Opdrachtgever:
Rijkswaterstaat,
Dienst Weg- en Waterbouwkunde

Documentatie STEENTOETS, versie 3.20

maart 2000
OPDRACHTGEVER: Rijkswaterstaat, Dienst Weg- en Waterbouwkunde

TITEL: Documentatie STEENTOETS, versie 3.20

SAMENVATTING:

Ten behoeve van de veiligheidstoetsing van steenzettingen is een Excel-programma gemaakt waarin alle relevante gegevens omtrent de dijkbekleding kunnen worden ingevoerd, waarna de toetsing door het programma wordt uitgevoerd. Gezien de beperkingen van een programma onder Excel en de hanteerbaarheid ervan, is het toepassingsgebied als volgt afgebakend:

- alleen blokken of zuilen zonder gaten.
- toetsing zonder de eventuele invloed van overgangsconstructies.
- eenvoudige toetsing van de toplaagstabiliteit, filter, afschuiving en reststerkte.
- een gedetailleerde toetsing van de stabilitéit van de toplaag van een steenzetting zonder gaten in de stenen of geotextiel onder de toplaag en maximaal twee filterlagen, overeenkomstig ANAMOS 2.21, echter zonder de invloed van overgangsconstructies.

In dit verslag wordt eerst een korte omschrijving gegeven van de diverse parameters die ingevoerd moeten worden. Vervolgens worden de ingeprogrammeerde formules beschreven. De doelgroep bestaat uit mensen die goed bekend zijn met Excel en met steenzettingen.

Voor het gebruik van Excel spreadsheets wordt verwezen naar de gewone user manuals.

Het programma is ontwikkeld voor Windows-95 met Excel 7.0 en 8.0, zowel Engels als Nederlands.

REFERENTIES:

<table>
<thead>
<tr>
<th>REV.</th>
<th>AUTEUR</th>
<th>DATUM</th>
<th>OPMERKINGEN</th>
<th>REVIEW</th>
<th>GOEDKEURING</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.20</td>
<td>M. Klein Breteler</td>
<td>jan. 1999</td>
<td>W. Leeuwestein</td>
<td>W.M.K. Tilmans</td>
<td></td>
</tr>
<tr>
<td>2.30</td>
<td>M. Klein Breteler</td>
<td>april 1999</td>
<td>F. den Heijer</td>
<td>W.M.K. Tilmans</td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>M. Klein Breteler</td>
<td>nov. 1999</td>
<td>F. den Heijer</td>
<td>W.M.K. Tilmans</td>
<td></td>
</tr>
<tr>
<td>3.10</td>
<td>M. Klein Breteler</td>
<td>febr 2000</td>
<td>F. den Heijer</td>
<td>W.M.K. Tilmans</td>
<td></td>
</tr>
<tr>
<td>3.20</td>
<td>M. Klein Breteler</td>
<td>maart 2000</td>
<td>F. den Heijer</td>
<td>W.M.K. Tilmans</td>
<td></td>
</tr>
</tbody>
</table>

TREFWOORDEN
Steenzetting, toetsing, dijkbekledingen, taludbekledingen, golven, afschuiving, filter, materiaaltransport, reststerkte

TEKST: 28
TABELLEN: 4
FIGUREN: 2
APPENDICES: 4

STATUS

PROJECTNUMMER: H 3167
Inhoud

Lijst van Appendices
Lijst van Symbolen

1 Inleiding ... 1

2 Het invoeren van de gegevens ... 3

3 Uitvoer en toetsingsresultaat ... 9

4 Formules .. 11

 4.1 Maatgevende waterstand en hoek van golfaanval ... 11

 4.2 Eenvoudige toetsing van de toplaag ... 12

 4.2.1 Algemeen ... 13

 4.2.2 Type 1: Toetsing van steensetting op geotextiel op zand of klei 13

 4.2.3 Type 2: Toetsing van steensetting op goede klei .. 14

 4.2.4 Type 3: Toetsing van steensetting op filter .. 14

 4.2.5 Type 4: Toetsing van geschakelde blokken op geotextiel op zand of klei 17

 4.2.6 Type 5: Toetsing van geschakelde blokken op goede klei 17

 4.2.7 Type 6: Toetsing van geschakelde blokken op filter 18

 4.3 Berekening spleetbreedte ... 20

 4.4 ANAMOS .. 20

 4.5 Eindscore van de toplaagstabiliteit ... 23

 4.6 Toetsing op afschuiving ... 23

 4.7 Toetsing op materiaaltransport .. 24

 4.8 Toetsing van reststerkte ... 25

 4.8.1 Reststerkte van het filter ... 25

 4.8.2 Reststerkte van de kleilaag .. 25

 4.8.3 Score met betrekking tot reststerkte .. 26

 4.9 Eindscore .. 26

5 Ontbrekende gegevens .. 27
Appendices

A. Toetsing met ANAMOS
B. Spreadsheets
C. Source code
D. Testprocedure
Symbolenlijst

<table>
<thead>
<tr>
<th>Symbolen</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>dikte filterlaag (m)</td>
</tr>
<tr>
<td>b_u</td>
<td>dikte bovenste filterlaag (m)</td>
</tr>
<tr>
<td>b_l</td>
<td>dikte bovenste filterlaag (m)</td>
</tr>
<tr>
<td>b_m</td>
<td>dikte tweede filterlaag (m)</td>
</tr>
<tr>
<td>b_s</td>
<td>dikte tweede filterlaag (m)</td>
</tr>
<tr>
<td>b_klei</td>
<td>dikte van kleilaag (m)</td>
</tr>
<tr>
<td>b_v</td>
<td>verhouding belasting/sterkte volgens ANAMOS</td>
</tr>
<tr>
<td>B</td>
<td>breedte van blok (m)</td>
</tr>
<tr>
<td>C_berm</td>
<td>invloedsfactor voor toetsing zetting op de berm</td>
</tr>
<tr>
<td>C_slib</td>
<td>invloedsfactor i.v.m. slib in de bekleding of gietasfalt</td>
</tr>
<tr>
<td>d_s</td>
<td>h - h_{berm}</td>
</tr>
<tr>
<td>D</td>
<td>dikte toplaag (m)</td>
</tr>
<tr>
<td>D_{b15}</td>
<td>Korrelgrootte van zand dat door 15% op basis van gewicht wordt onderschreden (m)</td>
</tr>
<tr>
<td>D_{b50}</td>
<td>Korrelgrootte van zand dat door 50% op basis van gewicht wordt onderschreden (m)</td>
</tr>
<tr>
<td>D_{b90}</td>
<td>Korrelgrootte van zand dat door 90% op basis van gewicht wordt onderschreden (m)</td>
</tr>
<tr>
<td>D_{cr}</td>
<td>benodigde toplag dikte om stabiel te zijn voor statische overdruk (m)</td>
</tr>
<tr>
<td>D_{f15}</td>
<td>Korrelgrootte van filter of inwasmateriaal dat door 15% op basis van gewicht wordt onderschreden (m)</td>
</tr>
<tr>
<td>D_{f15u}</td>
<td>D_{f15} bovenste filterlaag (m)</td>
</tr>
<tr>
<td>D_{f1s}</td>
<td>D_{f15} bovenste filterlaag (m)</td>
</tr>
<tr>
<td>D_{f15n}</td>
<td>D_{f15} tweede filterlaag (m)</td>
</tr>
<tr>
<td>D_{f15l}</td>
<td>D_{f15} tweede filterlaag (m)</td>
</tr>
<tr>
<td>D_{f50}</td>
<td>Korrelgrootte van filter dat door 50% op basis van gewicht wordt onderschreden (m)</td>
</tr>
<tr>
<td>D_{f90}</td>
<td>Korrelgrootte van filter dat door 90% op basis van gewicht wordt onderschreden (m)</td>
</tr>
<tr>
<td>g_v</td>
<td>golfrandvoorwaarde-ondergrens uit werkblad ‘golven’</td>
</tr>
<tr>
<td>g_h</td>
<td>golfrandvoorwaarde-bovengrens uit werkblad ‘golven’</td>
</tr>
<tr>
<td>g/l</td>
<td>waarde van H/\Delta D op de ondergrens van twijfelachtige gebied, gedeeld door de actu"e"e waarde van H/\Delta D (-)</td>
</tr>
<tr>
<td>h</td>
<td>maatgevende waterstand t.o.v. NAP (m)</td>
</tr>
<tr>
<td>h_{berm}</td>
<td>niveau voorrand van de berm t.o.v. NAP (m)</td>
</tr>
<tr>
<td>h_{hoog}</td>
<td>niveau bovenbegrenzing van de te toetsen steenzetting (t.o.v. NAP)</td>
</tr>
<tr>
<td>h_{laag}</td>
<td>niveau onderbegrenzing van de te toetsen steenzetting (t.o.v. NAP)</td>
</tr>
<tr>
<td>h_{setting2000}</td>
<td>toetspeil 2000 t.o.v. NAP (m)</td>
</tr>
<tr>
<td>H_s</td>
<td>significante golfhoogte bij de teen van de dijk (m)</td>
</tr>
<tr>
<td>H_e/\Delta D</td>
<td>C_{berm} \cdot H_s/\Delta D</td>
</tr>
<tr>
<td>k</td>
<td>doorlatendheid van zand (m/s)</td>
</tr>
<tr>
<td>k'</td>
<td>gelineariseerde doorlatendheid van toplaag (m/s)</td>
</tr>
<tr>
<td>L</td>
<td>lengte van blok (m)</td>
</tr>
<tr>
<td>n</td>
<td>porositeit van filter of inwasmateriaal (-)</td>
</tr>
</tbody>
</table>
\(O_{90} = \) karakteristieke openingengrootte van geotextiel (m)
\(s = \) spleetbreedte (m)
\(t_o = \) duur van de overbelaste situatie, dus de tijdsduur dat het stijghoogteverschil groter is dan het eigen gewicht plus wrijving en klemming (s)
\(t_c = \) toetslocatie ondergrens
\(t_b = \) toetslocatie bovengrens
\(t_r = \) reststerkte filterlaag (uur)
\(t_{rk} = \) reststerkte toplaag (uur)
\(t_s = \) stormduur (uur)
\(t/o = \) waarde van \(H_o/\Delta D \) op de bovengrens van twijfelachtige gebied, gedeeld door de actuele waarde van \(H/\Delta D \) (-)
\(T_p = \) golfperiode bij piek van spectrum bij de teen van de dijk (s)

\(\alpha = \) taludhelling (\(^\circ\))
\(\alpha_0 = \) taludhelling onder de berm (\(^\circ\))
\(\beta = \) hoek van golfinval t.o.v. dijknormaal (0\(^\circ\) is loodrecht) (\(^\circ\))
\(\beta_d = \) Dijknormaal richting t.o.v. N (Het gaat om de lijn haaks op de dijk, gericht naar zee) (\(^\circ\))
\(\beta_g = \) golfvoortplantingsrichting (Nautische richting; waar de golven vandaan komen) (\(^\circ\))
\(\Delta = \) relatieve soortelijke massa van toplaagelementen (beton, natuursteen) (-)
\(\varepsilon = \) relatieve blokbeweging, bijvoorbeeld 10% van de blokdikte (-)
\(\rho_s = \) soortelijke massa van toplaagelementen (beton, natuursteen) (kg/m\(^3\))
\(\rho = \) soortelijke massa van water (kg/m\(^3\))
\(\xi_{op} = \) brekerparameter (-)
\(\Omega = \) open oppervlak (zie par 4.3) (%)
\(\Gamma_{traag} = \) invloedsfactor voor de traagheid van een bewegend blok (-)
\(\Gamma_{toe} = \) invloedsfactor voor de verhinderde toestroming naar een bewegend blok (-)
\(\Gamma_{totaal} = \) invloedsfactor voor traagheid en toestroming tezamen (-)
\(\Lambda = \) lek lengte (m)
I Inleiding

Ten behoeve van de veiligheidstoetsing van steenzettingen is het Excel-programma STEENTOETS gemaakt waarin alle relevante gegevens omtrent de dijkbekleding kunnen worden ingevoerd, waarna de toetsing door het programma wordt uitgevoerd. Gezien de beperkingen van een programma onder Excel en de hanteerbaarheid ervan, is het toepassingsgebied als volgt afgebakend:

1. Alleen blokken of zuilen zonder gaten.
2. Toetsing zonder de eventuele invloed van overgangsconstructies.
3. Eenvoudige toetsing van de toplaagstabiliteit (op talud en berm), filter, afschuiving en ressterte.
4. Een gedetailleerde toetsing van de stabiliteit van de toplaag van een steenzetting zonder gaten in de stenen of geotextiel onder de toplaag en maximaal twee filterlagen, overeenkomstig ANAMOS 2.21, echter zonder de invloed van overgangsconstructies.

In dit verslag wordt eerst een korte omschrijving gegeven van de diverse parameters die ingevoerd moeten worden. Vervolgens worden de ingeprogrammeerde formules beschreven. De doelgroep voor dit programma en deze documentatie bestaat uit mensen die goed bekend zijn met Excel en met steenzettingen. Voor het gebruik van Excel spreadsheets wordt verwezen naar de gewone user manuals.

Het programma is ontwikkeld voor Windows-95 met Excel 7.0 (Office ’95) en Excel 8.0 (Office ’97). Het is zowel voor de Nederlandstalige als de Engelstalige versies geschikt. Helaas was het noodzakelijk om twee versies uit te brengen:
- Toets95.xls voor Excel 7.0 (Office ’95)
- Toets97.xls voor Excel 8.0 (Office ’97)

Het gebruik van Toets95.xls in Office’97 met Excel 8.0 moet sterk afgeraden worden, omdat dit kan leiden tot fouten.

Er kunnen fouten optreden als de instellingen in Windows voor getallen en valuta verschillend zijn. Dit kan gecontroleerd worden door in ‘deze computer’ de ‘configuratie’ te kiezen en vervolgens de ‘landeninstellingen’. Daar moet het decimaalssymbool voor getallen gelijk zijn aan die voor valuta, en moet het verschillend zijn van het cijfergroeperingssymbool (voor duizendtallen) en het lijstschijningssymbool.

Bij de opzet van het programma is nauw overleg gevoerd met het Waterschap Zeeuwse Eilanden en de DWW. Het programma en dit verslag is opgesteld door ir M. Klein Breteler van WL in opdracht van de DWW.

Ten opzichte van versie 2.30 zijn een aantal wijzigingen doorgevoerd. De belangrijkste zijn:
In het werkblad 'toetsing' zijn kolommen toegevoegd waarin de korrelgrootte (D_{nt}) en de porositeit (π) van het inwasmateriaal (voegvulling) kunnen worden ingevuld. Tevens is er een kolom toegevoegd waarin kan worden aangegeven of de zetting is ingewassen en of de afzonderlijke stenen goed geklemd liggen. De gegevens over het inwasmateriaal worden alleen gebruikt om de benodigde klemfactor te berekenen.

In het werkblad 'algemeen' is een kolom toegevoegd met de klemfactoren per type toplaag. Deze kolom is verborgen voor gewone gebruikers en is al aangebracht om te anticiperen op de toekomstige situatie waarbij er per type zetting klemfactoren bekend zijn.

In het werkblad 'toetsing' zijn verder twee nieuwe kolommen toegevoegd over de klemming. In de eerste kolom staat de aanwezige klemfactor die uit het werkblad 'algemeen' is gehaald (mits is aangegeven dat er goede klemming is) en in de tweede kolom staat de score op basis van de aanwezige klemfactor en de benodigde klemfactor. Ook deze kolomen zijn verborgen voor gewone gebruikers.

In het werkblad 'algemeen' is de keuze tussen 'meer' en 'zee' toegevoegd. Als er 'meer' wordt gekozen dan worden de golfcondities bepaald op basis van de gegevens bij de laagste waterstand. Als er 'zee' wordt gekozen, dan wordt er een interpolatie uitgevoerd met de gegevens bij de drie waterstanden.

In het menu 'toetsing' is de optie toegevoegd om regels te zoeken waarbij de toplaag niet 'goed' is en tevens het niveau-verschil tussen de ondergrens en bovengrens groter is dan 4 m. Voor die vakken wordt dan de bovengrens berekend waarbij de toplaag nog net 'goed' gekeurd kan worden. Indien men 'ok' kiest dan wordt een identieke regel toegevoegd met de berekende bovengrens die 'goed' oplevert voor de toplaag.

In het werkblad 'toetsing' zijn extra kolommen toegevoegd achter het eindoordeel van steentoets met een door de gebruiker in te vullen beheersvoorbeeld met toelichting en een eindoordel.

Als de ondergrens boven het toetspeil ligt, dan wordt het talud getoetst alsof de bekleding onder het toetspeil ligt. Echter, als het toetsresultaat ongelijk is aan 'goed', dan wordt het resultaat 'geavanceerd*'. Hiermee wordt een bekleding die boven het toetspeil ligt waar twijfel over bestaat, doorgeschoven naar de geavanceerde toetsing.

De afhandeling van zeer kleine golven bij lage waterstanden is veranderd. Als de golfhoogte kleiner wordt dan het in de golventabel gegeven minimum, dan wordt er ook een minimum periode berekend. Het is nu essentieel dat in de golventabel van links naar rechts oplopende waterstanden worden gehanteerd (waarde in cel G10 moet kleiner zijn dan in cel I10 en die moet weer kleiner zijn dan in cel K10).
2 Het invoeren van de gegevens

Op elke regel van de spreadsheet worden de kenmerken van één dijksectie ingevoerd, waarna het programma de toetsing uitvoert. Als in een bepaalde dijksectie een parameter niet één waarde heeft, maar in het ene deel de ene waarde en in het andere deel een andere waarde, dan moet de sectie opgedeeld worden in twee deelsecties.

Het Excel-programma bestaat uit vier delen (werkbladen, sheets):

- Werkblad met de toetsing invoer en uitvoer per dijksectie: ‘Toetsing’.
- Werkblad met een tabel met golfrandvoorwaarden en waterstanden en algemene constanten: ‘Golven’.
- Werkblad met een tabel met algemene constanten en informatie over toplaag- en filtertypen en dergelijke: ‘Algemeen’.
- Werkblad waarin de data van een oude Excel-spreadsheet van GD ingekopieerd kan worden: ‘GD-sheet’.

De meeste invoer spreekt voor zich (zie kop boven de betreffende kolom). Voor een aantal invoerparameters is onderstaand een toelichting gegeven.

Werkblad ‘Toetsing’

De volgende toelichtende informatie heeft betrekking op het werkblad ‘Toetsing’:

- Subvak grenzen:
- Oriëntatie van de dijk:
 Het gaat om de lijn haaks op de dijk, gericht naar zee. Deze richting t.o.v. Noord in graden moet worden aangegeven (= β_d). Als deze hoek 0° verschilt met de golfrichting β_g, dan is er loodrechte golfaanval.
- Niveau bovengrens: niveau bovenbegrenzing van de te toetsen steenzetting (t.o.v. NAP)
- Type bekleding (typ hier een getal in, dus bijvoorbeeld 27.1 in een engelstalige Excelversie en 27,1 in een Nederlandstalige): zie appendix B of werkblad ‘algemeen’. Andere typen bekledingen dan in het werkblad zijn gegeven mogen wel ingevoerd worden, maar het programma herkent ze niet.
- Type onderlaag: zie appendix B of werkblad ‘algemeen’.
 Als er meerdere onderlagen zijn, worden ze achter elkaar vermeld, te beginnen met de bovenste laag.
- Berm:
 Als de taludhelling flauwer is dan 1:9, dan gaat het programma er van uit dat het een berm is. Dan moet tevens de taludhelling onder de berm en het niveau van de voorrand van de berm ingevuld worden. Een berm met breedte kleiner dan een kwart golfhoogte (B < H/4) hoeft niet als berm getoetst te worden. Gebruik bij de toetsing de helling van het onder of boventalud.
- Spleetbreedte en open oppervlak:
 Het open oppervlak is het oppervlak aan spleten en gaten, gedeeld door het totale oppervlak. Voor rechthoekige blokken met spleten geldt:
 \[
 \Omega = \frac{(B + L + s) \cdot s}{(B + s)(L + s)} \cdot 100\%
 \]
 Er moet of een spleetbreedte of een open oppervlak ingevuld worden.
- Inwassing:
 Het gaat hierbij om de aanwezigheid van steenslag en/of grind dat zorgt voor een goede interactie tussen de blokken/zuilen. De korrelgrootteverdeling is zodanig dat er een aanzienlijke fractie is met korrels groter dan 2 mm. Vul hier de karakteristieke korrelgrootte, D\textsubscript{15}, en porositeit, n, in. Als de toplaag is dichtgeslibd of ingezand, dan moet hier de korrelgrootte van de oorspronkelijke inwassing ingevuld worden (mits dat nog voldoende aanwezig is) en niet de korrelgrootte van het zand of sliib. De inwassing wordt niet meegeteld voor het berekenen van het resultaat van ANAMOS en de score volgens ANAMOS, maar wel bij het berekenen van de benodigde klemfactor op basis van ANANOS (zie gedetailleerde toetsing).
- Goed geklemd:
 Er moet ingevuld worden of de klemming zodanig is dat er gerekend kan worden met de waarden in het werkblad ‘algemeen’ (die voor normale gebruikers verborgen is). Als er losse stenen in de bekleding voorkomen, vult men hier ‘nee’ in. Als er geen goed beeld is van de klemming, vul dan ‘? ’ in.
 Als is aangegeven dat de klemming goed is, dan wordt de klemfactor uit het werkblad ‘algemeen’ gebruikt om de score op basis van de benodigde klemfactor te bepalen (voor normale gebruikers verborgen). De klemming wordt nooit meegeteld voor het berekenen van het resultaat van ANAMOS en de score volgens ANAMOS (zie gedetailleerde toetsing).
- Sliib (toplaag):
 Het gaat hierbij om de inslibbing van de toplaag, die in de loop der jaren plaatsvindt en zorgt voor een zeer lage doorlatendheid van de toplaag. Er komt dan materiaal met een korrelgrootte kleiner dan 1 mm in de spleten. Als de toplaag is dichtgeslibd, vul dan ja in. Zo niet, dan nee invullen.
- Waterdicht ingegoten:
 Als het gietasfalt op/in de bekleding zo zorgvuldig is aangebracht, dat ook nu nog de toplaag en aansluitingen overal volledig ondoorlatendheid zijn, dan moet men hier ja invullen.
- Laag dikte van het filter:
 De laagdikten van de twee filterlagen kunnen ingevuld worden. Wordt er niets ingevuld, dan wordt aangenomen dat de laag er niet is. Wordt een laagdikte tussen 0 cm en 3 cm
ingevoerd, dan wordt er gerekend met 3 cm als minimale maat (als \(0 < b < 3\) cm, dan \(b = 3\) cm). De minimummaat voor b kan aangepast worden in het werkblad ‘algemeen’.

