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Background estimation in nonlinear image
restoration
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One of the essential ways in which nonlinear image restoration algorithms differ from linear, convolution-type
image restoration filters is their capability to restrict the restoration result to nonnegative intensities. The
iterative constrained Tikhonov–Miller (ICTM) algorithm, for example, incorporates the nonnegativity con-
straint by clipping all negative values to zero after each iteration. This constraint will be effective only when
the restored intensities have near-zero values. Therefore the background estimation will have an influence on
the effectiveness of the nonnegativity constraint of these algorithms. We investigated quantitatively the de-
pendency of the performance of the ICTM, Carrington, and Richardson–Lucy algorithms on the estimation of
the background and compared it with the performance of the linear Tikhonov–Miller restoration filter. We
found that the performance depends critically on the background estimation: An underestimation of the back-
ground will make the nonnegativity constraint ineffective, which results in a performance that does not differ
much from the Tikhonov–Miller filter performance. A (small) overestimation, however, degrades the perfor-
mance dramatically, since it results in a clipping of object intensities. We propose a novel general method to
estimate the background based on the dependency of nonlinear restoration algorithms on the background, and
we demonstrate its applicability on real confocal images. © 2000 Optical Society of America
[S0740-3232(00)00803-6]
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1. INTRODUCTION
One of the essential ways in which nonlinear image res-
toration algorithms such as the iterative constrained
Tikhonov–Miller algorithm1,2 (ICTM), the Carrington
algorithm,3,4 and the Richardson–Lucy algorithm5–12 dif-
fer from linear convolution-type image restoration filters
is their capability to restrict the restoration result to non-
negative intensities. This property has been linked to
the so-called superresolution property of these
algorithms4,13–15—the capability to (partially) restore in-
formation outside the bandwidth of the optical transfer
function.

The ICTM algorithm, for example, incorporates the
nonnegativity constraint by clipping all negative values to
zero after each iteration of the conjugate-gradient-descent
algorithm used to minimize the Tikhonov–Miller func-
tional. This constraint will be effective only when the in-
tensities of the iterations have near-zero values. We
model the image formation in a confocal microscope as the
convolution of the original image with the microscope’s
point-spread function on a background and distorted by
noise.6,11

The ICTM and Carrington algorithms subtract the es-
timated background from the first estimate before they
start the iteration. Therefore the background estimation
will have an influence on the effectiveness of the nonne-
gativity constraint of these algorithms. We investigate
0740-3232/2000/030425-09$15.00 ©
the effect of the background estimation on the perfor-
mance of the ICTM, Carrington, and Richardson–Lucy
algorithms and on the performance of the Tikhonov–
Miller regularized expectation-maximization–maximum-
likelihood-estimator (EM–MLE) algorithm (as proposed
by Conchello et al.),16 and we compare the performance of
the nonlinear methods with the performance of the linear
Tikhonov–Miller restoration filter.17

The removal of the background from the acquired im-
age is incorporated differently in the investigated algo-
rithms. In the Tikhonov–Miller, ICTM, and Carrington
algorithms the assumption of additive Gaussian noise re-
moves the dependency of the noise from the object and
background. Therefore the background can be removed
by subtracting it from the acquired image. The
Richardson–Lucy and Conchello algorithms model the
noise as Poisson noise. This prevents the removal of the
background by a simple subtraction. Instead, the back-
ground is incorporated into the conditional expectation of
the translated Poisson process used to model the object
intensities in the image. The EM algorithm uses the
relative weights of the intensity of the object and of the
background to estimate the object intensity from the in-
tensities found in the acquired image.

In both approaches an overestimation of the back-
ground will lead to large errors in the estimation of the
object intensity. In the case of the ICTM and Carrington
2000 Optical Society of America
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algorithms the subtraction of an overestimated back-
ground reduces low object intensities to negative values,
which are clipped to zero after the first iteration. This
leads to an incorrect estimation of the object’s shape and
reduces the performance of the algorithm. Similarly, an
overestimation of the background in the EM case will lead
to an underestimation of the object’s intensities and thus
produce a poor performance.

