stormvloedkering Oosterschelde

detailmodel stroomgeulen

stroombeeldonderzoek bij een omgekeerd weigerende schuif

verslag modelonderzoek

M 1945

februari 1984
stormvloedkering Oosterschelde

detailmodel stroomgeulen

stroombeeldonderzoek bij een omgekeerd weigerende schuif

verslag modelonderzoek

M 1945

februari 1984
1. Met behulp van de resultaten van dit verslag kan inzicht worden verkregen in:
- de gevolgen van een omgekeerd weigerende schuif op de stabilité van de bodemverdediging.
- de mogelijkheden om met het manipuleren van naastgelegen schuiven het stroombeeld in gunstige zin te beïnvloeden.

3. De situatie met 1 schuif gesloten kan gevaar opleveren voor de stabiliteit van de bodemverdediging. Het effect van stroombeeldverbeterende maatregelen is gering, of in het geheel niet aanwezig.

4. Meer informatie over het stroombeeld bij een aantal gesloten schuiven is te vinden in de verslagen M1786 en M1878.

5. Met de resultaten en globale conclusies van het onderzoek wordt ingestemd.

ir. J. Konter.
INHOUD

1 Inleiding .. 1

2 Samenvatting van de resultaten .. 2
2.1 Oriënterend onderzoek bij een omgekeerd weigerende schuif 2
2.2 Aanvullend onderzoek naar stroombeeld verbeterende maatregelen ... 2
2.3 Eindsituatie .. 3
2.4 Statistische verdeling stroomsnelheid ... 3

3 Overzicht onderzochte situaties .. 4

4 Instellen van het model .. 6

5 Stroombeeldonderzoek .. 8
5.1 Algemeen .. 8
5.2 Oriënterend onderzoek bij een omgekeerd weigerende schuif 8
5.3 Aanvullend onderzoek naar stroombeeld verbeterende maatregelen ... 9
5.4 Eindsituatie .. 10

6 Nadere analyse van de meetgegevens ... 11
6.1 Ontbinden en filteren van het meetsignaal .. 11
6.2 Vergelijking maximale stroomsnelheidskomponenten 11
6.3 Spektrale analyse stroomsnelheidskomponenten 13
6.4 Statistische verdeling stroomsnelheid ... 14

Bijlage: Extrema van stochastische processen
1 Berekening effektieve doorstroomoppervlakte en afvoerkoëfficiënt

Stroomgegevens 2,0 m boven bodem
2 Gesloten schuif S2-S3
3 Gesloten schuif S4-S5
4 Gesloten schuif S8-S9
5 Schuiven ter weerszijden gesloten schuif S8-S9 getrapt gesloten
6 Schuiven om de andere gesloten (sluitgat half gesloten)
7 Eindsituatie
FIGUREN

1 Overzicht van het modelgebied
2 Stroomrandvoorwaarden eindsituatie
3 Meetschema's oriënterend onderzoek
4 Meetschema's aanvullend onderzoek en eindsituatie

Gemeten maximale stroomsnelheden 2,0 m boven bodem
5 Gesloten schuif S2-S3
6 Gesloten schuif S4-S5
7 Gesloten schuif S8-S9
8 Schuiven getrapt gesloten
9 Sluitgat half gesloten
10 Eindsituatie

Maximale stroomsnelheidscomponenten en maximale resultante met isolijnen
11 Gesloten schuif S2-S3
12 Gesloten schuif S4-S5
13 Gesloten schuif S8-S9
14 Schuiven getrapt gesloten
15 Sluitgat half gesloten
16 Eindsituatie

17 Vergelijking maximale stroomsnelheidscomponenten en maximale resultante

Ontbonden en gefilterd meetsignaal met spektrale analyse
18...35 Gesloten schuif S2-S3
36...53 Gesloten schuif S4-S5
54...71 Gesloten schuif S8-S9
72...89 Schuiven getrapt gesloten
90...107 Sluitgat half gesloten
108...119 Eindsituatie
FOTO'S

1...4 Gesloten schuif S2-S3
5...8 Gesloten schuif S4-S5
9...12 Gesloten schuif S8-S9
13...16 Schuiven getrapt gesloten
17...24 Sluitgat half gesloten
STORMVLOEDKERING OOSTERSCHELDE

STROOMBEELDONDERZOEK BIJ EEN OMGEEKERD WEIGERENDE SCHUIF

1. Inleiding

In het detailmodel van de Oosterschelde is in 1982 in opdracht van de Hoofdafdeling Waterloopkunde van de Deltadienst van Rijkswaterstaat een stroombeeldonderzoek uitgevoerd bij één en een aantal gesloten schuiven. Het doel van het sluiten was het creëren van een stroomvrij gebied ten behoeve van bouwwerkzaamheden en onderhoud.

In de eindsituatie kan echter ook een gesloten schuif voorkomen als gevolg van het weigeren om open te gaan na een periode van gesloten zijn van de kering.

In het onderhavige verslag wordt het onderzoek beschreven van deze situatie met één gesloten schuif, die verder wordt aangeduid als omgekeerd weigerende schuif.

Een oriënterend onderzoek is uitgevoerd om antwoord te kunnen geven op de vraag of er additionele maatregelen dienen te worden genomen om de stabiliteit van de bodemverdediging te waarborgen.

Een tweede te beantwoorden vraag is of het stroombeeld rond een omgekeerd weigerende schuif wezenlijk in gunstige zin is te beïnvloeden. In onderling overleg met Rijkswaterstaat is daarom een aanvullend onderzoek uitgevoerd naar maatregelen die een gunstiger stroombeeld zouden kunnen bewerkstelligen.

Tenslotte is, ter referentie, ook bij een normale eindsituatie het stroombeeld vastgelegd door middel van stroomsnelheidsmetingen.

2. **Samenvatting van de resultaten**

2.1 **Oriënterend onderzoek bij een omgekeerd weigerende schuif**

Tijdens het oriënterend onderzoek werden achtereenvolgens de schuiven S2-S3, S4-S5 en S8-S9, als omgekeerd weigerende schuif, gesloten. Hierbij trad steeds een periodieke vorming van wervels op, gepaard gaande met relatief hoge stroomsnellheden. ook in de richting evenwijdig aan de as van de stormvloedkering (zie foto's 1...12 en figuren 5...7).

Om de grootte van de loodrechte aanstroming op de randen van de asfaltmastiekstromen en blokkennatten te kunnen nagaan, zijn de stroomsnellheden onttbonden in componenten u evenwijdig aan en v loodrecht op de as van de stormvloedkering. De maximale stroomsnellheidscomponenten gedurende de meetduur, alsmede de maximale resultante, zijn voor de genoemde drie situaties weergegeven in de figuren 11...13.

Overigens zijn alle gegeven stroomsnellheden gemeten op 2,0 m boven de bodem en gefilterd met een laagdoorlaatfilter met een filterfrequentie van 1 Hz (model) of 0,11 Hz (prototype), dat wil zeggen dat alle perioden in het meetsignaal < 9 s (prototype) buiten beschouwing zijn gelaten. De meetperiode in het model bedroeg 1,5 uur (≈ 13,4 uur in het prototype).

2.2 **Aanvullend onderzoek naar stroombeeld verbeterende maatregelen**

Met het doel de optredende hoge stroomsnellheden benedenstrooms van de omgekeerd weigerende schuif te trachten te reduceren, werd een onderzoek uitgevoerd naar stroombeeld verbeterende maatregelen. Ter verkleining van de stroomsnellheidsgradiënt werden ter weerszijden van de weigerende schuif S8-S9 enkele schuiven gedeeltelijk gesloten (getrapt gesloten). Het wisselend wervelpatroon bleef hierbij echter bestaan en bovendien verspreid over een groter gebied. De reductie van stroomsnellheden vlak achter de kering is gering. Door dat het wervelende stroombeeld over een groter gebied is verspreid, kunnen daarentegen elders de, relatief kleine, maximale stroomsnellheidscomponenten wat toenemen. Het vermoeden bestaat dat nog meer schuiven gedeeltelijk zouden moeten worden gesloten (stapgrootte kleiner) om het stroombeeld gunstiger te beïnvloeden. Dit zou echter in het onderhavige geval niet meer praktisch zijn, mede met het oog op de dan snel afnemende doorstroomopening van het sluitgat. In het uiterste geval zijn alle schuiven geheel gesloten, hetgeen de stroomnellen in de andere stroomgeulen merkbaar zal doen toenemen.
Er is ook een situatie onderzocht waarbij naast de weigerende schuif S8-S9 de andere schuiven om en om waren gesloten (sluitgat dus half gesloten). Het ongunstige stroombeeld wordt hierbij over de gehele breedte van de stroomgeul verspreid, waarbij van reductie van de grootst waargenomen maximale stroom-
snelheid, vlak achter de kering, geen sprake is. Vanaf 150 m uit de as zijn de stroomsnelheden wel iets gereduceerd. De beide mogelijkheden "getrapt gesloten" en "half gesloten" onderling verge-
leken levert een voorkeur op voor de situatie "getrapt gesloten" tot en met 100 à 150 m uit de as. Boven het resterende gedeelte van de bodembescherming zijn de stroomsnelheden bij de situatie "half gesloten" (iets) kleiner.

2.3 Eindsituatie

Ter referentie is ook bij een normale eindsituatie (alle schuiven geheven) een stroomsnelheidsmeting benedenstooms van de lokatie S8-S9 uitgevoerd (zie figuur 10). De komponenten van de stroomsnelheden evenwijdig aan de as zijn hierbij uiteraard aanzienlijk lager dan bij de drie reeds besproken situaties bij lokatie S8-S9. Loodrecht op de as gaat dit alleen op vanaf circa 225 m uit de as, met name ten opzichte van de situaties "gesloten schuif S8-S9" en "getrapt gesloten".

2.4 Statistische verdeling stroomsnelheid

Na onttbinden en filteren is het meetsignaal spektraal geanalyseerd (zie figu-
ren 18...119). Tevens zijn de stroomgegevens in diverse grootheden uitgedrukt zoals gemiddelde stroomsnelheden en gemiddelde maximale stroomsnelheden (gemiddelde van de toppen en dalen in de meetregistratie) met bijbehorende standaardafwijkingen.

Door middel van de spektra of door middel van het gemiddelde van toppen en dalen is geen schatting gemaakt van bijvoorbeeld de 1% overschrijdingswaarden voor de stroomsnelheden, omdat voor de lokale maxima de Rayleigh-verdeling niet blijkt op te gaan (zie de aan dit verslag toegevoegde bijlage).
3. Overzicht onderzochte situaties

Voor het oriënterend stroombeeldonderzoek bij een omgekeerd weigerende schuif zijn in de Schaar van Roggenplaat de volgende locaties geselecteerd:

- schuif S2-S3 (aan de rand van de stroomgeul)
- schuif S4-S5
- schuif S8-S9 (in het midden van de stroomgeul)

Voor het aanvullende onderzoek naar maatregelen ter verbetering van het stroombeeld benedenstrooms van de omgekeerd weigerende schuif is uitgegaan van schuif S8-S9, waarbij de volgende situaties zijn onderzocht:

- schuiven ter weerszijden getrapt gesloten met als varianten:

 \[
 \begin{array}{c}
 \text{schuif voor} \\
 \hline
 \frac{1}{3} & \frac{2}{3} & \frac{3}{3} & \frac{2}{3} & \frac{1}{3} \\
 S8 & S9 \\
 \end{array}
 \]
 variant d.1

 \[
 \begin{array}{c}
 \text{schuif voor} \\
 \hline
 \frac{1}{4} & \frac{2}{4} & \frac{3}{4} & \frac{4}{4} & \frac{3}{4} & \frac{2}{4} & \frac{1}{4} \\
 S8 & S9 \\
 \end{array}
 \]
 variant d.2

- schuiven om de andere gesloten (sluitgat half gesloten)

Tenslotte is ter referentie met de verstoorde stroombeelden onderzocht:
- een normale eindsituatie met dus alle schuiven geheven.

De sluitgatconfiguratie in het model kwam overeen met de in figuur 1 weergegeven situatie, dus inclusief een door Rijkswaterstaat berekende prognose van de bodemligging in 1982. Een aanpassing van de bodem in het model konform de werkelijke bodemligging in het prototype werd ten behoeve van het onderhavige stroombeeldonderzoek niet noodzakelijk geacht.

De toegepast geschematiseerde pijlers waren konform het resultaat van het "Schematisatie-onderzoek pijlers stormvloedkering Oosterschelde" (M 1644) ter verkrijging van eenzelfde afvoerkoëfficiënt als die van een geometrisch
gelijkvormige pijler volgens het ontwerp van de Direcktie Sluizen en Stuwen van Rijkswaterstaat.

