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Abstract. In this paper, a probabilistic analysis is presented to compute the ultimate bearing capacity of a strip footing resting on 
a spatially varying rock mass. The rock is assumed to follow the generalized Hoek-Brown failure criterion. The uniaxial 
compressive strength of the intact rock (�c) was considered as a random field and the Geological Strength Index (GSI) was 
modeled as a random variable. The deterministic model was based on numerical simulations. The uncertainty propagation 
methodology employed in the analysis makes use of a non-intrusive approach to build up a sparse polynomial chaos expansion 
for the system response. The probabilistic numerical results were presented in the case of a weightless rock mass. The variability 
of the ultimate bearing capacity was found to decrease with the decrease in the autocorrelation distance. Sobol indices have 
shown that for the very large values of the autocorrelation distance, the variability of the ultimate bearing capacity is mainly due 
to �c; however, in the case of very small values of the autocorrelation distance, GSI is the most weighed variable.  

Keywords. Rock mechanics, Hoek-Brown failure criterion, bearing capacity, probabilistic analysis, spatial variability, sparse 
polynomial chaos expansion. 

1. Introduction 

The analysis and design of a strip footing resting 
on a rock mass obeying Hoek-Brown (HB) 
failure criterion are generally based on 
deterministic approaches. In this paper, the 
behavior of a strip footing resting on a HB rock 
mass is studied using a probabilistic approach. 
Our aim is to determine the probabilistic ultimate 
bearing capacity of a strip footing resting on a 
spatially varying rock mass and subjected to a 
vertical load. The rock mass is assumed to follow 
the generalized HB failure criterion (Hoek and 
Brown, 1980; Hoek et al., 2002). This criterion is 
characterized by four parameters (i) the 
geological strength index (GSI), (ii) the uniaxial 
compressive strength of the intact rock (�c), (iii) 
the intact rock material constant (mi) and (iv) the 
disturbance coefficient (D). Mao et al. (2012) 
have modeled these four parameters as random 
variables and have performed a probabilistic 
analysis of the ultimate bearing capacity of 
foundations. These authors have shown that the 
variability of the ultimate bearing capacity is 
mainly due to the uniaxial compressive strength 
of the intact rock (�c) and the geological strength 
index (GSI). Based on this study, only these two 

parameters were considered herein as uncertain. 
The rock uniaxial compressive strength of the 
intact rock (�c) was considered as a log-normal 
random field characterized by a square 
exponential autocorrelation function. The 
Expansion Optimal Linear Estimation (EOLE) 
method proposed by Li and Der Kiureghian 
(1993) was used to dicretize this random field. 
As for GSI, this parameter characterizes the 
overall rock mass condition and it does not 
represent a precise physical parameter varying in 
space. Thus, it cannot be modeled as a random 
field and will be treated herein as a random 
variable.  

As for the probabilistic method of analysis, 
the classical Monte Carlo Simulation (MCS) 
methodology is generally used when dealing 
with random fields (Ching et al., 2011). In spite 
of being a rigorous method, MCS requires a 
large number of calls to the deterministic model. 
This is not convenient in the case where a 
computationally-expensive (finite element or 
finite difference) deterministic model is used. 
This paper makes use of an efficient probabilistic 
approach which significantly reduces the number 
of calls of the deterministic model. The Sparse 
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Polynomial Chaos Expansion (SPCE) 
methodology is proposed in this regard.  

The paper is organized as follows: The next 
section aims at presenting the deterministic 
model used for the computation of the ultimate 
bearing capacity. It is followed by a presentation 
of the probabilistic method. Finally, the 
probabilistic numerical results are presented and 
discussed. The paper ends with a conclusion.  