An underestimation of the background yields undesired
properties, as well. Not only will it lead to an incomplete
removal of the background, but, in the case of the ICTM
and Carrington algorithms, low object intensities will not
be set to near-zero values in the first estimate. Therefore
the number of points in the object that are being clipped
after each iteration is considerably reduced. Since the
clipping operation of these algorithms is the only nonlin-
ear operation that distinguishes them from the linear
Tikhonov–Miller filter, a substantial reduction of the
number of pixels being clipped will decrease the effective-
ness of the nonnegativity constraint and therefore the
performance benefits of these algorithms.

In the extreme case where no points are being set to
zero, both the ICTM and the Carrington algorithms re-
duce to an iterative conjugate-gradient algorithm, produc-
ing a solution that is identical to the one produced by the
linear Tikhonov–Miller restoration filter. In other
words, without clipping, the ICTM and Carrington algo-
rithms produce a solution equal to the linear solution,
thus without restoring information beyond the bandwidth
of the point-spread function. In that case the ICTM and
Carrington algorithms will not produce the sometimes
claimed ‘‘superresolution’’ results.

Although the performance decrease of nonlinear resto-
ration algorithms to linear performance caused by a se-
vere underestimation of the background has been re-
ported before,18 in this paper we quantify this dependence
and show the critical dependency of the performance of
these algorithms on the actual background estimation.
Furthermore, we propose a novel general method for esti-
mating the background and demonstrate its applicability
on real confocal images.

In Section 2 we derive, on the basis of a linear model for
image formation, the linear Tikhonov–Miller restoration
algorithm and the four nonlinear image restoration algo-
rithms. In Section 3 we describe how we performed our
simulation experiments; in Section 4 we present the re-
sults of these experiments. On the basis of these results,
in Section 5 we propose a novel method for the estimation
of the background. We conclude in Section 6.

2. IMAGE RESTORATION
A. Classical Image Restoration: The Tikhonov–Miller
Restoration Filter
We assume that the image formation in a confocal fluo-
rescence microscope can be modeled as a linear
translation-invariant system distorted by noise:

m~x, y, z ! 5 N@h~x, y, z ! ^ f~x, y, z ! 1 b~x, y, z !#. (1)

In this equation, f represents the input signal, h the
point-spread function, b a (constant) background signal,
N a general noise-distortion function, and m the recorded
fluorescence image. For scientific-grade light detectors,
N is dominated by Poisson noise.19,20 In classical image
restoration, the signal-dependent Poisson noise is ap-
proximated by additive Gaussian noise. Using this addi-
tive Gaussian noise model for N, we rewrite Eq. (1) as

g~x, y, z ! 5 m~x, y, z ! 2 b~x, y, z !

5 h~x, y, z ! ^ f~x, y, z ! 1 n~x, y, z !. (2)

After sampling, Eq. (2) becomes

g@x, y, z# 5 (
i51

Mx

(
j51

My

(
k51

Mz

h~x 2 i, y 2 j, z 2 k !

3 f~i, j, k ! 1 n~x, y, z !, (3)

with Mx , My , and Mz the number of sampling points in
the x, y, and z dimensions, respectively. For convenience
we will adopt a matrix notation,

g 5 Hf 1 n, (4)

where the vectors f, g, and n of length M (M
5 MxMyMz) denote the object, its image, and the addi-
tive Gaussian noise, respectively. The M 3 M matrix H
is the blurring matrix representing the point-spread func-
tion of the microscope.

The Tikhonov–Miller filter, a classical image restora-
tion filter, is a convolution filter operating on the mea-
sured image. It can be written as

f̂ 5 Wg (5)

with W the linear restoration filter and f̂ its result. The
Tikhonov–Miller filter is derived from a least-squares
approach,14 which is based on minimizing the well-known
Tikhonov functional21

F~ f̂! 5 iHf̂ 2 gi2 1 liCf̂ i2, (6)

with i•i2 the Euclidean norm. In image restoration l is
known as the regularization parameter and C as the
regularization matrix. The Tikhonov functional consists
of a mean-square-error fitting criterion and a stabilizing
energy bound that penalizes solutions of f̂ that oscillate
wildly as a result of spectral components that are domi-
nated by noise. The minimum of F yields the well-
known Tikhonov–Miller (denoted TM) solution WTM

