

De ruwheidshoogte is afhankelijk van de korrelgrootte en de beddingsvorm:

\[
k = k' + k'' \quad [m] \quad (F.7)
\]

De ruwheidshoogte van de korrel (k') zijn door een aantal auteurs vastgelegd. Een kleine opsomming uit "Scouring" (Breusers, 1991): de range is van k'=1.25d_{35} Ackers and White tot k'=5.1d_{50} Manhood Einstein en Barbarossa gebruikte k'=d_{65}, enz. Ook is er een relatie gegeven door Van Rijn (1993) k'=3d_{90} voor 0<1 e k'=3d_{90} voor 0>1. Door Van Rijn is vastgesteld dat de wrijving voornamelijk wordt bepaald door de grote korrels die op het bed liggen. Aangezien er een oplossing gezocht wordt voor een korrel diameter van 100<d<1000 [μm]. Is het belangrijk dat de wrijvingscoëfficiënt afhankelijk van korrel diameter wordt.

De ruwheid (k) wordt in de pijpleidingweerstand berekeningen niet afhankelijk gesteld van de beddingsvorm. In open waterlopen kan het van belang zijn om de beddingsvorm mee te nemen (zie: 2.1.4 Onderwaterstort). In geval van duinen of anti-duinen wordt de beddingsvorm maatgevend. Vooral bij terrasvorming wordt er een extra wrijving voor de Darcy-Weisbach coëfficiënt gevonden van 0.1 door de mengselsprongen die optreden (Mastbergen, 1988). Door de grote dynamiek van anti duinen zijn er geen relaties voor de beddingsvorm opzichte van de ruwheidshoogte. Er is wel een model gemaakt waarin de terrasvorm is gedetailleerd en per sprong te berekenen is, het model heet ZSTORTOW (Mastbergen, 1988).

Voor de beddingsvorm van duinen enripples is vastgesteld door proeven onder leiding van de heer Van Rhee (????) dat de concentratie de beddingsvorm afvlakt. De beddingsvorm is afhankelijk van de Shieldsparameter (Engelund et al., 1967). Afhankelijk van de Shieldsparameter (θ) is een Shieldsparameter accent (θ') te bereken waarmee terug gerekend kan worden naar een verhoogde ruwheidswaarde. De duinen verplaatsen over de bodem door sedimentatie en erosie. In dit proces speelt de valsnelheid van de korrels een grote rol. De valsnelheid van de korrels worden door de concentratie.

\[
\theta = \frac{u^2}{g\Delta d(1-c)^n} \quad \theta < \theta'
\]

\[
\theta = \theta' \quad \theta \geq \theta'
\]

(F.8)

Met het invoeren van deze correctie factor is in de volgende grafiek voor verschillende concentraties het effect waar te nemen. De Shieldsparameter (\(\theta\)) staat uitgezet tegen de gecorrigeerde Shieldsparameter (\(\theta'\)).

Beddingsvorm en Shieldsparameter

\[\text{vlag} \quad \text{duinen}\]

\[\theta \quad \theta' \quad 0 = \theta'\]

figuur A.7 Mobiliteitsparameter van Shields ten opzichte van de beddingsvorm
(Engelund et al, 1967)

Aan de onderzijde van elke lijn worden duinen worden gevormd. De berekende Shieldsparameter wordt met de gecorrigeerde Shieldsparameter vergroot. Hierdoor wordt de schuifsnelheid vergroot ofwel de wrijving vergroot. Bij de rode lijn treedt er geen beddingsvorm op. Aangezien de Shieldsparameter en gecorrigeerde Shieldsparameter aan elkaar gelijk blijven. Blijft de schuifsnelheid onveranderd ofwel de wrijving blijft gelijk. De lijn van c=0.4 loopt niet links van de rode lijn (\(\theta=\theta'\)) door, vanaf het moment van snijden wordt c=0.4 vervangen door de rode lijn.