Het onderzoek is uitsluitend bij maximum ebstroom uitgevoerd.
4. Instellen van het model

Voor het instellen van het detailmodel werd langs de randen van het model dezelfde debietverdeling en in de bovenstroomse ijkraal dezelfde stroomsnelheidsverdeling, alsmede dezelfde benedenwaterstand aangehouden als bij het instellen van bouw fase V2 tijdens het onderzoek M 1737 (zie verslag M 1737 deel IV).

Het instellen vond alleen plaats bij een normale eindsituatie, dus nog geen schuif gesloten, waarbij het debiet ten opzichte van bouw fase V2 met een factor 1,15 werd verhoogd tot "springtij-omstandigheden" om bij het stroombeeldonderzoek tot een voor stabiliteitsaspecten meer maatgevende situatie te komen.

De stroomsnelheidsverdelingen in de eindsituatie na het instellen van het model, gemeten in de boven- en benedenstroomse ijkraal op 1440 m van de as van de Noordzeezijde en 1200 m aan de Oostscheldezeijde en langs de benedenstroomse rand van de bodembescherming zijn weergegeven in figuur 2.

Bij het aldus ingestelde (maximum eb-) debiet van 16.100 m³/s werden vervolgens de situaties onderzocht met achtereenvolgens schuif S2-S3, schuif S4-S5 en schuif S8-S9 gesloten. Hierbij werd tevens het verval gemeten (over de havens van Neeltje-Jans) en de effektieve doorstroomoppervlakte µA en de afvoerkoefficiënt µ berekend (zie tabel 1)

Bij het aanvullend onderzoek naar stroombeeld verbeterende maatregelen, dus de situaties met enkele schuiven ter weerszijden van gesloten schuif S8-S9 getrapt gesloten en met de schuiven om de andere gesloten (zie hoofdstuk 3), is het model zo goed mogelijk ingesteld op het verval van 1,72 m, zoals dit gemeten is bij de situatie met alleen schuif S8-S9 gesloten. Hierdoor wordt het mogelijk om de resultaten van alle onderzochte situaties (bij de lokatie S8-S9) onderling te vergelijken indien het verval gelijk blijft. In tabel 1 zijn de bijbehorende debieten weergegeven, alsmede de berekende waarden van µA en µ. Voor een objektieve vergelijking is het echter beter uit te gaan van dezelfde getijomstandigheden. Uit een oriënterend onderzoek met het één-dimensionale getijmodel implic is gebleken dat halvering van µA in de Schaar van Roggenplaat in de eindsituatie een toename van het maximum verval tot gevolg heeft van 18% (eb) à 28% (vloed). Dit betekent dat voor het onderhavige
onderzoek de gemeten stroomsnelheden in de situatie met de schuiven om de andere gesloten orde 9% (eb) zouden moeten worden verhoogd. Hieruit afgeleid zouden bovendien de stroomsnelheden in de situatie met de schuiven getrapt gesloten orde 3% moeten worden verhoogd. Bij tabel 1 dient nog te worden vermeld dat bij de situatie met schuiven getrapt gesloten alleen de variant d.1 is weergegeven, welke variant volledig is doorgemeten (in tegenstelling tot variant d.2, zie paragraaf 5.3).

Tenslotte is aan het eind van de proevenserie opnieuw een eindsituatie met een debiet van 16.100 m³/s onderzocht (stroomsnelheidsmeting); ook deze "tweede" eindsituatie is in tabel 1 opgenomen.
5. Stroombeeldonderzoek

5.1 Algemeen

In eerste instantie betrof het stroombeeldonderzoek het vastleggen van het stroombeeld door middel van stroomsnelheidsmetingen en stroombeeldfoto's benedenstrooms van de omgekeerd weigerende schuif. Een selektie van de stroombeeldfoto's, genomen om de 10 s (model), is opgenomen in dit verslag (de klok welke op de foto's zichtbaar is diende uitsluitend voor het op volgorde houden van de foto's en was niet afgestemd op de juiste (model)tijd).

De stroomsnelheidsmetingen vonden steeds plaats in totaal 18 meetpunten gelegen in 6 raaien evenwijdig aan de as van de kering en verspreid over de gehele bodemverdeling (zie de meetschema's in de figuren 3 en 4). De stroomsnelheden werden alleen bij de bodem (2,0 m boven de bodem) gemeten. Gezien het te verwachten alternerende stroombeeld en de beoogde spectrale analyse van de stroomsnelheidsmetingen werd gekozen voor een (relatief lange) meetduur van 1,5 uur (model) of 13,4 uur (prototype).

Slechts in de eindsituatie zonder gesloten schuiven vond de stroomsnelheidsmeting plaats in totaal 12 meetpunten, gelegen in 5 raaien evenwijdig aan de as (zie figuur 4). Ondanks het relatief rustige stroombeeld in deze situatie werd hier ook konsekvent een meetduur van 1,5 uur aangehouden. Van de eindsituatie werden geen stroombeeldfoto's genomen, daar hierbij dezelfde stroomsnelheidsverdeling werd ingesteld als in het onderzoek M 1737.

5.2 Oriënterend onderzoek bij een omgekeerd weigerende schuif

Tijdens het oriënterend onderzoek werden achtereenvolgens de schuiven S2-S3, S4-S5 en S8-S9 als omgekeerd weigerende schuif gesloten. De bijbehorende stroombeeldfoto's 1..12 vertonen de periodiek loslatende wervels, bekend als de wervelstraat van von Kármán (zie ook verslag M 1878 "Stroombeeldonderzoek bij een aantal gesloten schuiven"). Vooral bij de omgekeerd weigerende schuif S2-S3 wordt het stroombeeld beïnvloed door de nabijgelegen oever van Neeltjes-Jans. Vanwege de van de oever af wegtrekende stroom is in dit geval het meetschema voor de verst van de as verwijderde meetraaien iets verschoven (zie figuur 3).
De gedurende 1,5 uur modeltijd gemeten maximale stroomsnelheden 2,0 m boven de bodem zijn als stroomsnelheidsvectoren weergegeven in de figuren 5...7. Deze maximale stroomsnelheden (na filtering van het meetsignaal, zie paragraaf 6.1) lopen in de meetraai op 100 m van de as uiteen van circa 3,9 m/s bij gesloten schuif S2-S3 en 4,5 m/s bij gesloten schuif S4-S5 tot 5,2 m/s bij gesloten schuif S8-S9 midden in de stroomgeul. Langs de rand van de bodemverdediging, 550 m uit de as van de kering, zijn deze stroomsnelheden afgemeten tot circa 2,1 m/s, respectievelijk 2,5 m/s en 2,7 m/s.

5.3 Aanvullend onderzoek naar stroombeeld verbeterende maatregelen

Naar aanleiding van de optredende hoge stroomsnelheden, zowel in de richting evenwijdig aan de as van de kering als loodrecht op de as, bij voornoemde onderzochte situaties werd besloten een aanvullend onderzoek uit te voeren naar maatregelen welke het stroombeeld benedenstrooms van de omgekeerd weigerende schuif gunstig zouden kunnen beïnvloeden.

Om het opwekken van het alternerende ongunstige stroombeeld te reduceren is in de eerste plaats getracht om, door middel van het met opzet gedeeltelijk sluiten van enkele schuiven ter weerszijden van de omgekeerd weigerende schuif, de stroomsnelheidsgradiënt te verkleinen. Dit onderzoek werd uitgevoerd midden in de stroomgeul bij de gesloten schuif S8-S9. Op het oog werden hierbij twee varianten bekeken, namelijk met ter weerszijden van schuif S8-S9 (zie ook hoofdstuk 3):

- twee schuiven gedeeltelijk gesloten tot 2/3 respectievelijk 1/3 van de waterdiepte boven de dorpel (variant d.1)
- drie schuiven gedeeltelijk gesloten tot 3/4 respectievelijk 2/4 en 1/4 van de waterdiepte boven de dorpel (variant d.2).

Hierbij bleek dat het stroombeeld onderling vergeleken niet wezenlijk anders was, waarop werd besloten alleen bij variant d.1 het stroombeeld vast te leggen. Bovendien zouden bij deze variant als eventuele stroombeeld verbeterende maatregel minder schuiven gemoeid zijn. De bijbehorende stroombeeld-foto's 13...16 vertonen nog steeds een wisselend wervelpatroon dat nu over een groter gebied is verspreid dan in de situatie waarbij naast de gesloten schuif S8-S9 de schuiven geheel geheven blijven. De gemeten maximale stroomsnelheden op 100 m van de as van de kering zijn echter gereduceerd van 5,2 m/s tot circa 4,5 m/s (zie figuur 8).
Het vermoeden bestaat dat deze situatie met gedeeltelijk gesloten schuiven (getrapt gesloten) het stroombeeld niet wezenlijk verbetert, omdat de staphoogte in de schuifstanden nog te groot is. Soortgelijke ervaringen in het verleden wijzen in deze richting. Echter is de informatie uit vroeger onderzoek beperkt, omdat veelal geen uitgebreid stroombeeldonderzoek werd uitgevoerd.

In het onderhavige geval is het (gedeeltelijk) sluiten van meer schuiven bezwaarlijk, mede met het oog op de resterende doorstroomopening. In het uiterste geval zijn alle schuiven geheel gesloten, hetgeen de stroomsnelheden in de andere stroomgeulen merkbaar zal doen toenemen.

Naast de getrapt gesloten schuiven is ook een situatie onderzocht waarbij naast de omgekeerde wegerende schuif om de andere schuiven worden gesloten (dus het doorstroomprofiel halve gesloten), eveneens met de bedoeling de aandrijvende krachten waarmee de wervels worden opgewekt te verminderen. Uit de stroombeeldfoto's 17...24 blijkt dat ook hier het ongunstige stroombeeld over een groter gebied is verspreid, waarbij echter de gemeten maximale stroomsnelheden op 100 m van de as van de kering nog minder zijn gereduceerd, namelijk tot circa 4,8 m/s (zie figuur 9).

Bovenstaande vergelijkingen zijn gebaseerd op een konstant gehouden verval.

Indien de onderzochte situaties worden vergeleken onder gelijk blijvende getijomstandigheden, dan dienen de stroomsnelheden in de situatie met de schuiven getrapt gesloten met orde 3% en in de situatie met de schuiven om de andere gesloten met orde 9% te worden verhoogd. De reductie van stroomsnelheden ten opzichte van de eindsituatie met alleen schuif S8-S9 gesloten wordt hierdoor nog beperker of vervalt zelfs geheel in laatstgenoemde situatie (met name vlak achter de kering).

5.4 Eindsituatie

Ter referentie is tenslotte ook bij een normale eindsituatie (dus alle schuiven geheven) een stroomsnelheidsmeting uitgevoerd, mede omdat in het onderzoek M 1737 bij de eindsituatie geen turbulentie-intensiteit was gemeten. Bij het onderhavige onderzoek werd ondermeer de turbulentie-intensiteit bepaald uit de nader te bespreken spektrale analyse.

De gemeten maximale stroomsnelheden, weergegeven in figuur 10, zijn pas vanaf 225 m uit de as van de kering noemenswaardig kleiner dan bij de situatie met de gesloten schuif S8-S9.
6. Nadere analyse van de meetgegevens

6.1 Ontbinden en filteren van het meetsignaal

Voor het bepalen van de grootte van de loodrechte aanstroming op de randen van de asfaltmastoek-stroken en van de blokkenmatten en de rand van de bodemverdediging is het meetsignaal van de 1,5 uur (model) durende metingen ontbonden in een komponent in x-richting (stroomsnelheid \(u \) evenwijdig aan de as van de stormvloedkering) en een komponent in y-richting (stroomsnelheid \(v \) loodrecht op de as van de stormvloedkering).

\[
\begin{align*}
\text{u}_{\text{pos}} & \quad \text{u}_{\text{neg}} \\
270^\circ & \quad 0^\circ \\
180^\circ & \quad 90^\circ
\end{align*}
\]

Vervolgens is het ontbonden meetsignaal gefilterd met een laagdoorlaatfilter met filterfrequentie 1 Hz (model) of 0,11 Hz (prototype), dat wil zeggen dat alle perioden in het ontbonden meetsignaal < 9s (prototype) buiten beschouwing zijn gelaten. In de figuren 11...16 zijn de maximale stroomsnelheidskomponenten en volledigheidshalve de maximale resultante (ontstaan na het samenstellen van beide komponenten) voor de diverse onderzochte situaties weergegeven in een plattegrond met isolijnen. De maximale stroomsnelheidskomponenten evenwijdig aan de as en loodrecht op de as zijn ook opgenomen in de tabellen 2...7 (\(u_{\text{max}} \) respektievelijk \(v_{\text{max}} \)).