- Porositeit van het filter:
 Als dit niet bekend is, dan kan uitgegaan worden van de volgende schatting:
 steenslag, puin en grind: \(n = 0,35\)
 mijnsteen: \(n = 0,25\)
 De grootte van \(n\) neemt af naarmate het materiaal breder gegradeerd is.

- Slib (filter):
 Het slib of zand dat zich in de loop jaren vastzet in het filter kan ervoor zorgen dat de doorlatendheid sterk afneemt. Als de doorlatendheid kleiner is dan 1 mm/s (volgens bijvoorbeeld een infiltratietest), dan kan hier ja ingevuld worden. Bij twijfel kan een vraagteken worden ingevuld.
 Als het filter is dichtgeslibd, moet bij de eigenschappen van het filter toch de waarde van \(D_{\text{g1}}, D_{\text{g5}}\) en \(n\) worden ingevuld alsof het een schoon filter zonder slib is. Men moet het slib dus even wegdrukken.

- De waarden van ‘Toetspeil 2000’, \(H_s\) (aan de teen), \(\beta_g\) (golfrichting t.o.v. Noord volgens Nautische definitie: richting waar de golven vandaan komen, conform definitie van windrichting) en \(T_p\) worden ingevuld in het tweede werkblad van de spreadsheet: ‘Golven’. Het programma berekend de maatgevende condities op basis het niveau van de zetting t.o.v. NAP.

- Golventabel:
 In het werkblad “golven” is de mogelijkheid geboden om drie tabellen met golfinformatie op te nemen. In de kolom met kop ‘golventabel’ in het werkblad ‘toetsing’ moet per dijkvak (regel) aangegeven worden welke van de drie van toepassing is.

- Stormduur:
 De stormduur is zeer afhankelijk van de lokale omstandigheden. Daardoor kan deze niet berekend worden en moet het ingevoerd worden.

Werkblad ‘Golven’

De volgende toelichtende informatie heeft betrekking op het werkblad ‘Golven’:

- Waterstanden:
 Per tabel kunnen er golfrandvoorwaarden bij 3 waterstanden ingevoerd worden. Het is essentieel dat van links naar rechts oplopende waterstanden worden gehanteerd (waarde in cel G10 moet kleiner zijn dan in cel I10 en die moet weer kleiner zijn dan in cel K10). De waterstanden van tabel 2 en 3 moeten gelijk zijn aan die in tabel 1.

- Locatie:
 Er moeten twee kolommen ingevuld worden met de plaatsaanduiding van waar tot waar de betreffende golfrandvoorwaarden gelden. Hier kan men dijkpaalnummers invullen, of de X-coördinaten t.o.v. Parijs of Amersfoort (als elke volgende dijkvakbegrenzing oostelijker of westelijker ligt), of de Y-coördinaten t.o.v. Parijs of Amersfoort (als elke volgende dijkvakbegrenzing noordelijker of zuidelijker ligt), of dijkvaknummers. Uiteraard moet de soort locatie-aanduiding in het werkblad ‘Toetsing’ (met de te toetsen dijkvakken) overeenkomen met deze locatie-aanduiding in werkblad ‘Golven’. Let erop
dat in een Engelstalige versie van Excel de nummers met een decimale punt moeten worden ingevoerd en in een Nederlandstalige versie met een komma.

- minimum H_c:

Het programma gaat aan de hand van de gegeven golfcondities interpoleren en extrapoleren om de maatgevende golfcondities te bepalen. Dit kan leiden tot een golfhoogte gelijk aan nul bij zeer lage dijkbekledingen. Om dit te voorkomen kan een minimum golfhoogte opgegeven worden in de laatste kolom.

Werkblad ‘Algemeen’

In het werkblad ‘algemeen’ kunnen vaste waarden en factoren ingevuld worden die voor de gehele spreadsheet gelden. Hier wordt bijvoorbeeld de soortelijke massa van water ingevoerd. Opgemerkt moet worden dat de oude versie van het DOS-programma ANAMOS 2.10 altijd rekende met een soortelijke massa van zeewater van 1030 kg/m³, terwijl de nieuwe ANAMOS 2.21 en STEENTOETS ook met andere waarden kan rekenen.

In de tabel met toplaagtypen is tevens aangegeven of ANAMOS dan wel STEENTOETS de betreffende toplaag kan toetsen. Verder moet er in de bovenste tabel ingevuld worden of het gaat om zeedijken of meerdijken. In het eerste geval wordt de maatgevende waterstand en golfcondities door interpoleren en extrapoleren vastgesteld aan de hand van de golventabel. In het laatste geval worden de golfcondities gebruikt bij de laagste waterstand in de golventabel.

Werkblad ‘GD-sheet’

In het werkblad ‘GD-sheet’ kan de data gekopieerd worden die in een oude spreadsheet van GD reeds was ingevuld. Het programma haalt hier alle bruikbare informatie uit en zet het in het werkblad ‘toetsing’.

Dit werkt als volgt:

- Zorg dat het werkblad ‘toetsing’ vanaf regel 8 leeg is
- Kopieer de data van een Excel spreadsheet met GD-format in het werkblad ‘GD-sheet’ (vanaf regel 5)
- Ga naar het werkblad ‘toetsing’.
- Kies in menu ‘Toetsing’ de optie: ‘Kopieer van GD-sheet’

Met het laatste commando worden alle bruikbare gegevens gekopieerd naar het werkblad ‘toetsing’.

Algemene aspecten

Bovenaan het scherm is het menu ‘toetsing’ te vinden. Hiermee kunnen een aantal specifieke commando’s gegeven worden:
1. invoegen regel(s) (met alle formules, maar zonder invoerdatalas)
2. verwijder regel(s)
3. invoegen kopie van huidige regel
4. verplaats regel(s) naar klembord (cut to clipboard)
5. kopieer regel(s) naar klembord (copy to clipboard)
6. invoegen regels(s) van klembord (paste from clipboard)
7. plaats formules op regels
8. bereken alles opnieuw (noodzakelijk als de golventabel is veranderd, er wordt dan een buffer geleegd die is gecreëerd omwille van de rekensnelheid).
9. ga naar eerstvolgende regel met (bovengrens – onderrgrens) > 4 m EN instabiel (zodat het wellicht zinnig is het te splitsen)
10. kopieer van GD-sheets

Mocht dit menu niet beschikbaar zijn, dan moet men even naar het werkblad ‘golven’ gaan en weer terug naar ‘toetsing’.

Het kopiëren van een regel is handig als bij nader inzien blijkt dat het dijkvak toch gesplitst moet worden in subvakken.

Als men steeds vóór het invoeren van data vergeten is een nieuwe regel met formules aan te maken (eerst genoemde commando), zal het 7de commando handig zijn om de formules alsnog toe te voegen in de gebruikte regels.

Met de menu-optie ‘ga naar eerstvolgende regel met (bovengrens – onderrgrens) > 4 m EN instabiel’ kan snel gezocht worden naar dijkvakken waarvoor het wellicht zinnig is om de bekleding op te splitsen in twee bekledingen, waarvan één van beide een wat lagere bovengrens heeft. Door een lagere bovengrens te kiezen wordt doorgaans de belasting lager en kan een ‘goed’ toetsresultaat voor de toplaag bereikt worden. Zo kan voorkomen worden dat een groot stuk bekleding wordt afgekeurd, terwijl eigenlijk alleen de bovenste strook afgekeurd hoeft te worden.

Het programma zoekt naar de regels waar de toplaag onvoldoende of twijfelachtig is, en waarvoor geldt dat de onderrgrens en bovengrens meer dan 4 m uit elkaar liggen. Het programma berekent vervolgens de maximale bovengrenshoogte die nog net een ‘goed’ toetsresultaat voor de toplaag oplevert.

Niet alle kolommen hoeven gevuld te zijn om een toetsing te kunnen uitvoeren. Als essentiële informatie onberekent zal in vele gevallen het programma toch trachten tot een toetsresultaat te komen door gebruik te maken van een (zeer ongunstige) waarde, zie hoofdstuk 5.

De gebruiker heeft de vrijheid om kolommen toe te voegen om de benodigde invoer te berekenen. Wees voorzichtig met het verwijderen van kolommen, omdat het denkbaar is dat het programma daarna de benodigde invoer mist en geen toetsing meer kan uitvoeren.
Rijen kunnen zonder problemen toegevoegd (met het menu ‘toetsing’ bovenaan op het scherm) en/of verwijderd worden.
De kop van de spreadsheet en de kolommen met formules zijn beschermd tegen per ongeluk overschrijven (protect). Daardoor moet steeds eerst de bescherming eraf gehaald worden (unprotect) alvorens regels of kolommen verwijderd kunnen worden, tenzij de commando’s uit het menu ‘toetsing’ worden gebruikt.

Ook als men het format van de spreadsheet wil veranderen, zal eerst de protectie verwijderd moeten worden.

Er zijn drie blanco werkbladen toegevoegd voor eigen gebruik. Ook hier geldt dat sommige commando’s pas werken als de protectie verwijderd is.

Ondanks de maatregelen die zijn genomen om het programma zo snel mogelijk te maken, kan het bij invoeren van vele getallen vervalend zijn dat het programma steeds weer gaat rekenen. In dat geval kan men het automatisch herberekenen uitschakelen. Het automatisch rekenen vóór het opslaan op schijf kan ook uitgezet worden.
In de praktijk is gebleken dat het programma goed werkt tot een omvang van ongeveer 1000 regels. Het wordt problematisch als er meer dan 1500 regels zijn ingevoerd. Het is dan aan te bevelen om het bestand te splitsen in aparte deelbestanden.

Het programma is ontwikkeld voor Windows-95 met Excel 7.0 (Office ’95) en Excel 8.0 (Office ’97). Het is zowel voor de Nederlandstalige als de Engelstalige versies geschikt.
Helaas was het noodzakelijk om twee versies uit te brengen:
- Toets95.xls voor Excel 7.0 (Office ’95)
- Toets97.xls voor Excel 8.0 (Office ’97)

Het gebruik van Toets95.xls in Office’97 met Excel 8.0 moet sterk afgeraden worden, omdat dit kan leiden tot fouten.

Er kunnen fouten optreden als de instellingen in Windows voor getallen en valuta verschillend zijn. Dit kan gecontroleerd worden door in ‘deze computer’ de ‘configuratie’ te kiezen en vervolgens de ‘landeninstellingen’. Daar moet het decimaalsymbool voor getallen gelijk zijn aan die voor valuta, en moet het verschillend zijn van het cijfergroeperingssymbool (voor duizendtallen) en het lijstschijdingssymbool.

Helaas blijken er vele verschillende Excelversies te bestaan die niet helemaal compatibel zijn. We hebben er naar gestreefd het programma geschikt te maken voor de meest gebruikte Excel versies, maar het is niet uitgesloten dat er versies zijn die toch problemen geven. Het programma eerst met de ene versie en later met de andere versie van Excel gebruiken, kan ook in sommige gevallen tot problemen leiden. Dit wordt veroorzaakt door fouten in Excel zelf, die wij niet kunnen verhelpen.
Verder is gebleken dat Excel niet goed werkt als er meerdere files met het toetsingsprogramma zijn geopend vanuit één Excel-run (één Excel blok op de taakbalk).
Als men meerdere toetsingsfiles tegelijk wil openen, is het aan te bevelen om ook het hele Excel even zoveel keren op te starten, wat resulteert in meerdere Excel-blokjes op de taakbalk.
3 Uitvoer en toetsingsresultaat

Een aantal kolommen in de spreadsheet wordt door het programma berekend aan de hand van de formules die in hoofdstuk 4 zijn beschreven. De meeste uitvoer spreekt voor zich (zie kop boven de betreffende kolom). Voor een aantal uitvoerkolommen is onderstaand een toelichting gegeven:

- De maatgevende golfcondities zijn bepaald door eerst met de locatie van de dijk in de tabel op het werkblad "golven" de betreffende golfcondities als functie van de waterstand te selecteren. Vervolgens wordt voor zeedijken de maatgevende waterstand berekend, die een maximale golflaanval op de te toetsen steenzetting geeft. Voor meerdijken worden de golfcondities gebruikt bij de laagste waterstand.
- Eenvoudige toetsing toplaag, kwantitatief:
 De verhouding tussen de maximaal toelaatbare golfhoogte (grens goed - twijfel; grens twijfel - onvoldoende) en de optredende golfhoogte is vermeld.
- Methode A, B en C bij de toetsing op afschuiving hebben betrekking op de verschillende beoordelingen die in de leidraad doorlopen moeten worden (methode A: vooral ervaringstoets; methode B: vooral totale laagdiite; methode C: toetsing met diagrammen).
- Bij de gedetailleerde toetsing met ANAMOS wordt gerekend zonder de aanwezigheid van inwasmateriaal en met een klemfactor gelijk aan 1, conform de oude ANAMOS 2.10. Verder wordt aangegeven hoe groot de waarde F is in de formule H_2/ΔD = F_kop^{-2/3}. Als deze waarde groter dan 6 is, dan is ANAMOS minder betrouwbaar en wordt de stabilititeit beoordeeld met H_2/ΔD = 6F_kop^{-2/3}. Als in de kolom met het ANAMOS resultaat of de ANAMOS score 'n.v.t.' verschijnt, is ANAMOS niet geschikt om de stabilititeit van het constructietype te berekenen. Als er 'niet uitgevoerd' verschijnt, zijn er onvoldoende data ingevoerd om de toetsing te kunnen uitvoeren.
- In de kolommen 'benodigde klemfactor' is gegeven bij welke klemfactor het resultaat van de ANAMOS-berekening op de grens tussen goed en twijfelachtig (g/t) of op de grens tussen twijfelachtig en onvoldoende (t/o) uitkomt. Hierbij wordt er wel rekening gehouden met de invloed van het inwasmateriaal zoals in ANAMOS 2.21. Als F > 6 of als ANAMOS niet toepasbaar is, wordt de benodigde klemfactor niet berekend.
 De berekeningen worden uitgevoerd met ANAMOS (zie paragraaf 4.4) met inbegrip van de invloed van de inwassing op de doorlatendheid van de toplaag. De grootte van de benodigde klemfactor wordt iteratief gezocht. Een vergelijking met de aanwezige klemfactor (waarde uit de tabel 'algemeen', mits de zetting goed geklemd is) wordt daarna uitgevoerd.
- Als de eindscore van de toplaagtoetsing 'geavanceerd' is, dan zijn er bijzonderheden die het noodzakelijk maken om de toetsing door specialisten uit te laten voeren. Als het toetsresultaat 'geavanceerd*' is, dan is dat het gevolg van het feit dat de ondergrens van de bekleding boven het toetspeil ligt.
- Als een toetsingscore 'twijfelachtig' is, kan overwogen worden om een geavanceerde toetsing uit te laten voeren. Men kan daarvoor contact opnemen met de DWW. Als de
toplaag is dichtgeslibd en het filter niet, dan wordt automatisch door STEENTOETS aanbevolen om een geavanceerd toetsing te laten doen.

De gebruiker heeft de vrijheid om kolommen toe te voegen om vervolgberekeningen te kunnen uitvoeren. Wees voorzichtig met het verwijderen van kolommen, omdat het denkbaar is dat het programma daarna de benodigde invoer mist en geen toetsing meer kan uitvoeren.

Rijen kunnen zonder problemen toegevoegd en/of verwijderd worden (met het menu ‘toetsing’ bovenaan op het scherm).

De kop van de spreadsheet en de kolommen met formules zijn beschermd tegen per ongeluk overschrijven (protect). Daarom moet steeds eerst de bescherming eraf gehaald worden (unprotect) alvorens kolommen toegevoegd of verwijderd kunnen worden.

Wees voorzichtig met het verwijderen van kolommen, omdat het denkbaar is dat het programma daarna de benodigde formules of invoer mist en geen toetsing meer kan uitvoeren.

Rijen kunnen zonder problemen toegevoegd en/of verwijderd worden (met menu ‘toetsing’).

Let erop dat als er iets gewijzigd is in het werkblad ‘Golven’, dat dit pas wordt gebruikt als de buffer opnieuw is geleegd. Dit gaat helaas niet vanzelf. Bovenaan het scherm moet het menu ‘toetsing’ aangeklikt worden, waarna gekozen moet worden voor ‘Bereken alles opnieuw’.

Het is gebleken dat Excel niet goed werkt als er meerdere files met het toetsingsprogramma zijn geopend vanuit één Excel-run (één Excel blok op de taakbalk). Als men meerdere toetsingsfiles tegelijk wil openen, is het aan te bevelen om ook het hele Excel even zoveel keren op te starten, wat resulteert in meerdere Excel-blokjes op de taakbalk.
4 Formules

In het programma zijn twee soorten formules opgenomen:

- Eenvoudige formules, die zichtbaar zijn als men de cursor op de cel zet. Deze formules zijn te veranderen door de gebruiker (eigen verantwoordelijkheid).
- Verborgen toetsingsformules. Als men de cursor op een cel met een verborgen formule plaatst, dan ziet men slechts de variabelen die als invoer gebruikt worden. Met F5 kan men zien welke variabelenaam bij welke kolom hoort.

De verborgen formules worden in dit hoofdstuk omschreven. Ze zijn gebaseerd op de Leidraad Toetsen op Veiligheid, het programma ANAMOS 2.21 en overige (recente) TAW-aanbevelingen.

4.1 Maatgevende waterstand en hoek van golfaanval

Het berekenen van de maatgevende waterstand is een iteratief proces.
Als de taludhelling steiler is dan 1:9 (tan$\alpha > 1/9$):

- bepaal H_s en T_p bij een waterstand $h_0 = h_{hoog}$
- bepaal eerste schatting van maatgevende waterstand: $h_1 = h_{hoog} + 0,7H_s$
- bepaal nieuwe waarde van H_s en T_p bij $h = h_{hoog} + 0,7H_s$
- bepaal verbeterde schatting van maatgevende waterstand:

 $$h = h_{hoog} + \min \{ 0,11H_s \left(\frac{1.56T_p^2 \tan \alpha}{H_s} \right)^{0.8}; 1.5H_s \}$$

- herhaal punt 3 en 4 drie keer om een voldoende nauwkeurige schatting te verkrijgen, tenzij $h \geq h_{toets2000}$, dan wordt $h = h_{toets2000}$ en is verder itereren niet nodig.
- als $H_s < [H_s]_{minimum}$ dan h berekenen met bovenstaande formule met $H_s = [H_s]_{minimum}$ en $T_p = [T_p]_{minimum} = [T_p]_{laagste\ waterstand} \cdot \sqrt{([H_s]_{minimum}/[H_s]_{laagste\ waterstand})}$. De toetsing wordt uitgevoerd met $[H_s]_{minimum}$ en $[T_p]_{minimum}$.

De laatste stap in bovenstaande procedure houdt in dat er gewerkt wordt met een minimum golfhoogte. Daarbij wordt een minimum golfperiode berekend, zodat de golfsteilheid gelijk is aan die bij de laagste waterstand in de golventabel.