Door de hindered settling wordt er aangetoond dat: voor een zelfde Shieldsparameter er een vlak bed ontstaat bij een hogere concentratie. Hierdoor wordt er verder van uitgegaan dat er een vlak bed optreedt en er verder geen duinvorming optreedt. Ruwheid wordt voor subkritische stroming dan alleen gevormd door de korrelgrootte.
Om de wrijving te berekenen wordt gebruik gemaakt van vergelijking (F.2). De ruwheidshoogte wordt van Van Rijn (1993) \(k' = 3d_{90} \) voor \(\theta < 1 \) en \(k' = 30d_{90} \) voor \(\theta \geq 1 \). Door de ruwheidshoogte te berekenen met behulp van Van Rijn en een aangepaste Shieldsparasite wordt de invloed van de concentratie meegenomen.

Interne wrijving

Voor de interne wrijvingscoëfficiënt van dichtheidsstromingen \(f_i \), is gegeven (Bo Pedersen, 1980):

\[
\sqrt{\frac{8}{f_i}} = 2.45 \left[\ln \left\{ \text{Re}_i \sqrt{\frac{f_i}{8}} \right\} - 1.3 \right] \quad [-] \tag{F.9}
\]

geldig voor: \(500 < \text{Re}_i < 10^5 \)

\[\text{Re}_i = \frac{q_m}{\nu} \quad \text{intern Reynoldsetal} \quad [-] \]

In deze vergelijking (F.4) wordt het intern Reynoldsetal gebruikt van de mengselstroming.

Volgens Ashida en Egashira (1975) is het een veel eenvoudiger relatie:

\[
f_o = \frac{1}{3} f_i \quad [-] \tag{F.10}
\]
Appendices

Appendix G Sedimentatielengte

De sedimentatielengte is een parameter om te bepalen hoe ver het sediment langs het talud wordt getransporteerd. Zonder turbulentie en hindered settling heeft Mastbergen (1988b) de sedimentatielengte afgeleid:

\[L_{sed} = \frac{q}{w_o} \quad [m] \quad (G.1) \]

De bovenstaande vergelijking wordt opnieuw afgeleid inclusief de turbulentte diffusie en korrelspanning. De sedimentatielengte wordt zo compleet mogelijk afgeleid, om de vereenvoudigingen duidelijk te krijgen. Begonnen wordt met een suspensiestroom die over de lengte \(x\) zijn sediment verliest door sedimentatie \(S\).

\[\frac{\partial s}{\partial x} = -S \quad [kg/s] \quad (G.2) \]

De specifieke zandstroom is te schrijven als het product van het specifieke debiet, volume concentratie en korrel dichtheid.

\[s = \rho_s q c \quad [kgm/s] \quad (G.3) \]

De sedimentatie inclusief de turbulentte diffusie uit de eerste orde diffusievergelijking kan geschreven worden met:

\[S = \rho_s \left(\varepsilon_T \frac{\partial c}{\partial z} + w_c \right) \quad [kg/s] \quad (G.4) \]

De diffusievergelijking met aangepaste parameters is opgesteld.

\[\frac{\partial q c}{\partial x} = -\varepsilon_T \frac{\partial c}{\partial z} - w_o c \quad [m/s] \quad (G.5) \]

Deze differentiaalvergelijking is moeilijk op te lossen door de twee dimensionale benadering van de diffusie term en valsnelheid. In de diffusie term wordt bovendien de concentratiegradiënt gebruikt welke niet eenvoudig is op te lossen door de korrelspanningen. Aanpassingen zijn uitgevoerd in hoofdstuk 3. De diffusie term wordt bekend gemaakt maar verder wordt deze verwaarloosd voor de sedimentatielengte. Eveneens zal de invloed van de korrelspanningen op de valsnelheid worden verwaarloosd. De diffusie term en de gereduceerde valsnelheid door de korrelspanningen zullen de sedimentatielengte enigszins vergroten. Uit de bovenstaande analyse kan worden geconcludeerd dat de volgende sedimentatielengte \((G.7)\) een ondergrens is.