2. Deterministic Model 

The Hoek-Brown failure criterion only deals 
with intact rocks or heavily jointed rock masses. 
A heavily jointed rock mass involves sufficiently 
dense and randomly distributed joints so that in 
the scale of the problem, it can be regarded as an 
isotropic assembly of interlocking particles. 
Consequently, rocks with few discontinuities 
cannot be considered in this framework. The HB 
failure criterion can be described by the 
following equation (Hoek et al., 2002): 

� �� �ncc s/m ��� 					 331   (1) 

where �1 and �3 are respectively the major and 
minor principal stresses at failure and �c is the 
uniaxial compressive stress of the rock at failure. 
The parameters m, s and n are given by the 
following equations: 
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In these equations, the geological strength index 
(GSI) characterizes the quality of rock. On the 
other hand, the parameter mi is the value of 
parameter m for intact rock and can be obtained 
from experimental tests. It varies from 4 for very 
fine weak rock like claystone to 33 for coarse 
igneous light-colored rock like granite. Finally, 
D is the disturbance coefficient. It varies from 
0.0 for undisturbed in situ rock masses to 1.0 for 
very disturbed rock masses.  

The deterministic model used to calculate 
the ultimate bearing capacity of a strip footing 
resting on a HB rock mass and subjected to a 
vertical load was based on the commercial 

numerical code FLAC3D. A footing of breadth 
B=1m is considered in the analysis. For this 
calculation, a rock mass of 20m wide by 6m deep 
was considered. The rock behavior was modeled 
by an elastic perfectly plastic model obeying the 
generalized HB failure criterion. The rigid strip 
footing was modeled by a prescribed uniform 
velocity for all the rock nodes in contact with the 
footing. A value of 10-6 m/time step was chosen 
for this velocity since a smaller value was proven 
to negligibly decrease the value of the ultimate 
bearing capacity. Notice that the ultimate bearing 
capacity was computed by integrating the 
reaction forces at the different nodes of the 
footing when reaching the steady state of plastic 
flow. 

3. Probabilistic Analysis  

First, the discretisation of the log-normal random 
field of �c is briefly presented. It is followed by a 
brief presentation of the SPCE methodology used 
for the probabilistic analysis.  

3.1. Discretization of the Random Field 

Consider a 2D non-isotropic log-normal random 
field ZLN described by: (i) a log-normal marginal 
cumulative distribution function FG, and (ii) a 
square exponential autocorrelation function LN

Z�
[(x, y), (x', y')] which gives the values of the 
correlation between two arbitrary points (x, y) 
and (x', y'). Notice that this function is given as 
follows: 
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where ax and ay are the autocorrelation distances 
along x and y respectively. The EOLE method 
proposed by Li and Der Kiureghian (1993) to 
discretize a random field is used herein. In this 
method, one should first define a stochastic grid 
composed of s grid points (or nodes) and 
determine the log-normal autocorrelation matrix 

;

LN
� �
�  which gives the correlation between each 

grid point of the stochastic mesh and the other 
grid points of this mesh using Equation (3). The 
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log-normal autocorrelation matrix 
;

LN
� �
�  should 

then be transformed into the Gaussian space 
using the Nataf transformation (Nataf, 1962). As 
a result, one obtains a Gaussian autocorrelation 
matrix ;

G
� ��  that can be used to discretize the 

Gaussian random field Z as follows: 

ln ln
1

( , ) . . (4)
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where �lnZ and �lnZ are the mean and standard 
deviation values of the underlying normal 
distribution (i.e. ln(Z)); ( ,j j� � ) are the 
eigenvalues and eigenvectors of the Gaussian 
autocorrelation matrix ;

G
� �� ; G� ; �  is the 

correlation vector between the value of the field 
at an arbitrary point (x, y) and its values at the 
different grid points; j� (j=1, …, N) is a vector 
of standard normal random variables; and N is 
the number of terms (expansion order) retained 
in EOLE method. This number N is obtained (i) 
by sorting the eigenvalues j�  (j=1, …, s) in a 
descending order and (ii) by choosing the 
number N of eigenmodes that leads to a variance 
of the error which is smaller than a prescribed 
�������	�
�
� 10%� �  in this paper). Notice that 
the variance of the error for EOLE is given by Li 
and Der Kiureghian (1993) as follows: 
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where ( , )Z x y and ( , )Z x y� are respectively 
the exact and the approximate values of the 
random fields at a given point (x, y) and � �Tj� is 

the transpose of the eigenvector j� . Once the 
Gaussian random field is obtained, it should be 
transformed into the log-normal space by 
exponentiating the approximated Gaussian 
random field ( , )Z x y�  given by Equation (4). 

