

Delft University of Technology

Deterministic and Statistical Strategies to Protect ANNs against Fault Injection Attacks

Köylü, T.C.; Reinbrecht, Cezar; Hamdioui, S.; Taouil, M.

DOI
10.1109/PST52912.2021.9647763
Publication date
2021
Document Version
Accepted author manuscript
Published in
2021 18th International Conference on Privacy, Security and Trust (PST)

Citation (APA)
Köylü, T. C., Reinbrecht, C., Hamdioui, S., & Taouil, M. (2021). Deterministic and Statistical Strategies to
Protect ANNs against Fault Injection Attacks. In 2021 18th International Conference on Privacy, Security
and Trust (PST) (pp. 1-10). (2021 18th International Conference on Privacy, Security and Trust, PST 2021).
IEEE. https://doi.org/10.1109/PST52912.2021.9647763
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/PST52912.2021.9647763
https://doi.org/10.1109/PST52912.2021.9647763

Deterministic and Statistical Strategies to
Protect ANNs against Fault Injection Attacks

Troya Çağıl Köylü, Cezar Rodolfo Wedig Reinbrecht, Said Hamdioui, Mottaqiallah Taouil
Computer Engineering, Delft University of Technology

Delft, the Netherlands

Abstract—Artificial neural networks are currently used for
many tasks, including safety critical ones such as automated
driving. Hence, it is very important to protect them against
faults and fault attacks. In this work, we propose two fault
injection attack detection mechanisms: one based on using
output labels for a reference input, and the other on the ac-
tivations of neurons. First, we calibrate our detectors during
normal conditions. Thereafter, we verify them to maximize
fault detection performance. To prove the effectiveness of
our solution, we consider highly employed neural networks
(AlexNet, GoogleNet, and VGG) with their associated dataset
ImageNet. Our results show that for both detectors we
are able to obtain a high rate of coverage against faults,
typically above 96%. Moreover, the hardware and software
implementations of our detector indicate an extremely low
area and time overhead.

Index Terms—fault injection, countermeasures, artificial
neural networks, machine learning

I. INTRODUCTION

Artificial neural networks (ANNs) first started to be
used for the modelling of biological neurons [1] and
are in the meantime used for many tasks (e.g., image
processing [2], speech recognition [3], and big data ap-
plications [4]). Nowadays, they are also being used in
many automated and critical tasks such as real-time
object detection and decision making, as it is the case
for autonomous driving [5]. The reliable operation of
these ANNs are of paramount importance. A security
violation such as tampering with these networks can
lead to drastic consequences like accidents [6], [7]. Today,
this is especially of concern due to the prominence of
fault attacks. Although classical fault injection techniques
like underfeeding, heating, or shooting EM waves and
lasers [8] might not represent a huge threat due to their
physical proximity requirements, logical approaches are
still possible. Moreover, it also important to protect
against faults caused by radiation [9]. Three main strate-
gies can be used to compromise the system integrity:
(i) direct adulteration: an attacker hacks into the sys-
tem and gains enough privileges to deliberately modify
the memory content [10]; (ii) indirect adulteration: an
attacker gets access to the system with no privilege, and
performs a buffer overflow attack to overwrite some
memory contents [11]; (iii) Rowhammer attacks: an at-
tacker gets access into the system with no privilege, and
performs a Rowhammer attack to force bit-flips in the

main memory [12]. Therefore, a critical system running
an ANN can get corrupted by these logical fault injection
attacks.

Several researchers focused on protecting ANNs
against fault attacks. We can divide their protection
schemes into two groups, i.e., intrinsic and extrinsic.
Intrinsic protection schemes use the inherent properties
of neural networks for protection. There are a couple
of ways to attain this. First, feedback mechanisms in
recurrent neural networks and Hopfield networks help
with tolerating injecting faults [13]. However, these types
of networks only constitute a small subset of ANNs.
The second intrinsic method uses fault aware training,
either by injecting faults in the neurons during train-
ing [14], or using modified training algorithms [15]–[18].
These techniques present a more fundamental solution.
However, many applications are built on top of already
trained networks and hence, it is not always possible
to gather the dataset and do retraining. Moreover, us-
ing custom learning algorithms is not convenient when
using machine learning frameworks. In [19], the authors
use fault tolerant training to maximize the fault tolerance
of RRAM-based neural network implementations. This
makes the protection hardware-aware, however further
limits its general application. Another intrinsic protec-
tion method is to evaluate the fitness of the trained
network (e.g., weights) for fault tolerance [20], [21].
Although such an approach is very beneficial to de-
termine and construct a fault tolerant network before-
hand, it again requires to do retraining. In addition,
using deterministic formulations for assessment does
not scale well for very deep networks with a lot of
parameters. In a more recent example, [22] proposed a
fault injection framework to evaluate the fault tolerance
of deep neural networks (DNNs) after training. Their
results show that DNNs offer limited intrinsic protec-
tion, especially against certain faults. The last intrinsic
protection type, which can also be considered extrinsic
for some applications, is redundancy. We refer intrinsic
redundancy to the case where redundancy is included
in the architecture. In [23], the authors achieve this by
replicating the hidden layer-to-output unit structure in
the architecture before training. On the other hand, [24]
and [25] include redundant neurons after training, where
they adjust the other weights to preserve input-output

1

mapping of the layer. All these methods require mod-
ifications to the original network. Extrinsic protection
schemes on the other hand consider neural networks as
a part of a system, and protect the whole system from
attacks. For physical attacks, several protection schemes
have been introduced such as shielding and sensors [26].
For logical attacks, only redundancy-based techniques
have been proposed, such as dual or triple modular
redundancy [27]. Such techniques are very effective in
detecting fault attacks but require extra resources like
dedicated hardware [27] or affect the performance [28].
The area overhead and/or performance loss are costly,
especially for large ANN architectures. Clearly, an ef-
fective yet efficient countermeasure that addresses these
limitations is needed against fault attacks, which also
takes ANN characteristics into consideration.