De sedimentatielengte wordt benaderd inclusief hindered settling, met de volgende randvoorwaarden:

\[x=0 \quad [m] \quad c=c_o \quad [%] \quad q=q_o \quad [m^2/s] \quad (G.6) \]

\[x=L_{sed} \quad [m] \quad c=c/c_o=90 \quad [%] \]
\[\frac{\partial c}{\partial x} = -\frac{(1-c)^n w_x c}{q_o} \quad [m^{-1}] \] (G.7)

Met vergelijking (G.7) is een bruikbaar model verkregen dat geschikt is om de sedimentatielengte met een grotere nauwkeurigheid te berekenen. Gekozen kan worden om de sedimentatielengte uit te breiden met de turbulente- en de korrels spanningen. Dit kan gedaan worden met een simpele invulofening met de eerder gegeven vergelijkingen. Met het opstellen van de sedimentatielengte wordt een eenvoudige vergelijking verkregen, welke aan de hand van praktijkdata kan worden getoetst. De vereenvoudiging van de vergelijking is een belangrijk aspect bij de interpretatie van de uitkomst.
Inhoudsopgave Annex

<table>
<thead>
<tr>
<th>Annex</th>
<th>Thema</th>
<th>Pagina</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kwantificering Pluimmechanisme</td>
<td>137</td>
</tr>
<tr>
<td>2</td>
<td>Beddingvorm</td>
<td>138</td>
</tr>
<tr>
<td>3</td>
<td>Zand classificatie</td>
<td>139</td>
</tr>
<tr>
<td>4</td>
<td>Relaties rivieren</td>
<td>140</td>
</tr>
<tr>
<td>5</td>
<td>Balansen</td>
<td>142</td>
</tr>
<tr>
<td>6</td>
<td>Sedimentatie lengte</td>
<td>142</td>
</tr>
<tr>
<td>7</td>
<td>Stabiliteit straal</td>
<td>143</td>
</tr>
<tr>
<td>8</td>
<td>Wrijvingscoëfficiënt (CD) tegen korrel Reynoldsgetal (Rep)</td>
<td>144</td>
</tr>
<tr>
<td>9</td>
<td>Berekening MSeep</td>
<td>145</td>
</tr>
<tr>
<td>10</td>
<td>Dempingsfuncties</td>
<td>149</td>
</tr>
<tr>
<td>15</td>
<td>Data van projecten</td>
<td>162</td>
</tr>
<tr>
<td>16</td>
<td>Grondgegevens projecten</td>
<td>163</td>
</tr>
</tbody>
</table>
Annex 1 Kwantificering Pluimmechanisme

In deze annex wordt afgeleid wat er in paragraaf 3.1.2 wordt beschreven over de zandlucht-waterkolom. Kentallen van Reynolds, Grashof, intern Froude en gradiënt Richardson getal, worden hier berekend of afgeschät.

Standaard:

\[g = 9.81 \text{ [m/s}^2\text{]} \]
\[\rho_w = 1025 \text{ [kg/m}^3\text{]} \]
\[v = 10^{-5} \text{ [m}^2\text{/s]} \]

Dimensies van een rainbowstraal bij het impactpunt:

\[D_{imp} = 10..20 \text{ [m]} \]
\[u_{imp} = 5.30 \text{ [m/s]} \]
\[h = 0.5..2 \text{ [m]} \]
\[\rho_m = 1800 \text{ [kg/m}^3\text{]} \]

Kengetallen

Het Reynoldsgetal (Re) en Grashofgetal (G) zijn er om vast te stellen in welke mate de viskeuze krachten van invloed zijn ten opzichte van traagheid (Re) en bouyancy (G).

\[\text{Re} = \frac{u_{imp} D_{imp}}{v} = 10^7 \text{ à } 10^8 \text{ [-]} \quad (An.1.1) \]

\[G = \frac{g(\rho_m - \rho_w) D_{imp}^3}{\rho_w v^2} = 10^8 \text{ à } 10^9 \text{ [-]} \quad (An.1.2) \]

Door de grote kengetallen van Reynolds en Grashof zijn de viskeuze krachten van weinig invloed.