Als de taludhelling flauwer is dan 1:9 (tan$\alpha < 1/9$), dan wordt de bekleding opgevat als berm en kan de maatgevende waterstand als volgt bepaald worden:

- bepaal H_s bij een waterstand $h_0 = h_{berm}$
- bepaal eerste schatting van maatgevende waterstand: $h_1 = h_{berm} + 1,3H_s$
- bepaal nieuwe waarde van H_s bij $h = h_{berm} + 1,3H_s$
- bepaal verbeterde schatting van maatgevende waterstand: $h = h_{berm} + 1,3H_s$
herhaal punt 3 en 4 drie keer om een voldoende nauwkeurige schatting te verkrijgen, tenzij \(h \geq h_{\text{toets2000}} \), dan wordt \(h = h_{\text{toets2000}} \) en is verder itereren niet nodig.

De procedure bij zeer lage waterstanden en zeer hoge waterstanden leidt tot extrapolatie van de golfgegevens. De golfhoogte wordt bij lage waterstanden nooit lager gekozen dan de waarde die is ingevuld in het werkblad ‘golven’. Wordt in die tabel niets ingevuld, dan geldt \(H_h = 0 \) als minimum.

De relatieve hoek van golfaanval wordt als volgt bepaald: \(\beta = \text{ABS} \{ \beta_g - \beta_d \} \). Vervolgens wordt de kleinst mogelijke waarde binnen het opgegeven interval gekozen.

Als er sprake is van strijkgolven dan moet de verkregen golfhoogte na het bepalen van de maatgevende waterstand gereduceerd worden:

- als \(-70 < \beta_g - \beta_d < 70\), dan geen reductie
- overige gevallen: \(H_h \) vermenigvuldigen met factor die ingevuld kan worden boven de kop van de spreadsheet (default: 1,0).

4.2 Eenvoudige toetsing van de toplaag

De eenvoudige toetsing wordt uitgevoerd voor de maatgevende waterstand en is verder afhankelijk van het type bekleding:
- Type 1: Toetsing van steenzetting op geotextiel op zand of klei
- Type 2: Toetsing van steenzetting op goede klei
- Type 3: Toetsing van steenzetting op filter
- Type 4: Toetsing van geschakelde blokken op geotextiel op zand of klei
- Type 5: Toetsing van geschakelde blokken op goede klei
- Type 6: Toetsing van geschakelde blokken op filter

<table>
<thead>
<tr>
<th>Type toplaag</th>
<th>type onderlagen</th>
<th>type volgens eenvoudige toetsing</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 ≤ type < 12 of 26 ≤ type ≤ 29</td>
<td>ge géén: st of pu of sl of gr of my</td>
<td>1</td>
</tr>
<tr>
<td>10 ≤ type < 12 of 26 ≤ type ≤ 29 of 17</td>
<td>kl en {géén ge of st of pu of sl of gr of my}</td>
<td>2</td>
</tr>
<tr>
<td>10 ≤ type < 12 of 26 ≤ type ≤ 29</td>
<td>st of pu of sl of gr of my</td>
<td>3</td>
</tr>
<tr>
<td>12 ≤ type < 14</td>
<td>ge géén: st of pu of sl of gr of my</td>
<td>4</td>
</tr>
<tr>
<td>12 ≤ type < 14</td>
<td>kl en {géén ge of st of pu of sl of gr of my}</td>
<td>5</td>
</tr>
<tr>
<td>12 ≤ type < 14</td>
<td>st of pu of sl of gr of my</td>
<td>6</td>
</tr>
<tr>
<td>overige</td>
<td>overige</td>
<td>geen toetsing mogelijk</td>
</tr>
</tbody>
</table>
In bovenstaande tabel is aangegeven welk typenummer uit de leidraad (tabel 1.1 katern 8, blz. 160) valt onder bovenstaande types. Er zijn typen toegevoegd die zijn overgoten/ingegoten met gietasfalt of beton. Bovendien is 29 toegevoegd: koperslakblokken.

De toetsing vindt vervolgens plaats aan de hand van de formules in de volgende paragrafen.

4.2.1 Algemeen

Als er sprake is van een talud flauwer dan 1:9, dan wordt dit opgevat als een berm:
• als tanα < 1/9, dan:
 gebruik in vervolg taludhelling onder de berm.
 \[d_o = h - h_{berm} \]
 \[C_{berm} = 0,85 \cdot \exp(-0,8 \cdot (-0.9 + d_o/H_o)^2) + 0,7 \cdot \exp(-0,5 \cdot (-2,1 + d_o/H_o)^2) \]
• als tanα ≥ 1/9, dan: \[C_{berm} = 1 \]

Bereken aan de hand van de optredende golfcondities bij de maatgevende waterstand:
\[\Delta = (\rho_s - \rho)/\rho \]

\[H_{s/\Delta D} = \frac{H_s}{\Delta D} \cdot C_{berm} \]

\[\xi_{op} = \frac{\tan \alpha}{\sqrt{H_s^2 + 1.56T_p^2}} \]

Een berm met breedte kleiner dan een kwart golfhoogte (B < H_s/4) hoeft niet als berm getoetst te worden. Gebruik zelf bij de toetsing de helling van het onder of boventalud, want het programma beoordeelt dit niet automatisch.

In onderstaande paragrafen zijn formules opgenomen met een beperkte geldigheid, namelijk 0,6 ≤ \(\xi_{op} \) < 5. De formules worden in het programma echter ook buiten dit geldigheidsgebied toegepast.

4.2.2 Type 1: Toetsing van steenzetting op geotextiel op zand of klei

Bereken de onder- en bovengrens van het twijfelachtige gebied:

Onder:
\[0,6 < \xi_{op} \leq 2,2: \quad H_{s/\Delta D,onder} = 4.31 \cdot \xi_{op}^{-0.926} \]
\[2,2 < \xi_{op} < 5: \quad H_{s/\Delta D,onder} = 11 \cdot \xi_{op}^{-4} + 0.09 \cdot \xi_{op} + 1.38 \]
Boven:

\[0,6 < \xi_{op} \leq 2,2 : \quad H_{SI,\Delta D,boven} = 6,78 \cdot \xi_{op}^{-0,588} \]
\[2,2 < \xi_{op} < 5 : \quad H_{SI,\Delta D,boven} = 17 \cdot \xi_{op}^{-2} + 1,84 \cdot \xi_{op} - 3,25 \]

Toetsresultaat:
- \(g/t = H_{SI,\Delta D,onder}/H_{SI,\Delta D} \)
- \(t/o = H_{SI,\Delta D,boven}/H_{SI,\Delta D} \)
- als \(g/t > 1 \), dan score = goed
 als \(t/o < 1 \), dan score = onvoldoende
 overige gevallen: score = twijfelachtig

4.2.3 Type 2: Toetsing van steenzetting op goede klei

Bereken de onder- en bovengrens van het twijfelachtige gebied:

Onder:

\[0,6 < \xi_{op} \leq 2,4 : \quad H_{SI,\Delta D,onder} = 3,75 \cdot \xi_{op}^{-1,001} \]
\[2,4 < \xi_{op} > 5 : \quad H_{SI,\Delta D,onder} = 8 \cdot \xi_{op}^{-4} + 0,02 \cdot \xi_{op} + 1,25 \]

Boven:

\[0,6 < \xi_{op} \leq 2,1 : \quad H_{SI,\Delta D,boven} = 6,1 \cdot \xi_{op}^{-0,75} \]
\[2,1 < \xi_{op} < 5 : \quad H_{SI,\Delta D,boven} = 11 \cdot \xi_{op}^{-2} + 0,98 \cdot \xi_{op} - 1,0 \]

Toetsresultaat:
- \(g/t = H_{SI,\Delta D,onder}/H_{SI,\Delta D} \)
- \(t/o = H_{SI,\Delta D,boven}/H_{SI,\Delta D} \)
- als \(g/t > 1 \), dan score = goed
 als \(t/o < 1 \), dan score = onvoldoende
 overige gevallen: score = twijfelachtig

4.2.4 Type 3: Toetsing van steenzetting op filter

Het type 3 is onderverdeeld in drie subtypen:

Type 3a als:

- type ≠ 28,1 (Vilvoordse steen) en type ≠ 28,2 (Lessinische steen) \(EN \{ \)
- \(b/D < 0,5 \) \(EN \ D_{95} < 10 \) mm \(EN \ \Omega > 3\% \) \(EN \) niet ingewassen
 \(EN \) toplaag niet dichtgeslibd \(OF \)
- zetting is ingewassen \(EN \) zetting dichtgeslibd \(EN \) filter dichtgeslibd \(EN \) [[niet ingegoten/overgoten met gietasfalt] \(OF \) [wel ingegoten/overgoten met gietasfalt \(EN \) stormduur < 3 uur]]
De bovenste (eerste) filterlaag is maatgevend.

Of een bekleding is ingegoten wordt vastgesteld aan de hand van de tweede decimaal van het typenummer.

Als de zetting en het filter zijn dichtgeslibd is $C_{slb} = 1.5$. In andere gevallen geldt $C_{slb} = 1.0$.

Bereken de onder- en bovengrens van het twijfelachtige gebied:

Onder:

$0.6 < \xi_{op} \leq 2.2$: \hspace{1cm} \begin{align*} H_{s/\Delta D, onder} &= 4.58 \cdot \xi_{op}^{-0.903} \\ 2.2 < \xi_{op} < 5: \hspace{1cm} H_{s/\Delta D, onder} &= 14.5 \cdot \xi_{op}^{-4} + 0.17 \cdot \xi_{op} + 1.27 \end{align*}$

Boven:

$0.6 < \xi_{op} \leq 2.2$: \hspace{1cm} \begin{align*} H_{s/\Delta D, boven} &= 7.12 \cdot C_{slb} \cdot \xi_{op}^{-0.539} \\ 2.2 < \xi_{op} < 5: \hspace{1cm} H_{s/\Delta D, boven} &= C_{slb} (17.8 \cdot \xi_{op}^{-1.5} + 2.54 \cdot \xi_{op} - 6.32) \end{align*}$

Toetsresultaat:

- $g/t = H_{s/\Delta D, onder}/H_{s/\Delta D}$
- $t/o = H_{s/\Delta D, boven}/H_{s/\Delta D}$
- als $g/t > 1$, dan score = goed
 - als $t/o < 1$, dan score = onvoldoende
 - overige gevallen: score = twijfelachtig

Type 3b als:

- type $\neq 28.1$ (Vilvoordse steen)
- {Filter dichtgeslibd EN wel overgoten/ingegoten met gietasfalt EN wel waterdicht} \hspace{1cm} \begin{align*} \text{EN} \hspace{1cm} \{ \end{align*}$
 - \hspace{1cm} \begin{align*} \text{EN} \leq 0.5 \hspace{1cm} \text{EN} \hspace{1cm} \text{toplaag is niet dichtgeslibd EN} \\ \text{en overgoten/ingegoten EN niet waterdicht} \hspace{1cm} \text{of} \end{align*}$
 - \hspace{1cm} \begin{align*} \text{EN} \geq 0.5 \hspace{1cm} \text{EN} \hspace{1cm} \text{toplaag is niet dichtgeslibd EN} \\ \text{en overgoten/ingegoten EN niet waterdicht} \hspace{1cm} \text{of} \end{align*}$
 - \hspace{1cm} \begin{align*} \text{EN} \hspace{1cm} \text{toplaag is niet dichtgeslibd EN} \\ \text{en overgoten/ingegoten EN niet waterdicht} \hspace{1cm} \text{of} \end{align*}$

De bovenste (eerste) filterlaag is maatgevend.

Als het filter is dichtgeslibd, is $C_{slb} = 1.5$. In andere gevallen geldt $C_{slb} = 1.0$.

Bereken de onder- en bovengrens van het twijfelachtige gebied:
Onder:

\[
0.6 < \xi_{op} \leq 2.0: \quad H_{s/\Delta D, onder} = 4.08 \cdot \xi_{op}^{-1.014}
\]
\[
2.0 < \xi_{op} < 5: \quad H_{s/\Delta D, onder} = 11.0 \cdot \xi_{op}^{-4} + 0.03 \cdot \xi_{op} + 1.25
\]

als met gietasfalt ingegoten/overgoten (type ###.#1): \[D_{cr} = \frac{h_{hoog} - h_{loog}}{4\Delta \cos \alpha} \]

als niet met gietasfalt ingegoten/overgoten: \[D_{cr} = 0.01 \]

Boven:

\[
0.6 < \xi_{op} \leq 2.1: \quad H_{s/\Delta D, boven} = 6.68 \cdot C_{slib} \cdot \xi_{op}^{-0.723}
\]
\[
2.1 < \xi_{op} < 5: \quad H_{s/\Delta D, boven} = C_{slib} (12.0 \cdot \xi_{op}^{-15} + 15 \cdot \xi_{op} - 3.12)
\]

Toetsresultaat:

- \(g/t = \min\{H_{s/\Delta D, onder}/H_{s/\Delta D} : D/D_{cr}\} \)
- \(t/o = H_{s/\Delta D, boven}/H_{s/\Delta D} \)
- als \(g/t > 1 \), dan score = goed
 als \(t/o < 1 \), dan score = onvoldoende
 overige gevallen: score = twijfelachtig

Opgemerkt moet worden dat de vermelde formules in het programma ook worden toegepast als \(\xi_{op} < 0.6 \) of \(\xi_{op} > 5 \).

Type 3c als:

- niet type = 3a en niet type 3b

Als het filter is dichtgeslibd of de toplaag is overgoten/ingegoten met gietasfalt (tweede decimaal van type is 1, dus ###.#1), dan \(C_{slib} = 1.5 \). In andere gevallen geldt \(C_{slib} = 1.0 \).

Als het filter niet is dichtgeslibd en de toplaag is wel dichtgeslibd, dan wordt resultaat ‘geavanceerd’.

Bereken de onder- en bovengrens van het twijfelachtige gebied:

Onder:

\[
0.6 < \xi_{op} \leq 2.0: \quad H_{s/\Delta D, onder} = 3.07 \cdot \xi_{op}^{-1.014}
\]
\[
2.0 < \xi_{op} < 5: \quad H_{s/\Delta D, onder} = 6.5 \cdot \xi_{op}^{-4} + 0.02 \cdot \xi_{op} + 1.09
\]

als met gietasfalt ingegoten/overgoten (type ###.#1): \[D_{cr} = \frac{h_{hoog} - h_{loog}}{4\Delta \cos \alpha} \]

als niet met gietasfalt ingegoten/overgoten: \[D_{cr} = 0.01 \]

Boven:

\[
0.6 < \xi_{op} \leq 2.3: \quad H_{s/\Delta D, boven} = 5.08 \cdot C_{slib} \cdot \xi_{op}^{-0.785}
\]
\[
2.3 < \xi_{op} < 5: \quad H_{s/\Delta D, boven} = C_{slib} (13.8 \cdot \xi_{op}^{-4} + 0.26 \cdot \xi_{op} + 1.53)
\]
Toetsresultaat:
- $g/t = \min \{ H_{s/\Delta D,\text{onder}}/H_{s/\Delta D}; D/D_{cr} \}$
- $t/o = H_{s/\Delta D,\text{boven}}/H_{s/\Delta D}$
- als $g/t > 1$:
 - als: {filter niet dichtgeslibd EN wel overgoten/ingegoten met gietasfalt} \textit{OF}
 - {Dichtslibbing filter onbekend EN wel overgoten/ingegoten met gietasfalt} dan:
 score = twijfelachtig.
 - anders: score = goed
- Als het filter niet is dichtgeslibd en de toplaag is wel dichtgeslibd, dan wordt score =
 geavanceerd.
- als $t/o < 1$, dan score = onvoldoende
- overige gevallen: score = twijfelachtig

Met de eindscore ‘geavanceerd’ wordt bedoeld dat er zodanige bijzonderheden in de
constructie zijn, dat een geavanceerde toetsing noodzakelijk is.

4.2.5 Type 4: Toetsing van geschakelde blokken op geotextiel op zand of klei

Bereken de onder- en bovengrens van het twijfelachtige gebied:

Onder:
- $0,6 < \xi_{op} \leq 2,3$: $H_{s/\Delta D,\text{onder}} = 5.192 \cdot \xi_{op}^{-0.817}$
- $2,3 < \xi_{op} < 5$: $H_{s/\Delta D,\text{onder}} = 21 \cdot \xi_{op}^{-4} + 0.33 \cdot \xi_{op} + 1.18$

Boven:
- $0,6 < \xi_{op} \leq 1,8$: $H_{s/\Delta D,\text{boven}} = 8,1 \cdot \xi_{op}^{-0.47}$
- $1,8 < \xi_{op} < 5$: $H_{s/\Delta D,\text{boven}} = 26 \cdot \xi_{op}^{-0.5} + 3.8 \cdot \xi_{op} - 20.03$

Toetsresultaat:
- $g/t = H_{s/\Delta D,\text{onder}}/H_{s/\Delta D}$
- $t/o = H_{s/\Delta D,\text{boven}}/H_{s/\Delta D}$
- als $g/t > 1$, dan score = goed
 - als $t/o < 1$, dan score = onvoldoende
 - overige gevallen: score = twijfelachtig

4.2.6 Type 5: Toetsing van geschakelde blokken op goede klei

Bereken de onder- en bovengrens van het twijfelachtige gebied:

Onder:
- $0,6 < \xi_{op} \leq 2,2$: $H_{s/\Delta D,\text{onder}} = 4,31 \cdot \xi_{op}^{-0.926}$
- $2,2 < \xi_{op} < 5$: $H_{s/\Delta D,\text{onder}} = 11 \cdot \xi_{op}^{-4} + 0.09 \cdot \xi_{op} + 1.38$
Boven:

\[0.6 \leq \xi \leq 2.2: \quad H_{s/\Delta D, boven} = 6.78 \cdot \xi^{-0.588} \]
\[2.2 < \xi < 5: \quad H_{s/\Delta D, boven} = 17 \cdot \xi^{-2} + 1.84 \cdot \xi - 3.25 \]

Toetsresultaat:

- \(g/t = H_{s/\Delta D, onder}/H_{s/\Delta D} \)
- \(t/o = H_{s/\Delta D, boven}/H_{s/\Delta D} \)
- als \(g/t > 1 \), dan score = goed
- als \(t/o < 1 \), dan score = onvoldoende
- overige gevallen: score = twijfelachtig

4.2.7 Type 6: Toetsing van geschakelde blokken op filter

Het type 6 is ook onderverdeeld in drie subtypen:

Type 6a als:

- \(b_v/D < 0.5 \quad EN \ D_{115} < 10 \text{ mm} \quad EN \ \Omega > 3\% \quad EN \) niet ingewassen
 \(EN \) toplaag niet dichtgeslibd
 \(OF \)
- zetting is ingewassen \(EN \) zetting dichtgeslibd \(EN \) filter dichtgeslibd \(EN \) {niet ingegoten/overgoten met gietasfalt}

Bereken de onder- en bovengrens van het twijfelachtige gebied:

Onder:

\[0.6 \leq \xi \leq 2.4: \quad H_{s/\Delta D, onder} = 5.06 \cdot \xi^{-0.783} \]
\[2.4 < \xi < 5: \quad H_{s/\Delta D, onder} = 23 \cdot \xi^{-4} + 0.33 \cdot \xi + 1.1 \]

Boven:

\[0.6 \leq \xi \leq 2.0: \quad H_{s/\Delta D, boven} = 7.97 \cdot \xi^{-0.435} \]
\[2.0 < \xi < 5: \quad H_{s/\Delta D, boven} = 30 \cdot \xi^{-0.5} + 4.2 \cdot \xi - 23.6 \]

Toetsresultaat:

- \(g/t = H_{s/\Delta D, onder}/H_{s/\Delta D} \)
- \(t/o = H_{s/\Delta D, boven}/H_{s/\Delta D} \)
- als \(g/t > 1 \), dan score = goed
- als \(t/o < 1 \), dan score = onvoldoende
- overige gevallen: score = twijfelachtig
Type 6b als:

- \(\{ \text{Filter dichtgeslibd } EN \text{ wel overgoten/ingegoten met gietasfalt } \}
 \quad \text{of } \quad \left\{ \begin{array}{l}
 \text{EN wel waterdicht}
 \end{array} \right. \\
- \left\{ \begin{array}{l}
 b_{o}/D \leq 0.5 \text{ EN toplaag is niet dichtgeslibd } EN \\
 \text{nieuwentovergoten/ingegoten } EN \text{ niet waterdicht}
 \end{array} \right. \\
- \left\{ \begin{array}{l}
 b_{o}/D \geq 0.5 \text{ EN } D_{15s} < 5 \text{ mm } EN \text{ toplaag is niet dichtgeslibd } EN \\
 \text{nieuwentovergoten/ingegoten } EN \text{ niet waterdicht}
 \end{array} \right. \\
- \left\{ \begin{array}{l}
 b_{o}/D > 0.7 \text{ EN } D_{15s} < 3 \text{ mm } EN \text{ toplaag is niet dichtgeslibd } EN \\
 \text{nieuwentovergoten/ingegoten } EN \text{ niet waterdicht}
 \end{array} \right. \\
- \left\{ \begin{array}{l}
 b_{o}/D > 0.5 \text{ EN } \Omega > 2\% \text{ EN toplaag is niet dichtgeslibd } EN \\
 \text{nieuwentovergoten/ingegoten } EN \text{ niet waterdicht}
 \end{array} \right.

De bovenste (eerste) filterlaag is maatgevend.