In this paper, we present two fault injection attack
detection mechanisms: a deterministic and a statistical
one. The deterministic detector evaluates a reference
input to detect persistent fault attacks. The statistical
detector on the other hand checks the neuron activation
rates in the layers of an ANN to detect unexpected
behavior manifesting from faults. Given a trained ANN,
both mechanisms do not require any modification to
the network or a costly retraining: once calibrated with
a subset of data, they can generally be used for fault
detection. In summary, the contributions of this paper
are the following:
• Proposal of an effective and efficient deterministic

fault attack detector based on periodic inference
verification.

• Proposal of an effective and efficient statistical fault
attack detector based on neuron activation rates.

• Evaluation of the proposed detectors with
three state-of-the-art ANN architectures, namely
AlexNET, VGG, and GoogleNet.

• Implementation and overhead analysis of our detec-
tors both in hardware and software.

The remainder of the paper is organized as follows.
Section II provides an introduction to existing attacks
and explains our threat model. Section III introduces
the two detectors. Section IV describes the experimental
setup and presents the results. Finally, Section V con-
cludes this paper.

II. ATTACK AND THREAT MODELS

In addition to the increasing threat of fault attacks,
there are many studies that utilize faults to tamper with
ANNs. In this section, we describe some relevant attacks
and the considered threat model.

A. ANN Attacks
Several fault attacks on ANNs have been performed.

For example, the authors in [29] present two attacks:
single bias and gradient descent attacks. The single
bias attack aims at changing the decisions that need to

be taken in the last layer. To realize that, the attacker
changes the biases of the neurons responsible to make
the final decisions. The gradient descent attack on the
other hand aims at changing weights and biases in such
a way that a misclassification occurs, while targeting
minimum changes in the network. To realize this, it
first uses the gradient descent algorithm to calculate
updates on some of the parameters (weights and biases)
of the layer with the most neurons to obtain a desired
misclassification scheme. Thereafter, it only utilizes a
minimum number of these adversarial updates while
still ensuring the desired misclassification.

In [30], the authors focused on injecting faults to
different activation functions that are typically used
in ANN architectures: rectified linear function (ReLU),
sigmoid, hyperbolic tangent (tanh), and softmax (as part
of the decision layer). Their results show that when
the outputs of ReLU, sigmoid, and tanh are affected,
misclassifications can occur.

Another study was presented in [31]. In this study,
the authors investigated the effects of faults on DNN
accelerators. They injected transient faults and single
event upsets [32] in the datapath and buffers. Conse-
quently, they investigated when these faults cause a
misclassification. Their study highlights the importance
of protecting the integrity of these networks as a false
classification can result in devastating consequences.

B. ANN Threat Model
This work focuses on ANNs that are applied for safety

critical applications, such as in self-driving cars. In the
previous sections, we have established that logical fault
injection can be used to tamper with the parameters of
the ANN and that they can disrupt the ANN operation
unnoticed. Generally, fault injection attacks allow attack-
ers to gain privileges to indirectly compromise the data
in the memory, or directly corrupt the memory. With
respect to the security, we consider the following three
scenarios:
• No security: When a system has no added security

measures, the attacker can raise their privilege to
change memory content [10]. In this scenario, the
attacker has full control and may change values at
any location.

• Low to medium security: In this scenario, the at-
tacker is not directly able to change data. However, a
buffer overflow attack [11] can be used to overwrite
parts of the memory and in turn affect the ANN.
In this scenario, attackers have partial control: they
can inject faults but have no control over the exact
location.

• High security: In a very secure scenario, a more
sophisticated attack that exploits hardware vulnera-
bilities is required. Hence, Rowhammer attacks can
be a valid option [12]. As a result, the attacker can
cause bit-flips in random locations around the target

2

memory space. The attacker in this scenario has very
limited control on the fault value and location.

In all considered attack scenarios, the memory is the
main target of the attack. When focusing on ANNs,
the memory is responsible for storing the network pa-
rameters, such as weights and biases. Tampering with
the parameters is also possible when ANNs are imple-
mented in hardware. Hence, we assume that an attacker
can modify weights and/or biases during a classification
operation. Note that our considered scenario does not
comprehend attacks to the internal operations (e.g., acti-
vation functions) or intermediate outputs. Nevertheless,
faults injected in such places will most likely have equiv-
alent effects to faults in weights and biases for many
cases, if not all. Additionally, we do not consider attacks
that tamper with the input (i.e., using adversarial in-
puts). We assume that due to hard real-time constraints,
the input of such systems (i.e., image from a camera) will
use a dedicated buffer, bypassing the typical memory
hierarchy [10]. Finally, we assume that the aim of the
attacker is to disrupt reliable operation, and hence, we
assume no limitation on the value or location of weights
and biases that are targeted with faults.

III. PROPOSED DETECTORS

In this section, we describe our two detection strate-
gies to protect ANNs for the aforementioned threat
model. Both detectors are described in three steps. First,
we present the concept behind their detection method.
Next, we present the general functionality. Lastly, we
provide detector implementation details for both soft-
ware and hardware ANNs.

A. Deterministic Strategy - The ∆-detector

1) Concept: After an ANN is trained, the internal
variables of the model are fixed (i.e., weights and biases)
in the deployment. This means for a specific input, the
intermediate and final outputs will always be the same.
Consequently, this deterministic behavior can be used
to detect faults in the system. Consider a specific input,
whose ANN inference intermediates or output is stored
as a reference. Then, in the field, we can regularly supply
the same reference as input to the ANN and obtain
an inference value. If this value is different than the
reference, one or more faults are present in the network.
Such a detector would detect a very large portion of
all faults that persist during the check. Namely, if the
faults have an effect on the last layer (this can still be
the case when faults are injected in preceding layers),
a detector that monitors this layer can detect the faults,
irrespective whether they affect the ANN decision or not.
Thereafter, the system can reload the ANN or reboot the
application. For the case of a self-driving car, this can
result in signaling the driver that the automated driving
will be disengaged due to potential failures in the ANN.

la
ye

r 1

la
ye

r 2

la
ye

r 3

la
ye

r 4

la
ye

r 5

la
ye

r 6

la
ye

r 7

la
ye

r N

Detector fault signal

reference
input

decision

Reference
Decision

Fig. 1. Conceptual Architecture of the ∆-Detector

The selection of the variables to be used as reference
may vary depending on the application. For example,
image classifiers present many different output proba-
bilities as they assign each input to an image category.
Consequently, in this work we only focus on the out-
put values after an image classification/inference. This
strategy depends on the property that a modification in
a weight or bias can alter one or more output probability
values.