3.2. Sparse Polynomial Chaos Expansion SPCE 
for the System Response 

In this section, one first presents the polynomial 
chaos expansion (PCE) and then its extension, 
the sparse polynomial chaos expansion (SPCE). 
The polynomial chaos expansion methodology 
allows one to replace a complex deterministic 
model whose uncertain input parameters are 
random variables by a meta-model. Thus, the 
random system response may be easily 
calculated (when performing the probabilistic 
analysis by MCS) using a simple analytical 
equation. Within the PCE methodology, the 
system response 
 ��
 �
 �����
 �����
 ����
 �

random variables can be expressed by a PCE as 
follows: 

1

0 0
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where P is the number of terms retained in the 
truncation scheme, # $ 1,....,i i M

� �
�

�  is a vector of 

M independent standard random variables that 
represent the M random variables, a� are 
unknown coefficients to be computed and �"  
are multivariate Hermite polynomials. These 
multivariate Hermite polynomials can be 
obtained from the product of one-dimensional 
Hermite polynomials as follows: 

1

( )
i

M

i
i

H� % �
�
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�����
�i (i=1, …, M) are a sequence of M non-
negative integers and (.)

i
H %  is the th

i% one-
dimensional Hermite polynomial. The 
coefficients a� of the PCE are computed in this 
paper using a non-intrusive technique where the 
deterministic calculations are done using the 
finite difference software FLAC3D treated as a 
black box. The most used non-intrusive method 
is the regression approach (Blatman and Sudret, 
2010). This method is used in the present work. 
In fact, for a PCE of order p, only the 
multivariate polynomials 

�"  of degree less than 
or equal to p should be retained. This leads to a 
number P of the unknown PCE coefficients (see 
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Equation (6)) equal to ( )!
! !

M p
M p
� . It should be 

noticed that the number of the PCE coefficients 
to be computed grows dramatically with the size 
M of the input random vector and the PCE order 
p. When dealing with a random field as is the 
case in the present paper (and especially when 
considering small values of the autocorrelation 
distance), the discretization of the random field 
may lead to a significant number of random 
variables which makes the determination of the 
PCE coefficients unfeasible because of the 
significant increase in the number of calls of the 
deterministic model. To address such problem, 
the sparse polynomial chaos expansion 
developed by Blatman and Sudret 2010 is used 
herein. Indeed, Blatman and Sudret 2010 have 
shown that the number of significant terms in a 
PCE is relatively small since the multivariate 
polynomials �"  corresponding to high-order 
interaction (i.e. those resulting from the 
multiplication of the 

i
H %

wit�
 ��	�������
 �i 
values) are associated with very small values for 
the coefficients a�. Based on this observation, 
these authors have proposed a so-called 
hyperbolic truncation scheme to determine the 
significant �"  terms. This scheme suggests that 
the q-norm 

q
%  of the retained 

�"  term should 

be less than or equal to the order p of the PCE. 
The q-norm is given by: 
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where q is a coefficient (0<q<1). In this formula, 
q can be chosen arbitrarily. Blatman and Sudret 
2010 have shown that sufficient accuracy is 
obtained for 0.5q ' .  