Bereken de onder- en bovengrens van het twijfelachtige gebied:

Onder:

- \(0.6 < \xi_{op} \leq 2.4: \quad H_{s/\Delta D, \text{onder}} = 4.53 \cdot \xi_{op}^{-0.836} \)
- \(2.4 < \xi_{op} < 5: \quad H_{s/\Delta D, \text{onder}} = 15.0 \cdot \xi_{op}^{-4} + 0.14 \cdot \xi_{op} + 1.28 \)

Boven:

- \(0.6 < \xi_{op} \leq 2.0: \quad H_{s/\Delta D, \text{boven}} = 7.3 \cdot \xi_{op}^{-0.6} \)
- \(2.0 < \xi_{op} < 5: \quad H_{s/\Delta D, \text{boven}} = 28.0 \cdot \xi_{op}^{-0.5} + 3.4 \cdot \xi_{op} - 21.68 \)

Toetsresultaat:

- \(g/t = H_{s/\Delta D, \text{onder}} / H_{s/\Delta D} \)
- \(t/o = H_{s/\Delta D, \text{boven}} / H_{s/\Delta D} \)
- als \(g/t > 1 \), dan score = goed
 als \(t/o < 1 \), dan score = onvoldoende
 overige gevallen: score = twijfelachtig

Opgezegrekt moet worden dat de vermelde formules in het programma ook worden toegepast als \(\xi_{op} < 0.6 \) of \(\xi_{op} > 5 \).

Type 6c als:

- als niet type 6a en niet type 6b

Bereken de onder- en bovengrens van het twijfelachtige gebied:
Onder:

- $0,6 < \xi_{op} \leq 2,6$: \[H_{s/\Delta D, onder} = 3,97 \cdot \xi_{op}^{-0,96} \]
- $2,6 < \xi_{op} < 5$: \[H_{s/\Delta D, onder} = 12 \cdot \xi_{op}^{-4} + 0,06 \cdot \xi_{op} + 1,18 \]

Boven:

- $0,6 < \xi_{op} \leq 2,0$: \[H_{s/\Delta D, boven} = 6,5 \cdot \xi_{op}^{-0,7} \]
- $2,0 < \xi_{op} < 5$: \[H_{s/\Delta D, boven} = 12 \cdot \xi_{op}^{-1} + 1,62 \cdot \xi_{op} - 5,23 \]

Toetsresultaat:
- $g/t = H_{s/\Delta D, onder}/H_{s/\Delta D}$
- $t/o = H_{s/\Delta D, boven}/H_{s/\Delta D}$
- Als het filter niet is dichtgeslibd en de toplaag is wel dichtgeslibd, dan wordt score = geavanceerd.
- als $g/t > 1$, dan score = goed
 als $t/o < 1$, dan score = onvoldoende
 overige gevallen: score = twijfelachtig

4.3 Berekening spleetbreedte

Op basis van het open oppervlak en de blokafmetingen kan de spleetbreedte berekend worden. Dit wordt in het programma als volgt berekend:

\[
s = -\frac{1}{2} (B + L) + \sqrt{\frac{QB, L}{1 - \Omega}} + \frac{1}{4} (B + L)^2
\]

4.4 ANAMOS

ANAMOS berekent de stabiliteit van de toplaag op een gedetailleerde wijze. Bij de volgende typen kan deze geprogrammeerde (vereenvoudigde) ANAMOS-versie de stabiliteit bepalen:

- als $10 \leq \text{type} < 14$ of 26 of 27 of $27,1$ of $27,2$ of $27,3$ of 28 of $28,2$ of $28,3$ of $28,4$ of $28,5$ of 29,
- EN als tevens de constructies een filterlaag hebben, dus met gr of my of pu of sl of st
- EN $b > 0$
- EN $\tan \alpha > 1/9$

Bij de gedetailleerde toetsing met ANAMOS wordt eerst gerekend zonder de aanwezigheid van inwasmateriaal en met een kleeffactor gelijk aan 1, conform de oude ANAMOS 2.10. Het resultaat wordt weergegeven in de kolom 'ANAMOS-resultaat'. Verder wordt aangegeven hoe groot de waarde F is in de formule $H_{s/\Delta D} = F \xi_{op}^{-2/3}$. Als deze waarde groter dan 6 is, dan is ANAMOS minder betrouwbaar en wordt de stabiliteit beoordeeld met $H_{s/\Delta D} = 6_{\xi_{op}}^{-2/3}$. Als in de kolom met het ANAMOS-resultaat of de ANAMOS-score 'n.v.t.' verschijnt, is ANAMOS niet geschikt om de stabiliteit van het constructietype te
berekenen. Als er ‘niet uitgevoerd’ verschijnt, zijn er onvoldoende data ingevoerd om de toetsing te kunnen uitvoeren.

De ‘benodigde klemfactor’ wordt ook bepaald met ANAMOS, maar nu wordt er wel rekening gehouden met het inwasmateriaal (indien aanwezig). De benodigde klemfactor wordt zo iteratief bepaald dat het resultaat van de ANAMOS-berekening op de grens tussen goed en twijfelachtig (g/t) of op de grens tussen twijfelachtig en onvoldoende (v/o) uitkomt. Een vergelijking met de aanwezige klemfactor (waarde uit de tabel ‘algemeen’, mits de zetting goed gekleurd is) wordt daarna uitgevoerd. Als F > 6 of als ANAMOS niet toepasbaar is, wordt de benodigde klemfactor niet berekend.

Het programma maakt gebruik van de volgende invoer:
- golfhoogte H_s
- golfperiode T_p
- toplaagdikte D
- blokbreedte en -lengte B, L
- relatieve soortelijke massa van blokken: $(\rho_s - \rho) / \rho$
- taludhelling $\tan \alpha$
- afmetingen bovenste filterlaag: laagdikte b_{n1}, korrelgrootte D_{n1}; porositie n
- afmetingen onderste filterlaag: laagdikte b_m, korrelgrootte D_m; porositie m
- inwasmateriaal: korrelgrootte D_{n2}; porositie n (alleen als de benodigde klemfactor berekend wordt, anders wordt er zonder inwassing gerekend)
- spleetbreedte (zie par. 4.3)
- enkele constanten, zoals $f = 0.5$ en Zetta = 0.7

De ANAMOS berekeningen worden uitgevoerd met de formules uit de bijlage (conform ANAMOS 2.21). Elke berekening leidt tot de verhouding $belasting/sterkte$.

Steeds worden vier berekeningen uitgevoerd:
- Met $H = H_s$:
 \[\frac{belasting}{sterkte} = \frac{\phi_w}{\Delta D \cos \alpha \cdot \Gamma_{wr}} \]
 - De eerste berekening, op basis van werkelijke blok dikte D, levert de verhouding $belasting/sterkte = b_{11}$ op.
 - De tweede berekening, op basis van anderhalve blok dikte 1,5-D, levert de verhouding $belasting/sterkte = b_{12}$ op.
- Met $H = 1,4H_s$:
 \[t_o = 0,25 + T_p / 20 \]
 \[e = 0,10 \]
 \[\Gamma_{traag} = 1 + 1,78 \frac{eD(\Delta + 2)}{g\Delta t_o^2 \cos \alpha} \]
 \[\Gamma_{tor} = 1 + \frac{eD \sqrt{BL}}{1,5\pi k' \Lambda \tau_o \Delta (\Gamma_{traag} + \Gamma_{wr} - 1) \cos \alpha \left(0,56 + 0,18 \cdot \ln(\sqrt{BL / \Lambda})\right)} \]
\[
\frac{belasting}{sterkte} = \frac{\phi_w \Gamma_{toe}}{\Delta D \cos \alpha \cdot (\Gamma_{wr} + \Gamma_{traag} - 1)}
\]

- De derde berekening, op basis van werkelijke blokdikte D, levert de verhouding \(\frac{belasting}{sterkte} = b_{s3} \) op.
- De vierde berekening, op basis van anderhalf blokdikte 1,5D, levert de verhouding \(\frac{belasting}{sterkte} = b_{s4} \) op.

Het toetsingsresultaat in de kolom 'ANAMOS-resultaat' is als volgt:
- als \(b_{s1} \leq 1 \) EN \(b_{s3} \leq 1 \), dan: score = stabiel
- als \(b_{s1} > 1 \) OF \(b_{s3} > 1 \), dan: score = instabiel

Dan volgt de score van de gedetailleerde toetsing:
- als \(b_{s2} \leq 1 \) EN \(b_{s3} \leq 1 \) EN \(H_2/\Delta D \leq 6 \cdot 5^{-2/3} \), dan: score = goed,
- als \(b_{s2} > 1 \) OF \(b_{s4} > 1 \) OF \(H_2/\Delta D > 9 \cdot 5^{-2/3} \), dan: score = onvoldoende,
- anders: score = twijfelachtig

Vervolgens wordt de score van de toplaagtoetsing (eenvoudig + gedetailleerd) bepaald (zie paragraaf 4.5).
Als er onvoldoende informatie is om de detailtoetsing uit te voeren, dan is de eindscore (detailtoetsing) gelijk aan de score van de eenvoudige toetsing.

Bovendien wordt de minimaal benodigde klemfactor bepaald door iteratief de grootte ervan te bepalen die nodig is om op de grens tussen goed en twijfelachtig te komen en op de grens tussen twijfelachtig en onvoldoende. De minimum waarde voor de klemfactor is 1,00 en het maximum is 20. Bij deze berekeningen wordt er gerekend met de invloed van inwasmateriaal.

Kleine verschillen tussen het programma ANAMOS 2.21 en deze spreadsheet zijn mogelijk, onder andere omdat ANAMOS 2.21 ook rekent met de invloed van overgangsconstructies:

- Als de toetsing bij A wordt uitgevoerd, dan kan het zijn dat de belasting bij 1,4H₄ net onder de steenzetting valt en dus niet relevant is. In dat geval is STENTEOTS te streng. Als de maatgevende waterstand echter nog iets hoger zou kunnen zijn, dan kunnen ook de golfcondities iets zwaarder zijn en is STENTEOTS dus weer iets te soepel in zijn
beoordeling. Dit verschil is gering, omdat de waterstand slechts 0,07H₄ omhoog moet om de belasting bij 1,4H₄ toch weer op de zetting te laten aangrijpen.
- Als de toetsing bij B wordt uitgevoerd, dan zou formeel de maatgevende waterstand iets hoger kunnen zijn voor de toetsing met 1,4H₄. Dit verschil is echter gering (namelijk 0,07H₄) en bovendien is een formeel juiste toetsing met ANAMOS ook niet mogelijk. ANAMOS geeft een foutmelding in dit geval.
- STEENTOETS rekent altijd zonder de invloed van overgangsconstructies, terwijl ANAMOS soms met de invloed van overgangsconstructies rekent.

4.5 Eindscore van de toplaagstabiliteit

Als er onvoldoende informatie is om de detailtoetsing met ANAMOS uit te voeren, dan is de eindscore voor de toplaag gelijk aan de score van de eenvoudige toetsing (paragraaf 4.2). Als er ook ANAMOS berekeningen zijn uitgevoerd, dan wordt de score van de toplaagtoetsing (eenvoudig + gedetailleerd) als volgt bepaald:
- Als eenvoudige toetsing (par. 4.2) opleverde score = goed, dan nu ook score = goed.
- Als de ondergrens hoger ligt dan het toetspeil \(EN \{ b_{31} > 1 \ OF \ b_{33} > 1 \ OF \ H_j/\Delta D > 6 \cdot \xi^{23} \} \) (zie paragraaf 4.4) (score \neq \text{goed}), dan wordt score = geavanceerd*.
- Als eenvoudige toetsing (par. 4.2) opleverde score = onvoldoende, dan nu ook score = onvoldoende
- Als eenvoudige toetsing (par. 4.2) opleverde score = geavanceerd, dan nu ook score = geavanceerd
- Als \(b_{31} \leq 1 \ EN \ b_{33} \leq 1 \ EN \ H_j/\Delta D \leq 6 \cdot \xi^{23} \) (zie paragraaf 4.4), dan: score = goed,
- Als \(b_{32} > 1 \ OF \ b_{34} > 1 \ OF \ H_j/\Delta D > 9 \cdot \xi^{23} \) (zie paragraaf 4.4), dan: score = onvoldoende,
- Anders: score = twijfelachtig

4.6 Toetsing op afschuiving

De toetsing op afschuiving geschied in drie stappen:
- Methode A:
 - Als \(h_{laag} > h_{toets} + H_j/2 \), dan score = n.v.t.
 - Als 'afschuiving opgetreden?'=nee \(EN \ tan \alpha \leq 0,25 \), dan score=goed
 - Als 'afschuiving opgetreden?'=ja, dan score=onvoldoende
 - Anders: score = twijfelachtig
- Methode B:
 - Als \(h_{laag} > h_{toets} + H_j/2 \), dan score = n.v.t.
 - Als \(\Delta D + b_1 + b_2 + b_{klei} > 1,2 \ m \) \(EN \ tan \alpha \leq 0,333 \), dan score=goed
 - Anders: score = twijfelachtig
• Methode C:
 • Als $h_{laag} > h_{toets} + H_2/2$, dan score = n.v.t.
 • Als:
 \[\tan \alpha < 1/3 \quad EN \]
 \[D + b_1 + b_2 + b_{klei} \geq H_4 \cdot \min(1,5 ; 0,11 \cdot (1,56 T_p^2 \cdot \tan \alpha / H_4)^{0,8}) - 2,8 \cdot (1 - 1,2 \tan \alpha) \cdot \sqrt{(25 T_p k)} \]
 met: $k = 9 \cdot 10^3 \cdot D_{b15}^2$
 Dan score = goed.
 • Anders: twijfelachtig

De eindscore wordt als volgt gevonden:
• Als $h_{laag} > h_{toets} + H_2/2$, dan score = ‘n.v.t.’
• Methode A of B of C geeft ‘goed’, dan score = goed
• Anders: twijfelachtig

4.7 Toetsing op materiaaltransport

Bij de beoordeling is het volgende geotextiel en het filter maatgevend:

• Als er twee filterlagen zijn, dan worden de waarden uit de tweede laag (onderste laag) gebruikt.
• Als het type filtermateriaal niet is ingevuld, dan wordt het laatst genoemde filtermateriaal uit de kolom ‘type filter’ gebruikt (kolom K). Is ook daar het type niet te vinden, dan is het ‘st’, mits er waarden zijn ingevuld bij b en D_{r15}.
• Als er twee geotextielen zijn, dan worden de waarden van de tweede gebruikt, anders de eerste.

Allereerst wordt er gekeken naar de ondergrens (h_{laag}) en de ervaring:

• Als $h_{laag} > h_{toets} + H_2/2$, dan score = ‘n.v.t.’
• Als ervaring ‘nee’, dan score = ‘goed’
• Als ervaring ‘ja’, dan score = ‘onvoldoende’

Als de ervaring ‘?’ is, dan verloopt de toetsing als volgt:

• Als type onderlaag is ‘as’ (zandasfalt of gebitumineerd zand), dan: score = ‘goed’
• Als type onderlaag is ‘vl’ EN ‘kl’, dan: score = ‘goed’
• Als type onderlaag ‘ge’:
 - als type onderlaag op het geotextiel is { ‘my’ of ‘gr’ of ‘pu’ of ‘sl’ of ‘st’ } EN { geen ‘kl’ } onder het geotextiel:
 • als $O_{e0} < 1,5 \cdot D_{b90}$ dan: score = ‘goed’
 • als $O_{e0} > 2,5 \cdot D_{b90}$ EN $D_{r15} > 10$ mm , dan: score = onvoldoende
 • anders: score = ‘twijfelachtig’
- als type onderlaag onder het geotextiel ‘kl’ is (klei):
 • als $O_{90} < 10\cdot D_{50k}$ EN $O_{90} < D_{90k}$ EN $O_{90} < 0,1$ mm dan: score = ‘goed’
 • als $O_{90} > 10\cdot D_{50k}$ OF $O_{90} > D_{90k}$ OF $O_{90} > 0,1$ mm , dan: score = ‘onvoldoende’
 • anders: score = ‘twijfelachtig’
- Als type onderlaag op het geotextiel is GEEN { ‘my’ OF ‘gr’ OF ‘pu’ OF ‘sl’ OF ‘st’ OF ‘kl’ }:
 • als $O_{90} < D_{50S0}$ (let op: Db50), dan: score = ‘goed’
 • als $O_{90} > D_{90S0}$ (let op: Db90), dan score = onvoldoende
 • anders: score = ‘twijfelachtig’
- Als type onderlaag GEEN ‘ge’:
 • als type onderlaag is ‘my’ (mijnsteent):
 • als $D_{15} < 0,038\cdot D_{50S0}$ \(0,333\) dan: score = ‘goed’
 • als $D_{15} > 0,25\cdot D_{50S0}$ \(0,333\) dan: score = ‘onvoldoende’
 • anders: score = ‘twijfelachtig’
 • als type onderlaag is ‘gr’ OF ‘pu’ OF ‘sl’ OF ‘st’:
 • als $D_{15} < \max\{ 5\cdot D_{50S0} ; 0,02\cdot D_{50S0} \}$\(0,333\) dan: score = ‘goed’
 • als $D_{15} > 0,13\cdot D_{50S0}$ \(0,333\) dan: score = ‘onvoldoende’
 • anders: score = ‘twijfelachtig’
- alle andere gevallen: score = ‘twijfelachtig’

4.8 **Toetsing van reststerkte**

De reststerkte van het filter en de klei worden wel berekend door STEENTOETS, maar de resultaten worden niet meegewogen in de eindscore. Bij de berekening van de reststerkte van de klei wordt uitgegaan van slechte kwaliteit klei en geen kleikern.

4.8.1 **Reststerkte van het filter**

De reststerkte van het filter (uitgedrukt in uren) wordt als volgt bepaald:

• Als $H_s/\Delta D > 10\cdot \zeta_{pp}^{-2/3}$ dan: $t_{fr} = 0$.
• Als \{ $\beta < 20^\circ$ \} \(EN \{ b_1 + b_2 < 0,1 + 0,023\cdot \sqrt{(1,5\cdot T_p^2 \cdot H_s)} \) \(EN \{ b_1 + b_2 < 0,1 + 0,038\cdot \sqrt{(1,5\cdot T_p^2 \cdot H_s)} \) dan: $t_{fr} = 0$.
• Als \{ $\beta > 20^\circ$ \} \(EN \{ b_1 + b_2 < 0,1 + 0,023\cdot \sqrt{(1,5\cdot T_p^2 \cdot H_s)} \) \(EN \{ b_1 + b_2 < 0,1 + 0,038\cdot \sqrt{(1,5\cdot T_p^2 \cdot H_s)} \) dan: $t_{fr} = 0$.
• Anders: $t_{fr} = 15,8\cdot T_p\cdot \exp[-0,51\cdot \sqrt{(1,5\cdot T_p^2 \cdot H_s)}]$.

4.8.2 **Reststerkte van de kleilaag**

Allereerst wordt er gecontroleerd of de maatgevende golfhoogte niet te hoog is en of er een kleikern is:

• Als $H_s > 2$ m, dan $t_k = 0$.
• Als $H_s \leq 2$ m \(EN \) er is een kleikern, dan $t_k = 24$ uur.

Als $H_s \leq 2$ m en er is geen kleikern, dan wordt de reststerkte bepaald worden uit een tabel, afhankelijk van de positie t.o.v. GHW:
• Als $h_{hoog} > GHW + 1$, dan geldt ‘boven 1 m + GHW’.
• Anders: ‘beneden 1 m + GHW’.

<table>
<thead>
<tr>
<th></th>
<th>beneden 1 m + GHW</th>
<th>boven 1 m + GHW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$H_r=0,5m$</td>
<td>$H_r=1,0m$</td>
</tr>
<tr>
<td>weinig</td>
<td>bkle < 0,4 m</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>bkle = 0,7 m</td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td>bkle = 1,0 m</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>bkle ≥ 1,2 m</td>
<td>4,5</td>
</tr>
<tr>
<td>goed + matig</td>
<td>bkle < 0,4 m</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>bkle = 0,7 m</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>bkle = 1,0 m</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>bkle ≥ 1,2 m</td>
<td>9</td>
</tr>
</tbody>
</table>

Tabel, reststerkte van de kleilaag in uren

In de tabel wordt de reststerkte bepaald door middel van lineaire interpolatie.

4.8.3 Score met betrekking tot reststerkte

De score wordt bepaald door de stormduur en de reststerkte:

• Als $t_s \leq t_d + t_k$, dan is de score: ‘voldoende’.
• Als $t_s > t_d + t_k$ EN $b_{kle} \geq 0,4$ m; EN $t_d + t_k > 0$ dan is de score: ‘twijfelachtig.
• Anders: ‘onvoldoende’.