2) Functionality: We name our deterministic detector
as the ∆ (Delta)-detector: this detector checks for the
difference between the reference and actual values of the
ANN inference output. The ∆-detector initially selects
a sample image as the reference input. Next, it runs
the inference of this input in the deployed ANN and
saves all the probabilities of each output label. Because
of the dataset we use in this work (see Section IV-A), all
ANNs used in this paper present 1000 output labels. This
means the detector stores 1000 floating point numbers as
a reference, which are typically class probabilities (when
softmax is used on the output). The resulting conceptual
architecture is shown in Figure 1.

3) Implementation: Next, we present both software and
hardware implementations of the ∆-detector.
Software Implementation: In case the ANN is part of a
software application, the detector must also be employed
in software. This means that besides the ANN, an addi-
tional function needs to be called for the fault detection.
The function of the ∆-detector comprises three steps,
as shown in Algorithm 1. First, it loads the reference
input and output labels. Thereafter, it runs the inference
process in the ANN. Last, it collects all output class
labels and compares it to their reference values. Any
mismatch raises a fault signal.
Hardware Implementation: In case the ANN is em-
ployed as a hardware accelerator, it is more efficient to
implement the detector also in hardware. The hardware
implementation of the ∆-detector follows the same steps
described in Algorithm 1. For the loading process (both
reference input and output), the hardware can use the
system’s main memory. The usage of dedicated memo-
ries in tamper-proof locations to store the references is

3

Algorithm 1 Pseudo-code of the ∆-detector

Input: reference inputre f , ann, reference outputre f
Output: Fault signal f ault

1: output← ann(inputre f) . inference operation
2: f ault← 0
3: for each outputi in output do . outputi: output

label of class i
4: if outputi 6= outputre f i

then
5: f ault← 1
6: end if
7: end for

Fig. 2. Example Activation Map of a Convolutional Layer of AlexNet

also justified for maximum security. Lastly, the compari-
son operation (line 4) can be easily implemented through
a bit-wise XOR. If the result is zero among all output
class labels, then there is no fault presence. Otherwise,
it raises the fault signal (line 5).

B. Statistical Strategy - The Σ-detector
1) Concept: The training process of an ANN updates

its internal parameters that are composed of weights and
biases. As a result, a trained ANN will exhibit specific
internal patterns during inference. One way to analyze
such patterns is by evaluating the number of neurons
that are activated in a layer. Our hypothesis is that
the ratio of activated neurons generally lies in specific
bounds during normal conditions (i.e., when no fault
attacks are present), as learning algorithms are expected
to regularize neuron behavior into a pre-determined
input-output mapping. This hypothesis follows from the
"firing neuron rate (FNR)" idea presented in [33], which
indeed shows a different activation pattern for regular
and adversary inputs.

When an input is applied to the ANN, the Σ-detector
obtains the binary activation map for each layer, which
are of different shapes for each layer. Figure 2 illustrates
an example of a 55× 55× 96 activation map (see convo-
lution (1) layer in Table I(a)) obtained from the outputs of
a convolutional layer. Then, in order to summarize these
maps, Σ-detector calculates the ratio of activations to the

total number of neurons within a layer. For example,
if 100k neurons are activated (i.e., produced a number
greater than 0) in the aforementioned convolutional
layer, its activation rate is 100k/(55 · 55 · 96) = 0.344.
We store one such rate per layer.

We determine those rates of whether or not a neuron
is activated by the following equation:

activationni,j =

{
0, if outni,j <= 0.
1, if outni,j > 0,

(1)

Here, ni,j is the jth neuron of the ith layer and outni,j is
its output.

2) Functionality: The Σ-detector processes the acti-
vations as the ANN executes. Figure 3 illustrates its
conceptual architecture. When an input is supplied to the
ANN, the detector collects the activation rates of each
of the layers. The detector consequently investigates if
these ratios are in expected boundaries, and otherwise
generates a fault signal (which is 1 if a fault is detected
and 0 otherwise). The ANN generates an inference deci-
sion in parallel. The final output of the system consists
of the decision of ANN and value of fault signal. When
a fault is detected, we raise an alarm instead. Similar to
the ∆-detector, the nature of the alarm and the response
to it can vary from application to application.

la
ye

r 1

la
ye

r 2

la
ye

r 3

la
ye

r 4

la
ye

r 5

la
ye

r 6

la
ye

r 7

la
ye

r N

Detector

activation ratios

fault signal

input decision

Fig. 3. Conceptual Architecture of the Σ-Detector

We name our detector as the Σ (Sigma)-detector as it
compares activation rates with the mean (µ) and standard
deviation (σ), where both µ and σ were pre-calculated
from non-faulty data (only a subset of the original
dataset is enough). If the value is outside the expected
range (e.g., 3σ), it raises a warning. When one or more
warnings are raised, the output fault signal is set.

3) Implementation: Next, we describe both software
and hardware implementations of the Σ-detector.
Software Implementation: Algorithm 2 details the
pseudo-code of the software implementation of the basic
detector. After obtaining the activations for an input
image (line 2), the detector checks layer-by-layer if the
activation value is in the determined boundary (line 4).

4

act Neuron 0

act Neuron 1

...

act Neuron N

+ Nact - abs <

(μi . Ni) (di . σi . N)
incr Warning

Counter
(numwarn)

>
warn

Fault

for a layer i

Fig. 4. Hardware Architecture of Σ-Detector

If not, it raises a warning (line 5). When the warning
threshold is reached, a fault is signaled (line 8-9).