6.2 Vergelijking maximale stroomsnelheidskomponenten

Uit een vergelijking van de figuren 11...13 (gesloten schuif S2-S3, gesloten schuif S4-S5, en gesloten schuif S8-S9) blijkt dat van de oever af naar het midden van de stroomgeul de maximale stroomsnelheid evenwijdig aan de as van de kering toeneemt van 2,7 m/s tot 3,1 m/s en de maximale stroomsnelheid loodrecht op de as van de kering toeneemt van 3,9 m/s tot 4,7 m/s.
De maximale stroomsnelheidscomponenten en maximale resultante voor elke geme-
ten raal uit de figuren 13...16 (gesloten schuif S8-S9, getrapt gesloten, half
gesloten en normale eindsituatie) zijn ter vergelijking samengevat in figuur
17. Uit deze vergelijking blijkt het volgende:
- De situatie getrapt gesloten (dus enkele schuiven ter weerszijden van de
gesloten schuif S8-S9 gedeeltelijk gesloten) reduceert de maximale stroom-
snelheid u tot 2,5 m/s.
- De situatie half gesloten (dus schuiven om de andere gesloten) reduceert de
maximale stroomsnelheid u pas vanaf 150 m uit de as. Tot en met 150 m uit
de as is de situatie getrapt gesloten gunstiger, maar vanaf 225 m uit de as
is de stroomsnelheid u bij half gesloten kleiner.
De maximale stroomsnelheid v is over het gehele gebied afgenomen, doch op
100 m uit de as niet noemenswaardig. Behalve op 100 m uit de as is de
situatie half gesloten ten aanzien van de maximale stroomsnelheid v iets
gunstiger te noemen dan de situatie getrapt gesloten.
- De in de normale eindsituatie optredende stroomsnelheden zijn vanzelfspre-
kend in de richting evenwijdig aan de as aanzienlijk kleiner dan in de
overige onderzochte situaties. In de richting loodrecht op de as is dit
slechts het geval ten opzichte van de situaties gesloten schuif S8-S9 en
getrapt gesloten vanaf circa 225 m uit de as.
Tenslotte dient ook hier te worden opgemerkt dat onder gelijkblijvende getij-
oomstandigheden de stroomsnelheden in de situatie met de schuiven getrap-
gesloten orde 3% en in de situatie met de schuiven om de andere gesloten orde
9% moeten worden verhoogd. Hierdoor neemt de waarde van de stroombeeld
verbeterende maatregelen verder af. Met name achter de kering bij de laatstge-
noemde situatie is dan zelfs geen sprake meer van reduktie van stroomsnelheden
ten opzichte van de eindsituatie met alleen schuif S8-S9 gesloten.

Samenvattend kan worden gekonkludeerd dat als stroombeeld verbeterende maat-
regel ten aanzien van het ongunstige stroombeeld bij de gesloten schuif S8-S9
de situatie getrapt gesloten beter functioneert dan de situatie half gesloten
in een gebied tot 150 m uit de as van de kering en dan met name als reductor
de dwarsnelheden (dus stroomsnelheid u).
Daarentegen is in het gebied vanaf 225 m uit de as de situatie half gesloten
gunstiger.
De reductie van stroomsnelheden ten opzichte van de eindsituatie met alleen schuif S8–S9 gesloten is echter gering of onder gelijkblijvende getijomstandigheden in het geheel niet aanwezig, met name bij de situatie half gesloten vlak achter de kering.

6.3 Spektrale analyse stroomsnelheidscomponenten

Van de 1,5 uurstmetingen zijn, na het onttbinden en filteren van het gehele meetsignaal spektra berekend. In de figuren 18...35 (gesloten schuif S2–S3), de figuren 36...53 (gesloten schuif S4–S5), de figuren 54...71 (gesloten schuif S8–S9), de figuren 72...89 (schuiven getrapt gesloten), de figuren 90...107 (sluitgat half gesloten) en de figuren 108.119 (eindsituatie) zijn deze spektra voor de stroomsnelheid u evenwijdig aan de kering en de stroomsnelheid v loodrecht op de kering weergegeven, alsmede de bijbehorende \(m_0 \)-waarden (\(m_0 = \) nulde orde spektrale moment; \(\sqrt{m_0} \) komt overeen met de standaardafwijking \(\sigma \)).

Om het karakter van het meetsignaal te illustreren is bovendien in genoemde figuren het ontonderde en gefilterde meetaal voor beide stroomsnelheidscomponenten weergegeven. Het afgebeelde meetsignaal strekt zich slechts over een klein deel van de totale meetduur uit (1500 s prototype) en is gekozen ten tijde van de maximale stroomsnelheid u.

Als voorbeeld zal figuur 55 nader worden toegelicht, waarbij het betreffende meetpunt 2 op 100 m ligt uit de as van de kering midden achter de gesloten schuif S8–S9:

Volgens tabel 4 is de maximaal waargenomen stroomsnelheidscomponent \(u_{\text{max}} = -3,104 \) m/s. In figuur 55 is deze piek te zien op het tijdstip 40000 s na het begin van de meting. Tevens is in deze figuur bij de stroomsnelheidscomponent u evenwijdig aan de kering duidelijk de aanwezigheid van de von Kármánse wervelstraat zichtbaar met een periode van circa 227 s, gemeten in het afgebeelde (deel van het) meetsignaal over 1500 s.

Verder is in figuur 55 te zien dat in het spektrum de piekwaarden van de variantie-dichtheid voor de stroomsnelheidscomponenten evenwijdig aan en loodrecht op de kering in het onderhavige meetpunt respectievelijk 290 m²/s en 48 m²/s zijn, welke beide behoren bij een freqwentie van circa 0,0043 Hz of een periode van circa 230 s gemeten over de totale meetduur van 48300 s (13,4 uur).
6.4 Statistische verdeling stroomsnelheid

Met de spektra zijn geen verdere bewerkingen uitgevoerd om te komen tot een statistische verdeling van de stroomsnelheid omdat het twijfelachtig is of voor de lokale maxima de Rayleigh-verdeling van toepassing is (zie verder de bijlage). Bekende relaties over de statistische verdeling van de lokale maxima gaan uit van een Rayleigh-verdeling, zoals bijvoorbeeld het geval is met oppervlaktegolven.

Er is daarom ook geen schatting gemaakt van bijvoorbeeld de 1% overschrijdingswaarden, uitgaande van de gemiddelde stroomsnelheid en het gemiddelde van toppen en dalen in de meetregistratie. In dit verslag is volstaan met het, naast de gegeven spektra, presenteren van de tabellen 2...7, waarin behalve de gemeten maximale stroomsnelheidscomponenten u_{max} en v_{max} ook zijn opgenomen (zie ook de definitieschets):

- de gemiddelde stroomsnelheden (\bar{u} en \bar{v}) met standaardafwijking (σ_u en σ_v)
- de gemiddelde stroomsnelheden (\bar{u} en \bar{v}) met standaardafwijking (σ_u en σ_v)
- de gemiddelde periodetijd (T_u en T_v) met standaardafwijking (σ_{T_u} en σ_{T_v})

Betreffende de gepresenteerde spektra kan wel worden opgemerkt dat in het algemeen het spektrum in het gebied van de von Kármánse wervels een smalle band vertoont en de piekfrekwentie overeenkomt met de theoretische frekwentie van die wervels (zie paragraaf 6.3). Daarentegen is in het gebied daar buiten en met name ook in de eindsituatie (geen von Kármánse wervels) het spektrum breder en varieert de piekfrekwentie tussen circa 0,0001 Hz en 0,0080 Hz.
<table>
<thead>
<tr>
<th>situatie</th>
<th>debiet Q (m³/s)</th>
<th>beneden-waterstand (m)</th>
<th>verval ΔH (m)</th>
<th>t.o.v. benedenwaterstand</th>
<th>t.o.v. N.A.P.</th>
</tr>
</thead>
<tbody>
<tr>
<td>normale eindsituatie</td>
<td>16.100</td>
<td>-0,70</td>
<td>1,48</td>
<td>3192 2989 0,94</td>
<td>3634 3403</td>
</tr>
<tr>
<td>schuif S2-S3 gesloten</td>
<td>16.100</td>
<td>-0,70</td>
<td>1,67</td>
<td>3042 2814 0,93</td>
<td>3456 3198</td>
</tr>
<tr>
<td>schuif S4-S5 gesloten</td>
<td>16.100</td>
<td>-0,70</td>
<td>1,68</td>
<td>3002 2806 0,93</td>
<td>3417 3193</td>
</tr>
<tr>
<td>schuif S8-S9 gesloten</td>
<td>16.100</td>
<td>-0,70</td>
<td>1,72</td>
<td>2923 2773 0,95</td>
<td>3338 3166</td>
</tr>
<tr>
<td>schuiven getrapt gesloten</td>
<td>13.730</td>
<td>-0,70</td>
<td>1,72</td>
<td>2514 2365 0,94</td>
<td>2818 2651</td>
</tr>
<tr>
<td>sluittag half gesloten</td>
<td>8.470</td>
<td>-0,70</td>
<td>1,70</td>
<td>1596 1467 0,92</td>
<td>1817 1670</td>
</tr>
<tr>
<td>normale eindsituatie</td>
<td>16.100</td>
<td>-0,70</td>
<td>1,50</td>
<td>3192 2969 0,93</td>
<td>3634 3380</td>
</tr>
</tbody>
</table>

Tabel 1 Berekening effektieve doorstroomoppervlakte en afvoerkoëfficiënt
<table>
<thead>
<tr>
<th>meet-</th>
<th>stroomsnelheid in x-richting</th>
<th>stroomsnelheid in y-richting</th>
</tr>
</thead>
<tbody>
<tr>
<td>punt</td>
<td>u_{max} (m/s)</td>
<td>\bar{u} (m/s)</td>
</tr>
<tr>
<td>1</td>
<td>-1,336</td>
<td>-0,428</td>
</tr>
<tr>
<td>2</td>
<td>-2,662</td>
<td>-0,472</td>
</tr>
<tr>
<td>3</td>
<td>1,811</td>
<td>0,340</td>
</tr>
<tr>
<td>4</td>
<td>2,367</td>
<td>-0,917</td>
</tr>
<tr>
<td>5</td>
<td>-1,062</td>
<td>-0,305</td>
</tr>
<tr>
<td>6</td>
<td>-2,543</td>
<td>-1,128</td>
</tr>
<tr>
<td>7</td>
<td>-2,594</td>
<td>-0,493</td>
</tr>
<tr>
<td>8</td>
<td>1,659</td>
<td>-0,161</td>
</tr>
<tr>
<td>9</td>
<td>0,742</td>
<td>-0,141</td>
</tr>
<tr>
<td>10</td>
<td>-1,223</td>
<td>-0,116</td>
</tr>
<tr>
<td>11</td>
<td>-1,665</td>
<td>-0,083</td>
</tr>
<tr>
<td>12</td>
<td>-1,617</td>
<td>-0,183</td>
</tr>
<tr>
<td>13</td>
<td>1,405</td>
<td>0,163</td>
</tr>
<tr>
<td>14</td>
<td>-1,181</td>
<td>0,040</td>
</tr>
<tr>
<td>15</td>
<td>1,235</td>
<td>0,319</td>
</tr>
<tr>
<td>16</td>
<td>1,124</td>
<td>0,358</td>
</tr>
<tr>
<td>17</td>
<td>1,238</td>
<td>0,442</td>
</tr>
<tr>
<td>18</td>
<td>0,650</td>
<td>0,191</td>
</tr>
</tbody>
</table>

Tabel 2 Stroomgegevens 2,0 m boven bodem; Gesloten schuif S2-S3
<table>
<thead>
<tr>
<th>meetpunt</th>
<th>stroomsnelheid in x-richting</th>
<th>stroomsnelheid in y-richting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>u_{max} (m/s)</td>
<td>\overline{u} (m/s)</td>
</tr>
<tr>
<td>1</td>
<td>-2,302</td>
<td>-0,692</td>
</tr>
<tr>
<td>2</td>
<td>2,749</td>
<td>0,192</td>
</tr>
<tr>
<td>3</td>
<td>2,559</td>
<td>0,038</td>
</tr>
<tr>
<td>4</td>
<td>-2,528</td>
<td>-0,912</td>
</tr>
<tr>
<td>5</td>
<td>-2,351</td>
<td>-0,882</td>
</tr>
<tr>
<td>6</td>
<td>-2,353</td>
<td>-0,400</td>
</tr>
<tr>
<td>7</td>
<td>2,174</td>
<td>0,273</td>
</tr>
<tr>
<td>8</td>
<td>1,848</td>
<td>0,137</td>
</tr>
<tr>
<td>9</td>
<td>-2,059</td>
<td>-0,591</td>
</tr>
<tr>
<td>10</td>
<td>2,188</td>
<td>-0,194</td>
</tr>
<tr>
<td>11</td>
<td>2,207</td>
<td>0,368</td>
</tr>
<tr>
<td>12</td>
<td>-1,472</td>
<td>0,134</td>
</tr>
<tr>
<td>13</td>
<td>2,027</td>
<td>0,223</td>
</tr>
<tr>
<td>14</td>
<td>2,026</td>
<td>0,136</td>
</tr>
<tr>
<td>15</td>
<td>1,639</td>
<td>0,299</td>
</tr>
<tr>
<td>16</td>
<td>1,921</td>
<td>0,280</td>
</tr>
<tr>
<td>17</td>
<td>1,701</td>
<td>0,304</td>
</tr>
<tr>
<td>18</td>
<td>1,480</td>
<td>0,244</td>
</tr>
</tbody>
</table>