WTM 5 ~HTH 1 lCTC!21HT. (7)

The convolution nature of the Tikhonov–Miller restora-
tion filter makes it incapable of restoring spatial frequen-
cies for which the optical transfer function (OTF) has zero
transmission. In particular, the OTF of a three-
dimensional (3-D) conventional fluorescence microscope
has large regions with zero response known as the miss-
ing cone.22

Furthermore, convolution methods cannot restrict the
domain in which the solution should be found. This
property is a major drawback since the intensity of an im-
aged object represents light energy, which is nonnegative.
Finally, Van der Voort2 showed that the Tikhonov–Miller
filter is very sensitive to errors in the estimation of the
point-spread function, which cause ringing artifacts.
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The ICTM algorithm, the Carrington algorithm, and
the Richardson–Lucy algorithm are frequently used in
fluorescence microscopy.2,3,5,6,16,23,24 These iterative non-
linear algorithms tackle the above-mentioned problems at
a cost of a considerable increase in the computational
complexity. Such algorithms require a large number of
iterations, each with a complexity comparable to that of
the Tikhonov–Miller filter.

B. Constrained Tikhonov Restoration

1. Iterative Constrained Tikhonov–Miller Algorithm
The iterative constrained Tikhonov–Miller1,2,25 (ICTM)
algorithm finds the minimum of Eq. (6) with the method
of conjugate gradients.26 The nonnegativity constraint is
incorporated by setting the negative intensities to zero af-
ter each iteration.

2. Carrington Algorithm
Like the ICTM algorithm, the Carrington algorithm3,4

minimizes the Tikhonov functional under the constraint
of nonnegativity. However, the algorithm is based on a
more solid mathematical foundation.

Using the Kuhn–Tucker conditions,

¹ f̂ F i 5 0 and f̂i . 0 or ¹ f̂ F i > 0 and f̂i 5 0, (8)

Carrington3,4,27 and co-workers transformed the Tikhonov
functional (6) with the added nonnegativity constraint to
the C (on the set HTc . 0):

C~c! 5
1
2 iP~HTc!i2 2 cTg 1

1
2 lici2. (9)

Since C is strictly convex and twice continuously differen-
tiable, a conjugate-gradient algorithm can be used to
minimize C (Ref. 26) (C is strictly convex since its second
derivative is positive definite3).

C. Maximum-Likelihood Restoration: The
Richardson–Lucy Algorithm
In contrast to the two algorithms discussed above, the
Richardson–Lucy algorithm is not derived from the image
formation model [Eq. (4)], which assumes additive Gauss-
ian noise. Instead, the general noise-distortion function
N is assumed to be dominated by Poisson noise.

A fluorescence object can be modeled as a spatially in-
homogeneous Poisson process F with an intensity func-
tion f (Ref. 28):

P~Fiufi! 5
fi

Fi exp~2fi!

Fi!
.

The image formation of such an object by a fluorescence
microscope can be modeled as a translated Poisson
process.28 This process models the transformation of F
into a Poisson process m subjected to a conditional prob-
ability density function H,

E@m# 5 Hf 1 b, (10)

with b the mean of an independent (background) Poisson
process. The conditional probability density function is
in this case the point-spread function of the fluorescence
microscope. The log-likelihood function of such a Poisson
process is given by28

L~f ! 5 2( Hf 1 mT ln~Hf 1 b!, (11)

where we have dropped all terms that are not dependent
on f. The maximum of the likelihood function L can be
found iteratively by using the EM algorithm.7 This itera-
tive algorithm was first used by Vardi et al.8 in emission
tomography. Holmes5 introduced the algorithm to mi-
croscopy. Applying the EM algorithm to Eq. (11)
yields5,6,9–11

f̂ k11 5 f̂ kHTF m

Hf̂ k 1 b
G . (12)

The EM algorithm ensures a nonnegative solution when a
nonnegative initial guess f̂ 0 is used. Furthermore, the
likelihood of each iteration of the EM algorithm will
strictly increase to a global maximum.28 The EM algo-
rithm for finding the maximum-likelihood estimator of a
translated Poisson process (often referred to as EM–
MLE) is identical to the Richardson–Lucy algorithm.12