Met het interne Froudegetal wordt de quotiënt van impuls en bouyancy berekend. Bij Fr\(_i\)=0 wordt een straalmechanisme gevonden en bij Fr\(_i\)=>> een pluimmechanisme.

\[Fr_i = -\frac{u_{imp}}{\sqrt{\frac{\rho_m - \rho_w}{\rho_w}} g D} = 0.5..2.3 \quad [-] \quad (An.1.3) \]

\[Ri = \frac{g}{\rho \left(\frac{\partial \vec{u}}{\partial x}\right)^2} \quad [-] \quad (An.1.4) \]

met \(\frac{\partial \rho}{\partial x} \) is klein en \(\frac{\partial \vec{u}}{\partial x} \) is groot en \(\rho \) is groot geeft een klein Richardson getal.
Annex 2 Beddingvorm

\[\tau = \rho g (\bar{u}/C')^2 \]

(Jansen, 1994)

A Typical ripple pattern
B Dunes and superposed ripples
C Dunes
D Washed-out dunes or transition
E Plane bed
F Antidune standing waves
G Antidune breaking waves
H Chute and pool

(Simons et al., 1961)
Annex 3 Zand classificatie

<table>
<thead>
<tr>
<th>Omschrijving</th>
<th>Korreldiameter [μm]</th>
<th>Boven water [-]</th>
<th>Onder water rustige zee [-]</th>
<th>Onder water ruige zee [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fijn zand</td>
<td>60 - 200</td>
<td>1:50 tot 100</td>
<td>1:6 tot 8</td>
<td>1:15 tot 30</td>
</tr>
<tr>
<td>Medium zand</td>
<td>200 - 600</td>
<td>1:25 tot 50</td>
<td>1:5 tot 8</td>
<td>1:10 tot 15</td>
</tr>
<tr>
<td>Grof zand</td>
<td>600 - 2000</td>
<td>1:10 tot 25</td>
<td>1:3 tot 4</td>
<td>1:4 tot 1:10</td>
</tr>
<tr>
<td>Grind</td>
<td>> 2000</td>
<td>1:5 tot 10</td>
<td>1:2</td>
<td>1:3 tot 1:6</td>
</tr>
</tbody>
</table>

Globale relaties tussen hydraulisch geplaatst zand en korreldiameter voor de Nederlandse kust *(CUR 130, 1987).*
Annex 4 Relaties rivieren

<table>
<thead>
<tr>
<th>Ingrijp</th>
<th>Vergelijking</th>
</tr>
</thead>
</table>
| Sedimentonttrekking (\(\Delta S\)) | \[
| \(i_t\) | \(i_0\) = \left[1 - \frac{\Delta S}{S_o}\right]^{3/n} |
| \(h_t\) | \(h_0\) = \left[1 - \frac{\Delta S}{S_o}\right]^{1/n} |
| Wateronttrekking (\(\Delta Q\)) | \[
| \(i_t\) | \(i_0\) = \frac{Q}{Q_o - \Delta Q} |
| \(h_t\) | \(h_0\) = 1 - \frac{\Delta Q}{Q_o} |
| Lange versmalling (\(B_0 \rightarrow B_1\)) | \[
| \(i_t\) | \(i_0\) = \left[\frac{B_t}{B_o}\right]^{(n-3)/n} |
| \(h_t\) | \(h_0\) = \left[\frac{B_t}{B_1}\right]^{(n-1)/n} |