4.9 Eindscore

De eindscore wordt bepaald aan de hand van de scores per deelaspect. In onderstaande lijst voorwaarden worden de regels van het begin af doorlopen tot een eindscore is bereikt, waarna het klaar is. De volgorde is dus van belang, waarbij aangenomen is dat bij zekere regel alle voorgaande voorwaarden niet voldeden, en als een regel wel voldoet, dan zijn de volgende regels niet van toepassing:

• Als “ruimte tussen toplaag en filter” = ja, dan eindscore = ONVOLDOENDE.
• Als materiaaltransport = onvoldoende, dan eindscore = ONVOLDOENDE.
• Als score toplaag = onvoldoende, dan eindscore = ONVOLDOENDE.
• Als score toplaag = geavanceerd, dan eindscore = GEAVANCEERD.
• Als score toplaag = geavanceerd*, dan eindscore = GEAVANCEERD*.
• Als score toplaag = twijfelachtig OF score afschuiving = twijfelachtig, dan eindscore = TWIJFELACHTIG.
• Als score toplaag = goed , dan eindscore = GOED.
• Eindscore = ?.

Met de eindscore ‘geavanceerd’ wordt bedoeld dat er zodanige bijzonderheden in de constructie zijn, dat een geavanceerde toetsing noodzakelijk is. Als de score geavanceerd* is geworden, dan is dat het gevolg van het feit dat de ondergrens van de bekleding boven het toetspeil ligt.
5 Ontbrekende gegevens

Ook als er gegevens ontbreken kan er soms een zinnige toetsing uitgevoerd worden. Daarom zijn er een aantal cellen in de spreadsheet, die blanco gelaten mogen worden. Als ze blanco zijn, dan wordt er gerekend met een ongunstige waarde.

De gekozen waarden zijn gegeven in onderstaande tabel:

<table>
<thead>
<tr>
<th>variabele zonder waarde (blanco cel)</th>
<th>aangehouden waarde voor berekeningen</th>
</tr>
</thead>
<tbody>
<tr>
<td>dijkoriëntatie t.o.v. N</td>
<td>gelijk aan golfrichting</td>
</tr>
<tr>
<td>B en L bij zuilen</td>
<td>B = L = 0,3 m</td>
</tr>
<tr>
<td>soortelijke massa toplaag</td>
<td>waarde uit de tabel in werkblad</td>
</tr>
<tr>
<td></td>
<td>‘algemeen’, kolom ‘standaard’</td>
</tr>
<tr>
<td>inwassing: D_{15} en n</td>
<td>als inwasmateriaal aanwezig, dan</td>
</tr>
<tr>
<td></td>
<td>$D_{15} = 5$ mm en $n = 0,5$</td>
</tr>
<tr>
<td>O_{90} geotextiel</td>
<td>geotextiel afwezig</td>
</tr>
<tr>
<td>type filter als $b > 0$</td>
<td>steenslag</td>
</tr>
<tr>
<td>porositeit filter</td>
<td>0,4</td>
</tr>
<tr>
<td>D_{50} van filter</td>
<td>1,2·D_{15}</td>
</tr>
<tr>
<td>D_{15} zand</td>
<td>$D_{b50}/1,5$</td>
</tr>
<tr>
<td>D_{50} zand</td>
<td>0,12 mm</td>
</tr>
<tr>
<td>D_{90} zand</td>
<td>1,2·D_{b50}</td>
</tr>
<tr>
<td>stormduur</td>
<td>48 uur</td>
</tr>
</tbody>
</table>

Tabel, waarde als cel blanco is gelaten
Toetsing met ANAMOS

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

Analytische stabilitetsberekening van zetting en filter

RESULTAAT:

| toplaag: |
| Belasting bij H_s [m] |
| Sterkte bij H_s [m] |
| H_s/AD |

INVOER:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H_s [m]</td>
<td>.757</td>
</tr>
<tr>
<td>T_p [s]</td>
<td>2</td>
</tr>
<tr>
<td>D [m]</td>
<td>.3</td>
</tr>
<tr>
<td>B [m]</td>
<td>.5</td>
</tr>
<tr>
<td>L [m]</td>
<td>.5</td>
</tr>
<tr>
<td>Delta</td>
<td></td>
</tr>
<tr>
<td>f (wrijving)</td>
<td>.5</td>
</tr>
<tr>
<td>Zetta (blok=.7 zuil=0)</td>
<td>.7</td>
</tr>
<tr>
<td>tan(α)</td>
<td>1/3</td>
</tr>
<tr>
<td>Uitvullag: b [m]</td>
<td>.07</td>
</tr>
<tr>
<td>$DF16$ [m]</td>
<td>.008</td>
</tr>
<tr>
<td>n [-]</td>
<td>.34</td>
</tr>
<tr>
<td>Mijnsteen b [m]</td>
<td>.8</td>
</tr>
<tr>
<td>$DF15$ [m]</td>
<td>.003</td>
</tr>
<tr>
<td>n [-]</td>
<td>.2</td>
</tr>
<tr>
<td>spleetbreedte [mm]</td>
<td>1</td>
</tr>
<tr>
<td>Nu $[m^2/s]$ (viscositeit)</td>
<td>1.2*10^-6</td>
</tr>
</tbody>
</table>

TUSSENRESULTATEN:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>k (lin.) uitvullag</td>
<td></td>
</tr>
<tr>
<td>k (lin) mijnsteen [m/s]</td>
<td></td>
</tr>
<tr>
<td>k' [m/s]</td>
<td></td>
</tr>
<tr>
<td>Lekhoogte (m)</td>
<td></td>
</tr>
<tr>
<td>LABDA (langs talud)</td>
<td></td>
</tr>
<tr>
<td>Ks (diep water), s of ma C54</td>
<td></td>
</tr>
<tr>
<td>Potentiaal</td>
<td></td>
</tr>
<tr>
<td>tan(betta)</td>
<td></td>
</tr>
<tr>
<td>nivo</td>
<td></td>
</tr>
<tr>
<td>Stijghoogte</td>
<td></td>
</tr>
<tr>
<td>Gamma s1</td>
<td></td>
</tr>
<tr>
<td>DeltaBcos(alfa) [m]</td>
<td></td>
</tr>
</tbody>
</table>

Potentiaal

- $C52*MIN(2.2,.36*C54/SQRT(C51))$
- $0.17*C54/C51$
- $-C52*MIN(1.5,.11*(C54^2/C51)^.8)$

Hoek

- ATAN(C47)*180/PI

tan(alfa)

- C20
- C11
- C12

Ks (diep water)

- $C51/SQRT(C52/(1.56*C53**2))$
- $+C54/SQRT(C51)$

Verschildruk (Wolsink)

- $C63/(2*C64*C65)*(1-EXP(-C64*C65*C66/C63))\div C63/2$
- $C64*C65*C66/C63)$
- $*(1-EXP(-2*C66/C63))$

Verschildruk (aanvulling)

- $+C71*C63$

Lekhoogte =

- C34

tan(alfa)=

- C20

tan(betta)=

- C38

FTh=

- C37
Ksi +C36
H +C11
H/lekhosqrt(tan) +C68/C63/SQRT(C64)
Fi/lekh0 IF(C70>50, .198*C70^-0.75*C67^-0.5+.5, (.198*C70^-0.75*C67^-0.5+.5)* (1-EXP(-1.66*C70^-0.75*C67^-0.5)))
H/lekhosqrt(tan)*ksi^2 C70*C67^2
Lekhoogte (labda) (m): SIN(ARCTAN(C83))*SQRT((C77*C79+C80*C81)*C82/C78)
Uitvullaag: k (lin.) C31
k' C33
b C21
Mijnsteenv. k (lin.) C32
b C24
D C14
tan(alfa) C20
k' Berekening van toplaagdoorlatendheid
INVOER:
D (m) C14
B (m) C15
L (m) C16
s (mm) C27
n (uitvullaag) IF(C21>0, C23, C26)
Df15 (mm) (uitvullaag) IF(C21>0, C22*1000, C25*1000)
n (inwas) 0.6
Df15 (mm) (inwas) 15
nu (m^2/s) C28
RESULTAAT:
a' IF(C120=1, C109+1*E-6, C109-C113+1*E-6)
b' IF(C120=1, C110, C110+C115)
k' (mm/s) (-C99+SQRT(C99**2+4*C100))/(2*C100)*1000

TUSSENRESULTATEN:
Rmin (mm) MAX(.4*C93, C95/2)
Forchh.: 160*C96/9.81*(1-C94)**2/(C94**3*(C95/1000)**2)
2.2/(9.81*C94**2*C95/1000)
Forchh. Inwasmat: 160*C96/9.81*(1-C94)**2/(C94**3*(C95/1000)**2)
2.2/(9.81*C94**2*C95/1000)
l (m) (C91+C109)**2/(C91+C109+C108)/C108
s (m) C93/1000
At (lam Fis) SUM(C113:C114)
Bt (lam Fis) SUM(C116:C117)
k' (mm/s) (lam Fis) (-C109+SQRT(C109**2+4*C110))/(2*C110)*1000
C (Chezy) 18*LOG(6*C108/0.005)
Lin.: Fis/Vf/D 12*C95*C107/(9.81*C108)**2
Fis C108*C107*C105/(PI*C90)*
LN(C107*C93/(PI*EXP(1))**C104+C107*C105a/2
Kwa.: Fis/Vf^2/D 2*C107**2/(C108+C112)**2
Fis C107**2/(C90*9.81)**2
(F1+C118-1)**2+1+C107**2+C106a/2
Fis C108*C107*C106/(PI*C90)*
(C107*C93/(PI*C104)-2
Kontr. koeff. Mu IF(C94>.66, C94)
Re(spleet) C107*C101*C108/1000/C96
Fis laminair? IF(C107+C111*C108/1000*C96 <2400,1,0)

k Doorlatendheid filter met Forchheimer
Uitvullaag: a 160*C136/9.81*(1-C139)**2/(C139**3*C138**2)
<table>
<thead>
<tr>
<th>Line</th>
<th>Equation/Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>$b = \frac{2.2}{(9.81139**21138)}$</td>
</tr>
<tr>
<td>129</td>
<td>$k_{\text{secant door } i=0.3} = \frac{\text{SQRT}(11272+4*11282)}{(2*1128)*1000**0.3}$</td>
</tr>
<tr>
<td>130</td>
<td>Mijnsteen:</td>
</tr>
<tr>
<td>131</td>
<td>$a = 1601136/9.81(1-1142)2/(11423*1141**2)$</td>
</tr>
<tr>
<td>132</td>
<td>$b = \frac{2.2/(9.811142**21141)}{(-1131+\text{SQRT}(11312+4*11322))/ (2*1132)*1000**0.3}$</td>
</tr>
<tr>
<td>134</td>
<td>INVOER:</td>
</tr>
<tr>
<td>136</td>
<td>$\nu (m**2/s)$ C28</td>
</tr>
<tr>
<td>137</td>
<td>uitvullaag C22</td>
</tr>
<tr>
<td>138</td>
<td>Df15 (m) C25</td>
</tr>
<tr>
<td>139</td>
<td>n C23</td>
</tr>
<tr>
<td>140</td>
<td>Mijnsteen:</td>
</tr>
<tr>
<td>141</td>
<td>Df15 C25</td>
</tr>
<tr>
<td>142</td>
<td>n C26</td>
</tr>
<tr>
<td>145</td>
<td>a WRIJVING: Gamma s1 $\max(klemfactor, IF(C157=1, 1+C151*C150, IF(C156=1, \text{MAX}(C154, C155), C155)))$</td>
</tr>
<tr>
<td>147</td>
<td>B C15</td>
</tr>
<tr>
<td>149</td>
<td>D C14</td>
</tr>
<tr>
<td>150</td>
<td>$\tan(alfa)$ C20</td>
</tr>
<tr>
<td>151</td>
<td>f C18</td>
</tr>
<tr>
<td>152</td>
<td>Zetta IF(C19=0, 1E-6, C19)</td>
</tr>
<tr>
<td>154</td>
<td>$\frac{(1+f^2*\text{tan}(a)/D)/(1+Zf^2)}{(1+C151**2*(C148/C149)**2)}}$</td>
</tr>
<tr>
<td>155</td>
<td>$1+\frac{\text{Dtan}(a)}{B}$ C149/C148>C150</td>
</tr>
<tr>
<td>156</td>
<td>$\frac{\text{Zetta}D/B < \text{tan}(alfa)}{?} C152C149/C148>C150$</td>
</tr>
<tr>
<td>157</td>
<td>$D/B > f ?$ C149/C148>C151</td>
</tr>
</tbody>
</table>
B Spreadsheet

In deze bijlage is een uitdraai van de spreadsheet gegeven, waarin enkele cases zijn ingevoerd als voorbeeld. Tevens is per kolom vermeld welke waarde de betreffende variabele (cel) kan aannemen.
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>STEENTOEET versie 3.20, WL Delt Hydraulics, maart 2000</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Volg-</td>
<td>Naam van dijkvak</td>
<td>Subvakgrenzen</td>
<td>aanleg-</td>
<td>schade</td>
<td>dijkorien-</td>
<td>niveau</td>
<td>niveau</td>
<td>type</td>
<td>helling</td>
<td>als bermbekleiding:</td>
<td>D</td>
<td>B</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>nr</td>
<td></td>
<td></td>
<td>jaarr</td>
<td>in jaar</td>
<td>tatie</td>
<td>onder-</td>
<td>boven-</td>
<td>plaat</td>
<td>talud</td>
<td>voorrand</td>
<td>NAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>van</td>
<td>tot</td>
<td></td>
<td></td>
<td></td>
<td>grens</td>
<td>grens</td>
<td>m NAP</td>
<td>m NAP</td>
<td>tanhoek</td>
<td>m NAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>case 1</td>
<td>100.00</td>
<td>100.80</td>
<td></td>
<td></td>
<td>16.5</td>
<td>1.00</td>
<td>4.00</td>
<td>11.00</td>
<td>st my ge</td>
<td>0.25</td>
<td>0.350</td>
<td>0.500</td>
<td>0.500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>case 1a</td>
<td>100.00</td>
<td>100.80</td>
<td></td>
<td></td>
<td>16.5</td>
<td>1.00</td>
<td>4.00</td>
<td>11.00</td>
<td>st my ge</td>
<td>0.25</td>
<td>0.350</td>
<td>0.500</td>
<td>0.500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>case 2</td>
<td>101.20</td>
<td>102.00</td>
<td></td>
<td></td>
<td>25.0</td>
<td>0.00</td>
<td>3.24</td>
<td>11.00</td>
<td>st ge</td>
<td>0.333</td>
<td>0.350</td>
<td>0.500</td>
<td>0.500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>case 3</td>
<td>102.10</td>
<td>103.00</td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.00</td>
<td>5.00</td>
<td>26.00</td>
<td>pu vl kl</td>
<td>0.300</td>
<td>0.370</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>case 3b</td>
<td>102.10</td>
<td>103.00</td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.00</td>
<td>5.00</td>
<td>26.00</td>
<td>pu vl kl</td>
<td>0.300</td>
<td>0.370</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>case 4</td>
<td>300.00</td>
<td>301.00</td>
<td></td>
<td></td>
<td>350.0</td>
<td>0.20</td>
<td>4.00</td>
<td>26.00</td>
<td>st vl kl</td>
<td>0.260</td>
<td>0.240</td>
<td>0.300</td>
<td>0.300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>case 5</td>
<td>263.60</td>
<td>264.30</td>
<td></td>
<td></td>
<td>220.0</td>
<td>0.20</td>
<td>1.00</td>
<td>26.00</td>
<td>st vl kl</td>
<td>0.250</td>
<td>0.200</td>
<td>0.300</td>
<td>0.400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>case 6</td>
<td>263.60</td>
<td>264.30</td>
<td></td>
<td></td>
<td>220.0</td>
<td>0.20</td>
<td>1.00</td>
<td>12.00</td>
<td>st vl kl</td>
<td>0.250</td>
<td>0.200</td>
<td>0.300</td>
<td>0.400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Voorbeelden mogelijke invoer per kolom:</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>tekst</td>
<td>237548.00</td>
<td>237563.00</td>
<td>1963</td>
<td>1964</td>
<td>-360</td>
<td>-1.00</td>
<td>1.00</td>
<td>11</td>
<td>st my ge</td>
<td>0.050</td>
<td>0.25</td>
<td>3.00</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>130</td>
<td>41.00</td>
<td>45.20</td>
<td>'63</td>
<td>'64</td>
<td>-20</td>
<td>3.00</td>
<td>7.00</td>
<td>26</td>
<td>gr vl kl</td>
<td>0.200</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27.12</td>
<td>0.400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>S</td>
<td>T</td>
<td>U</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>AA</td>
<td>AB</td>
<td>AC</td>
<td>AD</td>
<td>AE</td>
<td>AF</td>
<td>AG</td>
<td>AH</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>4</td>
<td>TOPLAAG</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>spleet</td>
<td>open oppervlak (%)</td>
<td>soortelijke massa [kg/m^3]</td>
<td>inwasmateriaal</td>
<td>ingeklemd?</td>
<td>slib</td>
<td>waterdicht ingegoten</td>
<td>b</td>
<td>D15</td>
<td>D50</td>
<td>porositeit [-]</td>
<td>slib</td>
<td>b</td>
<td>D15</td>
<td>D50</td>
<td>porositeit [-]</td>
</tr>
<tr>
<td>6</td>
<td>[mm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[mm]</td>
<td>ja/neé?</td>
<td>[mm]</td>
<td>[mm]</td>
<td>[mm]</td>
<td>ja/neé?</td>
<td>[mm]</td>
<td>[mm]</td>
<td>[mm]</td>
<td>ja/neé?</td>
<td>[mm]</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1.000</td>
<td>2350</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>0.080</td>
<td>10.0</td>
<td>20.0</td>
<td>0.35</td>
<td>n</td>
<td>0.800</td>
<td>2.0</td>
<td>30.0</td>
<td>0.25</td>
<td>0.120</td>
</tr>
<tr>
<td>9</td>
<td>1.000</td>
<td>2350</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>0.080</td>
<td>10.0</td>
<td>20.0</td>
<td>0.35</td>
<td>n</td>
<td>0.800</td>
<td>2.0</td>
<td>30.0</td>
<td>0.25</td>
<td>0.120</td>
</tr>
<tr>
<td>10</td>
<td>1.000</td>
<td>2550</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>0.180</td>
<td>15.0</td>
<td>30.0</td>
<td>0.35</td>
<td>n</td>
<td>0.200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>10.0</td>
<td>2950</td>
<td>j</td>
<td>j</td>
<td>n</td>
<td>n</td>
<td>0.070</td>
<td>9.0</td>
<td>20.0</td>
<td>0.35</td>
<td>j</td>
<td>0.800</td>
<td>0.090</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>10.0</td>
<td>2950</td>
<td>n</td>
<td>n</td>
<td>j</td>
<td>n</td>
<td>0.070</td>
<td>9.0</td>
<td>20.0</td>
<td>0.35</td>
<td>j</td>
<td>0.800</td>
<td>0.090</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>12.0</td>
<td>2800</td>
<td>j</td>
<td>15.0</td>
<td>0.40</td>
<td>j</td>
<td>n</td>
<td>0.050</td>
<td>10.0</td>
<td>0.30</td>
<td>j</td>
<td>0.900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>13.000</td>
<td>2400</td>
<td>j</td>
<td>15.0</td>
<td>0.40</td>
<td>j</td>
<td>n</td>
<td>0.250</td>
<td>20.0</td>
<td>0.40</td>
<td>n</td>
<td>0.900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>13.000</td>
<td>2400</td>
<td>j</td>
<td>15.0</td>
<td>0.40</td>
<td>n</td>
<td>n</td>
<td>0.250</td>
<td>20.0</td>
<td>0.40</td>
<td>n</td>
<td>0.900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.7</td>
<td>1.0</td>
<td>2200</td>
<td>j</td>
<td>2</td>
<td>0.3</td>
<td>j</td>
<td>j</td>
<td>j</td>
<td>0.00</td>
<td>2.0</td>
<td>3.0</td>
<td>0.20</td>
<td>j</td>
<td>0.00</td>
<td>2.0</td>
</tr>
<tr>
<td>20</td>
<td>12.0</td>
<td>15.0</td>
<td>3000</td>
<td>n</td>
<td>20</td>
<td>0.7</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>0.04</td>
<td>50.0</td>
<td>250.0</td>
<td>0.45</td>
<td>n</td>
<td>0.20</td>
<td>50.0</td>
</tr>
<tr>
<td>21</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
<td>0.50</td>
<td>ja</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>nee</td>
<td>nee</td>
<td>nee</td>
<td>nee</td>
<td>nee</td>
<td>nee</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td>AN</td>
<td>AO</td>
<td>AP</td>
<td>AQ</td>
<td>AR</td>
<td>AS</td>
<td>AT</td>
<td>AU</td>
<td>AV</td>
<td>AW</td>
<td>AX</td>
<td>AY</td>
<td>AZ</td>
<td>BA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Opmerkingen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>D90</td>
<td>D15</td>
<td>D50</td>
<td>D90</td>
<td></td>
<td></td>
<td>ZAND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ERVARING</td>
<td>storm-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>duur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[uur]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.200</td>
<td>0.150</td>
<td>n</td>
<td>n</td>
<td>nee</td>
<td>5.0</td>
<td>1</td>
<td>2.200</td>
<td>4.700</td>
<td>4.700</td>
<td>2.620</td>
<td>7.700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.200</td>
<td>0.150</td>
<td>n</td>
<td>n</td>
<td>nee</td>
<td>5.0</td>
<td>1</td>
<td>2.200</td>
<td>4.700</td>
<td>4.700</td>
<td>2.620</td>
<td>7.700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.120</td>
<td>0.150</td>
<td>n</td>
<td>？</td>
<td>nee</td>
<td>2.0</td>
<td>1</td>
<td>1.500</td>
<td>5.500</td>
<td>4.003</td>
<td>1.300</td>
<td>4.502</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.200</td>
<td></td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>6.0</td>
<td>1</td>
<td>2.000</td>
<td>5.000</td>
<td>5.000</td>
<td>1.800</td>
<td>6.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.200</td>
<td></td>
<td>n</td>
<td>n</td>
<td>j</td>
<td>6.0</td>
<td>1</td>
<td>2.000</td>
<td>5.000</td>
<td>5.000</td>
<td>1.800</td>
<td>6.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>10.0</td>
<td>2</td>
<td>2.250</td>
<td>6.250</td>
<td>5.441</td>
<td>3.160</td>
<td>6.788</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>10.0</td>
<td>1</td>
<td>2.250</td>
<td>6.250</td>
<td>1.766</td>
<td>1.241</td>
<td>5.241</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>10.0</td>
<td>1</td>
<td>2.250</td>
<td>6.250</td>
<td>1.766</td>
<td>1.241</td>
<td>5.241</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>#VALUE!</td>
<td></td>
<td>#VALUE!</td>
<td>#VALUE!</td>
<td>#VALUE!</td>
<td>#VALUE!</td>
<td>#VALUE!</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.015</td>
<td>0.060</td>
<td>0.080</td>
<td>0.100</td>
<td>j</td>
<td>j</td>
<td>j</td>
<td>tekst</td>
<td>0.0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.350</td>
<td>0.450</td>
<td>0.600</td>
<td>0.800</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td></td>
<td>50.0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td>BC</td>
<td>BD</td>
<td>BE</td>
<td>BF</td>
<td>BG</td>
<td>BH</td>
<td>BI</td>
<td>BJ</td>
<td>BK</td>
<td>BL</td>
<td>BM</td>
<td>BN</td>
<td>BO</td>
<td>BP</td>
<td>BG</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>63.5</td>
<td>Goed</td>
<td>Goed</td>
<td>Goed</td>
<td>Goed</td>
<td>Goed</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>63.5</td>
<td>Goed</td>
<td>Goed</td>
<td>Goed</td>
<td>Goed</td>
<td>Goed</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.0</td>
<td>Twijfelachtig</td>
<td>Twijfelachtig</td>
<td>Twijfelachtig</td>
<td>Goed</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.0</td>
<td>Twijfelachtig</td>
<td>Goed</td>
<td>Goed</td>
<td>Goed</td>
<td>Goed</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.0</td>
<td>Twijfelachtig</td>
<td>Goed</td>
<td>Goed</td>
<td>Goed</td>
<td>Goed</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>10.0</td>
<td>Twijfelachtig</td>
<td>Goed</td>
<td>Goed</td>
<td>Goed</td>
<td>Goed</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.0</td>
<td>Goed</td>
<td>Goed</td>
<td>Goed</td>
<td>Goed</td>
<td>Goed</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.0</td>
<td>Goed</td>
<td>Goed</td>
<td>Goed</td>
<td>Goed</td>
<td>Goed</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.0</td>
<td>#VALUE!</td>
<td>#VALUE!</td>
<td>#VALUE!</td>
<td>#VALUE!</td>
<td>#VALUE!</td>
<td></td>
</tr>
</tbody>
</table>