The Richardson–Lucy algorithm is a constrained but
unregularized iterative image restoration algorithm.
(Limiting the number of iterations, however, can serve as
regularization; see, for example, Ref. 29). The ICTM and
Carrington algorithms, however, incorporate Tikhonov
regularization to suppress undesired solutions. Conch-
ello has derived an algorithm that incorporates Tikhonov
regularization into the Richardson–Lucy algorithm.16

This incorporation yields the following conditional expec-
tation Q for estimating the intensity of a translated Pois-
son process16:

Q~f u f̂ k! 5 2( f 1 E@Fum, f̂ k#T ln f 2 aif i2. (13)

The maximization step of the EM algorithm now yields16

E@Fum, f̂ k#

f̂ regularized
k11

2 2a f̂ regularized
k11 2 1 5 0. (14)

This quadratic equation in f̂ regularized
k11 can be solved with

the Euler equation for variational calculus,16 which yields

f̂ regularized
k11 5

21 1 ~1 1 2l f̂ k11!1/2

l
, (15)

with regularization parameter l 5 4a and f̂ k11 given by
Eq. (12). With use of l’Hopital’s rule, it is easy to show
that Eq. (15) becomes Eq. (12) when l → 0. We will refer
to this algorithm as the RL–Conchello algorithm.

3. EXPERIMENTS
In this section we present results from a simulation ex-
periment in which the performance of several image res-
toration algorithms is measured as a function of the esti-
mated background. We measured not only the overall
performance but also the performance in specific regions
of both the frequency and the spatial domains. We used
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the footprint of the OTF22 as a mask to measure the per-
formance inside and outside the bandwidth of the point-
spread function. This gives insight to what extent these
nonlinear algorithms restore information beyond the mi-
croscope’s resolution.

In the spatial domain we measured the performance in
three regions in the image: inside the object, at its
boundary, and in the background of the image. To avoid
aliasing effects, we used band-limited masks to select
these regions. The mask for the boundary region was
generated by normalizing the gradient magnitude of the
acquired image (see Fig. 1). We computed the gradient of
the image by convolving the image with Gaussian deriva-
tives, and we used a sigma of 0.9 pixels for the deriva-
tives. We segmented the inverse of the boundary mask
into two masks: an object mask and a background mask
(see Fig. 1).

We tested the linear Tikhonov–Miller filter, the ICTM
algorithm, the Carrington algorithm, the Richardson–
Lucy algorithm, and the RL–Conchello algorithm. We
included the ICTM algorithm without clipping after each
iteration to show that this variant of the ICTM algorithm
is nothing but a conjugate-gradient algorithm for obtain-
ing the linear Tikhonov–Miller result. The ICTM algo-
rithm performs better than linear filters owing to the clip-
ping after each iteration. One could question whether
the result obtained in this way is different from that from
clipping the result of the linear Tikhonov–Miller filter.
We have therefore included the result of this procedure as
well (referred to as clipped Tikhonov–Miller).

All images were generated with the same constant
background intensity of 16.0 arbitrary digital units
(ADU). However, we varied the estimate of the back-
ground intensity, which is an input to the restoration al-
gorithms, from 0.0 to 32.0 ADU. We have used a simu-
lated confocal point-spread function with a NA of 1.3, a
refractive index of 1.515, an excitation wavelength of 488
nm, an emission wavelength of 520 nm, and a pinhole di-
ameter of 300 nm. The images, sampled at twice the Ny-
quist rate, are 64 3 64 3 32 pixels large, which corre-
sponds to an image size of 1.55 3 1.55 3 2.73 mm. We
used spheres with an intensity of 200.0 ADU and a diam-
eter of 500 nm as objects. In this experiment we used a
signal-to-noise ratio of 1.0, which corresponds to a conver-
sion factor of 0.22 ADU/photon.