The proposed SPCE methodology leads to a 
sparse polynomial chaos expansion that contains 
a small number of unknown coefficients which 
can be calculated from a reduced number of calls 
of the deterministic model with respect to the 
classical PCE methodology. Once the SPCE 
coefficients are determined, a global sensitivity 
analysis (GSA) based on Sobol indices can be 
easily performed. Notice that the first order 
�����
 �����
 ��
 �
 �����
 ������
 ��������
 �i 
(i=1,…, M) gives the contribution of this 

variable to the variability of the system response. 
The first order Sobol index is given by Salteli et 
al. 2000 as follows:  
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where Y is the system response, � �| iE Y �  is the 
expectation of Y conditional on a fixed value of 

i� , and Var denotes the variance. In the present 
paper, the system response is represented by a 
SPCE. Thus, by replacing Y in Equation (9) with 
the SPCE expression, one obtains the Sobol 
index as a function of the different terms of the 
SPCE (Sudret, 2008) as follows:  
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where a�  are the obtained SPCE coefficients, 

�"  are the multivariate Hermite polynomials, 
E[.] is the expectation operator, and � �2E �

� �") *� �
 is 

given by Sudret (2008) as follows: 
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��
 ����
 ��"�����#
�i are the same sequence of M 
non-negative integers used in Eq (7). Notice 
finally that Ii which appears in the numerator of 
Eq �$&*
�������
���
���
��
����	��
�
���
���	�
���

corresponding �"  terms are only functions of 
���
������
��������
�i (i.e. they only contain the 
��������
 �i), and Ii (i=1, …, M) in the 
denominator of the same equation regroup all the 
����	��
�
���
���	�
���
	�����+������
 �"  terms 
���
�"�	�����
��
���
 ���
������
���������
�i (i=1, 
…, M). In the present paper where both a 
random variable (GSI) and a random field (�c) 
are involved, the Sobol index of the random field 
(�c) is computed as the sum of the Sobol indices 
of the different variables that represent this field. 
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4.  Numerical Results 

The aim of this section is to present the 
probabilistic numerical results. The mean value 
and coefficient of variation of �c (referred to in 
this paper as reference values) were taken as 
follows: 10 , 25%

c c
MPa COV	 	+ � � . On the other 

hand, the mean value and coefficient of variation 
of GSI are given as follows: 

25, 10%GSI GSICOV+ � � . As for the 
autocorrelation distance (a) of the random field 
�c, the reference value adopted is 2m. Notice that 
the intact rock material constant (mi) and the 
disturbance coefficient (D) were assumed to be 
deterministic. Their corresponding values were 
respectively 8im �  and D=0.3.  

4.1. Sobol Indices 

Figure 1 depicts the values of Sobol indices (for 
the reference case) as given by the obtained 
SPCE for (i) the random variable GSI and (ii) the 
35 random variables representing the random 
field �c. The first random variable �1 corresponds 
to GSI and its Sobol index was found to be equal 
to 0.66. However, the last 35 random variables 
>�?�?
�i for i=2, …, 36] are those corresponding to 
the �c random field. The sum of their Sobol 
indices gives the weight of the random field �c in 
the variability of the ultimate bearing capacity. 
This sum was found to be equal to 0.34.  

 

 
Figure 1. Sobol indices of the random variable GSI [i.e. 
������	
������������������������������������������	
 
 
Figure 1 shows that only six random variables ��2, 
�4#
 �6#
 �8#
 �9#
 �12) of the �c random field are the 

most influential (they involve 89% of the 
variance of �c). This can be explained by the fact 
that the ultimate bearing capacity is a quantity 
that depends on the average distribution of the 
spatially-varying rock property over the entire 
domain and it is therefore quite insensitive to 
small-scale fluctuations of �c. Notice that the first 
eigenmodes provide the average distribution of 
�c over the rock domain; however, the remaining 
eigenmodes give the small scale fluctuations 
around this average distribution. 