Algorithm 2 Pseudo-code of the Σ-detector
Input: input, ann, calculated µ, calculated standard de-

viation σ, calculated maximum allowed distance in
terms of standard deviation d, number of warnings
to set the fault signal warn

Output: Fault signal f ault
1: numwarn ← 0 . initialization of warning
2: act← ann(input) . act: activation ratios
3: for each acti in act do . acti: activation ratio of

layer i
4: if abs(acti − µi) ≤ di · σi then
5: numwarn ← numwarn + 1
6: end if
7: end for
8: if numwarn >= warn then . fault condition
9: f ault← 1

10: else . no fault condition
11: f ault← 0
12: end if

Hardware Implementation Figure 4 illustrates the hard-
ware architecture of the Σ-detector. Our proposed
scheme can evaluate a layer in a single cycle, which
means it can be reused for all layers when it is designed
for the layer with the most number of neurons. The
only change along the layers are the mean and standard
deviation values, which are implemented as constants
(i.e., their bits are tied to the Vdd when 1, or ground
when 0).

As observed in the figure, the hardware collects and
adds the activation results of the currently executed
layer. Instead of dividing by the number of neurons per
layer, we multiply the equation on line 4 in Algorithm 2
by the number of neurons. Hence, the total number
of active neurons Nact is evaluated using the equation
abs(Nact − µi · N) ≤ di · σi · N, where N equals the total
amount of neurons in a certain layer and Nact = N · acti.
If the equation is not satisfied, the warning counter
numwarn increments. Finally, comparing the result with
the threshold warn sets the fault signal.

C. Combining both strategies
In the previous subsections, we have proposed two

different fault attack detection strategies. The first one
(i.e., ∆-detector) is very effective, given its fault assump-
tions hold (i.e., a fault will persist during the check).

Furthermore, it does not have any false alarms. The
detector can be considered as a ANN-aware redundancy
that is costly in terms of performance (when imple-
mented as a software implementation) and resources
(when implemented as a hardware implementation). The
reason is that for each inference, the ∆-detector should
conduct an additional inference and check the results. In
some cases such a cost would be unacceptable, such as
in automated driving with a constant stream of images.

The second strategy (i.e., Σ-detector) does not require
any costly operation during deployment time. Therefore,
it is suitable to be used continuously. However, as any
statistical method, it is inevitably prone to missing some
fault attacks or may even generate false alarms. As such,
either strategy can be chosen depending on the high se-
curity versus efficiency needs. Moreover, a combination
of two strategies is also possible. Namely, if the aim is
to eliminate all false fault alarms while allowing some
faults, the check of the ∆-detector can be initiated as soon
as the continuously running Σ-detector detects a fault.
The presence of a fault attack can be guaranteed when
both detectors raise the fault signal. Using this approach,
the overhead caused by the ∆-detector remains low as
it only need to be executed when the Σ-detector raises
a fault alarm (true or false positive). Another strategy is
to mainly rely on the Σ-detector for detecting transient
faults (e.g., that affect the registers), while using the ∆-
detector for periodic self-checks to detect more persistent
faults, such as the ones that affect the main memory.

IV. EXPERIMENTAL RESULTS

In this section, we present the experiments that we
used to prove the effectiveness and efficiency of our
detectors. First, Subsection IV-A describes the details of
our setup. Next, Subsections IV-B and IV-C describe the
conducted experiments and present their results.

A. Experimental Setup

This subsection describes the target ANNs and
datasets, the target platforms, our fault injection frame-
work, and the performed experiments.

Target ANNs and datasets: In this work, to prove
the generality of our detectors, we use three widely
employed ANN architectures: AlexNet [2], VGG (CNN
S) [34], and GoogleNet [35]. All ANNs are convolu-
tional neural network (CNN) architectures that were
trained on the ImageNet Large Scale Visual Recognition
Challenge 2012 [36]. We use the validation repository
of this dataset, which consists of 50k images in total.
Table I shows the size of output of each relevant layer of
these networks. As can be observed, VGG uses slightly
different parameters than AlexNet, while GoogleNet is
a very deep architecture. We conducted all the experi-
ments using the Python language together with the Caffe
toolbox [37]. This toolbox provides slight variations of

5

all three networks. They were all pre-trained to achieve
80%, 87%, and 90% accuracy on the validation repository.

To identify suitable parameters and evaluate both
detectors, we created three datasets (per AlexNet, VGG,
and GoogleNet). The first dataset is called calibration
set. This set contains the first 1000 images from the
aforementioned ImageNet validation repository, and it is
used to understand the faulty and non-faulty behavior,
and hence, to define the parameters of the detectors. In
∆-detector, the parameters are the output label values.
In Σ-detector the parameters are the mean and standard
deviation of activations for each layer. Next, the second
dataset, which we label as the verification set, is used to
validate the chosen parameters. It contains the images
1001 to 2000 from the repository. The last dataset, i.e.,
the evaluation set, contains images 2001 to 3000 and it is
used to evaluate the effectiveness of the detectors under
practical attack scenarios. Note that the evaluation set
is completely independent from the first two sets, and
they constitute unseen images for our detectors. Hence,
the detection results on this set provide the generalized
effectiveness of our detectors.

Target Platforms: We evaluate the detector overhead
for the selected ANNs both in software (i.e., desk-
top or server) and in hardware (i.e., GPU or FPGA-
based platforms). Our software implementation runs on
a server with a 2.1GHz processor and 96GB memory.
We make the hardware overhead comparisons with a
synthesized ANN accelerator [38] for the Virtex-7 VC707
FPGA board [39]. Note that both hardware and software
ANN implementations are relevant in the context of self-
driving cars and hence, their operation are vital for the
safety [40], [41].

Fault Injection Framework: In line with the consid-
ered threat model (see Subsection II-B), our framework
is able to modify the weights and/or biases of the neural
network during the inference process. The framework
injects faults according to two aspects:

• Fault locations - A fault can affect any layer of the ANN
with adjustable (learned) parameters. In our case, these
are the layers indicated in Table I.