4. RESULTS
Figures 2 and 3 clearly show that the performance of the
tested nonlinear restoration algorithms is strongly

Fig. 1. Generation of object, boundary, and background region
gray-weighted masks with use of the gradient magnitude of the
image.
dependent on the estimation of the background. A (se-
vere) underestimation of the background yields a perfor-
mance of these algorithms that is not significantly better
than that of the linear Tikhonov–Miller filter. An over-
estimation has an even more dramatic influence on the
performance. The performance drops quite significantly
for relatively small overestimations (,25%), drops below
the performance of the linear filter for an overestimation
of 25–50%, and even drops below the performance of the
unrestored (acquired) image for an overestimation larger

Fig. 2. Mean-square-error performance of the ICTM, Tikhonov–
Miller, Richardson–Lucy, RL–Conchello, clipped Tikhonov–
Miller (TM), Carrington, and unclipped ICTM algorithms to-
gether with the performance of the unrestored data as a function
of the estimated background value.

Fig. 3. Enlargement of Fig. 2 around the true background.

Fig. 4. Mean-square-error performance of the ICTM, Tikhonov–
Miller, Richardson–Lucy, RL–Conchello, and clipped TM algo-
rithms measured inside the bandwidth of the OTF.
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than 50%. (A lower performance corresponds to a higher
mean square error, which is plotted in Fig. 4).

The figures also show that the performance of the un-
clipped ICTM is identical to that of the linear Tikhonov–
Miller filter and that the Carrington algorithm yields a
performance characteristic very similar to that of the
ICTM algorithm. We have therefore not included the re-
sults of the unclipped ICTM algorithm and the Car-
rington algorithm in further analysis.

The performance inside the bandwidth of the OTF as
shown in Fig. 4 shows a characteristic similar to that

Fig. 5. Mean-square-error performance of the ICTM, Tikhonov–
Miller, Richardson–Lucy, RL–Conchello, and clipped TM algo-
rithms measured outside the bandwidth of the OTF.

Fig. 6. Mean-square-error performance of the ICTM, Tikhonov–
Miller, Richardson–Lucy, RL–Conchello, and clipped TM algo-
rithms measured inside the object.

Fig. 7. Mean-square-error performance of the ICTM, Tikhonov–
Miller, Richardson–Lucy, RL–Conchello, and clipped TM algo-
rithms measured around the edges of the object.
found for the overall performance. Roughly 90% of the
total mean square error is measured in this region. This
finding is simply explained by the fact that most of the ob-
ject energy is found in this region. The remaining 10%
found outside the bandwidth of the OTF shows a slightly
different characteristic (see Fig. 5).

The mean square error of the linear Tikhonov–Miller
algorithm is lower here than all the nonlinear algorithms
except the RL–Conchello algorithm. The mean square
error of the Tikhonov–Miller filter is simply the energy of
the object in this region of the Fourier domain. As ex-
pected, the nonlinear algorithms add frequency compo-
nents outside the bandwidth of the OTF to improve the
performance inside the bandwidth. These restored com-
ponents, however, do not always improve the performance
outside the bandwidth as well.

The performance in the spatial domain on the object,
edge, and background is shown in Figs. 6, 7, and 8, re-

Fig. 8. Mean-square-error performance of the ICTM, Tikhonov–
Miller, Richardson–Lucy, RL–Conchello, and clipped TM algo-
rithms measured in the background.

Fig. 9. Mean square error in the center vxvy slice of the ICTM
(top), RL–Conchello (middle), and clipped TM (bottom) algo-
rithms for an estimated background of 12.0 (left), 16.0 (center),
and 20.0 (right). The gray scaling is constant over all nine im-
ages.
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spectively. We conclude from these figures that the larg-
est gain in performance is found in the background, the
region that contains the most pixels and the lowest pixel
intensities.

The ICTM algorithm produces the best performance in
the object and edge regions for an overestimation of 12.5–
25%, when some of the low-intensity edges of the object
are being clipped, thereby introducing (correlated) high-
frequency components (see Fig. 5). These figures also
show clearly that only the performance of the clipped
Tikhonov–Miller algorithm in the background region is
influenced by the background estimation. Figure 9
shows the mean square error at every frequency in the
center vxvy slice between the original object and the res-
toration results of the ICTM, RL–Conchello, and clipped
Tikhonov–Miller algorithms for three values of the esti-
mated background (12.0, 16.0, and 20.0). It shows
clearly that errors due to noise (stochastic errors) are re-
placed by ‘‘deterministic’’ errors at low frequencies.