Tabel 3 Stroomgegevens 2,0 boven bodem; Gesloten schuif S4-S5
<table>
<thead>
<tr>
<th>meetpunt</th>
<th>stroomsnelheid in x-richting</th>
<th>stroomsnelheid in y-richting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>u_{max} (m/s)</td>
<td>\bar{u} (m/s)</td>
</tr>
<tr>
<td>1</td>
<td>-3,054</td>
<td>-0,586</td>
</tr>
<tr>
<td>2</td>
<td>-3,104</td>
<td>0,226</td>
</tr>
<tr>
<td>3</td>
<td>2,571</td>
<td>0,468</td>
</tr>
<tr>
<td>4</td>
<td>-2,510</td>
<td>-0,807</td>
</tr>
<tr>
<td>5</td>
<td>-3,169</td>
<td>-0,484</td>
</tr>
<tr>
<td>6</td>
<td>2,673</td>
<td>0,106</td>
</tr>
<tr>
<td>7</td>
<td>2,327</td>
<td>0,290</td>
</tr>
<tr>
<td>8</td>
<td>-1,670</td>
<td>-0,103</td>
</tr>
<tr>
<td>9</td>
<td>-2,500</td>
<td>0,061</td>
</tr>
<tr>
<td>10</td>
<td>2,374</td>
<td>0,141</td>
</tr>
<tr>
<td>11</td>
<td>2,757</td>
<td>0,629</td>
</tr>
<tr>
<td>12</td>
<td>-1,536</td>
<td>0,156</td>
</tr>
<tr>
<td>13</td>
<td>1,819</td>
<td>0,214</td>
</tr>
<tr>
<td>14</td>
<td>1,699</td>
<td>0,222</td>
</tr>
<tr>
<td>15</td>
<td>1,756</td>
<td>0,286</td>
</tr>
<tr>
<td>16</td>
<td>1,569</td>
<td>0,203</td>
</tr>
<tr>
<td>17</td>
<td>1,607</td>
<td>0,273</td>
</tr>
<tr>
<td>18</td>
<td>1,375</td>
<td>0,047</td>
</tr>
</tbody>
</table>

Tabel 4 Stroomgegevens 2,0 m boven bodem; Gesloten schuif S8-S9
<table>
<thead>
<tr>
<th>meetpunt</th>
<th>stroomsnelheid in x-richting</th>
<th>stroomsnelheid in y-richting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>u_{max}</td>
<td>\bar{u}</td>
</tr>
<tr>
<td></td>
<td>(m/s)</td>
<td>(m/s)</td>
</tr>
<tr>
<td>1</td>
<td>-1,704</td>
<td>-0,196</td>
</tr>
<tr>
<td>2</td>
<td>1,988</td>
<td>-0,015</td>
</tr>
<tr>
<td>3</td>
<td>-1,338</td>
<td>-0,264</td>
</tr>
<tr>
<td>4</td>
<td>-2,522</td>
<td>-0,070</td>
</tr>
<tr>
<td>5</td>
<td>-1,655</td>
<td>-0,261</td>
</tr>
<tr>
<td>6</td>
<td>-1,539</td>
<td>-0,319</td>
</tr>
<tr>
<td>7</td>
<td>2,036</td>
<td>0,319</td>
</tr>
<tr>
<td>8</td>
<td>-1,705</td>
<td>-0,132</td>
</tr>
<tr>
<td>9</td>
<td>-2,043</td>
<td>-0,102</td>
</tr>
<tr>
<td>10</td>
<td>2,352</td>
<td>0,250</td>
</tr>
<tr>
<td>11</td>
<td>2,072</td>
<td>0,581</td>
</tr>
<tr>
<td>12</td>
<td>1,513</td>
<td>0,373</td>
</tr>
<tr>
<td>13</td>
<td>2,061</td>
<td>0,204</td>
</tr>
<tr>
<td>14</td>
<td>1,537</td>
<td>0,570</td>
</tr>
<tr>
<td>15</td>
<td>1,591</td>
<td>0,314</td>
</tr>
<tr>
<td>16</td>
<td>1,523</td>
<td>0,421</td>
</tr>
<tr>
<td>17</td>
<td>1,625</td>
<td>0,321</td>
</tr>
<tr>
<td>18</td>
<td>1,435</td>
<td>0,222</td>
</tr>
</tbody>
</table>

Tabel 5 Stroomgegevens 2,0 m boven bodem; Schuiven ter weerszijden gesloten schuif S8-S9 getrapt gesloten
meetpunt	stroomsnelheid in x-richting				stroomsnelheid in y-richting									
	u_{max} (m/s)	\bar{u} (m/s)	σ_u (m/s)	\bar{u} (m/s)	σ_u (m/s)	$-T_u$ (s)	σ_{T_u} (s)	v_{max} (m/s)	\bar{v} (m/s)	σ_v (m/s)	\bar{v} (m/s)	σ_v (m/s)	$-T_v$ (s)	σ_{T_v} (s)
1	-2,719	-0,417	0,659	0,560	0,800	105	98	-3,830	-0,726	0,881	0,918	0,950	237	252
2	2,447	0,210	0,595	0,755	0,622	158	105	2,782	0,761	0,552	0,433	0,930	72	78
3	3,185	0,620	0,825	0,758	1,057	112	117	-4,009	-1,057	0,901	0,743	1,381	90	101
4	-2,012	0,029	0,638	0,771	0,537	115	78	-4,458	-2,028	0,848	0,788	2,166	50	44
5	-2,616	0,091	0,614	0,749	0,649	236	207	-3,336	-0,416	0,673	0,453	0,793	99	138
6	2,743	0,419	0,600	0,471	0,749	93	109	-3,221	-0,665	0,679	0,774	0,824	284	356
7	2,764	0,617	0,662	0,563	0,918	81	74	-3,364	-0,768	0,745	0,626	1,106	86	83
8	2,180	0,204	0,697	0,856	0,675	159	121	-3,530	-0,929	0,680	0,598	1,162	74	69
9	1,940	0,303	0,407	0,421	0,497	119	87	-2,461	-0,747	0,435	0,375	0,891	92	89
10	2,022	0,358	0,429	0,447	0,539	117	83	-2,657	-0,782	0,424	0,362	0,894	83	79
11	1,988	0,301	0,505	0,554	0,545	117	80	-2,491	-0,727	0,432	0,379	0,858	83	76
12	1,821	0,237	0,471	0,544	0,460	133	82	-2,726	-0,663	0,399	0,349	0,786	87	81
13	1,602	0,253	0,376	0,416	0,408	130	85	-2,322	-0,869	0,359	0,297	0,941	93	97
14	-1,714	0,183	0,383	0,455	0,380	157	101	-2,365	-0,813	0,342	0,286	0,898	95	102
15	1,317	0,271	0,253	0,256	0,355	143	122	-1,786	-0,723	0,292	0,228	0,786	105	116
16	1,275	0,093	0,309	0,338	0,293	164	118	-1,914	-0,812	0,292	0,228	0,854	107	126
17	1,055	0,183	0,219	0,216	0,258	151	126	-1,944	-0,845	0,226	0,163	0,867	92	112
18	0,959	0,121	0,241	0,252	0,236	181	166	-1,720	-0,826	0,231	0,171	0,842	106	133

Tabel 6 Stroomgegevens 2,0 m boven bodem; Schuiven om de andere gesloten (sluitgat half gesloten)
<table>
<thead>
<tr>
<th>meetpunt</th>
<th>stroomnelheid in x-richting</th>
<th>stroomnelheid in y-richting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>u_{max} (m/s)</td>
<td>\bar{u} (m/s)</td>
</tr>
<tr>
<td>1</td>
<td>0,973</td>
<td>0,038</td>
</tr>
<tr>
<td>2</td>
<td>-1,120</td>
<td>-0,138</td>
</tr>
<tr>
<td>3</td>
<td>1,788</td>
<td>0,671</td>
</tr>
<tr>
<td>4</td>
<td>0,737</td>
<td>0,087</td>
</tr>
<tr>
<td>5</td>
<td>1,110</td>
<td>0,130</td>
</tr>
<tr>
<td>6</td>
<td>-1,161</td>
<td>0,094</td>
</tr>
<tr>
<td>7</td>
<td>0,885</td>
<td>0,143</td>
</tr>
<tr>
<td>8</td>
<td>0,920</td>
<td>0,177</td>
</tr>
<tr>
<td>9</td>
<td>0,665</td>
<td>0,130</td>
</tr>
<tr>
<td>10</td>
<td>0,851</td>
<td>0,172</td>
</tr>
<tr>
<td>11</td>
<td>0,632</td>
<td>0,219</td>
</tr>
<tr>
<td>12</td>
<td>0,669</td>
<td>0,014</td>
</tr>
</tbody>
</table>

Tabel 7 Stroomgegevens 2,0 m boven bodem; Eindsituatie (alle schuiven geheven)
OVERZICHT VAN HET MODELGEBIED

WATERLOOPKUNDIG LABORATORIUM

SCHAAL 1: 50.000

M 1945 FIG. 1
Waterloopkundig laboratorium

Meetschema, orienterend onderzoek

--- 550 m
--- 400 m
--- 300 m
--- 225 m
--- 150 m
--- 100 m

Schaar

M 1945

Fig. 3

S1 S2 S3 S4 S5 S6
S7 S8 S9 S10 S11 S12

Gesloten schuif S2-S3
Gesloten schuif S4-S5
Gesloten schuif S8-S9
GEMETEN MAXIMALE STROOMSNELHEDEN
2,0 m BOVEN BODEM
SCHAAR EB
GESLOTEN SCHUIF S2-S3
WATERLOOPKUNDIG LABORATORIUM
M 1945 FIG. 5
GEMETEN MAXIMALE STROOMSnelheden
2,0 m BOVEN BODEM

SCHAAR | EB
GESLOTEN SCHUIF S4-S5

WATERLOOPKUNDIG LABORATORIUM

M 1945 FIG. 6
GEMETEN MAXIMALE STROOMSNELHEDEN
2,0 m BOVEN BODEM

SCHaar | EB
HALF GESLOTEN

WATERLOOPKUNDIG LABORATORIUM

M 1945 | FIG. 9
stroomsnelheden in m/s 2,0m boven bodem

MAXIMALE STROOMSNELHEIDSKOMPONENTEN EN
MAXIMALE RESULTANTE MET ISOLIJNEN

WATERLOOPKUNDIG LABORATORIUM

SCHAAR | EB
GESLOTEN SCHUIF S4-S5

M 1945 | FIG. 12
stroomsnelheden in m/s 2,0 m boven bodem

MAXIMALE STROOMSNELHEIDSKOMPONENTEN EN MAXIMALE RESULTANTE MET ISOLIJNEN

WATERLOOPKUNDIG LABORATORIUM

SCHAAR | EB
GETRAPT GESLOTEN
M 1945 | FIG. 14
MAXIMALE STROOMSNELHEIDSKOMPONENTEN EN MAXIMALE RESULTANTE MET ISOLIJNEN

WATERLOOPKUNDIG LABORATORIUM

SCHAAR EB EINDSITUATIE

M 1945 FIG. 16

stroomsnelheden in m/s 2,0 m boven bodem
VERGELIJKING MAXIMALE STROOMSNELHEIDS-KOMPONENTEN EN MAXIMALE RESULTANTE

stroomsnelheden in m/s 2,0 m boven bodem
gelijk blijvende getijomstandigheden

N.B. vergelijking bij konstant verval (exclusief eindsituatie), dus niet bij werkelijk

eindsituatie

eindsituatie

eindsituatie

SCHaar EB

WATERLOOPKUNDIG LABORATORIUM

m 1945 FIG. 17
Stroomnelheidskomponent U // kering (monster)