• Fault types - We consider bit and byte-level faults to the
weights and biases. Referring to the scenarios in our
threat model (see Section II-B), byte-level or a larger
amount of faults are applicable for the low/medium
security scenario, where the attacker can define new
values for the weights. In contrast, a bit-level fault
could take place in the high security scenario, where a
Rowhammer attack [12] can take place. The location of
the bit faults are randomly selected and hence could
have a low or large impact.

In addition to the fault type, we experiment also with
the number of faults. Note that radiation induced error
can also cause single or multiple bit flipping [32] and
hence, our detector can be used against them as well.

B. ∆-Detector Experiments

In this section, we provide the calibration, perfor-
mance analysis and implementation overhead details for
∆-detector.

1) Detector Calibration: During the detector calibration,
we used some images from the calibration set to vali-
date its functionality. As such, we started our test with
conducting inference with an image without any faults
and saved the output labels. Thereafter, we conducted
inference with faulty and non-faulty instances of the
same image. The output label comparison of the ∆-
detector yielded correct results (i.e., no false alarm in
the correct case, and fault detection in the faulty case).
Therefore, we have proven the validity of the ∆-detector,
and can continue with larger scale verification.

2) Performance analysis: In this analysis, we used
the evaluation set images. For each of the 1000 images,
we tested the ∆-detector with comparing the output
labels of correct versions to versions where we injected
0, 1, 5, and 10 faults randomly. Table II shows the
results. In this table (and also in later ones), we follow a
coverage based analysis of our results, inspired by [42].
First, we present the false alarm rate for 0 faults. Next,
we present the detection results for the faulty cases
using three categories: detection, top5 coverage, and
top1 coverage. Detection represents the ratio of fault
cases that are detected by the detector. Top5 coverage
represents the coverage against faults that make the top5
decision faulty, and the ratio is calculated by (detected+
undetected that does not affect top5 accuracy)/1000.
Similarly, top1 coverage represents the coverage against
faulty top1 decisions. Here, the topk inference of an
ANN is correct if one of the maximum k inference
labels is equal to the actual image class. Lastly, the misc.
(misclassification) next to each coverage indicates the
percentage that faults affect the topk inference. Hence,
the difference between this misc. value and (100 - top1
or top5 coverage) indicates the protection level of our
detector.

It can be observed from Table II that the ∆-detector
indeed does not raise any fault alarms and also has full
coverage except for one case (GoogleNet 1 fault) for
decision affecting faults. The investigation of that case
showed that it is a very rare computational overflow
error, that even prevailed when no faults were present
to make the classification wrong to begin with. Overall,
the ∆-detector accounts for detecting up to 31% for some
cases (i.e., 10 faults in GoogleNet top5 coverage) for
faults that lead to misclassifications.

On the other hand, the overall detection rate is lower,
especially when 1 fault is injected in AlexNet (66%) and
VGG (64%). As the detection rate is much higher for
higher faults, and also for 1 fault case in GoogleNet,
we can re-verify that the undetected faults are indeed
the ineffective ones. To elaborate, these faults are likely

6

TABLE I
STRUCTURES OF (A) ALEXNET, (B) VGG, AND (C) GOOGLENET

layer size
convolution (1) 55× 55× 96
convolution (2) 27× 27× 256
convolution (3) 13× 13× 384
convolution (4) 13× 13× 384
convolution (5) 13× 13× 256
dense (1) 1× 1× 4096
dense (2) 1× 1× 4096
dense (3) 1× 1× 1000

layer size
convolution (1) 109× 109× 96
convolution (2) 33× 33× 256
convolution (3) 17× 17× 512
convolution (4) 17× 17× 512
convolution (5) 17× 17× 512
dense (1) 1× 1× 4096
dense (2) 1× 1× 4096
dense (3) 1× 1× 1000

layer size
convolution (1) 112× 112× 64
convolution (2) 56× 56× 64
convolution (3) 56× 56× 192
.
inception (13) 14× 14× 192
.
inception (54) 7× 7× 128
dense (1) 1× 1× 1000

(a) (b) (c)

TABLE II
RESULTS OF THE EVALUATION OF ∆-DETECTOR.

AlexNet
0 faults 0%

Detection Top5 Coverage / misc. Top1 Coverage / misc.
1 fault 66% 100% / 3.8% 100% / 2.8%
5 faults 99.4% 100% / 12.7% 100% / 9.5%
10 faults 100% 100% / 19.6% 100% / 13.8%

VGG
0 faults 0%

Detection Top5 Coverage / misc. Top1 Coverage / misc.
1 fault 64.3% 100% / 2.8% 100% / 2.1%
5 faults 98.6% 100% / 11.7% 100% / 9.5%
10 faults 99.9% 100% / 18.9% 100% / 13.7%

GoogleNet
0 faults 0%

Detection Top5 Coverage / misc. Top1 Coverage / misc.
1 fault 83.5% 99.9% / 3.6% 99.9% / 3.4%
5 faults 100% 100% / 17.2% 100% / 13.9%
10 faults 100% 100% / 30.7% 100% / 24.7%

the ones that disappear in the ANN, e.g., filtered out
by the negative inputs of the ReLU activation [43]. As
GoogleNet is a much larger network, a single fault has
more chance to create exponential changes that affect
the inference result. Thus, our detector detected more
of them. In conclusion, the ∆-detector is very effective in
covering against dangerous faults, given the assumption
that the fault persists during the check.

3) Implementation Overhead: As mentioned previously,
the ∆-detector can be employed both in software and
hardware. In software, the detector includes an addi-
tional inference operation plus a check, for each of
the inference operations. To see the added latency, we
have recorded the total elapsed time over 1000 image
inferences, separately for the original and the ∆-detector
operations. We have used the process time function
of Python, which discards sleep time. The results, as
expected, show that the detector creates 99-100% latency
to conduct the additional inference and check for all of
the ANNs.

In hardware, the ∆-detector consists of a dedicated
memory to store reference input and output labels, and
a checker. Our synthesis resulted in 4kB of embedded
memory and less than 1% of logic for detector control
and comparison. Note that the reference values can also
be stored in the system memory (with reduced security)
to avoid a memory overhead.