5. BACKGROUND ESTIMATION
The experimental results presented in Section 4 show the
strong influence of the background estimation on the per-
formance of nonlinear restoration algorithms. In this
section we discuss how the background can be estimated
in real images.

Given the diversity of the samples being imaged with
fluorescence (confocal) microscopy, the characteristics of
the acquired images are similarly diverse. Therefore it is
impossible to construct a single background-estimation
algorithm suitable for such a wide range of images. Not
only do the samples vary from sparse (like our images of
spheres) to very dense, but the backgrounds can be differ-
ent as well.

In general, the background can be characterized as be-
ing of low intensity and of a low spatial frequency. In im-
ages of sparse objects the majority of the pixels are back-
ground pixels, and a histogram-based algorithm can be
used to estimate the background by fitting a parabola
through the maximum values in the histogram. Figure
10 shows the histogram of one of the simulated confocal
images used in the experiments described in Section 3.
Assuming that the distribution of the dominant noise
source in the image is unbiased and unimodal (which
holds for Poisson noise), we can estimate the background
by using the position of the maximum of the histogram.

In images of dense objects or in images with a noncon-
stant background, the histogram-based approach will not
be very accurate (still, the maximum of the lowest-
intensity peak might give a reasonable estimate). In
these cases an approach based on mathematical morphol-
ogy or fitting of a polynomial might work.

In the first approach, an opening operation can be used
to estimate the shape of the background.30 The second
approach fits a low-order polynomial through the pixels.31

The accuracy and the bias of the fit will be improved if the
fit is done through background pixels only. Therefore the
image needs to be segmented (coarsely) into object and
background pixels. One way of doing this is to use a cri-
terion based on the noise variance. Given a first
(histogram-based) estimate of the background intensity, a
pixel can be labeled as object pixel if its intensity is more
than n (for example two or three) times the standard de-
viation of the noise.

We propose, however, an alternative method for esti-
mating the background by using the dependency of the
nonlinear restoration algorithms on the background esti-
mation. As illustrated by Fig. 4, the performance of the
nonlinear algorithms inside the bandwidth of the OTF is
(strongly) dependent on the background. Therefore a
measure that uses this part of the frequency domain can
be used to measure the performance of a nonlinear algo-
rithm as a function of the background estimation. By op-
timizing this measure as a function of the background, we
can determine the optimal background. We propose to
use the mean square error between the acquired image
and the restoration result blurred by the microscope’s
OTF with the added background,

( @g 2 ~Hf̂ 1 b!#2, (16)

to measure the performance as a function of the back-
ground. The values of this measure as discussed in the
experiments in Section 4 are shown in Fig. 11 for the
ICTM, clipped Tikhonov–Miller, RL–Conchello, and
Richardson–Lucy algorithms.

Using the proposed measure, we can find the optimal
background value by increasing the background value un-

Fig. 10. Histogram of a simulated confocal image as used in the
experiment described in Section 3.

Fig. 11. Mean square error between the acquired image and the
blurred restoration result as a function of the background.
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til the mean square error increases significantly. For a
constant background, the optimal background value will
be found in the interval between zero and the mean in-
tensity of the acquired image.

A disadvantage of the proposed method for background
estimation is that it requires a few restoration results ob-
tained with, for example, the ICTM algorithm. This
could lead to a high computational complexity, resulting
in an unacceptably long processing time. This problem
could be solved by using the clipped Tikhonov–Miller fil-
ter instead. As can be observed from Fig. 2, the mean
square error of the clipped Tikhonov–Miller filter is also
minimal for the correct value of the background.

To demonstrate the ability of the proposed method in
background estimation, we have applied it to real confocal
images. Figure 12 shows an x –y slice of a 3-D confocal
image of a monoglyceride.32,33 This monoglyceride has
been used as an alternative to fat in structuring water in
margarinelike spreads. The monoglyceride forms a mi-
croscopic house-of-cards-like structure in which the water

Fig. 12. X –Y slice of a 3-D confocal image of a monoglyceride
stained with Nile Red.