Stroomnelheidskomponent V ⊥ kering (monster)

Max waarde: 2 (m²/s)
Max waarde: 82 (m²/s)

Spectrum U: $M_0 = 0.05$ (m²/s²)
Spectrum V: $M_0 = 0.42$ (m²/s²)

Ontbonden en gefilterd meetsignaal met spectrale analyse totale meetduur

Waterloopkundig Laboratorium

Schaar Punt 1

Schuif S2 - S3

M 1945 FIG. 18
STROOMSNELHEIDSKOMPONENT U // KERING

MAX WAARDE: 60 (M2/S)

SPEKTRUM U : M0 = 0.27 (M2/S2)

SCHAUVER DEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR
WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 2

SCHUIF S2 - S3

M 1945 FIG. 19
SCHUIF S2 - S3
M 1945 FIG. 20
ONTBONDEN EN GEFILTERD MEETSIGNAAL MET SPEKTRALE ANALYSE TOTALE MEETDUUR

SCHUIF S2 - S3

WATERLOOPKUNDIG LABORATORIUM

M 1945 FIG. 21
Grafiek 1: Stroomsnelheidskomponent U // KERING (MONSTER)

Grafiek 2: Stroomsnelheidskomponent V ⊥ KERING (MONSTER)

Ontbonden en gefilterd meetsignaal met spektrale analyse totale meetduur

Spectrum U: MO = 0.03 (M²/S²)

Spectrum V: MO = 0.08 (M²/S²)

Waterloopkundig Laboratorium

Schaar punt 5
Schuif S2 - S3

M 1945 Fig. 22
Stroomstabiliteitkomponent $U \parallel$ KERING (MONSTER)

Stroomstabiliteitkomponent $V \perp$ KERING (MONSTER)

Max waarde: 30 (M2/S)

Max waarde: 40 (M2/S)

Spektrum $U : M_0 = 0.21$ (M2/S2)

Spektrum $V : M_0 = 0.33$ (M2/S2)

Ontbonden en gefilterd meetsignaal
Met spectrale analyse totale meetduur

Waterloopkundig Laboratorium

Schaar Punt 6

Schuif S2 - S3

M 1945 Fig. 23
STROOMSNELHEIDSKOMPONENT U // KERING (MONSTER)

STROOMSNELHEIDSKOMPONENT V ⊥ KERING (MONSTER)

MAX WAARDE: 88 (M2/S)

MAX WAARDE: 59 (M2/S)

VARIANTIE-DICHTE (-)

FREKENWIE (Hz)

SPEKTRUM U : M0 = 0.50 (M2/S2)

SPEKTRUM V : M0 = 0.24 (M2/S2)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 7
SCHUIF S2 - S3
M 1945 FIG. 24
STROOMSNELHEIDSKOMPONENT U // KERING (MONSTER)

STROOMSNELHEIDSKOMPONENT V ⊥ KERING (MONSTER)

MAX WAARDE: 18 (M2/S)

VARIANTIE-DICHTE (.)

0.00 0.01 0.02 0.03 0.04 0.05
FREKWENTIE (Hz)

SPEKTRUM U: M0 = 0.13 (M2/S)

MAX WAARDE: 60 (M2/S)

VARIANTIE-DICHTE (.)

0.00 0.01 0.02 0.03 0.04 0.05
FREKWENTIE (Hz)

SPEKTRUM V: M0 = 0.43 (M2/S)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE METEEDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 8

SCHUIF S2 - S3

M 1945 FIG. 25
STROOMSNELHEIDS COMPONENT U // KERING (MONSTER)

STROOMSNELHEIDS COMPONENT V ⊥ KERING (MONSTER)

MAX WAARDE: 5 (M²/S)

MAX WAARDE: 4 (M²/S)

SPEKTRUM U : M₀ = 0.02 (M²/S²)

SPEKTRUM V : M₀ = 0.02 (M²/S²)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR
WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 9
SCHUIF S2 - S3
M 1945 FIG. 26
ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

SCHAAR PUNT 10
SCHUIF S2 - S3
WATERLOOPKUNDIG LABORATORIUM

M 1945 FIG. 27
Stroomsnelheidscomponent U // KERING (MONSTER)

Stroomsnelheidscomponent V ⊥ KERING (MONSTER)

Max waarde: 46 (m2/s)
Max waarde: 21 (m2/s)

Spectrum U: M0 = 0.19 (m2/s2)
Spectrum V: M0 = 0.15 (m2/s2)

Ontbonden en gefilterd meetsignaal
Met spektraal analyse totale meetduur

Waterloopkundig Laboratorium

Schaar Punt 11
Schuif S2 - S3

M 1945 Fig. 28
ONTBONDEN EN GEFILTERD MEETSIGNAAL MET SPEKTRALE ANALYSE TOTALE MEETDUUR

SCHURF S2 - S3

WATERLOOPKUNDIG LABORATORIUM

M 1945 FIG. 29
STROOMSnelHEIDSKOMPONENT U // KERING (MONSTER)

STROOMSnelHEIDSKOMPONENT V ⊥ KERING (MONSTER)

MAX WAARDE: 20 (M2/S)

MAX WAARDE: 14 (M2/S)

SPEKTRUM U : M0 = 0.12 (M2/S2)

SPEKTRUM V : M0 = 0.10 (M2/S2)

ONTBONDEN EN GEFILTERD MEETSIGNAAL MET SPEKTRALE ANALYSE TOTALE MEETDUUR

SCHAAR PUNT 13

SCHUIF S2 - S3

WATERLOOPKUNDIG LABORATORIUM

M 1945 FIG. 30
Stroomsneldelskomponent U // kering (monster)

Stroomsneldelskomponent V ⊥ kering (monster)

Max waarde: 6 (m²/s)

Spectrum U: M₀ = 0.06 (m²/s²)

Spectrum V: M₀ = 0.07 (m²/s²)

Ontbonden en gefilterd meetsignaal
Met spectrale analyse totale meetduur

Waterloopkundig Laboratorium

Schaar Punt 14

Schuif S2 - S3

M 1945 Fig. 31
STROOMSNELHEIDSKOMPONENT U // KERING

STROOMSNELHEIDSKOMPONENT V ⊥ KERING

MAX WAARDE: 10 (M²/S²)

MAX WAARDE: 9 (M²/S²)

SPEKTRUM U : M₀ = 0.07 (M²/S²)

SPEKTRUM V : M₀ = 0.06 (M²/S²)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

SCHAAR PUNT 15
SCHUIF S2 - S3

WATERLOOPKUNDIG LABORATORIUM

M 1945 FIG. 32
STROOMSNELHEIDSKOMPONENT U // KERING (MONSTER)

STROOMSNELHEIDSKOMPONENT V ⊥ KERING (MONSTER)

MAX WAARDE: 3 (M2/S)

VARIANTIE-DICHTE (−)

FREkwENTIE (Hz)

SPEKTRUM U : M0 = 0.04 (M2/S2)

SPEKTRUM V : M0 = 0.05 (M2/S2)

ONTBONDEN EN GEFILTERD MEETSIGNAAL MET SPEKTrale ANALYSE TOTALE MEETDUUR

SCHAAR PUNT 16

SCHUIF S2 - S3

WATERLOOPKUNDIG LABORATORIUM

M 1945 FIG. 33
STROOMSNEELHEIDSKOMPONENT U // KERING (MONSTER)

STROOMSNEELHEIDSKOMPONENT V ⊥ KERING (MONSTER)

MAX WAARDE: 6 (M2/S)

MAX WAARDE: 4 (M2/S)

SPEKTRUM U : M0 = 0.04 (M2/S2)

SPEKTRUM V : M0 = 0.04 (M2/S2)

ONTBONDEN EN GEFILTERD MEETSIGAAL
MET SPECTRALE ANALYSE TOTALE MEETDUUR

SCHAAR PUNT 17
SCHUIF S2 - S3
WATERLOOPKUNDIG LABORATORIUM
M 1945 FIG. 34
STROOMSNELHEIDSKOMPONENT U // KERING

STROOMSNELHEIDSKOMPONENT V ⊥ KERING

MAX WAARDE: 1 (M2/S)

MAX WAARDE: 3 (M2/S)

SPEKTRUM U : M0 = 0.01 (M2/S)

SPEKTRUM V : M0 = 0.04 (M2/S)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

SCHAAF PUNT 18
SCHUIF S2 - S3

WATERLOOPKUNDIG LABORATORIUM

M 1945 FIG. 35
STROOMSNELHEIDSKOMPONENT U // KERING (MONSTER)

STROOMSNELHEIDSKOMPONENT V ⊥ KERING (MONSTER)

MAX WAARDE: 33 (M2/S)

MAX WAARDE: 67 (M2/S)

ONTBONDEN EN GEFILTERD MEETSIGNAAL MET SPEKTRALE ANALYSE TOTALE MEETDUUR

SCHaar PUNT 1
SCHUIF S4 - S5
M 1945 FIG. 36
STROOMSNELHEIDSKOMPONENT U // KERING (MONSTER)

STROOMSNELHEIDSKOMPONENT V ⊥ KERING (MONSTER)

MAX WAARDE: 178 (M2/S)

MAX WAARDE: 53 (M2/S)

SPEKTRUM U : MO = 0.65 (M2/S2)

SPEKTRUM V : MO = 0.23 (M2/S2)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR | PUNT 2
SCHUIF S4 - S5
M 1945 | FIG. 37
STROOMSNELHEIDSKOMPONENT U // KERING (MONSTER)

STROOMSNELHEIDSKOMPONENT V ⊥ KERING (MONSTER)

MAX WAARDE: 24 (M2/S)

MAX WAARDE: 88 (M2/S)

SPEKTRUM U : MO = 0.16 (M2/S²)

SPEKTRUM V : MO = 0.52 (M2/S²)

ONTBONDEN EN GEFILTERD MEETSIGNAAL MET SPEKTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR | PUNT 4
SCHUIF S4 - S5

M 1945 | FIG. 39
ONTBONDEN EN GEFILTERD MEETSIGAAL
MET SPEKTRALE ANALYSE TOTALE METEUDUUR
WATERLOOPKUNDIG LABORATORIUM

SCHAAR | PUNT 5
SCHUIF S4 - S5
M 1945 | FIG. 40
STROOMSnelheidskomponent U // KERING (MONSTER)

STROOMSnelheidskomponent V ⊥ KERING (MONSTER)

MAX WAARDE: 87 (m²/s)

MAX WAARDE: 47 (m²/s)

SPEKTRUM U : M₀ = 0.40 (m²/s²)

SPEKTRUM V : M₀ = 0.25 (m²/s²)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 6

SCHUIF S4 - S5

M 1945 FIG. 41
STROOMSNELHEIDSKOMPONENT U // KERING (MONSTER)

STROOMSNELHEIDSKOMPONENT V ⊥ KERING (MONSTER)

MAX WAARDE: 98 (M2/S)

MAX WAARDE: 59 (M2/S)

VARIANTIE-DICHTE (\(-\))

FREKVENTIE (Hz)

SPEKTRUM U : M0 = 0.40 (M2/S2)

SPEKTRUM V : M0 = 0.33 (M2/S2)

ONTBONDEN EN GEFILTERD MEETSIGNAAL MET SPEKTRALE ANALYSE TOTALE METEUDUUR

SCHAAR PUNT 7

SCHUIF S4 - S5

WATERLOOPKUNDIG LABORATORIUM

M 1945 FIG. 42
STROOMSNELHEIDSKOMPONENT U // KERING (MONSTER)

STROOMSNELHEIDSKOMPONENT V ⊥ KERING (MONSTER)

MAX WAARDE: 66 (M2/S)

VARIANTIE-DICHTE (-)

SPEKTRUM U : M0 = 0.24 (M2/S2)

VARIANTIE-DICHTE (-)

SPEKTRUM V : M0 = 0.34 (M2/S2)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR
WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 8
SCHUIF S4 - S5
M 1945 FIG. 43
STROOMSnelheidskomponent U // KERING

STROOMSnelheidskomponent V ⊥ KERING

Max waarde: 36 (M²/s)

Max waarde: 33 (M²/s)

Ontbonden en gefilterd meetsignal
Mete spektrale analyse totale meetduur

Waterloopkundig laboratorium

Schaar

Punt 9

Schuif S4 - S5

M 1945

Fig. 44
ONTBONDEN EN GEFILTERD MEETSIGNAAL MET SPEKTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 10
SCHUIF S4 - S5
M 1945 FIG. 45
STROOMSnelheidskomponent U // kering

STROOMSnelheidskomponent V \perp kering

Max waarde: 88 (m²/s)

Max waarde: 25 (m²/s)

Spektrum U: M₀ = 0.28 (m²/s²)