AFSCHUIVING

<table>
<thead>
<tr>
<th>methode A</th>
<th>methode B</th>
<th>methode C</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MATERIAALTR.

<table>
<thead>
<tr>
<th>Score</th>
<th>Hs/ΔD</th>
<th>ξop</th>
<th>eenvoudige toetsing</th>
<th>gedetailleerde toetsing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Score</td>
<td>F = ξ²/2:3 * Hs/ΔD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Resultaat Anamos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Score Anamos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Benodigde</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>type</th>
<th>kwantitatief</th>
<th>Score</th>
<th>F = ξ²/2:3 * Hs/ΔD</th>
<th>Resultaat Anamos</th>
<th>Score Anamos</th>
<th>Benodigde</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/t</td>
<td>t/o</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>g/t</td>
</tr>
</tbody>
</table>

STABILITEIT TOPLAAG

<table>
<thead>
<tr>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

* TOETS95bijlage8.xls

pagina 4 van 5

15-03-00; 14:34
<table>
<thead>
<tr>
<th>BR</th>
<th>BS</th>
<th>BT</th>
<th>BU</th>
<th>BV</th>
<th>BW</th>
<th>BX</th>
<th>BY</th>
<th>BZ</th>
<th>CB</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>klemfactor</td>
<td>Score</td>
<td>filter-</td>
<td>klei-</td>
<td>Score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>t/o</td>
<td></td>
<td>laag</td>
<td>laag</td>
<td>[uur]</td>
<td>[uur]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td></td>
<td>ONvoldoende</td>
<td>0.043</td>
<td>0.000</td>
<td>Twijfelachtig</td>
<td>ONVOLDOENDE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>n.v.t.</td>
<td>Twijfelachtig</td>
<td>0.043</td>
<td>0.000</td>
<td>Twijfelachtig</td>
<td>TWIJFELACHTIG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.18</td>
<td>Onvoldoende</td>
<td>0.000</td>
<td>0.000</td>
<td>Onvoldoende</td>
<td>ONVOLDOENDE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1.00</td>
<td>Goed</td>
<td>0.000</td>
<td>1.333</td>
<td>Twijfelachtig</td>
<td>GOED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.00</td>
<td>Goed</td>
<td>0.000</td>
<td>1.333</td>
<td>Twijfelachtig</td>
<td>ONVOLDOENDE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>n.v.t.</td>
<td>Twijfelachtig</td>
<td>0.000</td>
<td>0.000</td>
<td>Onvoldoende</td>
<td>TWIJFELACHTIG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1.46</td>
<td>Twijfelachtig</td>
<td>0.000</td>
<td>2.998</td>
<td>Twijfelachtig</td>
<td>TWIJFELACHTIG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.46</td>
<td>Twijfelachtig</td>
<td>0.000</td>
<td>2.998</td>
<td>Twijfelachtig</td>
<td>TWIJFELACHTIG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>n.v.t.</td>
<td>#VALUE!</td>
<td>#VALUE!</td>
<td>#VALUE!</td>
<td>FOUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOETS95bijlageB.xls pagina 5 van 5 15-03-00; 14:34
Golfcondities en waterstanden
Let op: De veranderingen in deze GOLVEN-tabel worden pas doorgerekend nadat in het menu 'Toetsing' "Bereken alles opnieuw" is gekozen (en daarna eventueel F9 is aangeslagen).

<table>
<thead>
<tr>
<th>Locatie</th>
<th>GHW</th>
<th>toetspeil</th>
<th>h = NAP 2.00</th>
<th>h = NAP 4.00</th>
<th>h = NAP 6.00</th>
<th>Golfrichting</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.00</td>
<td>46.00</td>
<td>2.00</td>
<td>6.00</td>
<td>2.70</td>
<td>6.80</td>
<td>3.10</td>
</tr>
<tr>
<td>46.00</td>
<td>51.00</td>
<td>2.00</td>
<td>6.00</td>
<td>1.00</td>
<td>6.80</td>
<td>1.90</td>
</tr>
<tr>
<td>100.00</td>
<td>101.00</td>
<td>2.20</td>
<td>4.70</td>
<td>2.10</td>
<td>7.50</td>
<td>2.62</td>
</tr>
<tr>
<td>101.00</td>
<td>102.00</td>
<td>1.50</td>
<td>5.50</td>
<td>0.50</td>
<td>3.50</td>
<td>1.30</td>
</tr>
<tr>
<td>102.00</td>
<td>103.00</td>
<td>2.00</td>
<td>5.00</td>
<td>1.80</td>
<td>6.00</td>
<td>1.80</td>
</tr>
<tr>
<td>260.00</td>
<td>263.60</td>
<td>2.25</td>
<td>6.25</td>
<td>1.7</td>
<td>5.5</td>
<td>2</td>
</tr>
<tr>
<td>263.60</td>
<td>277.32</td>
<td>2.25</td>
<td>6.25</td>
<td>1.3</td>
<td>5.3</td>
<td>1.8</td>
</tr>
<tr>
<td>277.32</td>
<td>290.50</td>
<td>2.25</td>
<td>6.25</td>
<td>1.7</td>
<td>5.4</td>
<td>2</td>
</tr>
</tbody>
</table>

Page 1
<table>
<thead>
<tr>
<th>Golfrichting</th>
<th>h = NAP 2.00</th>
<th>h = NAP 4.00</th>
<th>h = NAP 6.00</th>
<th>Golfrichting</th>
<th>minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.70</td>
<td>6.80</td>
<td>3.10</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.00</td>
<td>6.80</td>
<td>1.90</td>
</tr>
<tr>
<td>80</td>
<td>120</td>
<td>2.10</td>
<td>7.50</td>
<td>2.62</td>
<td>7.70</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
<td>0.50</td>
<td>3.50</td>
<td>1.30</td>
<td>4.50</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1.80</td>
<td>6.00</td>
<td>1.80</td>
<td>6.00</td>
</tr>
<tr>
<td>0</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Algemene waarden

<table>
<thead>
<tr>
<th>Code</th>
<th>Omschrijving</th>
<th>Standaard</th>
<th>min</th>
<th>max</th>
<th>(mm, gesneden)</th>
<th>kliniken</th>
<th>Asfalt</th>
<th>beton</th>
<th>platen</th>
<th>AMAROS</th>
<th>STEINDOOTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Assfablon</td>
<td>x</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Maties</td>
<td>x</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Dicht steenafval</td>
<td>x</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Geopenfractureerde steenafvalmatten</td>
<td>x</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Open steenafval</td>
<td>x</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Zandafval (tijdelijk of in onderlaag)</td>
<td>x</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Bruiksteen, gepenetrated met asfalt (vol en zalt)</td>
<td>x</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Bakstenen/betonstenen, gepenetrated met asfalt (vol en zalt)</td>
<td>x</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Bruiksteen, gepenetrated met asfalt (groteopenfractureerde)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Betonblokken met afgeschonkelde hoeken of gaten erin</td>
<td>2350</td>
<td>2200</td>
<td>2900</td>
<td>x</td>
<td>J</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Betonblokken zonder openingen</td>
<td>2350</td>
<td>2200</td>
<td>2900</td>
<td>1</td>
<td>J</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td>Hartingeblokken</td>
<td>2350</td>
<td>2200</td>
<td>2900</td>
<td>1</td>
<td>J</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.2</td>
<td>Dan-onblokken</td>
<td>2350</td>
<td>2200</td>
<td>2900</td>
<td>1</td>
<td>J</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Open blokkenmatten, afgebrokkeld met granulaire materiaal</td>
<td>2350</td>
<td>2200</td>
<td>2900</td>
<td>x</td>
<td>J</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Blokkenmatten zonder openingen</td>
<td>2350</td>
<td>2200</td>
<td>2900</td>
<td>x</td>
<td>J</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Betonplaten van cementbeton of gestoten koloidaal beton, (in situ gestort)</td>
<td>x</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Koloidaal beton, (open structuur)</td>
<td>x</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Betonplaten, (preblad)</td>
<td>x</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Doorgroefsteen, beton</td>
<td>2350</td>
<td>x</td>
<td>N</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Bruiksteen, gepenetrated met cementbeton of koloidaal beton, (vol en zalt)</td>
<td>x</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Bruiksteen, met grotopenfractureerde van cementbeton of koloidaal beton</td>
<td>x</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Gras, gezaaid</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Gras, zoden of gezaaid, in kunstmaten</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Besuising van grof grind en andere granulaire materialen</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Grove granulaire materialen c.q. bruiksteen verpakt in metaalbuis</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Fijne granulaire materialen c.q. zandgrind verpakt in metaalbuis</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Bruiksteen, (lortsteen)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Basalt, gezaaid</td>
<td>2900</td>
<td>2900</td>
<td>3000</td>
<td>12</td>
<td>J</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.01</td>
<td>Basalt, gezaaid, ingegeven met gletserslag</td>
<td>2900</td>
<td>2900</td>
<td>3000</td>
<td>x</td>
<td>J</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.02</td>
<td>Basalt, gezaaid, ingegeven met koloidaal beton of cementbeton</td>
<td>2900</td>
<td>2900</td>
<td>3000</td>
<td>x</td>
<td>J</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Betonzuilen en andere niet rechthoekige blokken</td>
<td>2350</td>
<td>2200</td>
<td>2900</td>
<td>12</td>
<td>J</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.1</td>
<td>Basalton</td>
<td>2350</td>
<td>2200</td>
<td>2900</td>
<td>12</td>
<td>J</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.2</td>
<td>PIT Polygoon zuilen</td>
<td>2350</td>
<td>2200</td>
<td>2900</td>
<td>12</td>
<td>J</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.3</td>
<td>Hydroblock</td>
<td>2350</td>
<td>2200</td>
<td>2900</td>
<td>12</td>
<td>J</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.01</td>
<td>Betonzuilen of niet rechthoekige blokken, ingegeven met gletserslag</td>
<td>2350</td>
<td>2200</td>
<td>2900</td>
<td>x</td>
<td>N</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.11</td>
<td>Basalton, ingegeven met gletserslag</td>
<td>2350</td>
<td>2200</td>
<td>2900</td>
<td>x</td>
<td>N</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.21</td>
<td>PIT Polygoon zuilen, ingegeven met gletserslag</td>
<td>2350</td>
<td>2200</td>
<td>2900</td>
<td>x</td>
<td>N</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.31</td>
<td>Hydroblock, ingegeven met gletserslag</td>
<td>2350</td>
<td>2200</td>
<td>2900</td>
<td>x</td>
<td>N</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.02</td>
<td>Betonzuilen of niet rechthoekige blokken, ingegeven met beton</td>
<td>2350</td>
<td>2200</td>
<td>2900</td>
<td>x</td>
<td>N</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.12</td>
<td>Basalton, ingegeven met beton</td>
<td>2350</td>
<td>2200</td>
<td>2900</td>
<td>x</td>
<td>N</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Natuursteen, gezaaid</td>
<td>2500</td>
<td>2500</td>
<td>2700</td>
<td>x</td>
<td>J</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.1</td>
<td>Vlakkerdse</td>
<td>2500</td>
<td>2500</td>
<td>2700</td>
<td>x</td>
<td>J</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.2</td>
<td>Lessinische</td>
<td>2500</td>
<td>2500</td>
<td>2700</td>
<td>x</td>
<td>J</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.3</td>
<td>Doonkiese</td>
<td>2800</td>
<td>2600</td>
<td>2700</td>
<td>x</td>
<td>J</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.4</td>
<td>Petri graniet</td>
<td>2600</td>
<td>2500</td>
<td>2700</td>
<td>x</td>
<td>J</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.5</td>
<td>Graniet</td>
<td>2600</td>
<td>2500</td>
<td>2700</td>
<td>x</td>
<td>J</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.01</td>
<td>Natuursteen, gezaaid, en ingegeven met gletserslag</td>
<td>2500</td>
<td>2500</td>
<td>2700</td>
<td>x</td>
<td>N</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.11</td>
<td>Vlakkerdse, ingegeven met gletserslag</td>
<td>2500</td>
<td>2500</td>
<td>2700</td>
<td>x</td>
<td>N</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.21</td>
<td>Lessinische, ingegeven met gletserslag</td>
<td>2600</td>
<td>2500</td>
<td>2700</td>
<td>x</td>
<td>N</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.31</td>
<td>Doonkiese, ingegeven met gletserslag</td>
<td>2600</td>
<td>2500</td>
<td>2700</td>
<td>x</td>
<td>N</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.41</td>
<td>Petri graniet, ingegeven met gletserslag</td>
<td>2600</td>
<td>2500</td>
<td>2700</td>
<td>x</td>
<td>N</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.51</td>
<td>Graniet, ingegeven met gletserslag</td>
<td>2600</td>
<td>2500</td>
<td>2700</td>
<td>x</td>
<td>N</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.02</td>
<td>Natuursteen, gezaaid, en ingegeven met beton</td>
<td>2500</td>
<td>2500</td>
<td>2700</td>
<td>x</td>
<td>N</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.12</td>
<td>Vlakkerdse, ingegeven met beton</td>
<td>2500</td>
<td>2500</td>
<td>2700</td>
<td>x</td>
<td>N</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.22</td>
<td>Lessinische, ingegeven met beton</td>
<td>2600</td>
<td>2500</td>
<td>2700</td>
<td>x</td>
<td>N</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.32</td>
<td>Doonkiese, ingegeven met beton</td>
<td>2600</td>
<td>2500</td>
<td>2700</td>
<td>x</td>
<td>N</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.42</td>
<td>Petri graniet, ingegeven met beton</td>
<td>2600</td>
<td>2500</td>
<td>2700</td>
<td>x</td>
<td>N</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.52</td>
<td>Graniet, ingegeven met beton</td>
<td>2600</td>
<td>2500</td>
<td>2700</td>
<td>x</td>
<td>N</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Koperplakblokken</td>
<td>2700</td>
<td>2500</td>
<td>2800</td>
<td>x</td>
<td>J</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Klei onder zand</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Bestuiving van natuursteenmassa</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Kliners, beton of gebakken</td>
<td>x</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>zand</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>steenfundering, gebonden</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>kade, kermuur, kistdam</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Opbouw onderlaag (meerdere items te kiezen)

<table>
<thead>
<tr>
<th>Code</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>et</td>
<td>Slaanlag</td>
</tr>
<tr>
<td>mv</td>
<td>Mijnzeen</td>
</tr>
<tr>
<td>ge</td>
<td>gevesttel</td>
</tr>
<tr>
<td>gr</td>
<td>Grind</td>
</tr>
<tr>
<td>sf</td>
<td>Vlijlaag</td>
</tr>
<tr>
<td>af</td>
<td>stakken</td>
</tr>
<tr>
<td>nu</td>
<td>Poth</td>
</tr>
<tr>
<td>al</td>
<td>Klei</td>
</tr>
<tr>
<td>es</td>
<td>zandsteen</td>
</tr>
</tbody>
</table>

Indicatie diepte ingieten

<table>
<thead>
<tr>
<th>Code</th>
<th>Omschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>niet ingegoten</td>
</tr>
<tr>
<td>1</td>
<td>oppervlakkig</td>
</tr>
<tr>
<td>2</td>
<td>volledig</td>
</tr>
<tr>
<td>3</td>
<td>tot in de filterlaag</td>
</tr>
<tr>
<td>4</td>
<td>tot en met filterlaag</td>
</tr>
<tr>
<td>5</td>
<td>tot in de vlijlaag</td>
</tr>
<tr>
<td>6</td>
<td>tot en met vlijlaag</td>
</tr>
</tbody>
</table>
C Source code

Alle verborgen formules zijn leesbaar gerapporteerd in hoofdstuk 4. In deze bijlage is de precieze code afgedrukt, die in geval van vreemde resultaten wellicht verklarend zou kunnen zijn.
5.1 Sub EmptyBuffer()
5.2 Function MatchX%(Param$, Valuel, lookup_array As Range, match_type%)
5.3 Function Tabel_Value_Get(Paramter$, Valuel, Range As Range, Idx%)
5.4 Function Tabel2D_ValueGet(RowParameters$, RowValuel, RowRange As Range)
5.5 Function JN(B)
5.6 Function JNO$(B)
5.7 Function isLeeg(B) As Boolean
5.8 Function ColumnName$(a, Shownames As Boolean)
6.1 Function OneOrMore(Str$, ParamArray a() As Variant) As Boolean
6.2 Function Max(ParamArray a())
6.3 Function Min(ParamArray a())
6.4 Function If(c As Boolean, a, b)
6.5 Function Log10(x)
6.6 Function Ln(x)
6.7 Function vall!(ByVal s$)
1. 'Module: ToetsingAlg
' WL|Delft Hydraulics +31 15 285 8773
' Project: Steuntrots 2.20, H3167
' Versie: 3.20 - november 1999
' Auteur: Onno van den Akker (WL-CSO)
' Projectleider: Ir. Mark Klein Breteler (WL-MCI)
' Opdrachtgever: Rijkswaterstaat, Dienst Weg- en Waterbouwkunde, ir L. van Asperen

Const Pit = 3.14159265358979
Option Explicit
Option Compare Text
'Maak geen onderscheid tussen kleine en grote letters

1.1 Function Water_MaatgevendeWaterStand_Berekend(SubVakGrenzen_Van!, SubVakGrenzen_Tot!, Water_Tabellindex, AlsBermJN As Boolean, Helling_Taludl, Bem_NiveauVoorrandl, h_hoog, Water_Toetspeil2000)

Water_MaatgevendeWaterStand_Berekend = 1E+30
' Het berekenen van de maatgevende waterstand is een iteratief proces.