Fig. 13. Histogram of the 3-D confocal images shown in Fig. 12.
is contained. The monoglycerides have been stained
with Nile Red and are excited at a wavelength of 488 nm,
and the emitted light has been measured at 522 nm. The
image is 256 3 256 3 256 pixels in size, sampled at 50
nm laterally and axially. The histogram of this image,
shown in Fig. 13, reveals that the image is dominated by
a broad distribution of low intensities, which makes esti-
mation of the background from the histogram difficult.
We have measured the values of the proposed discrepancy
function [Eq. (16)] for the clipped Tikhonov–Miller, the
ICTM, and the RL–Conchello algorithms as a function of
the background; see Fig. 14.

6. DISCUSSION AND CONCLUSIONS
We modeled the deterministic part of the image formation
as a convolution of the original object with the point-
spread function on a background. Since we required that
restoration algorithms restore the original object from the
acquired image, both the blurring and the background
needed to be removed from the image. The iterative res-
toration algorithms discussed in this paper are nonlinear,
since they constrain their results to nonnegative values.
This constraint will be effective only when the intensities
in the restoration result have values near zero. We have
shown that the effectiveness of this constraint is strongly
influenced by the background estimation, which is an in-
put parameter in all restoration algorithms. We have
shown that a modest (. ;50%) underestimation of the
background will make the constraint ineffective, which
results in a performance of these nonlinear algorithms
that does not differ much from the performance obtained
by linear restoration filters. A small (. ;25%) overesti-
mation of the background, however, is even more dra-
matic, since it results in a clipping of object intensities.

Fig. 14. Plot of the proposed discrepancy function for back-
ground estimation as a function of the background for the clipped
TM, ICTM, and RL–Conchello algorithms.
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We have showed that this clipping dramatically degrades
the performance of these nonlinear restoration algo-
rithms. In the simulation experiments presented, we
used only a single type of object, a solid sphere. It could
be argued that this precludes general conclusions regard-
ing the dependency of the performance of nonlinear resto-
ration algorithms on the background estimation. How-
ever, the restoration algorithms tested do not use explicit
knowledge of the objects, and simulation experiments
that measured the performance of these algorithms as a
function of parameters, such as the signal-to-noise ratio
and regularization parameters, show a similar behavior
of these algorithms for different objects.6,34 Finally, the
experimental data shown in Section 4 confirm the simu-
lation results.

We have investigated the ICTM, Carrington, and
Richardson–Lucy algorithms in this paper. Although
these algorithms are frequently used in fluorescence mi-
croscopy, they are by no means the only existing nonlin-
ear restoration algorithms. See, for example, Refs. 18,
24, and 35 for an overview of alternative algorithms. It
is beyond the scope of this paper to investigate the depen-
dence on the background estimation of all these algo-
rithms; nevertheless, we believe that we have addressed a
general issue that should be investigated before a particu-
lar nonlinear algorithm is used.

Finally, we proposed a novel general method to esti-
mate the background based on the dependence of the per-
formance of these nonlinear restoration algorithms on the
background. We have demonstrated the applicability of
this method on real confocal images. The object used in
the simulation differs significantly from the type of
sample used in experiments with real data. Neverthe-
less, the proposed discrepancy function shows similar be-
havior on both the simulated and the real data. This in-
dicates, in our opinion, that the proposed method for
estimating the background is a general one, applicable to
a wide range of images.

The proposed method relies on a determination of the
background value for which the discrepancy between the
original image and the reblurred restoration results in-
creases significantly. The problem of finding the optimal
value cannot easily be incorporated in a standard numeri-
cal optimization procedure such as searching for an extre-
mum or a zero crossing (although the optimal value would
coincide with a maximum of the second derivative, this is
probably too noisy to be robust). A possible way to detect
the optimal background value is to set a threshold on the
increase in the discrepancy function and then set the
value of the background for which this threshold is
reached as the optimal value. The threshold value could
be a percentage of the offset discrepancy (the discrepancy
at very low background values), and the percentage itself
is related to the amount of noise in the image. What the
relation is between this percentage and the signal-to-
noise ratio could be investigated in future research.
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