Fig. 5. Neuron Activation Rates for Fault Injection into Convolution
4 (c4) Layer of AlexNet

C. Σ-Detector Experiments

In this section, we first present the analysis regard-
ing the activation rate behavior of ANN layers during
non-faulty and faulty inference operations. Thereafter,
we provide the calibration, performance analysis and
implementation overhead details for the Σ-detector.

1) Evaluation of the Neuron Activation Rate: In this
experiment, we perform a detailed fault analysis on
the calibration set. For each image, we conduct a fault
injection campaign into AlexNet by injecting {0, 1, 5, 10}
faults on each of the considered layers (convolution (1),
(2), (3), (4), (5); dense (1), (2), (3)) randomly. Each time
we consider faults in a single layer only. For each fault
campaign we evaluate 1000 images. As an example,
the results of injecting faults to convolution layer 4 are
illustrated in Figure 5. In the figure, the center points
indicate the mean of the activation rate for that particular
layer, while the arrow lengths the standard deviation.

There are a couple of observations from this graph.
First, we observe that the faults injected in a layer
(convolution 4 in the figure) indeed disrupt the expected
activation behaviour in the proceeding layers (convolu-
tion 5 and dense 1, 2, 3). The propagation of the fault
through many connections into later layers results in a
much worse behavior at these later layers. Consequently,
this also implies that faults injected into the last layers
are harder to detect. Second, the level of disruption
increases with the number of injected faults. Due to
space limitations, we have omitted the results for the
other layers. Nevertheless, their results are similar.

7

TABLE III
TWO BEST PARAMETER SELECTIONS FOR TARGETS ANNS.

accuracy d warn layers

AlexNet
s1 0.563 3 1 last half
s2 0.561 3 1 all

VGG
s1 0.549 3 1 all
s2 0.549 dmax 1 all

GoogleNet
s1 0.588 dmax 1 last half
s2 0.587 dmax 1 all

2) Detector Calibration: After the initial investigation,
we calibrate our Σ-detector data from the calibration set
without injecting faults. We calculate µ, σ, and dmax (the
highest distance of a non-faulty activation rate from the
mean in terms of standard deviations) for each layer of
the ANNs.

To calculate the parameters of d and warn, as well
as which layers to consider in the detector, we con-
duct another set of experiments by injecting {0, 1, 5, 10}
faults into the weights and biases when images of
the verification set are considered. However, this time
faults are randomly injected into any layer during a
run. Hence, this creates 4 sets of activation rates, each
consisting of 1000 images. To find the optimal settings
for the detector, we try the following values: d ∈
{1, 2, 3, dmax}, warn ∈ {1, 2, 3, 4} (for AlexNet and VGG)
and warn ∈ {1, 5, 10, 25} (for GoogleNet), considered
layers ∈ {all, last half, only convolutional, only dense}
(for all ANNs, which results in different number of
layers for GoogleNet). A set of parameters is selected
based on the accurate labeling of 4000 images, where we
adjusted the classification impact of non-faulty instances
for a fair comparison. Table III shows the parameters for
the two best selections s1 and s2 for the three ANNs.
As can be observed from GoogleNet, finding the optimal
values scales well for larger neural networks as the
detector parameters are layer independent.

3) Performance Analysis: To evaluate our detector, we
follow the same presentation scheme in Section IV-B.
We first evaluate our correct labelling for non-faulty
and faulty instances. For faulty instances, we further
report our coverage for faults that affect a top5 or top1
classification of the ANN.

To conduct this evaluation, we use the evaluation set to
create four sets of activations in an identical manner used
in Σ-detector calibration (see Section IV-C2). Table IV
shows the detection results for the best two parameter
set configurations s1 and s2.

The results show that all ANNs and both s1 and s2
have similar results. Typically, the best parameter (s1) at-
tains a false positive rate smaller than 4%. We can detect
very few of the 1 fault cases (>3%), significantly more
of the 5 fault cases (>14%), and yet more of the 10 fault
cases (>19%). However, the coverage for top5 and top1
affecting faults for all cases are quite high (>96%), where
top1 coverage is a bit higher than top5. This means
that faults injected into the neural network are detected

TABLE IV
RESULTS OF THE EVALUATION OF Σ-DETECTOR.

AlexNet
s1 / s2

0 faults 1.6% / 3%
Detection Top5 Coverage Top1 Coverage

s1 / s2 s1 / s2 / misc. s1 / s2 / misc.
1 fault 3.6% / 5.2% 99.1% / 99.3% / 2.8% 99.2% / 99.3% / 1.7%
5 faults 14.2% / 15.8% 98.3% / 98.7% / 12.6% 98.4% / 98.9% / 9.9%
10 faults 19.8% / 22% 97% / 97.9% / 18.3% 96.9% / 97.6% / 14%

VGG
s1 / s2

0 faults 3.8% / 0.7%
Detection Top5 Coverage Top1 Coverage

s1 / s2 s1 / s2 / misc. s1 / s2 / misc.
1 fault 6% / 2.9% 99.3% / 99.2% / 2.5% 99.2% / 99.1% / 2.2%
5 faults 14.4% / 11.2% 96.8% / 96.5% / 13.3% 96.9% / 96.8% / 10.8%
10 faults 23.3% / 20.2% 96.6% / 96% / 20.7% 96.9% / 96.4% / 16.4%

GoogleNet
s1 / s2

0 faults 1.9% / 4.4%
Detection Top5 Coverage Top1 Coverage

s1 / s2 s1 / s2 / misc. s1 / s2 / misc.
1 fault 5.4% / 7.8% 99.9% / 99.9% / 3.4% 99.7% / 99.7% / 3%
5 faults 21.2% / 23.2% 98.6% / 98.7% / 18.6% 98.7% / 98.8% / 15.4%
10 faults 33.8% / 35.6% 98.2% / 98.3% / 30.1% 98.5% / 98.5% / 23.8%

with a probability of 96% (or higher) when it affects the
ANN inference result. This can be explained as follows:
we observed that only ∼2% of 1 fault cases cause a
misclassification in top5 and top1, which explains the
low detection rate. This ratio increases to ∼12% for 5
fault cases and ∼20% for 10 fault cases. Overall, the Σ-
detector can nullify most of the effects of dangerous faults
(i.e., faults that cause misclassifications), covering up to
28% for some cases (i.e., 10 faults in GoogleNet top5
coverage). Another important point is that we observed
that our detector performs very similarly to other more
complex classifiers that we experimented with (i.e., naïve
Bayes, support vector machine, and a 2-layer multilayer
perceptron) on AlexNet.