Spektrum V: M₀ = 0.15 (m²/s²)

Ontbonden en gefilterd meessignaal
Met spektraal analyse totale meetduur

Waterloopkundig laboratorium

Schaar Punt 11

Schuif S4 - S5

M 1945 Fig. 46
STROOMSNEELHEIDSKOMPONENT U // KERING (MONSTER)

STROOMSNEELHEIDSKOMPONENT V ⊥ KERING (MONSTER)

MAX WAARDE: 61 (M2/S)

MAX WAARDE: 51 (M2/S)

SPEKTRUM U : M0 = 0.21 (M2/S2)

SPEKTRUM V : M0 = 0.25 (M2/S2)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM
STROOMSNELHEIDSKOMPONENT U // KERING

STROOMSNELHEIDSKOMPONENT V ⊥ KERING

MAX WAARDE: 75 (M^2/S)

MAX WAARDE: 29 (M^2/S)

ONTBONDEN EN GEFILTERD MEETSIGNAAL MET SPEKTRALE ANALYSE TOTALE MEETDUUR

SCHAAR PUNT 13
SCHUIF S4 - S5
WATERLOOPKUNDIG LABORATORIUM
M 1945 FIG. 48
STROOMSnelheidskomponent U // KERING

STROOMSnelheidskomponent V ⊥ KERING

MAX WAARDE: 61 (M2/S)

MAX WAARDE: 46 (M2/S)

SPEKTRUM U : M0 = 0.24 (M2/S2)

SPEKTRUM V : M0 = 0.22 (M2/S2)

ONTBONDEN EN GEFILTERD MEETSIGNAAL MET SPEKTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR

PUNT 14

SCHUIF S4 - S5

M 1945

FIG. 49
STROOMSnelheidskomponent U // KERING (MONSTER)

STROOMSnelheidskomponent V ⊥ KERING (MONSTER)

MAX WAARDE: 17 (M2/S)

MAX WAARDE: 38 (M2/S)

VARIANTIE-DICHtheid (−)

FREkwentie (Hz)

FREkwentie (Hz)

SPEkTRUM U : M0 = 0.10 (M2/S2)

SPEkTRUM V : M0 = 0.18 (M2/S2)

ONTBONDEN EN GEFILTERD MEETSIGNAAL MET SPEKTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 15

SCHUIF S4 - S5

M 1945 FIG. 50
STROOMSNELHEIDSKOMPONENT U // KERING (MONSTER)

STROOMSNELHEIDSMETHODE V ⊥ KERING (MONSTER)

MAX WAARDE: 57 (M2/S2)

MAX WAARDE: 24 (M2/S2)

VARIANTIE-DICHTHEID (-)

SPEKTRUM U : M0 = 0.21 (M2/S2)

SPEKTRUM V : M0 = 0.12 (M2/S2)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPECTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 16
SCHUIF S4 - S5
M 1945 FIG. 51
STROOMSnelheidskomponent U // KERING (MONSTER)

STROOMSnelheidskomponent V ⊥ KERING (MONSTER)

MAX WAARDE: 32 (M2/S)

MAX WAARDE: 13 (M2/S)

SPEKTRUM U : M0 = 0.12 (M2/S2)

SPEKTRUM V : M0 = 0.09 (M2/S2)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE METAALDUUR

SCHAAR PUNT 17
SCHUIF S4 - S5

WATERLOOPKUNDIG LABORATORIUM M 1945 FIG. 52
ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPECTRALE ANALYSE TOTALE MEETDUUR

SCHAAR PUNT 18
SCHUIF S4 - S5
M 1945 FIG. 53
STROOMSNELHEIDSKOMPONENT U // KERING

STROOMSNELHEIDSKOMPONENT V ⊥ KERING

MAX WAARDE: 139 (M2/S)

MAX WAARDE: 157 (M2/S)

SPEKTRUM U : M0 = 0.55 (M2/S2)

SPEKTRUM V : M0 = 0.80 (M2/S2)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 1

SCHUIF S8 - S9

M 1945 FIG. 54
SPEKTRUM U : M₀ = 0.79 (M²/S²)
SPEKTRUM V : M₀ = 0.34 (M²/S²)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE Meetduur

WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 2
SCHUIF S8 - S9

M 1945 FIG. 55
STROOMSnelheidskomponent U // KERING

STROOMSnelheidskomponent V ⊥ KERING

MAX WAARDE: 62 (M²/S)

MAX WAARDE: 104 (M²/S)

SPEKTRUM U : M₀ = 0.35 (M²/S²)

SPEKTRUM V : M₀ = 0.73 (M²/S²)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 3
SCHUIF S8 - S9

M 1945 FIG. 56
STROOMSnelheidskomponent U // KERING (MONSTER)

STROOMSnelheidskomponent V ⊥ KERING (MONSTER)

MAX WAARDE: 83 (M2/S)

MAX WAARDE: 95 (M2/S)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

SCHAAR PUNT 4
SCHUIF S8 - S9

WATERLOOPKUNDIG LABORATORIUM
M 1945 FIG. 57
STROOMSnelheidskomponent U // KERING (MONSTER)

STROOMSnelheidskomponent V ⊥ KERING (MONSTER)

MAX WAARDE: 172 (M2/S)

MAX WAARDE: 88 (M2/S)

SPEKTRUM U : M0 = 0.65 (M2/S2)

SPEKTRUM V : M0 = 0.55 (M2/S2)

ONTBONDEN EN GEFILTERD MEETSIGNAAL MET SPEKTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 5
SCHUIF S8 - S9

M 1945 FIG. 58
STROOMSnelheidskomponent U // KERING (MONSTER)

STROOMSnelheidskomponent V ⊥ KERING (MONSTER)

MAX WAARDE: 205 (M2/S2)

MAX WAARDE: 99 (M2/S2)

ONTBONDEN EN GEFILTERD MEETSIkNAAL
MET SPEKTRALE ANALYSE TOTALE METEDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 6
SCHUIF S8 - S9
M 1945 FIG. 59
STROOMSNELHEIDSKOMPONENT U // KERING (MONSTER)

STROOMSNELHEIDSKOMPONENT V ⊥ KERING (MONSTER)

MAX WAARDE: 90 (M2/S)

MAX WAARDE: 107 (M2/S)

SPEKTRUM U : MO = 0.43 (M2/62)

SPEKTRUM V : MO = 0.86 (M2/62)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

SCHAAR PUNT 7
SCHUIF S8 - S9
WATERLOOPKUNDIG LABORATORIUM
M 1945 FIG. 60
STROOMSnelheidskomponent U // KERING (MONSTER)

STROOMSnelheidskomponent V ⊥ KERING (MONSTER)

MAX WAARDE: 20 (M2/S)

MAX WAARDE: 182 (M2/S)

SPEKTRUM U : $M_0 = 0.16$ (M2/S2)

SPEKTRUM V : $M_0 = 0.77$ (M2/S2)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE METTUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 8

SCHUIF S8 – S9

M 1945 FIG. 61
STROOMSNELHEIDSKOMPONENT U // KERING (MONSTER)

STROOMSNELHEIDSKOMPONENT V ⊥ KERING (MONSTER)

MAX WAARDE: 65 (M²/S)

MAX WAARDE: 46 (M²/S)

VARIANTIE-DICHTE[]

SPEKTRUM U : M0 = 0.33 (M²/S²)

SPEKTRUM V : M0 = 0.25 (M²/S²)

ONTBONDEN EN GEFILTERD MEETSIGNAAL MET SPEKTRALE ANALYSE TOTALE MEETDUUR

SCHAAR PUNT 9

SCHUIF S8 - S9

WATERLOOPKUNDIG LABORATORIUM

M 1945 FIG. 62
ONTBONDEN EN GEFILTERD MEETSIGNAAL MET SPEKTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 10
SCHUIF S8 - S9
M 1945 FIG. 63
STROOMSNELHEIDSKOMPONENT U // KERING

STROOMSNELHEIDSKOMPONENT V ⊥ KERING

MAX WAARDE: 76 (M²/S)

MAX WAARDE: 25 (M²/S)

SPEKTRUM U : M₀ = 0.39 (M²/S²)

SPEKTRUM V : M₀ = 0.19 (M²/S²)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR | PUNT 11
SCHUIF S8 - S9
M 1945 | FIG. 64
Stroomsnelheidskomponent U / \parallel kering (monster)

Stroomsnelheidskomponent $V \perp$ kering (monster)

Max waarde: 30 (m²/s)

Max waarde: 52 (m²/s)

Spektrum $U \cdot M_0 = 0.16$ (m²/s²)

Spektrum $V \cdot M_0 = 0.29$ (m²/s²)

Ontbonden en gefilterd meetsignaal met spektrale analyse totale meetduur

Waterloopkundig laboratorium

Schaar Punt 12

Schuif S8 - S9

M 1945 Fig. 65
ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR
WATERLOOPKUNDIG LABORATORIUM
STROOMSNELHEIDSKOMPONENT U // KERING (MONSTER)

STROOMSNELHEIDSKOMPONENT V ⊥ KERING (MONSTER)

MAX WAARDE: 30 (M^2/S)

MAX WAARDE: 25 (M^2/S)

ONTBONDEN EN GEFILTERD MEETSIGNAAL MET SPEKTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 14
SCHUIF S8 - S9

M 1945 FIG. 67
STROOMSNELHEIDSKOMPONENT U // KERING (MONSTER)

STROOMSNELHEIDSKOMPONENT V ⊥ KERING (MONSTER)

MAX WAARDE: 23 (M2/S)

SPEKTRUM U : M0 = 0.09 (M2/S2)

SPEKTRUM V : M0 = 0.11 (M2/S2)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 15
SCHUIF S8 - S9

M 1945 FIG. 68
ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR
WATERLOOPKUNDIG LABORATORIUM

SCHUIF S8 - S9

M 1945 FIG. 69
STROOMSNELHEIDSKOMPONENT U // KERING (MONSTER)

STROOMSNELHEIDSKOMPONENT V ⊥ KERING (MONSTER)

MAX WAARDE: 12 (M²/S)

MAX WAARDE: 14 (M²/S)

SPEKTRUM U : M0 = 0.06 (M²/S²)

SPEKTRUM V : M0 = 0.07 (M²/S²)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

SCHUIF S8 - S9

WATERLOOPKUNDIG LABORATORIUM

M 1945 FIG. 70
STROOMSNELHEIDSKOMPONENT U // KERING (MONSTER)

STROOMSNELHEIDSKOMPONENT V ⊥ KERING (MONSTER)

MAX WAARDE: 8 (M2/S)

MAX WAARDE: 11 (M2/S)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 18
SCHUIF S8 - S9

M 1945 FIG. 71
STROOIMNELHEIDSKOMPONENT U // KERING

STROOIMNELHEIDSKOMPONENT V ⊥ KERING

MAX WAARDE: 61 (M2/S)

MAX WAARDE: 5 (M2/S)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

SCHAAR PUNT 1
GETRAPPED GESELOTEN
WATERLOOPKUNDIG LABORATORIUM

M 1945 FIG. 72
Stroomsnellheidskomponent U // KERING (MONSTER)

Stroomsnellheidskomponent V ⊥ KERING (MONSTER)

Max waarde: 97 (m²/s)

Max waarde: 29 (m²/s)

Spektrum U : M0 = 0.27 (m²/s²)

Spektrum V : M0 = 0.11 (m²/s²)

Ontbonden en gefilterd meetsignal met spektraal analysee totale meetduur

Waterloopkundig laboratorium

Schaar Punt 2
Getrapt gesloten

M 1945 Fig. 73
ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR
WATERLOOPKUNDIG LABORATORIUM

SCHAAR | PUNT 3
GETRAPT GESLOTEN
M 1945 | FIG. 74

STROOMSnelHEIDSKOMPONENT U // KERING (MONSTER)

STROOMSnelHEIDSKOMPONENT V ⊥ KERING (MONSTER)

MAX WAARDE: 6 (M2/S)

MAX WAARDE: 24 (M2/S)

SPEKTRUM U : M0 = 0.05 (M2/S2)

SPEKTRUM V : M0 = 0.31 (M2/S2)
STROOMSnelheidskomponent U // KERING (MONSTER)

STROOMSnelheidskomponent V ⊥ KERING (MONSTER)

MAX WAARDE: 20 (M2/S)

SPEKTRUM U : M₀ = 0.12 (M2/S2)

MAX WAARDE: 24 (M2/S)

SPEKTRUM V : M₀ = 0.31 (M2/S2)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 4
GETRAPT GESLOTEN

M 1945 FIG. 75
STROOMSnelheidskomponent U // kering

STROOMSnelheidskomponent V ⊥ kering

Max waarde: 136 (m²/s)