Dim Regelenumber%: Regelenumber = MatchX("", SubVakGrenzen_Van, Range("[Golven, SubVakGrenzen_Van]", 1))
Dim Hs_Laag!, Tp_Laag!

If Hs_Laag < 0 Or Hs_Laag > 0.5 Then Exit Function

Als de taludhelling steiler is dan 1:9 (tana > 1/9)
if Not Bekleding_AlsBermJN Then

Hs_Laag = Golven_Tabel_Waarde_Laag_Bepaalbaar(Range("Hs_Naam"), Value, SubVakGrenzen_Van, SubVakGrenzen_Tot, Water_Tabellindex)
Tp_Laag = Golven_Tabel_Waarde_Laag_Bepaalbaar(Range("Tp_Naam"), Value, SubVakGrenzen_Van, SubVakGrenzen_Tot, Water_Tabellindex)

alsestealedhellingsteilerisdan1:9(tana<1/9)
if Not Bekleding_AlsBermJN Then

Hs_Laag = Golven_Tabel_Waarde_Laag_Bepaalbaar(Range("Hs_Naam"), Value, SubVakGrenzen_Van, SubVakGrenzen_Tot, Water_Tabellindex)
Tp_Laag = Golven_Tabel_Waarde_Laag_Bepaalbaar(Range("Tp_Naam"), Value, SubVakGrenzen_Van, SubVakGrenzen_Tot, Water_Tabellindex)

Dim Hsl!, Tpl!
' bepaal eerste schatting van maatgevende waterstand: h1 = h_hoog + 0.7*Hs

Dim h1!

h1 = h_hoog + 0.7 * Hs

If h1 >= Water_Toetspeil2000 Then
' herhaal punt 3 en 4 drie keer om een voldoende nauwkeurige schatting te verkrijgen,
tenzij h > htoets2000, dan wordt h = htoets2000 en is verder itereren niet nodig.
 h = Water_Toetspeil2000
 Exit For
End If

If Hs < Hs_Min Then
 Hs = Hs_Min
 Tp = Tp_Laag * (Hs_Min / Hs_Laag) ^ 0.5
Else
 Tp = Golven_Tabel_Waarde_Bepaalbaar(Range("Tp_Naam"), Value, SubVakGrenzen_Van, SubVakGrenzen_Tot, Water_Tabellindex, h)

End If

If Hs >= 1E+30 Or Tp >= 1E+30 Then Exit Function

h = h_hoog + Min(0.17 * Hs * (1.56 + Tp ^ 2 / 12.8) / Bekleding_HellingTalud / Hs) ^ 0.6, 1.5 * Hs)

Next

' Als de taludhelling flauer is dan 1:9 (tana < 1/9), dan wordt de bekleding opgevat als berm en kan de maatgevende waterstand als volgt bepaald worden:
Elseif Bekleding_AlsBermJN Then
' Bepaal Hs bij een waterstand h0 = hberml
 Hs = Golven_Tabel_Waarde_Bepaalbaar(Range("Hs_Naam"), Value, SubVakGrenzen_Van, SubVakGrenzen_Tot, Water_Tabellindex, Bekleding_Berm_NiveauVoorrand)

bepaal eerste schatting van maatgevende waterstand: h1 = hberm + 1,3Hs

h = Bekleding_Berm_NiveauVoorrand + 1.3 * Hs

For ctr = 1 To 10
 ' bepaal nieuwe waarde van Hs bij h = hberm + 1,3Hs (ctrl)
 h = Bekleding_Berm_NiveauVoorrand + 1.3 * Hs
 Exit For
End For
1.2 Function Water_Hs_Berekend

(SubVakGrenzen_Vanl, SubVakGrenzen_Totl, Water_Tabellindex&, Water_MaatgevendeWaterBekendl, Water_Beta)

Dim Hs!
Hs = GolvenTabewaarde_Bepaalil(Range("Hs_Naam"), Value, _
SubVakGrenzen_Van, SubVakGrenzen_Tot, Water_Tabellindex, Water_MaatgevendeWaterBekend)

Dim Regelnummer% Regelnummer = MatchX("", SubVakGrenzen_Van, Range("Golven, SubVakGrenzen_Van"),)

If Abs(Water_Beta) >= 70 Then
HsCorrected = Range("InvloedfactorStrijkgolven"), Value * Hs
Else
HsCorrected = Hs
End If

Dim Hs_Minl: Hs_Min = Range("Golven, Hs_min"), Cells(Regelnummer), Value

Water_Hs_Berekend = true(HsCorrected < Hs_Min, Hs_Min, HsCorrected)

End Function

1.3 Function Water_Tp_Berekend(SubVakGrenzen_Vanl, SubVakGrenzen_Totl, Water_Tabellindex&,
Water_MaatgevendeWaterBekendl, Water_Beta)

Dim Hs, Tp!
Hs = GolvenTabewaarde_Bepaalil(Range("Hs_Naam"), Value, _
SubVakGrenzen_Van, SubVakGrenzen_Tot, Water_Tabellindex, Water_MaatgevendeWaterBekend)

Dim Regelnummer% Regelnummer = MatchX("", SubVakGrenzen_Van, Range("Golven, SubVakGrenzen_Van"),)

If Abs(Water_Beta) >= 70 Then
HsCorrected = Range("InvloedfactorStrijkgolven"), Value * Hs
Else
HsCorrected = Hs
End If

1.4 Function Water_Beta_Berekend(SubVakGrenzen_Vanl, SubVakGrenzen_Totl, Water_Tabellindex&, DijkOrientatietovNI)

Dim Regelnummer% RegelnummerCheck%
If Tabellindex = 0 Then Tabellindex = 1
Regelnummer = MatchX("", SubVakGrenzen_Van, Range("Golven, SubVakGrenzen_Van"), , 1)
RegelnummerCheck = MatchX("", SubVakGrenzen_Tot, Range("Golven, SubVakGrenzen_Tot"), -1)

If Regelnummer < 0 Or Regelnummer <> RegelnummerCheck Then Exit Function

Dim Golfrichting_Vanl: Golfrichting_Van = Range("Golfrichting_van" &
Tabellindex), Cells(Regelnummer), Value
Dim Golfrichting_Totl: Golfrichting_Tot = Range("GolfrichtingTot", &
Tabellindex), Cells(Regelnummer), Value

' De relatieve hoek van golfaanval wordt als volgt bepaald: b = { beta - betat }
Dim Water_Beta_vanl: Water_Beta_van = Golfrichting_Van - DijkOrientatieToVNI
Dim Water_Beta_totl: Water_Beta_tot = Golfrichting_Tot - DijkOrientatieToVNI

' Reduceer de hoek tot een waarde van -180 tot +180
If Abs(Water_Beta_van) > 180 Then Water_Beta_van = Water_Beta_van + Sgn(Water_Beta_van) * 360
If Abs(Water_Beta_tot) > 180 Then Water_Beta_tot = Water_Beta_tot + Sgn(Water_Beta_tot) * 360

' zoekt de meest ongunstige hoek
If Sgn(Water_Beta_van) <> Sgn(Water_Beta_tot) Then
Module: ToetsingAlg Function GolvenTabel_Waarde_Bepaal(ParameterNaam$, SubVakGrenzen_Vanl$, SubVakGrenzen_Totl$)

 Water_Beta_Bereken = 0
 ' loodrecht op de dijk is het meest ongunstig
 Else
 Water_Beta_Bereken = 1
 = if(Abs(Water_Beta_vanl) < Abs(Water_Beta_totl), Water_Beta_vanl, Water_Beta_totl)
 End If
End Function

1.5 Function Water_XsiOp_Bereken(Bekleding_HellingTaludl, Water_Hsl, Water_Tpl)

 Water_XsiOp_Bereken = Bekleding_HellingTaludl * (Water_Hsl / (1.56 * Water_Tpl * 2)) ^ -0.5
End Function

1.6 Function Bekleding_Toplaag_Delta_Bereken(Bekleding_Toplaag_SMassaal)

 Bekleding_Toplaag_Delta_Bereken =
 (Bekleding_Toplaag_SMassa - Range("Water_SoortelijkeMassa").Value) / _
 Range("Water_SoortelijkeMassa").Value
End Function

1.7 Function InvloedsfactorBerm_Bereken()

 (Bekleding_AisBermJN As Boolean, Water_Hsl, Water_MaatgevendeWaterStandl, Bekleding_Berm_NiveauVoorrandl)
 ' als tana < 1/6, dan gebruik in vervolg taludhelling onder de berm.
 If Bekleding_AisBermJN Then
 ' do = h - hberm
 Dim D, D = Water_MaatgevendeWaterStand - Bekleding_Berm_NiveauVoorrand
 InvloedsfactorBerm_Bereken = _
 0.85 * Exp(-0.8 * (-0.9 + D / Water_Hsl) ^ 2) + _
 0.7 * Exp(-0.5 * (-2.1 + D / Water_Hsl) ^ 2)
 Else
 ' als tana > 1/6, dan: Cberm = 1
 InvloedsfactorBerm_Bereken = 1
 End If
End Function

1.8 Function Water_Toeptspel2000_Bepaal(SubVakGrenzen_Vanl$)

 SubVakGrenzen_Totl)
 Water_Toeptspel2000_Bepaal = 1E+30
 Dim Regelnummer%, RegelnummerCheck%
 Regelnummer = MatchX(""," SubVakGrenzen_Vanl", Range("Golven_SubVakGrenzen_Vanl"), 1)
 If Regelnummer < 0 Or Regelnummer <> RegelnummerCheck Then Exit Function
End Function

1.9 Function Water_GHW_Bepaal(SubVakGrenzen_Vanl, SubVakGrenzen_Totl)

 , HideMsgbox1 As Boolean, HideMsgBox2 As Boolean
 Water_GHW_Bepaal = 1E+30
 Dim Regelnummer%, RegelnummerCheck%
 Regelnummer = MatchX(""," SubVakGrenzen_Vanl", Range("Golven_SubVakGrenzen_Vanl"), 1)
 RegelnummerCheck = MatchX(""," SubVakGrenzen_Totl", Range("Golven_SubVakGrenzen_Totl"), 1)
 If (Regelnummer < 0 Or RegelnummerCheck < 0) And Not Hide Then
 MsgBox "Het vak van " & SubVakGrenzen_Vanl & " slm " & SubVakGrenzen_Totl & Chr$(10) _
 "vat niet binnen één van de vakken in de sheet golven"
 Exit Function
 End If
 End Function

1.10 Function GolvenTabel_Waarde_Bepaal(ParameterNaam$, SubVakGrenzen_Vanl$)

 SubVakGrenzen_Totl, TabellIndex&, Water_MaatgevendeWaterStandf)
 If TabellIndex = 0 Then TabellIndex = 1
 GolvenTabel_Waarde_Bepaal = 1E+30
 Dim Regelnummer%, RegelnummerCheck%
 Regelnummer = MatchX(""," SubVakGrenzen_Vanl", Range("Golven_SubVakGrenzen_Vanl"), 1)
 RegelnummerCheck = MatchX(""," SubVakGrenzen_Totl", Range("Golven_SubVakGrenzen_Totl"), 1)
 If Regelnummer < 0 Or Regelnummer <> RegelnummerCheck Then Exit Function
Module: ToetsingAlg Function Bekleding_Toplaag_OpenOpp_Relatief_Bereken! _

16-03-0015:05 6/38

Dim Hoogte1!, Hoogte2!, Hoogte3!
Hoogte1 = Range("hoogte1"), Value
Hoogte2 = Range("hoogte2"), Value
Hoogte3 = Range("hoogte3"), Value

Dim ldx1%, ldx2%, ldx3%
Dim r As Range
Set r = Range("Groven_HoogteBovenNAP_" & TabellenIndex)
lnx1 = MatchX(ParameterNaam, Hoogte1, r, 0)
lnx2 = MatchX(ParameterNaam, Hoogte2, r, 0)
lnx3 = MatchX(ParameterNaam, Hoogte3, r, 0)
Dim FirstColumnIndex&: FirstColumnIndex = r.Cells.Column

Dim Worksheet As Worksheet
Set Worksheet = Range("Groven_HoogteBovenNAP_" & TabellenIndex).Worksheet

Dim Value11, Value21, Value31!
Value1 = Worksheet.Cells(RowIndex:=Regelnummer, ColumnIndex:=lnx1 + FirstColumnIndex - 1)
Value2 = Worksheet.Cells(RowIndex:=Regelnummer, ColumnIndex:=lnx2 + FirstColumnIndex - 1)
Value3 = Worksheet.Cells(RowIndex:=Regelnummer, ColumnIndex:=lnx3 + FirstColumnIndex - 1)

Dim Value!
If Range("Zee/Meer") = "meer" Then
 Value = Value1
Else
 Select Case Water_MaatgevendWaterstand
 Case Is = Hoogte2
 Value = Value2
 Case Is > Hoogte2
 Value = Value2 + ((Value3 - Value2) / (Hoogte3 - Hoogte2)) * (Water_MaatgevendWaterstand - Hoogte2)
 Case Is < Hoogte2
 Value = Value2 + ((Value1 - Value2) / (Hoogte1 - Hoogte2)) * (Water_MaatgevendWaterstand - Hoogte2)
 End Select
End If

If Regelnummer < 0 Or Regelnummer <> RegelNummerCheck Then Exit Function

Dim Hoogte1!, Hoogte2!, Hoogte3!
Hoogte1 = Range("hoogte1"!), Value
Hoogte2 = Range("hoogte2"!), Value
Hoogte3 = Range("hoogte3"!), Value

Dim ldx1%, ldx2%, ldx3%
Dim r As Range
Set r = Range("Groven_HoogteBovenNAP_" & TabellenIndex)
lnx1 = MatchX(ParameterNaam, Hoogte1, r, 0)
lnx2 = MatchX(ParameterNaam, Hoogte2, r, 0)
lnx3 = MatchX(ParameterNaam, Hoogte3, r, 0)
Dim FirstColumnIndex&: FirstColumnIndex = r.Cells.Column

Dim Worksheet As Worksheet
Set Worksheet = Range("Groven_HoogteBovenNAP_" & TabellenIndex).Worksheet
GrovenTabel_WaardeLaag_Bepaal = Worksheet.Cells(RowIndex:=Regelnummer, ColumnIndex:=lnx1 + FirstColumnIndex - 1)

End Function

1.12 Function Bekleding_Toplaag_Spleetbreedte_Bereken! _
(Bekleding_Toplaag_BI, Bekleding_Toplaag_LI, Bekleding_Toplaag_OpenOpp_Relatief)
Dim BI, LI, sl
B = Bekleding_Toplaag_B
L = Bekleding_Toplaag_L
s = -0.5 * (B + L) + (Bekleding_Toplaag_OpenOpp_Relatief * B * L / (1 - Bekleding_Toplaag_OpenOpp_Relatief) + 0.25 * (B + L))^2) + 0.5
Bekleding_Toplaag_Spleetbreedte_Bereken! = s
End Function

1.13 Function Bekleding_Toplaag_OpenOpp_Relatief_Bereken! _
(Bekleding_Toplaag_BI, Bekleding_Toplaag_LI, Bekleding_Toplaag_Spleetbreedte)
Bekleding_Toplaag_OpenOpp_Relatief_Bereken! = (Bekleding_Toplaag_BI + Bekleding_Toplaag_LI - Bekleding_Toplaag_Spleetbreedte) * Bekleding_Toplaag_Spleetbreedte!

End Function

1.11 Function GrovenTabel_WaardeLaag_Bepaal!(ParameterNaam$.
SubVakGrenzen_Vani,

SubVakGrenzen, Tol, TabellenIndex&)
If TabellenIndex = 0 Then TabellenIndex = 1
GrovenTabel_WaardeLaag_Bepaal! = 1E+30
Dim Regelnummer%, RegelNummerCheck%
Regelnummer = MatchX("", SubVakGrenzen_Vani, Range("Groven_SubVakGrenzen_Vani"), 1)
RegelNummerCheck = MatchX("", SubVakGrenzen_Tol, Range("Groven_SubVakGrenzen_Tol"), -1)
Function Afsluiving_A_Bepaal$(Afschuiving_Ervaring$, Bekleding_HellingTalud)$

Dim Score$

If $h_{laag} > (Water_Toetspeil2000 + Water_hs / 2)$ Then
 Score = "n.v.t."
ElseIf Afschuiving_Ervaring Like "Nee" And (Bekleding_HellingTalud <= 0.29) Then
 Score = "Goed"
ElseIf Afschuiving_Ervaring Like "Ja" Then
 Score = "Onvoldoende"
Else
 Score = "Twijfelachtig"
End If
Afschuiving_A_Bepaal = Score
End Function

Function Afsluiving_B_Bepaal$(Bekleding_Toplaag_Delta, Bekleding_Toplaag_DI)$

Dim Score$

If $h_{laag} > (Water_Toetspeil2000 + Water_hs / 2)$ Then
 Score = "n.v.t."
ElseIf Bekleding_Toplaag_Delta * Bekleding_Toplaag_DI
 + Bekleding_BovensteFilterlaag_bl + Bekleding_TweedeFilterlaag_bl + Bekleding_Klei_bl > 1.2
 And Bekleding_HellingTalud <= 0.333 Then
 Score = "Goed"
Else
 Score = "Twijfelachtig"
End If
Afschuiving_B_Bepaal = Score
End Function

Function Afsluiving_Score_Bepaal$(Afschuiving_Ervaring$, Afschuiving_A$, Afschuiving_BS, Afschuiving_CS)$

Dim Score$

If Afschuiving_A = "n.v.t." Then
 Score = "n.v.t."
ElseIf Afschuiving_A = "Goed"
 Or Afschuiving_B = "Goed"
 Or Afschuiving_C = "Goed" Then
 Score = "Goed"
Else
 Score = "Twijfelachtig"
End If
Afschuiving_Score_Bepaal = Score
End Function

Function MatTransp_Filterlaag_Materiaal_Bepaal$(Bekleding_Type_Filters)$

Dim Score$

If h_{laag} > (Water_Toetspeil2000, Water_hs) Then
 Score = "n.v.t."
ElseIf Bekleding_BovensteFilterlaag_bl, Bekleding_Ondergrond_DI5, Bekleding_TweedeFilterlaag_bl
 , Bekleding_Klei_bl, Bekleding_HellingTalud, Water_hs, Water_tp
 , h_{laag}, Water_Toetspeil2000) Then
 Score = "n.v.t."
Dim Y = Min(1.5, 0.11 * (1.56 * Water_Tp 2 Bekleding_HellingTalud / Water_hs) $^0.8$)
Dim k1: k = 9000 * Bekleding_Ondergrond_DI5 2
If $h_{laag} > (Water_Toetspeil2000 + Water_hs / 2)$ Then
 Score = "n.v.t."
ElseIf Bekleding_HellingTalud <= 0.333
 And Bekleding_Toplaag_Delta * Bekleding_Toplaag_DI
 + Bekleding_BovensteFilterlaag_bl + Bekleding_TweedeFilterlaag_bl + Bekleding_Klei_bl
 > Water_hs 2 / 2 * (1 - 1.2 * Bekleding_HellingTalud) * Max((25 * Water_tp 2 k), 0) $^0.5$ Then
 Score = "Goed"
Else
 Score = "Twijfelachtig"
End If
Afschuiving_C_Bepaal = Score
End Function

Function MatTransp_Filterlaag_Materiaal_Bepaal$(Bekleding_Type_Filters)$

Dim Score$

If h_{laag} > (Water_Toetspeil2000, Water_hs) Then
 Score = "n.v.t."
ElseIf Bekleding_BovensteFilterlaag_Materiaal$, Bekleding_TweedeFilterlaag_Materiaal$ Then
 Score = "n.v.t."