(De Vriend, 1999)
Annex 5 Balansen

[Diagram showing mass balance and impulse balance equations]

massabalans waterv
impulsbalans mengselstroom
massabalans mengselstroom
Annex 6 Sedimentatielengte

\[L^* < 1 \]

\[L^* = 1 \]

\[L^* > 1 \]

(CUR152, 1991)
Annex 7 Stabiliteit straal

lage viscositeit en lage stabiliteit

hoge viscositeit en hoge stabiliteit

Ponta do Felix
Brazilië
HAM september 2001
Annex 8 Wrijvingscoëfficiënt (C_D) tegen korrel Reynoldsgetal (Re_p)

(Matoušek, 2001)
Annex 9 Berekening MSeep

Ter controle op de aannemer dat de grondwaterstroom van weinig invloed is wordt er een berekening met MSeep 6.1 gemaakt. MSeep is een programma van Geo Delft waarmee de grondwaterstroom twee dimensiaal berekend kan worden. Voor de invoer is een doorlatenheid van 10^{-3} m/s gebruikt van grof zand. De ingevoerde dwarsdoorsnede wordt in de volgende figuur met zijn dimensies geïntroduceerd:

figuur 9.0.1 Invoer MSeep

Met deze invoer is in het eindige elementen pakket MSeep in te voeren. De straal die aankomt op het stort wordt gemodelleerd met een verhoging van de potentiële lijn. Hierbij wordt bij de overgang van boven- naar onderwaterstort de potentiële extreem verlaagd van 16 m naar 10 m. Aan de landzijde van het stort wordt de grondwaterstand op de zeepiegel gehouden. Tevens wordt het talud twee dimensionaal ingevoerd. De numerieke resultaten van de berekening laten een hoogste snelheid net onder de waterspiegel zien van 3.3×10^{-4} m/s. Deze snelheid wordt benaderd als loodrecht uit het talud.

Grafisch is het volgende plaatje weer te geven:

figuur 9.0.2 Resultaten MSeep met snelheidvectoren en potentiëlevlakken
In de bovenstaande grafische resultaten is de uittredende grondwaterstroom te zien met de vectoren. Tevens zijn door middel van kleuren de verschillende potentiaal hoogten in het pakket te zien. Duidelijk wordt het dat de grondwaterstroom alleen uittreedt aan de bovenrand van het talud tegen de waterspiegel aan.

Met de invoersnelheid van de maximale grondsnelheid kan een berekening worden gemaakt naar de stabilité van het talud onder invloed van de uittredende grondwaterstroom. Het grensevenwicht van het oppervlak wordt beschreven met een continuuïmbenadering, welke maatgevend is voor een uitstromende grondwaterstroom (Van Rhee, 1987).

![figuur 9.0.3 Krachtenspel talud met uittredende grondwaterstroom](image)

De volgende krachten balans kan worden opgesteld op loodrecht en evenwijdig aan het talud:

\[F_{\perp} = F_G \cos(\gamma) - F_D \quad \text{[N/m}^3]\]
\[F_{\parallel} = F_G \sin(\gamma) \quad \text{[N/m}^3]\]

De maximale opneembare schuifspanning \((\tau_{\text{max}})\) voor de grond geldt:

\[\tau_{\text{max}} = c_v + \sigma' \tan \phi \quad \text{[N/m}^2]\]

Voor zand kan de cohesie op nul worden gesteld \((c_v = 0)\). Er wordt gezocht naar een grensevenwicht op het talud, waarbij de opneembare schuifspanning gelijk is aan de schuifspanning geïnitieerd door het gewicht en de uittredende grondwaterstroom.

\[(1-n)(\rho_s - \rho_f)g \sin(\gamma) = \left((1-n)(\rho_s - \rho_f)g \cos(\gamma) - \frac{u}{k} \rho_f g \right) \tan(\phi) \quad \text{[N/m}^3]\]

\[u \quad = \text{filtersnelheid [m/s]} \]
\[k \quad = \text{doorlatendheid [m/s]} \]