Max waarde: 18 (m²/s)

Spektrum U: M₀ = 0.32 (m²/s²)

Spektrum V: M₀ = 0.08 (m²/s²)

Ontbonden en gefilterd meetsignaal
Met spektraal analyse totale meetduur

Waterloopkundig laboratorium

Schaar Punt 5
Getrapt gesloten

M 1945 Fig. 76
STROOMSNELHEIDSKOMPONENT U // KERING (MONSTER)

STROOMSNELHEIDSKOMPONENT V ⊥ KERING (MONSTER)

MAX WAARDE: 43 (M2/S)

MAX WAARDE: 33 (M2/S)

SPEKTRUM U : MD = 0.13 (M2/S)

SPEKTRUM V : MD = 0.22 (M2/S)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 7
GETRAPT GESELOTEN

M 1945 FIG. 78
STROOMSNELHEIDSKOMPONENT U // KERING
(MONSTER)

STROOMSNELHEIDSKOMPONENT V ⊥ KERING
(MONSTER)

MAX WAARDE: 26 (M2/S)

MAX WAARDE: 17 (M2/S)

SPEKTRUM U : MO = 0.12 (M2/S2)

SPEKTRUM V : MO = 0.21 (M2/S2)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR
WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 8
GETRAPT GESLOTEN

M 1945 FIG. 79
STROOMSNELHEIDSKOMPONENT U // KERING (MONSTER)

STROOMSNELHEIDSKOMPONENT V ⊥ KERING (MONSTER)

MAX WAARDE: 172 (m2/s)

MAX WAARDE: 18 (m2/s)

VARIANTIE-DICHTHEID (-)

VARIANTIE-DICHTHEID (-)

SPEKTRUM U : M0 = 0.43 (m2/s)

SPEKTRUM V : M0 = 0.09 (m2/s)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPECTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 9
GEUIT GESLOTEN
M 1945 FIG. 80
STROOMSNEELHEIDSKOMPLEMENT U // KERING

STROOMSNEELHEIDSKOMPLEMENT V ⊥ KERING

MAX WAARDE: 112 (M2/S)

MAX WAARDE: 100 (M2/S)

SPEKTRUM U : M0 = 0.30 (M2/S2)

SPEKTRUM U : M0 = 0.26 (M2/S2)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM
STROOMSNELHEIDSKOMPONENT U // KERING

STROOMSNELHEIDSKOMPONENT V ⊥ KERING

MAX WAARDE: 54 (M2/S)

MAX WAARDE: 38 (M2/S)

SPEKTRUM U : MO = 0.16 (M2/S²)

SPEKTRUM V : MO = 0.16 (M2/S²)

ONTBONDEN EN GEFILTERD MEETSIJNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 11
GETRAPT GESLOTEN

M 1945 FIG. 82
STROOMSNELHEIDSKOMPONENT U // KERING (MONSTER)

STROOMSNELHEIDSKOMPONENT V ⊥ KERING (MONSTER)

MAX WAARDE: 17 (M2/S)

MAX WAARDE: 15 (M2/S)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

SCHAAR PUNT 12
GETRAPT GESLOTEN

WATERLOOPKUNDIG LABORATORIUM

M 1945 FIG. 83
STROOMSnelheidskomponent U // KERING (MONSTER)

TIJD (s)

MAX WAARDE: 124 (M2/S)

FREkwentie (Hz)

VARIANTIE-DICHThED (-)

SPEKTRUM U : M0 = 0.35 (M2/S2)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHaar PUNT 13
GETRAPT GESLOTEN

M 1945 FIG. 84
STROOMSnelheidskomponent U // KERING (MONSTER)

STROOMSnelheidskomponent V ⊥ KERING (MONSTER)

MAX WAARDE: 26 (m²/s)

MAX WAARDE: 44 (m²/s)

SPEKTRUM U: MO = 0.10 (m²/s²)

SPEKTRUM V: MO = 0.16 (m²/s²)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPECTRALE ANALYSSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 14
GETRAPT GESLOTEN

M 1945 FIG. 85
ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPECTRALE ANALYSE TOTALE MEETDUUR
WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 15
GETRAPT GESLOTEN

M 1945 FIG. 86
STROOMSNELHEIDSKOMPONENT U // KERING (MONSTER)

STROOMSNELHEIDSKOMPONENT V ⊥ KERING (MONSTER)

MAX WAARDE: 35 (M2/S)

MAX WAARDE: 33 (M2/S)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR
WATERLOOPKUNDIG LABORATORIUM
SCHaar PUNT 16
GETRAPT GESLOTEN
M 1945 FIG. 87
STROOMSNELHEIDSKOMPONENT U // KERING (MONSTER)

STROOMSNELHEIDSKOMPONENT V ⊥ KERING (MONSTER)

MAX WAARDE: 72 (M2/S)

MAX WAARDE: 26 (M2/S)

VARIANTS-DICHTE (\text{--})

VARIANTS-DICHTE (\text{--})

SPEKTRUM U : M0 = 0.19 (M2/S2)

SPEKTRUM V : M0 = 0.10 (M2/S2)

ONTBONDEN EN GEFILTERD MEETSIGNAAL

MET SPEKTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR

PUNT 17

GETRAPT GESLOTEN

M 1945

FIG. 88
Stroomsnelheidscomponent U // kering (monster)

Stroomsnelheidscomponent V ⊥ kering (monster)

Max waarde: 29 (m²/s)

Spectrum $U: M_0 = 0.12$ (m²/s²)

Spectrum $V: M_0 = 0.11$ (m²/s²)

Ontbonden en gefilterd meetgegeven
Met spectrale analyse totale meetduur

Waterloopkundig Laboratorium

Schaar Punt 18
Getrapt gesloten

M 1945 Fig. 89
Stroomsnelheidscomponent U // KERING (MONSTER)

Stroomsnelheidscomponent V ⊥ KERING (MONSTER)

Max waarde: 62 (M2/s)

Max waarde: 176 (M2/s)

Ontbonden en gefilterd meetsignaal met spektraal analyse totale meetduur

Waterloopkundig Laboratorium

Schaar Punt 1

Half gesloten

M 1945 Fig. 90
Ontbonden en gefilterd meetsignaal met spectrale analyse totale meetduur

Waterloopkundig Laboratorium

Schaar Punt 2
Half Gesloten

M 1945 Fig. 91
STROOMSnelheidskOponent U // KERING

STROOMSnelheidskOponent V ⊥ KERING

MAX WAARDE: 90 (M2/S)

MAX WAARDE: 131 (M2/S)

SPEKTRUM U : M0 = 0.60 (M2/S2)

SPEKTRUM V : M0 = 0.72 (M2/S2)

ONTBONDEN EN GEFILTERD MEETSIGNAAL

MET SPECTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM
STROOMSnelheidskompONENT U // KERING

STROOMSnelheidskompONENT V ⊥ KERING

MAX WAARDE: 108 (M2/S)

MAX WAARDE: 67 (M2/S)

SPEKTRUM U : M₀ = 0.41 (M2/S2)

SPEKTRUM V : M₀ = 0.71 (M2/S2)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPECTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 4

HALF GESLOTEN

M 1945 FIG. 93
STROOMSNELHEIDSKOMPONENT U // KERING (MONSTER)

STROOMSNELHEIDSKOMPONENT V ⊥ KERING (MONSTER)

MAX WAARDE: 64 (m2/s)

MAX WAARDE: 88 (m2/s)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 5
HALF GESLOTEN
M 1945 FIG. 94
STROOMSNELHEIDSKOMPONENT U // KERING (MONSTER)

STROOMSNELHEIDSKOMPONENT V ⊥ KERING (MONSTER)

MAX WAARDE: 89 (M²/S)

MAX WAARDE: 114 (M²/S)

SPEKTRUM U : M₀ = 0.32 (M²/S²)

SPEKTRUM V : M₀ = 0.41 (M²/S²)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR
WATERLOOPKUNDIG LABORATORIUM

SCHAAR
PUNT 6
HALF GESLOTEN
M 1945
FIG. 95
STROOMSnelheidskomponent U // KERING (MONSTER)

STROOMSnelheidskomponent V ⊥ KERING (MONSTER)

MAX WAARDE: 63 (M2/S)

MAX WAARDE: 82 (M2/S)

SPEKTRUM U : MO = 0.41 (M2/S2)

SPEKTRUM V : MO = 0.53 (M2/S2)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR
WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 7
HALF GESLOTEN
M 1945 FIG. 96
STROOMSnelheidskomponent U // KERING (MONSTER)

STROOMSnelheidskomponent V ⊥ KERING (MONSTER)

MAX WAARDE: 83 (m2/s)

MAX WAARDE: 58 (m2/s)

VARIATIE-DICHTEIT (-)

SPEKTRUM U : M0 = 0.45 (m2/s2)

SPEKTRUM V : M0 = 0.44 (m2/s2)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR
WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 8
HALF GESLOTEN
M 1945 FIG. 97
Stroomnelheidskomponent U // kering (monster)

Stroomnelheidskomponent V ⊥ kering (monster)

Max waarde: 31 (m²/s)

Max waarde: 23 (m²/s)

Ontbonden en gefilterd meetsignaal met spektrale analyse totale meetduur

Waterloopkundig Laboratorium

Schaar Punt 9

Half gesloten

M 1945 Fig. 98
STROOMSnelheidskomponent U // KERING

STROOMSnelheidskomponent V ⊥ KERING

MAX WAARDE: 37 (M2/S)
MAX WAARDE: 23 (M2/S)

SPECTRUM U : MO = 0.18 (M2/S^2)
SPECTRUM V : MO = 0.18 (M2/S^2)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 10
HALF GESLOTEN

M 1945 FIG. 99
ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

SCHAAR PUNT 11
HALF GESLOTEN

WATERLOOPKUNDIG LABORATORIUM

M 1945 FIG. 100
STROOMSNELHEIDSKOMPONENT U // KERING (MONSTER)

STROOMSNELHEIDSKOMPONENT V ⊥ KERING (MONSTER)

MAX WAARDE: 20 (M²/S)

MAX WAARDE: 55 (M²/S)

VARIANTIE-DICHtheid (−)

VARIANTIE-DICHtheid (−)

SPEKTRUM U : M₀ = 0.15 (M²/S²)

SPEKTRUM V : M₀ = 0.22 (M²/S²)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 12
HALF GESLOTEN
M 1945 FIG. 101
STROOMSNELHEIDSKOMPONENT U // KERING (MONSTER)

STROOMSNELHEIDSKOMPONENT V ⊥ KERING (MONSTER)

MAX WAARDE: 27 (M2/S)

MAX WAARDE: 18 (M2/S)

SPEKTRUM U : MO = 0.14 (M2/S2)

SPEKTRUM V : MO = 0.12 (M2/S2)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 13
HALF GESLOTEN

M 1945 FIG. 102
STROOMSNELHEIDSKOMPONENT U // KERING

STROOMSNELHEIDSKOMPONENT V ⊥ KERING

MAX WAARDE: 25 (M²/S)
MAX WAARDE: 18 (M²/S)

SPEKTRUM U : M₀ = 0.14 (M²/S²)
SPEKTRUM V : M₀ = 0.11 (M²/S²)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 14
HALF GESLOTEN
M 1945 FIG. 103
ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR
WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 15
HALF GESLOTEN
M 1945 FIG. 104
STROOMSnelheidskomponent U // KERING (MONSTER)

STROOMSnelheidskomponent V ⊥ KERING (MONSTER)

MAX WAARDE: 14 (M²/S)

MAX WAARDE: 18 (M²/S)

SPEKTRUM U : M₀ = 0.09 (M²/S²)

SPEKTRUM V : M₀ = 0.08 (M²/S²)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 16
HALF GESLOTEN
M 1945 FIG. 105
STROOMSNELHEIDSKOMPONENT U // KERING

STROOMSNELHEIDSKOMPONENT V ⊥ KERING

MAX WAARDE: 8 (M2/S)

MAX WAARDE: 10 (M2/S)

SPEKTRUM U : M₀ = 0.05 (M2/S2)

SPEKTRUM V : M₀ = 0.05 (M2/S2)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPECTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 17
HALF GESLOTEN
M 1945 FIG. 106
STROOMSNELHEIDSKOMPONENT U // KERING (MONSTER)

STROOMSNELHEIDSKOMPONENT V ⊥ KERING (MONSTER)

MAX WAARDE: 10 (M²/S)

MAX WAARDE: 12 (M²/S)

SPEKTRUM U : MO = 0.06 (M²/S²)

SPEKTRUM V : MO = 0.05 (M²/S²)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPECTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR PUNT 18

HALF GESLOTEN

M 1945 FIG. 107
ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

SCHAAR PUNT 1
EINDSITUATIE
M 1945 FIG. 108
ONTBONDEN EN GEFILTERD MEETSIGNAAL MET SPECTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR | PUNT 2
EINDSITUATIE
M 1945 | FIG. 109
ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

SCHaar
PUNT 3
EINDSITUATIE
WATERLOOPKUNDIG LABORATORIUM
M 1945
FIG. 110
Stroomnelheidskomponenten U en V met respectievelijk de waarden 0.03 (M²/s²) en 0.05 (M²/s²).