4.2. Effect of the Autocorrelation Distance 

Table 1 presents the first two statistical moments 
of the ultimate bearing capacity for different 
values of the autocorrelation distance of �c. This 
table shows that the variability of the bearing 
capacity decreases when the autocorrelation 
distance decreases. For the very large values of 
the autocorrelation distance (i.e. a =100m), the 
coefficient of variation of the ultimate bearing 
capacity tends to a constant maximal value 
which is the value corresponding to the case of a 
random variable. This is because in this case the 
value of �c (which is uniform within a given 
realization) varies within a large range 
corresponding to the values obtained from the 
PDF of �c. The decrease in the autocorrelation 
distance of the random field �c from infinity to a 
finite value (moderate or small where a 10m, ) 
limits the correlation between the values of this 
random field (in a given simulation) to a finite 
zone which leads to several zones with different 
values of �c over the entire rock mass. This 
means that in a single simulation, one obtains a 
set of weak and strong zones. The position of 
these zones may change from simulation to 
another one. This leads to a decrease in the 
variability of the ultimate bearing capacity 
because the presence of the rock mass 
heterogeneity will produce a somewhat close 
global behavior of the footing because of the 
averaging phenomenon over the zone of possible 
failure mechanism. 
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Table 1. Effect of the autocorrelation distance a  on the 
��������	��
�������
�J#
@#*
��
���
"�������
�������
	�+�	��Q 

Autocorrelation 
distance a[m] 

� � MPa+
 

� � MPa	
 

COV% 

0.5 1.486 0.288 19.35 

1 1.459 0.301 20.88 

2 1.462 0.342 23.40 

5 1.484 0.408 27.49 

10 1.512 0.450 29.78 

50 1.557 0.486 31.41 

100 1.560 0.488 31.41 

Random variable 1.560 0.488 31.41 

 
Table 1 shows that the probabilistic mean value 
of the ultimate bearing capacity presents a 
minimum when the autocorrelation distance is 
nearly equal to the footing breadth B (i.e. when a 
=1m). Notice that the minimal probabilistic mean 
was also observed by Fenton and Griffiths 
(2003) when considering the bearing capacity of 
foundations resting on a soil mass.  

Finally, Figure 2 shows the effect of the 
autocorrelation distance on the Sobol indices of 
the random field �c and the random variable GSI. 
The results show that for very large values of the 
autocorrelation distance, the variability of the 
ultimate bearing capacity is mainly due to �c. 
Similar results were obtained by Mao et al. 
(2012) where the uncertain parameters were 
modeled by random variables.  On the other hand, 
Figure 2 shows that the decrease in the 
autocorrelation distance of �c reduces its weight 
in the variability of the ultimate bearing capacity 
and increases the weight of GSI. This result can 
be explained by the fact that the small values of 
the autocorrelation distance increase the rock 
mass heterogeneity (i.e. one obtains a set of weak 
and strong zones) which will produce a 
somewhat close global behavior of the footing 
from simulation to another one because of the 
averaging phenomenon over the zone of possible 
failure mechanism. The expected decrease in the 
variability of the ultimate bearing capacity with 
the decrease in the autocorrelation distance of �c  
is reflected herein by a decrease in the weight of  
�c in the variability of this response.  

 
Figure 2. Influence of the autocorrelation distance a on the 
Sobol indices of GSI and �c 

5. Conclusions 

A probabilistic analysis of a vertically loaded 
strip footing resting on a spatially varying rock 
mass has been performed to compute the 
ultimate bearing capacity. The rock was assumed 
to follow the generalized Hoek-Brown failure 
criterion. The uniaxial compressive strength of 
the intact rock (�c) was considered as a random 
field and the Geological Strength Index (GSI) 
was modeled as a random variable. The 
uncertainty propagation methodology employed 
in the analysis makes use of a non-intrusive 
approach to build up a sparse polynomial chaos 
expansion for the system response. Also, a global 
sensitivity analysis based on Sobol indices was 
performed. The deterministic model was based 
on numerical simulations using FLAC3D software. 
The probabilistic numerical results were 
presented in the case of a weightless rock mass. 
These results have shown that for the very large 
values of the autocorrelation distance, the 
variability of the ultimate bearing capacity is 
mainly due to �c; however, in the case of very 
small values of the autocorrelation distance, GSI 
is the most weighed variable. With a decrease in 
the autocorrelation distance of the uniaxial 
compressive strength of the intact rock (�c), a 
smaller variability of the ultimate bearing 
capacity was obtained; however, the probabilistic 
mean value of the ultimate bearing capacity 
presents a minimum. This minimum was 
obtained when the autocorrelation distance is 
equal to the footing breadth B.  
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