Deze vergelijking is te herleiden naar:

\[\frac{-u}{p} = \frac{(1-n)(\rho_s - \rho_w)}{\rho_w} \left(\frac{\sin(\gamma)}{\tan(\phi)} - \cos(\gamma) \right) \quad \text{[-]} \]

Voorbeeld
Annex

Gegevens:
\[\rho_s = 2650 \text{ [kg/m}^3\text{]} \quad \rho_r = 1000 \text{ [kg/m}^3\text{]} \quad \varphi = 35 \text{ [°]} \quad u = 3 \times 10^{-4} \text{ [m/s]} \quad k = 1 \times 10^{-3} \text{ [m/s]} \quad n = 0.4 \text{ [\text{-}]} \]

Met deze gegevens is de bovenstaande vergelijking op te lossen. In een grafiek is te zien hoe de helling door het uitstromende water flauwer wordt. Het verhang oftewel de breuk van de filtersnelheid en de doorlatendheid is uitgezet ten opzichte van de haalbare taludhelling. In de grafiek is aangegeven in welk gebied de gegevens opgaan.

![Grensevenwicht taludhelling ten opzichte verhang](image)

Figuur 9.0.4 Effect grondwaterstroom op het talud

De bovenstaande beschouwing is voor een statische benadering zonder een dichtheidsstroom of korrelstroom over het talud. Een talud waar een dichtheidsstroom of korrelstroom overeen trekt is altijd flauwer dan het natuurlijke talud.

In de grafiek is met een ellips aangegeven welk gebied gebruikelijk is voor een helling die gerainbowd wordt. Met een sterretje is het punt weergegeven waar de gegevens voor zijn gegeven. De uittredende grondwaterstroom heeft wel degelijk een effect op de helling. Echter het effect wordt alleen in een klein gebied in de top van het onderwatertalud gevonden. In de praktijk geeft de top van het talud geen probleem qua helling. In de onderstaande figuur is ingezoomd op de teen van het talud.
figuur 9.0.5 Grondwaterstroom in de teen van het bovenwatertalud

De randeffecten zijn door de tweedimensionale berekening uitgesloten. Aan de rand zal de grondwaterstroom ook afstromen. Hierdoor zal de filtersnelheid \((u) \) vele malen kleiner zijn dan in deze berekening is gevonden.

Deze berekening heeft aangetoond dat de helling verflauwt door de grootte van de uittredende grondwaterstroom. Echter het proces speelt zich af in de top van het talud. Waardoor de grondwaterstroom geen invloed heeft op de totale vorm van het zandlichaam.
Annex 10 Dempingsfuncties

\[\frac{I_m}{I_{m0}} \quad \frac{\sigma_p}{\sigma_{p0}} \]

- RIDER [1954]
- ELLISON/TURNER [1960]
- DEACON [1955]