Maximale waarden: 2 (M²/s) voor U en 4 (M²/s) voor V.

Ontbonden en gefilterd meetsignaal met spektraal analyse totale meetduur.

Waterloopkundig Laboratorium

Schaar Punt 5
Eindsituatie

M 1945 Fig. 112
ONTBONDEN EN GEFILTERD MEETSIGNAAL	SCHAAR
MET SPECTRALE ANALYSE TOTALE MEETDUUR	PUNT 6
WATERLOOPKUNDIG LABORATORIUM	EINDSITUATIE
M 1945	FIG. 113
STROOMSnelheidskOmmponent U // kering (MOnSTER)

STROMSnelheidskOmmponent v 4 kering (MOnSTER)

MAX WAARDE: 1 (M2/5)

MAX WAARDE: 2 (M2/5)

SPEKTRUM U : M0 = 0.02 (M2/5)

SPEKTRUM V : M0 = 0.04 (M2/5)

Ontbonden en gefilterd meetsignaal met spektrale analyse totale meetduur

Waterloopkundig Laboratorium

Schaar Punt 7
Eindsituatie
M 1945 Fig. 114
ONTBONDEN EN GEFILTERD MEETSIGNAAL MET SPEKTRALE ANALYSE TOTALE MEETDUUR

SCHAAR
PUNT 8
EINDSITUATIE
WATERLOOPKUNDIG LABORATORIUM

M 1945 FIG. 115
STROOMSnelheidskomponent U // KERING

STROOMSnelheidskomponent V ⊥ KERING

MAX WAARDE: 1 (M²/S)

MAX WAARDE: 2 (M²/S)

SPEKTRUM U: M₀ = 0.02 (M²/S²)

SPEKTRUM V: M₀ = 0.03 (M²/S²)

ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

SCHAAR PUNT 9
EINDSITUATIE
WATERLOOPKUNDIG LABORATORIUM
M 1945 FIG. 116
STROOMSNELHEIDSKOMPONENT U // KERING (MONSTER)

STROOMSNELHEIDSKOMPONENT V ⊥ KERING (MONSTER)

MAX WAARDE: 2 (M2/S2)

SPEKTRUM U : M0 = 0.03 (M2/S2)

MAX WAARDE: 3 (M2/S)

SPEKTRUM V : M0 = 0.04 (M2/S2)

ONTBONDEN EN GEFILTERD MEETSIGNAAL MET SPEKTRALE ANALYSE TOTALE MEETDUUR

WATERLOOPKUNDIG LABORATORIUM

SCHAAR | PUNT 10
EINDSITUATIE
M 1945 | FIG. 117
ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR
WATERLOOPKUNDIG LABORATORIUM

SCHAAR | PUNT 11
EINDSITUATIE
M 1945 | FIG. 118
ONTBONDEN EN GEFILTERD MEETSIGNAAL
MET SPEKTRALE ANALYSE TOTALE MEETDUUR

SCHAAR PUNT 12
EINDSITUATIE

WATERLOOPKUNDIG LABORATORIUM

M 1945 FIG. 119
Gesloten schuif S2-53, vervald 1,67 m

eb, Q = 16.100 m³/s, benedenwaterstand N.A.P. = 0,70 m

schaal 1:5.000
1 cm = 1,86 m/s
Gesloten schuif S2-S3, verval 1,67 m

$eb, Q = 16.100 \, m^3/s$, benedenwaterstand N.A.P. = 0,70 m

schaal 1:5.000 1 cm \equiv 1,86 m/s
3 Gesloten schuif S2-S3, verval 1,67 m
eb, Q = 16.100 m³/s, benedenwaterstand N.A.P. - 0,70 m
schaal 1:5.000 1 cm = 1,86 m/s
4 Gesloten schuif S2-S3, verval 1,67 m
eb, Q = 16.100 m³/s, benedenwaterstand N.A.P. - 0,70 m
schaal 1:5.000 1 cm = 1,86 m/s
5 Gesloten schuif S4-S5, verval 1,68 m
eb, Q = 16.100 m³/s, benedenwaterstand N.A.P. - 0,70 m
schaal 1:5.000 1 cm ≈ 1,86 m/s
6 Gesloten schuif S4-S5, verval 1,68 m

eb, Q = 16,100 m³/s, benedenwaterstand N.A.P. = 0,70 m

schaal 1:5.000 1 cm ≈ 1,86 m/s
Gesloten schuif S4-S5, verval 1,68 m
eb, Q = 16.100 m³/s, benedenwaterstand N.A.P. - 0,70 m
schaal 1:5.000 1 cm ≈ 1,86 m/s
Gesloten schuif, verval 1,68 m, Q = 16,100 m³/s, benedenwaterstand N.A.P. = -0,70 m
schaal 1:5,000
1 cm = 1,86 m/s
9 Gesloten schuif S8-S9, verval 1,72 m
eb, Q = 16.100 m³/s, benedenwaterstand N.A.P. - 0,70 m
schaal 1:5.000 1 cm = 1,86 m/s
10 Gesloten schuif S8-S9, verval 1,72 m
eb, Q = 16.100 m³/s, benedenwaterstand N.A.P. = 0,70 m
schaal 1:5.000 1 cm = 1,86 m/s
Gesloten schuif S8-S9, verval 1,72 m

$eb, Q = 16.100 \text{ m}^3/\text{s}$, benedenwaterstand N.A.P. - 0,70 m

schaal 1:5.000 1 cm \equiv 1,86 m/s
12 Gesloten schuif S8-S9, verval 1,72 m

eb, Q = 16,100 m³/s, benedenwaterstand N.A.P. = 0,70 m

schaal 1:5,000 1 cm = 1,86 m/s
13 Schuiven getrapt gesloten, verval 1,72 m
eb, Q = 13.730 m³/s, benedenwaterstand N.A.P. - 0,70 m
schaal 1:5.000 1 cm = 1,86 m/s
14 Schuiven getrapt gesloten, verval 1,72 m
eb, Q = 13.730 m³/s, benedenwaterstand N.A.P. - 0,70 m
schaal 1:5.000 1 cm = 1,86 m/s
15 Schuiven getrapt gesloten, verval 1,72 m
eb, Q = 13.730 m³/s, benedenwaterstand N.A.P. − 0,70 m
schaal 1:5.000 1 cm = 1,86 m/s
16 Schuiven get rapt gesloten, verval 1,72 m
 eb, Q = 13.730 m³/s, bendenwaterstand N.A.P. - 0,70 m
 schaal 1:5.000 1 cm ≅ 1,86 m/s
17 Sluitgat half gesloten, verval 1,70 m
eb, Q = 8,470 m³/s, benedenwaterstand N.A.P. - 0,70 m
schaal 1:5.000
1 cm = 1,86 m/s
18 Sluitgat half gesloten, verval 1,70 m

eb, $Q = 8.470 \text{ m}^3/\text{s}$, benedenwaterstand N.A.P. - 0,70 m

schaal 1:5.000 1 cm = 1,86 m/s
19 Sluitgat half gesloten, verval 1,70 m
eb, Q = 8.470 m³/s, benedenwaterstand N.A.P. = 0,70 m
schaal 1:5.000 1 cm = 1,86 m/s
20 Sluiteraart half Oostoren, vertaal 1.70 m
21 Sluitgat half gesloten, verschill 1,70 m
eb, Q = 8.470 m³/s, benedenwaterstand N.A.P. = 0,70 m
schaal 1:5.000 1 cm = 1,86 m/s
22 Sluitgat half gesloten, verval 1,70 m
eb, Q = 8.470 m³/s, benedenwaterstand N.A.P. = 0,70 m
schaal 1:5.000 1 cm = 1,86 m/s
Sluitgat half gesloten, verval 1,70 m

\[q = 8,470 \text{ m}^3/\text{s}, \text{ benedenwaterstand N.A.P. } -0,70 \text{ m} \]

schaal 1:5,000

1 cm = 1,86 m/s
24 Sluiting half gesloten, verval 1,70 m

eb, $Q = 8,470 \, \text{m}^3/\text{s}$, benedenwaterstand N.A.P. = 0,70 m

schaal 1 : 5000

1 cm = 1,86 m/s
BIJLAGE
BIJLAGE: EXTREMA VAN STOCHASTISCHE PROCESSEN

De kansdichtheidsfunctie van de lokale maxima van een stochastisch proces wordt gegeven door [1]:

$$f_{\text{max}}(h) = \frac{1}{\sqrt{2\pi m_0}} \left[\varepsilon \exp\left(-\frac{1}{2\varepsilon^2} \frac{h^2}{m_0}\right) + \right.$$

$$\left. h \cdot \frac{1-\varepsilon^2}{m_0} \exp\left(-\frac{h^2}{2m_0}\right) \int_{-\infty}^{\frac{h}{\varepsilon}\sqrt{1-\varepsilon^2}} \exp\left(-\frac{1}{2} \eta^2\right) d\eta \right]$$

(A1)

Hierin is m_0 het nulde orde spektraal moment en is ε een parameter die opgevat kan worden als maat van de spektrosale breedte van het stochastische proces.

De kansdichtheidsfunctie $f_{\text{max}}(h)$ kan opgevat worden als een gewogen gemiddelde van een Rayleigh-verdeling en een normale verdeling.

Voor smal-bandige processen, dat wil zeggen dat de maat voor de spektrale breedte ε naar nul gaat, konvergeert $f_{\text{max}}(h)$ zoals gegeven in (A1) naar een Rayleigh-verdeling:

$$f_{\text{max}}(h) = \frac{h}{m_0} \exp\left(-\frac{h^2}{2m_0}\right)$$

(A2)

$$h > 0$$

$\varepsilon \to 0$ in (A1)

Als een top gedefinieerd wordt als het grootste lokale maximum dat optreedt tussen een positieve en de daarop volgende negatieve nuldoorgang, dan zal voor smal-bandige processen ($\varepsilon \to 0$) in die periode slechts één maximum optreden, zodat in deze situatie de verdelingsdichtheidsfunctie van de toppen gegeven wordt door de Rayleigh-verdeling gegeven in (A2).

Voor breed-bandige processen (ε groter dan nul) kunnen meerdere lokale maxima tussen opeenvolgende nuldoorgangen optreden, zodat dan de verdeling van de toppen niet meer overeenkomt met de verdeling van de lokale maxima. Voor grote waarden van h/m_0 kan (A1) voor willekeurige ε worden benaderd door (A2). De kans dat een top groter dan h gepaard gaat met meerdere lokale maxima groter dan h is dan te verwaarlozen en dus geldt voor willekeurige $\varepsilon > 0$:
\[f_{\text{top}}(h) = \frac{h}{m_0} \exp\left(-\frac{h^2}{2m_0}\right) \text{ met } \frac{h}{\sqrt{m_0}} \gg 1 \]

Op grond van bovenstaande zou gekonkludeerd kunnen worden dat toepassing van de Rayleigh-verdeling in veel situaties gerechtvaardigd zou zijn. Echter vergelijking (A1) is afgeleid onder de aannemen dat het beschouwde stochastische proces ergodisch en Gaussisch is. Ergodiciteit is een sterkere aannamen dan stationariteit. Als een stochastisch proces ergodisch is kunnen de ensemble gemiddelden vervangen worden door de tijdgemiddelden. De normaliteit van een stationair proces kan getest worden met een chi-kwadraat test [2]. Gezien het weinig symmetrische karakter van de tijdstreeksen in dit onderzoek, is het twijfelachtig dat aan de normaliteitsaanname wordt voldaan. Opgemerkt moet worden dat de aard van de tijdstreeksen duidelijk verandert bij meetcircumstomties waarbij von Kármánse wervels aanwezig zijn. In deze situatie zal de normaliteit beter benaderd worden. De ergodiciteit van een stochastisch proces is moeilijk te verifiëren, in het bijzonder omdat de normaliteit van de betrokken stochastische processen twijfelachtig is [2].

Op grond van deze overwegingen is in dit onderzoek geen gebruik gemaakt van de Rayleigh-verdeling van de berekening van de statistische verdeling van de toppen. In overleg met de opdrachtgever is besloten in dit stadium geen toetsing op de normaliteit en ergodiciteit van de meet-signalen te verrichten.

REFERENTIES

