Print Email Facebook Twitter Input selection in N2SID using group lasso regularization Title Input selection in N2SID using group lasso regularization Author Klingspor, M. (Linköping University) Hansson, A (Linköping University) Löfberg, J. (Linköping University) Verhaegen, M.H.G. (TU Delft Team Raf Van de Plas) Contributor Dochain, Denis (editor) Henrion, Didier (editor) Peaucelle, Dimitri (editor) Date 2017 Abstract Input selection is an important and oftentimes difficult challenge in system identification. In order to achieve less complex models, irrelevant inputs should be methodically and correctly discarded before or under the estimation process. In this paper we introduce a novel method of input selection that is carried out as a natural extension in a subspace method. We show that the method robustly and accurately performs input selection at various noise levels and that it provides good model estimates. Subject Input selectionSystem identificationState-space modelsN2SIDSubspace methodsSignal-to-noise ratio To reference this document use: http://resolver.tudelft.nl/uuid:2fb58095-5c7b-4699-a491-bfd5d1fdb8c1 DOI https://doi.org/10.1016/j.ifacol.2017.08.1472 Publisher Elsevier, Laxenburg, Austria Source IFAC-PapersOnLine: Proceedings 20th IFAC World Congress, 50-1 Event 20th World Congress of the International Federation of Automatic Control (IFAC), 2017, 2017-07-09 → 2017-07-14, Toulouse, France Series IFAC-PapersOnline, 2405-8963, 50 (1) Part of collection Institutional Repository Document type conference paper Rights © 2017 M. Klingspor, A Hansson, J. Löfberg, M.H.G. Verhaegen Files PDF 1_s2.0_S2405896317320487_main.pdf 585.69 KB Close viewer /islandora/object/uuid:2fb58095-5c7b-4699-a491-bfd5d1fdb8c1/datastream/OBJ/view