TENDENCY OF DELFT HYDR. LAB. 1974 B

-0.4 Ri
MAMAYEV

(1-Ri)
1.1.1.1.1

(1+2.5 Ri)^-1
NELSON

(1+10 Ri)^-0.5
MUNK/ANDERSON

(1+5 Ri)^-1
VREUGDENHIL

1-3.3Ri
VREUGDENHIL

(1+30Ri)^-0.5
VREUGDENHIL

(WL-Delft R880, 1974)
<table>
<thead>
<tr>
<th>Project</th>
<th>Datum</th>
<th>Wingebied</th>
<th>Dompgebied</th>
<th>d_0</th>
<th>d_{50}</th>
<th>$L_{sed_{min}}$</th>
<th>$L_{sed_{gen}}$</th>
<th>$L_{sed_{max}}$</th>
<th>talud (1:n)</th>
<th>$L_{sed_{min}}$</th>
<th>$L_{sed_{gen}}$</th>
<th>$L_{sed_{max}}$</th>
<th>talud (1:n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jurong 4B1</td>
<td>05/05/2002</td>
<td>Rhamunia</td>
<td>B8</td>
<td>0.624</td>
<td>0.689</td>
<td>26.1</td>
<td>4.3</td>
<td>52.1</td>
<td>11.8</td>
<td>64</td>
<td>31.5</td>
<td>13.9</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22.3</td>
<td>0.7</td>
<td>21.6</td>
<td>4.6</td>
<td>15</td>
<td>13.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>11</td>
<td>11.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jurong 4BII</td>
<td>24/06/2002</td>
<td>Karimun</td>
<td>476</td>
<td>0.734</td>
<td>0.848</td>
<td>19.0</td>
<td>35.7</td>
<td>5.9</td>
<td>35.7</td>
<td>9.5</td>
<td>11.3</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.9</td>
<td>6.3</td>
<td>0.4</td>
<td>9.3</td>
<td>8.4</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24/06/2002</td>
<td>Combol</td>
<td>477</td>
<td>0.370</td>
<td>0.460</td>
<td>19.8</td>
<td>34.8</td>
<td>3.0</td>
<td>34.8</td>
<td>11.1</td>
<td>13.9</td>
<td>11.9</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.8</td>
<td>4.4</td>
<td>0.5</td>
<td>4.4</td>
<td>11.1</td>
<td>13.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palm Island</td>
<td>05/08/2002</td>
<td>Z en W</td>
<td>304</td>
<td>0.314</td>
<td>0.426</td>
<td>5.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.4</td>
<td>0</td>
<td>0.4</td>
<td>0</td>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>05/04/2002</td>
<td>W7</td>
<td>439</td>
<td>0.439</td>
<td>0.520</td>
<td>4.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27/04/2002</td>
<td>W9</td>
<td>500</td>
<td>0.500</td>
<td>1.625</td>
<td>2.5</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pennes Bay</td>
<td>War Ling Ding</td>
<td></td>
<td>275</td>
<td>0.275</td>
<td>0.289</td>
<td>0</td>
<td>52.1</td>
<td>4.6</td>
<td>52.1</td>
<td>78.7</td>
<td>9.4</td>
<td>16.1</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24.6</td>
<td>1.1</td>
<td>24.6</td>
<td>25.5</td>
<td>2.8</td>
<td>5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>76</td>
<td>80</td>
<td>76</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30/07/2001</td>
<td>West-Po Toi</td>
<td>W5</td>
<td>0.621</td>
<td>0.817</td>
<td>0</td>
<td>20.0</td>
<td>2.8</td>
<td>20.0</td>
<td>73.3</td>
<td>9.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.1</td>
<td>0.5</td>
<td>2.1</td>
<td>29.9</td>
<td>11.1</td>
<td>11.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24/07/2002</td>
<td>West-Po Toi</td>
<td>W5</td>
<td>0.621</td>
<td>0.817</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22/01/2002</td>
<td>Lamma</td>
<td>W2</td>
<td>0.976</td>
<td>1.290</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td></td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sri Lanka Colombo</td>
<td>XX/XX/2001</td>
<td>XXX</td>
<td>1.081</td>
<td>1.573</td>
<td>1.780</td>
<td>15.0</td>
<td>1.9</td>
<td>22.0</td>
<td>3.0</td>
<td>24.3</td>
<td>3.4</td>
<td>27.63</td>
<td>6.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
<td>1.0</td>
<td>1.1</td>
<td>1.1</td>
<td></td>
<td>1.1</td>
<td>1.79</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>14</td>
<td>13</td>
<td>12.9</td>
<td></td>
<td>12.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Annex 15