Compared to the protection scheme in [33], which
tries to detect adversarial inputs on AlexNet with a
detector, our detector performs quite well. They obtain
a high detection rate (approximately 90%), but at the
expense of a high false alarm rate (approximately 17%).
Still, our 4% false alarm rate is a considerable value.
As such, our combined solutions can be considered as a
corollary, which would obtain 0% false alarm rate while
retaining the detection rates of the Σ-detector, given
that the fault persists during both detectors’ checks (see
Section III-C). Note that we did do not perform any
experiments for the combined solution, as conclusions
can be straightforwardly derived from their individual
experiments.

Another protection scheme, which proposes to mod-
ify the activation functions attain 95.3% top1 coverage,
when the faults reduce the top1 classification accuracy
by 21.6% in AlexNet [44]. The closest AlexNet scenario
is our 10 faults case (with 14% misclassification), which
we provide 96.9% top1 coverage. However, that study
experiments with a different dataset and only injects
bit faults to test fault tolerance, and hence a direct
comparison is not possible.

8

4) Implementation Overhead: As we consider both soft-
ware and hardware implementations for our Σ-detector,
both must comply with some constraints. In software,
it is important for the Σ-detector to produce a result
quickly after the ANN produces a decision: any extra
time will lead to an inaction latency. To determine the
timing that our detector requires, we collected both ANN
inference time and detector processing time over 1000
images. Accordingly, ANN requires <2% extra time to
extract activation ratios, and a very insignificant <2e−4%
extra time for fault detection.

To evaluate the hardware overhead, we designed the
detector for AlexNet’s convolution (1) layer, which has
the most amount of activations in AlexNet. We omit
designs for VGG and GoogleNet, as our detector is
reused for all layers, so the number of layers are not a
source for overhead (see Section III-B3). Our synthesis re-
sulted in area requirement of 60528 LUTs and 4 registers.
Additionally, our detector met all timing constraints,
meaning that it can produce a single warning signal
per cycle. We also evaluated a second implementation,
where the adder (see Figure 4) is replaced by a ROM-
based decoder. In this scenario, the area utilization re-
duced significantly to only 870 LUTs, 4 registers and 290
kbits of ROM. When we compare these implementations
to the reference CNN hardware accelerator [38], our
detector results in 32.49% overhead for LUT-only, and
0.46% for ROM-based version.

V. CONCLUSION

In this work, we presented two effective detection
algorithms for fault injection attacks on artificial neural
networks, which do not require any modifications on the
employed network. The results show that it is possible
to cover the far majority of faults that lead to wrong
decisions. To eliminate the false alarms, we also pro-
posed a combined strategy that involves both detectors.
Lastly, we presented ways to efficiently implement our
detectors in software and hardware.

One point that we do not cover in this study is an
attack against our detector itself. There are a couple of
valid attack strategies against our detector: (i) inserting
faults anywhere during the calculation or (ii) changing
the reference or stored values (e.g., numwarn, di, or
σi). The first attack (i) might be successful, if a fault
simultaneously affects the ANN, while another affects
the detector calculation in such a way that it misses to
detect an unexpected value. In software, accomplishing
this attack might be easier, with an instruction skip.
However this attack is mostly impractical due to the
need of synchronized faults, and it is far more likely
that such an attack will start causing the detector to
raise random fault signals. The second attack (ii) on the
other hand can provide more success, especially for the
Σ-detector: for instance, an attack that makes the value
of numwarn larger. Although such an attack will still

require a high level of granularity, a numwarn value larger
than the number of layers will render our protection
obsolete. Thus, we would recommend more safety in
storing the detector parameters (e.g., using hardened
memory locations).

Finally, we demonstrated the validity of our detectors
in three ANNs using a single dataset. This can raise
the question of applicability for different inputs. We
leave this point for future work, although the ImageNet
dataset that we experimented on is sufficiently broad,
and the real time object classification scenario that we
consider (in automated driving for instance) is one of
the most relevant for such a protection.

VI. ACKNOWLEDGMENT

This work was labelled by the EUREKA cluster PENTA
and funded by Dutch authorities under grant agreement
PENTA-2018e-17004-SunRISE.

REFERENCES

[1] W. S. McCulloch et al., “A logical calculus of the ideas immanent
in nervous activity,” The bulletin of mathematical biophysics, vol. 5,
pp. 115–133, 1943.

[2] A. Krizhevsky et al., “Imagenet classification with deep convolu-
tional neural networks,” Communications of the ACM, vol. 60, pp.
84–90, 2017.

[3] Y. Miao et al., “Eesen: End-to-end speech recognition using deep
rnn models and wfst-based decoding,” in 2015 IEEE Workshop on
Automatic Speech Recognition and Understanding (ASRU). IEEE,
2015, pp. 167–174.

[4] J. Qiu et al., “A survey of machine learning for big data process-
ing,” EURASIP Journal on Advances in Signal Processing, vol. 2016,
pp. 1–16, 2016.

[5] M. Al-Qizwini et al., “Deep learning algorithm for autonomous
driving using googlenet,” in 2017 IEEE Intelligent Vehicles Sympo-
sium (IV). IEEE, 2017, pp. 89–96.

[6] C. Miller et al., “Remote exploitation of an unaltered passenger
vehicle,” Aug 2015. [Online]. Available: http://illmatics.com/
Remote\%20Car\%20Hacking.pdf

[7] F. F. dos Santos et al., “Analyzing and increasing the reliability
of convolutional neural networks on gpus,” IEEE Transactions on
Reliability, vol. 68, pp. 663–677, 2018.

