Print Email Facebook Twitter Turbulence modulation by dense suspensions in channel flows Title Turbulence modulation by dense suspensions in channel flows Author Picano, Francesco (University of Padova) Simões Costa, P. (TU Delft Fluid Mechanics) Breugem, W.P. (TU Delft Multi Phase Systems) Brandt, Luca (KTH Royal Institute of Technology) Date 2017 Abstract Dense suspensions are usually investigated in the laminar limit where inertial effects are insignificant. In this regime, the main effect of the suspended phase is to alter the rheological behavior of the flow which always displays higher effective viscosity with respect to the carrier fluid. When the flow rate is high enough, i.e. at high Reynolds number, the flow may become turbulent and the interaction between solid and liquid phase modifies the turbulent dynamics that we know in single-phase fluids. In the present work, we study turbulent channel flows laden with finite-size particles at high volume fraction (F = 0:2) by means of Direct Numerical Simulations. A direct-forcing Immersed Boundary Method has been adopted to couple liquid and solid phases. The two-phase simulations have been performed fixing the bulk Reynolds number at Reb = Ub 2h=n = 12000 (Ub bulk velocity, h channel half-width and n the fluid kinematic viscosity). The particle size is relatively large with respect to the viscous length, i.e. 10 and 20 times, but smaller than large scales. We will present a detailed comparison of the statistical behavior of the particle-laden flow and the corresponding single-phase flow. The presence of the solid phase strongly alters the wall turbulence dynamics and its effect cannot be accounted only considering the higher rheological effective viscosity. To reference this document use: http://resolver.tudelft.nl/uuid:3fbb3bec-2cd5-443b-a47f-093c53cb0466 Publisher TSFP, Chigago, IL, USA Source Proceedings 10th International Symposium on Turbulence and Shear Flow Phenomena (TSFP10), 1 Event 10th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2017, 2017-07-06 → 2017-07-09, Chicago, United States Part of collection Institutional Repository Document type conference paper Rights © 2017 Francesco Picano, P. Simões Costa, W.P. Breugem, Luca Brandt Files PDF 265.pdf 1.74 MB Close viewer /islandora/object/uuid:3fbb3bec-2cd5-443b-a47f-093c53cb0466/datastream/OBJ/view