Data van projecten
Annex

Annex 16 Grondgegevensen projecten

<table>
<thead>
<tr>
<th>Project</th>
<th>Wingebied</th>
<th>Dumptgebied</th>
<th>d_{50}</th>
<th>d_{10}</th>
<th>d_{95}</th>
<th>d_{50}</th>
<th>d_{95}</th>
<th>d_{50}</th>
<th>d_{95}</th>
<th>d_{95}</th>
<th>d_{50}</th>
<th>d_{95}</th>
<th>d_{95}</th>
<th>d_{95}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jaring 4B</td>
<td>Dharunia</td>
<td>B01</td>
<td>0.264</td>
<td>0.405</td>
<td>0.519</td>
<td>0.625</td>
<td>0.734</td>
<td>0.859</td>
<td>1.051</td>
<td>1.309</td>
<td>1.546</td>
<td>1.846</td>
<td>2.146</td>
<td>2.446</td>
</tr>
<tr>
<td>Jaring 4B</td>
<td>Kaimun</td>
<td>478</td>
<td>0.264</td>
<td>0.405</td>
<td>0.519</td>
<td>0.625</td>
<td>0.734</td>
<td>0.859</td>
<td>1.051</td>
<td>1.309</td>
<td>1.546</td>
<td>1.846</td>
<td>2.146</td>
<td>2.446</td>
</tr>
<tr>
<td></td>
<td>Combol</td>
<td>477</td>
<td>0.090</td>
<td>0.150</td>
<td>0.225</td>
<td>0.290</td>
<td>0.370</td>
<td>0.600</td>
<td>0.700</td>
<td>1.000</td>
<td>1.600</td>
<td>0.400</td>
<td>0.400</td>
<td>18.3</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Palm Island</td>
<td>E en W</td>
<td>0.101</td>
<td>0.167</td>
<td>0.206</td>
<td>0.254</td>
<td>0.314</td>
<td>0.396</td>
<td>0.520</td>
<td>0.741</td>
<td>1.131</td>
<td>0.426</td>
<td>11.2</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>W01</td>
<td>0.124</td>
<td>0.190</td>
<td>0.264</td>
<td>0.352</td>
<td>0.439</td>
<td>0.487</td>
<td>0.640</td>
<td>0.600</td>
<td>1.677</td>
<td>0.400</td>
<td>13.5</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W02</td>
<td>0.170</td>
<td>0.240</td>
<td>0.300</td>
<td>0.400</td>
<td>0.600</td>
<td>0.700</td>
<td>0.900</td>
<td>1.070</td>
<td>10.300</td>
<td>1.626</td>
<td>80.6</td>
<td>4.1</td>
</tr>
<tr>
<td>Penes Bay</td>
<td>Wai Ling Ding</td>
<td>0.097</td>
<td>0.170</td>
<td>0.204</td>
<td>0.230</td>
<td>0.275</td>
<td>0.314</td>
<td>0.351</td>
<td>0.393</td>
<td>0.505</td>
<td>0.263</td>
<td>5.2</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>W01</td>
<td>0.141</td>
<td>0.300</td>
<td>0.406</td>
<td>0.601</td>
<td>0.621</td>
<td>0.735</td>
<td>0.906</td>
<td>1.346</td>
<td>2.402</td>
<td>0.817</td>
<td>17.0</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W02</td>
<td>0.141</td>
<td>0.300</td>
<td>0.406</td>
<td>0.601</td>
<td>0.621</td>
<td>0.735</td>
<td>0.906</td>
<td>1.346</td>
<td>2.402</td>
<td>0.817</td>
<td>17.0</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W02</td>
<td>0.260</td>
<td>0.412</td>
<td>0.572</td>
<td>0.755</td>
<td>0.976</td>
<td>1.266</td>
<td>1.670</td>
<td>2.265</td>
<td>3.409</td>
<td>1.290</td>
<td>13.1</td>
<td>4.9</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>000</td>
<td>0.362</td>
<td>0.505</td>
<td>0.634</td>
<td>0.796</td>
<td>1.081</td>
<td>1.516</td>
<td>2.126</td>
<td>2.862</td>
<td>4.102</td>
<td>1.576</td>
<td>11.9</td>
<td>4.9</td>
<td></td>
</tr>
</tbody>
</table>