[8] T. C. Koylu et al., “Rnn-based detection of fault attacks on rsa,” in
2020 IEEE International Symposium on Circuits and Systems (ISCAS),
2020, pp. 1–5.

[9] F. F. dos Santos et al., “Evaluation and mitigation of soft-errors
in neural network-based object detection in three gpu architec-
tures,” in 2017 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops (DSN-W). IEEE, 2017,
pp. 169–176.

[10] S. Parkinson et al., “Cyber threats facing autonomous and con-
nected vehicles: Future challenges,” IEEE Transactions on Intelligent
Transportation Systems, 2017.

[11] A. Zhiyuan et al., “Realization of buffer overflow,” in International
Forum on Information Technology and Applications, 2010.

[12] Y. Kim et al., “Flipping bits in memory without accessing them: An
experimental study of dram disturbance errors,” ACM SIGARCH
Computer Architecture News, vol. 42, pp. 361–372, 2014.

[13] G. Bolt, “Investigating fault tolerance in artificial neural net-
works,” 1991.

[14] T. Ito et al., “On fault injection approaches for fault tolerance
of feedforward neural networks,” in Proceedings Sixth Asian Test
Symposium (ATS’97). IEEE, 1997, pp. 88–93.

[15] F. Su et al., “The superior fault tolerance of artificial neural
network training with a fault/noise injection-based genetic algo-
rithm,” Protein & cell, vol. 7, pp. 735–748, 2016.

9

[16] S. Cavalieri et al., “A novel learning algorithm which improves
the partial fault tolerance of multilayer neural networks,” Neural
Networks, vol. 12, pp. 91–106, 1999.

[17] S. K. Mak et al., “Regularizers for fault tolerant multilayer feed-
forward networks,” Neurocomputing, vol. 74, pp. 2028–2040, 2011.

[18] Y. Tan et al., “A fault-tolerant multilayer neural network model
and its properties,” Systems and computers in Japan, vol. 25, pp.
33–43, 1994.

[19] L. Xia et al., “Fault-tolerant training with on-line fault detection
for rram-based neural computing systems,” in Proceedings of the
54th Annual Design Automation Conference 2017, 2017, pp. 1–6.

[20] C. Neti et al., “Maximally fault tolerant neural networks,” IEEE
Transactions on Neural Networks, vol. 3, pp. 14–23, 1992.

[21] J. Sum et al., “Prediction error of a fault tolerant neural network,”
Neurocomputing, vol. 72, pp. 653–658, 2008.

[22] B. Reagen et al., “Ares: A framework for quantifying the resilience
of deep neural networks,” in 2018 55th ACM/ESDA/IEEE Design
Automation Conference (DAC). IEEE, 2018, pp. 1–6.

[23] D. A. Medler et al., “Training redundant artificial neural networks:
Imposing biology on technology,” Psychological Research, vol. 57,
pp. 54–62, 1994.

[24] M. D. Emmerson et al., “Determining and improving the fault
tolerance of multilayer perceptrons in a pattern-recognition appli-
cation,” IEEE transactions on neural networks, vol. 4, pp. 788–793,
1993.

[25] D. S. Phatak et al., “Complete and partial fault tolerance of
feedforward neural nets,” IEEE Transactions on Neural Networks,
vol. 6, pp. 446–456, 1995.

[26] H. Bar-El et al., “The sorcerer’s apprentice guide to fault attacks,”
Proceedings of the IEEE, vol. 94, pp. 370–382, 2006.

[27] R. E. Lyons et al., “The use of triple-modular redundancy to im-
prove computer reliability,” IBM journal of research and development,
vol. 6, pp. 200–209, 1962.

[28] L. Anghel et al., “Cost reduction and evaluation of a temporary
faults-detecting technique,” in Design, Automation, and Test in
Europe. Springer, 2008, pp. 423–438.

[29] Y. Liu et al., “Fault injection attack on deep neural network,” in
[42] A. Bosio et al., “A reliability analysis of a deep neural network,”

in 2019 IEEE Latin American Test Symposium (LATS). IEEE, 2019,
pp. 1–6.

2017 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 2017, pp. 131–138.

[30] J. Breier et al., “Practical fault attack on deep neural networks,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018, pp. 2204–2206.

[31] G. Li et al., “Understanding error propagation in deep learning
neural network (dnn) accelerators and applications,” in Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2017, pp. 1–12.

[32] M. Bushnell et al., Essentials of electronic testing for digital, memory
and mixed-signal VLSI circuits. Springer Science & Business Media,
2004, vol. 17.

[33] S. Wang et al., “Fired neuron rate based decision tree for detection
of adversarial examples in dnns,” in 2020 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, 2020, pp. 1–5.

[34] K. Chatfield et al., “Return of the devil in the details: Delving deep
into convolutional nets,” arXiv preprint arXiv:1405.3531, 2014.

[35] C. Szegedy et al., “Going deeper with convolutions,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2015, pp. 1–9.

[36] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition
Challenge,” International Journal of Computer Vision (IJCV), vol. 115,
pp. 211–252, 2015.

[37] Y. Jia et al., “Caffe: Convolutional architecture for fast feature
embedding,” arXiv preprint arXiv:1408.5093, 2014.

[38] C. Zhang et al., “Optimizing fpga-based accelerator design for
deep convolutional neural networks,” in ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays, 2015.

[39] Xilinx Virtex-7 FPGA VC707 Evaluation Kit, Xilinx, 2021.
[40] M. Bojarski et al., “End to end learning for self-driving cars,” arXiv

preprint arXiv:1604.07316, 2016.
[41] R. J. Gillela, “Design of hardware cnn accelerators for audio and

image classification,” 2020.
[43] B. Xu et al., “Empirical evaluation of rectified activations in

convolutional network,” arXiv preprint arXiv:1505.00853, 2015.
[44] L.-H. Hoang et al., “Ft-clipact: Resilience analysis of deep neural

networks and improving their fault tolerance using clipped acti-
vation,” in 2020 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2020, pp. 1241–1246.

10