1.19 Function MatTransp_Score_Bepaal($MatTransp_Ervaring$, $MatTransp_Geotextiel_O90$) {
 Dim Score:
 If $\text{Len}($Bekleding_Type_Filters$) >= 2 Then $\text{Score} = \text{Right}(\text{Bekleding_Type_Filters}, 2)$ Else $\text{Score} = "\text{Filter ontbreekt}"$
 If Bekleding_BovensteFilterlaag_Materiaal $\neq "\text{}/"$ Then $\text{Filter} = \text{Bekleding_BovensteFilterlaag_Materiaal}$
 If Bekleding_TweedeFilterlaag_Materiaal $\neq "\text{}/"$ Then $\text{Filter} = \text{Bekleding_TweedeFilterlaag_Materiaal}$
 $\text{MatTransp_Filterlaag_Materiaal_Bepaal} = \text{Filter}$
End Function

1.20 Function Reststerkte_Filterlaag_Bepaal($Water_Hs$, $Water_Tpl$, $Water_Betal$, $HsDeltaD_verh$) {
 Dim Sterkte
 If $\text{HsDeltaD_verh} > 10 * \text{Water_XaiOp} ^ {(-2 / 3)}$ Then $\text{Sterkte} = 0$
 Elseif $\text{Abs}(\text{Water_Betal}) < 20$
 And Bekleding_BovensteFilterlaag_b $+$ Bekleding_TweedeFilterlaag_b $< 0.1 + 0.023 * (1.56 * \text{Water_Tpl} ^ 2 * \text{Water_Hs} ^ 0.5$ Then $\text{Sterkte} = 0$
 Else $\text{Score} = "\text{Twijfelachtig}"$
End If
ElseIf $\text{HsDeltaD_verh} > 10 * \text{Bekleding_Klei_D50}$
 Or $\text{MatTransp_Geotextiel_O90} > \text{Bekleding_Klei_D90}$
 Or $\text{MatTransp_Geotextiel_O90} > 0.1 * 0.001$ Then $\text{Score} = "\text{Onvoldoende}"$
Else $\text{Score} = "\text{N.v.t.}"$
End If
ElseIf $\text{MatTransp_Filterlaag_D15} == \text{Bekleding_Ondergrond_D50}$ Then $\text{Score} = "\text{Goed}"$
ElseIf $\text{MatTransp_Filterlaag_D15} > \text{Bekleding_Ondergrond_D90}$ Then $\text{Score} = "\text{Onvoldoende}"$
Else $\text{Score} = "\text{Twijfelachtig}"$
End If
ElseIf $\text{MatTransp_Filterlaag_D15} > \text{Max}(5 * \text{Bekleding_Ondergrond_D50}, 0.02 *$ Bekleding_Ondergrond_D50 $^ {0.333}$ Then $\text{Score} = "\text{Goed}"$
ElseIf $\text{MatTransp_Filterlaag_D15} > 0.13 * \text{Bekleding_Ondergrond_D50} ^ {0.333}$ Then $\text{Score} = "\text{Onvoldoende}"$
Else $\text{Score} = "\text{Twijfelachtig}"$
End If
ElseIf $\text{MatTransp_FILTERLAAG_BEPAAI} = \text{Score}$
End Function
1.21 Function Reststerkte_Kleilaag_Bepaal(h_hoog)
, Bekleding_Kleil_b, Bekleding_Klei_GoedMatigJNO$,
, Water_GH, Water_Hs, Water_Hl, Reststerkte_KleikernJN As Boolean)

Reststerkte_Kleilaag_Bepaal = 0
If Bekleding_Kleil_b = 0 Then Exit Function

Dim Sterkte:
Select Case Water_Hs
Case Is > 2
Sterkte = 0
Case Is <= 2
If Reststerkte_KleikernJN Then
Sterkte = 24
Else
Dim HoogteCategorie$;
If h_hoog > Water_GH + 1 Then HoogteCategorie = "b" Else HoogteCategorie = "A"

Dim ErosieCategorie$;
If Bekleding_Klei_GoedMatigJNO = "ja" Then
ErosieCategorie = "a". Goed+Matig
Else
ErosieCategorie = "a". Weinig
End If

Sterkte = Tabel2D_ValueGet("Hs", Water_Hs, Range("Hs"),
, HoogteCategorie & ErosieCategorie, Bekleding_Kleil_b, Range("Diktekleilaag"))
End If
End Select
Reststerkte_Kleilaag_Bepaal = Sterkte
End Function

1.22 Function Reststerkte_Score_Bepaal$(Bekleding_Kleil_b, Water_Stormduur$,
Reststerkte_Filterlaag$, Reststerkte_Kleilaag$)

Dim Score$;
If Water_Stormduur > 0 And Reststerkte_Filterlaag + Reststerkte_Kleilaag = 0 Then
Score = "Onvoldoende"
ElseIf Water_Stormduur <= Reststerkte_Filterlaag + Reststerkte_Kleilaag Then
Score = "Voldoende"
Else
ElseIf Bekleding_Klei_b > 0.4 Then
Score = "Twijfelachtig"
Else
Score = "Onvoldoende"
End If
Reststerkte_Score_Bepaal = Score
End Function
1.24 Function Bekleding_Toplaag_SMassa_Bepaal(Bekleding_Type_Toplaag!)

Bekleding_Toplaag_SMassa_Bepaal = 0

Dim Regelnummer%: Regelnummer = MatchX(,,, Bekleding_Type_Toplaag!, Range("Code"), 0)

On Error Resume Next
Dim r: r = 0

If Regelnummer < 0 Then
Bekleding_Toplaag_SMassa_Bepaal = 1 / 0
Exit Function
End If

r = Range("SMassa"), Cells(Regelnummer).Value
Bekleding_Toplaag_SMassa_Bepaal = r

On Error GoTo 0

If r = 0 And Bekleding_Type_Toplaag! <> 0 Then
'raise error
MsgBox ("Het is niet gelukt de soortelijke massa voor het type " & Bekleding_Type_Toplaag & " te vinden " & Chr$(13) & " & op de sheet algemeen"
& Chr$(13) & " & Vul een waarde in bij Toplaag"
& Chr$(13) & " & of voeg de waarde toe aan de sheet algemeen en kies menu Toets_Bereken alles opnieuw")
Bekleding_Toplaag_SMassa_Bepaal = 1 / 0

Exit Function
End If

End Function

1.25 Function Bekleding_Toplaag_Inklemfactor_Bepaal(Bekleding_Type_Toplaag!, Bekleding_Toplaag_GoedGekeimd$)

If Bekleding_Toplaag_GoedGekeimd <> CLN Then
Bekleding_Toplaag_Inklemfactor_Bepaal = 1
Else
Dim Regelnummer%: Regelnummer = MatchX(,,, Bekleding_Type_Toplaag!, Range("Code"), 0)

On Error Resume Next
Dim r: r = 0

If Regelnummer < 0 Then
Bekleding_Toplaag_Inklemfactor_Bepaal = 1 / 0
Exit Function
End If

r = Range("Inklemfactor"), Cells(Regelnummer).Value
Bekleding_Toplaag_Inklemfactor_Bepaal = r

On Error GoTo 0

If r = 0 And Bekleding_Type_Toplaag! <> 0 Then

1.26 Function Bekleding_CheckTypel(Bekleding_Type_Toplaag!)

Dim Regelnummer%: Regelnummer = MatchX(,,, Bekleding_Type_Toplaag!, Range("Code"), 0)

If Regelnummer < 0 Then
'raise error
If Bekleding_Type_Toplaag <> 0 Then
MsgBox ("Het type " & Bekleding_Type_Toplaag & " komt niet voor"
& Chr$(13) & " & op de sheet algemeen")
Bekleding_CheckTypel = 1 / 0
End If

Exit Function
End If

End Function

1.27 Function AsfaltJNL$(Bekleding_Type_Toplaag!)

AsfaltJNL = If(CInt(Bekleding_Type_Toplaag! * 100 - Int(Bekleding_Type_Toplaag! * 10 + 0.00001) * 10) >= 1, "Ja", "Nee")

End Function

1.28 Function VerschilTussenBeheersOordeelEnSteenToets$(Eindscore, BeheerdersOordeel)

If Trim(BeheersOordeel) = "" Then
VerschilTussenBeheersOordeelEnSteenToets = 0
ElseIf Left(Trim(Eindscore, 1) <> Left(BeheersOordeel, 1) Then
VerschilTussenBeheersOordeelEnSteenToets$ = "Ja, toelichting:"
Else
VerschilTussenBeheersOordeelEnSteenToets = "nee"

End If

End Function
Module: StabToplaag Function EindOordeel$(Eindscore, BeheerdersOordeel)

1.29 Function EindOordeel$(Eindscore, BeheerdersOordeel)

 If Trim(BeheerdersOordeel) = "" Or Left(Eindscore, 1) = Left(BeheerdersOordeel, 1) Then
 EindOordeel$ = Eindscore
 Else
 EindOordeel$ = ""
 End If
End Function
2. 'Module: StabToplaag

2.1 Function StabToplaag_ToetsE_gt_verh_Bepaal(StabToplaag_ToetsE_type$, HsDeltaD_verhl, Water_XsiOp1_, Bekleding_Toplaag_Deltal, Bekleding_Toplaag_Asfa7tJN As Boolean, h_hoogi, h_iaagi__
, Bekleding_HellingTaludt, Bekleding_Toplaag_DIJ, Bekleding_Toplaag_SlibJN As Boolean)

Dim Verh!

Select Case StabToplaag_ToetsE_type

Case "r"
Verh = Type1_gt_verh_Bepaal(HsDeltaD_verhl, Water_XsiOp1_)
Case "z"
Verh = Type2_gt_verh_Bepaal(HsDeltaD_verhl, Water_XsiOp1_)
Case "3a"
Verh = Type3a_gt_verh_Bepaal(HsDeltaD_verhl, Water_XsiOp1_, Bekleding_Toplaag_SlibJN)
Case "3b"
Verh = Type3b_gt_verh_Bepaal(HsDeltaD_verhl, Water_XsiOp1_, Bekleding_Toplaag_Deltal_, Bekleding_Toplaag_Asfa7tJN, h_hoogi, h_iaagi, Bekleding_HellingTaludt, Bekleding_Toplaag_DIJ)
Case "3c"
Verh = Type3c_gt_verh_Bepaal(HsDeltaD_verhl, Water_XsiOp1_, Bekleding_Toplaag_Deltal_, Bekleding_Toplaag_Asfa7tJN, h_hoogi, h_iaagi, Bekleding_HellingTaludt, Bekleding_Toplaag_DIJ)
Case "4"
Verh = Type4_gt_verh_Bepaal(HsDeltaD_verhl, Water_XsiOp1_)
Case "5"
Verh = Type5_gt_verh_Bepaal(HsDeltaD_verhl, Water_XsiOp1_)
Case "6a"
Verh = Type6a_gt_verh_Bepaal(HsDeltaD_verhl, Water_XsiOp1_)
Case "6b"
Verh = Type6b_gt_verh_Bepaal(HsDeltaD_verhl, Water_XsiOp1_)
Case "6c"
Verh = Type6c_gt_verh_Bepaal(HsDeltaD_verhl, Water_XsiOp1_)
Case Else
Verh = 1E+30

End Select

2.2 Function StabToplaag_ToetsE_to_verh_Bepaal_

(StabToplaag_ToetsE_type$, HsDeltaD_verhl, Water_XsiOp1, h_hoogi, h_iaagi, Bekleding_HellingTaludt_, Bekleding_Toplaag_SlibJN As Boolean, Bekleding_BovensteFilterlaag_SlibJNO$, Bekleding_Toplaag_Asfa7tJN As Boolean_, Bekleding_Toplaag_DIJ)

Dim Verh!

Select Case StabToplaag_ToetsE_type

Case "r"
Verh = Type1_to_verh_Bepaal(HsDeltaD_verhl, Water_XsiOp1)
Case "z"
Verh = Type2_to_verh_Bepaal(HsDeltaD_verhl, Water_XsiOp1)
Case "3a"
Verh = Type3a_to_verh_Bepaal(HsDeltaD_verhl, Water_XsiOp1_, Bekleding_Toplaag_SlibJN, Bekleding_BovensteFilterlaag_SlibJNO)
Case "3b"
Verh = Type3b_to_verh_Bepaal(HsDeltaD_verhl, Water_XsiOp1, Bekleding_Toplaag_SlibJN, Bekleding_BovensteFilterlaag_SlibJNO)
Case "3c"
Verh = Type3c_to_verh_Bepaal(HsDeltaD_verhl, Water_XsiOp1, Bekleding_Toplaag_Asfa7tJN, Bekleding_BovensteFilterlaag_SlibJNO)
Case "4"
Verh = Type4_to_verh_Bepaal(HsDeltaD_verhl, Water_XsiOp1)
Case "5"
Verh = Type5_to_verh_Bepaal(HsDeltaD_verhl, Water_XsiOp1)
Case "6a"
Verh = Type6a_to_verh_Bepaal(HsDeltaD_verhl, Water_XsiOp1)
Case "6b"
Verh = Type6b_to_verh_Bepaal(HsDeltaD_verhl, Water_XsiOp1)
Case "6c"
Verh = Type6c_to_verh_Bepaal(HsDeltaD_verhl, Water_XsiOp1)
Case Else
Verh = 1E+30

End Select

2.3 Function StabToplaag_ToetsE_Type_Bepaal$(Bekleding_Type_Toplaag!, Bekleding_Type_Filters$)

, Bekleding_Toplaag_DIJ, Bekleding_Toplaag_OpenOpp_Relatief_
De eenvoudige toetsing wordt uitgevoerd voor de maatgevende waterstand en is verder afhankelijk van het type bekleding:

1. **Type 1**: Toetsing van steenzetting op geotextiel op zand of klei
2. **Type 2**: Toetsing van steenzetting op klei
3. **Type 3**: Toetsing van steenzetting op filter
4. **Type 4**: Toetsing van geschakelde blokken op geotextiel op zand of klei
5. **Type 5**: Toetsing van geschakelde blokken op klei
6. **Type 6**: Toetsing van geschakelde blokken op filter

Dim TTtop: TTtop = Bekleding_Type_Ttoplag!
Dim TFif: TFif = Bekleding_Type_Filters$

StabToplaag_ToeSte_E_Type_Bepaal = "?" ' overige overige geen toetsing mogelijk

'. **ToetsingsType 1**
'type toplaag type onderlagen
'type toplaag type onderlagen
10 <= type < 12 of 26 <= type <= 29 gegén: st of pu of sl of gr of my

If (10 <= TTtop And TTtop < 12) Or (26 <= TTtop And TTtop <= 29) Then
 If OneOrMore(TFif, "st", "pu", "sl", "gr", "my") Then
 StabToplaag_ToeSte_E_Type_Bepaal = "f"
 Exit Function
End If
End If

'. **ToetsingsType 2**
10 <= type < 12 of 26 <= type <= 29 of 17 kl en (gégén ge oft of pu of sl of gr of my)

If (10 <= TTtop And TTtop < 12) Or (27 <= TTtop And TTtop <= 29) Or TTtop = 17 Then
 If OneOrMore(TFif, "st", "pu", "sl", "gr", "my") Then
 StabToplaag_ToeSte_E_Type_Bepaal = "z"
 Exit Function
End If

'. **ToetsingsType 3**
10 <= type < 12 of 26 <= type <= 29 st of pu of sl of gr of my

If (10 <= TTtop And TTtop < 12) Or (26 <= TTtop And TTtop <= 29) Then
 If OneOrMore(TFif, "st", "pu", "sl", "gr", "my") Then
 StabToplaag_ToeSte_E_Type_Bepaal = "f" & Type6_BepaalSubType(Bekleding_Type_Ttoplaag_D_, Bekleding_Ttoplaag_OpenOpp_Relatief, Bekleding_BovensteFilterlaag_D15, Bekleding_BovensteFilterlaag_B_, Bekleding_Ttoplaag_InwasJN, Bekleding_Ttoplaag_AsphaltJN, Bekleding_Ttoplaag_WaterdichtJN_, Bekleding_Ttoplaag_SlibJN, Bekleding_BovensteFilterlaag_SlibJNOC, Water_Stromdruur)
 Exit Function
End If
End If

'. **ToetsingsType 4**
12 <= type < 14 gegén: st of pu of sl of gr of my

If (12 <= TTtop And TTtop < 14) Then
 If OneOrMore(TFif, "ge") _
 And Not OneOrMore(TFif, "st", "pu", "sl", "gr", "my") Then
 StabToplaag_ToeSte_E_Type_Bepaal = "s"
 Exit Function
End If
End If
End If

'. **ToetsingsType 5**
12 <= type < 14 kl en (géén ge of sl of pu of sl of gr of my)

If (12 <= TTtop And TTtop < 14) Then
 If OneOrMore(TFif, "ge") And Not OneOrMore(TFif, "st", "pu", "sl", "gr", "my") Then
 StabToplaag_ToeSte_E_Type_Bepaal = "s"
 Exit Function
End If
End If
End If

'. **ToetsingsType 6**
12 <= type < 14 st of pu of sl of gr of my

If (12 <= TTtop And TTtop < 14) Then
 If OneOrMore(TFif, "st", "pu", "sl", "gr", "my") Then
 StabToplaag_ToeSte_E_Type_Bepaal = "f" & Type6_BepaalSubType(Bekleding_Ttoplaag_D_, Bekleding_Ttoplaag_OpenOpp_Relatief, Bekleding_BovensteFilterlaag_D15, Bekleding_BovensteFilterlaag_B_, Bekleding_Ttoplaag_InwasJN, Bekleding_Ttoplaag_AsphaltJN, Bekleding_Ttoplaag_WaterdichtJN_, Bekleding_Ttoplaag_SlibJN, Bekleding_BovensteFilterlaag_SlibJNOC, Exit Function
End If
End If
End If

If Not (HideMsgBoxJN1 Or HideMsgBoxJN2) Then
 MsgBox ("Het is niet mogelijk om met dit programma " & Chr$(13) & " & " & Chr$(34) & Bekleding_Type_Ttoplaag! & " & " & Bekleding_Type_Filters$ & Chr$(34) & " le testen") _
2.4 Function Type1_to_verh_Bepaal(HsDeltaD_verh!, Water_XsiOp!)

' Bereken de bovengrens van het twijfelachtige gebied:
Dim HsDeltaD_Verh_Boven!
Select Case Water_XsiOp
Case Is <= 2,2
HsDeltaD_Verh_Boven = 4.31 * Water_XsiOp ^ -0.262
Case Is > 2,2
HsDeltaD_Verh_Boven = 11 * Water_XsiOp ^ -4 + 0.09 * Water_XsiOp + 1.38
End Select
Type1_to_verh_Bepaal = HsDeltaD_Verh_Boven / HsDeltaD_verh
End Function

2.5 Function Type2_gt_verh_Bepaal(HsDeltaD_verh!, Water_XsiOp!)

' Bereken de ondergrens van het twijfelachtige gebied:
Dim HsDeltaD_Verh_Onder!
Select Case Water_XsiOp
Case Is <= 2,2
HsDeltaD_Verh_Onder = 6.78 * Water_XsiOp ^ -0.588
Case Is > 2,2
HsDeltaD_Verh_Onder = 17 * Water_XsiOp ^ -2 + 1.84 * Water_XsiOp - 3.25
End Select
Type2_gt_verh_Bepaal = HsDeltaD_Verh_Onder / HsDeltaD_verh
End Function

2.6 Function Type2_to_verh_Bepaal(HsDeltaD_verh!, Water_XsiOp!)

' Bereken de bovengrens van het twijfelachtige gebied:
Dim HsDeltaD_Verh_Boven!
Select Case Water_XsiOp
Case Is <= 2,1
HsDeltaD_Verh_Boven = 6.1 * Water_XsiOp ^ -0.75
Else
End If
End Function

2.7 Function Type3_BepaalSubType$()

If Bekleding_Type_Toplaag <= 28.1 And Bekleding_Type_Toplaag <= 28.2
And Bekleding_BovensteFilterlaag_D15 <= Bekleding_BovensteFilterlaag_D15
And Bekleding_BovensteFilterlaag_D15 < 0.5
And Bekleding_BovensteFilterlaag_D15 < 0.01
And Bekleding_BovensteFilterlaag_D15 < 0.03
And Not Bekleding_Toplaag_Inwas_JN
And Not Bekleding_Toplaag_Silb_JN
Or Bekleding_Toplaag_Inwas_JN
And Bekleding_Toplaag_Silb_JN
And Bekleding_BovensteFilterlaag_SilbJN <= "ja"
And (Not Bekleding_Toplaag_Asfaft_JN Or (Bekleding_Toplaag_Asfaft_JN And Water_Stormdur < 3))
Then
Type3_BepaalSubType$ = "a"
ElseIf Bekleding_Type_Toplaag <= 28.1
And Bekleding_BovensteFilterlaag_SilbJN = "ja" And Bekleding_Toplaag_Asft_JN
And Bekleding_Toplaag_Waterdicht_JN
Or (Not Bekleding_Toplaag_Silb_JN And Bekleding_Toplaag_Asfaft_JN And Bekleding_Toplaag_Waterdicht_JN)
And Bekleding_Toplaag_Waterdicht_JN
And Bekleding_BovensteFilterlaag_b <= Bekleding_Toplaag_D <= 0.5
Or Bekleding_BovensteFilterlaag_b = Bekleding_Toplaag_D = 0.5 And Bekleding_BovensteFilterlaag_D15 < 0.09
Or Bekleding_BovensteFilterlaag_b = Bekleding_Toplaag_D = 0.7 And Bekleding_BovensteFilterlaag_D15 < 0.09
Or Bekleding_BovensteFilterlaag_b = Bekleding_Toplaag_D = 0.5 And Bekleding_Toplaag_OpenOpp_Relatief > 0.23)) Then
' LET OP MAXIMAAL 10 REGELS IN EXCEL/7
Type3_BepaalSubType$ = "b"
Else
2.8 Function Type3a_gt_verh_Bepaal(HsDeltaD_verh!, Water_XsiOp!, Bekleding_Toplaag_SlibJN As Boolean)

' Bereken de ondergrens van het twijfelachtige gebied:
Dim HsDeltaD_Verh_Onder!
Select Case Water_XsiOp
Case Is <= 2.2
 HsDeltaD_Verh_Onder = 4.58 * Water_XsiOp ^ -0.903
Case Is > 2.2
 HsDeltaD_Verh_Onder = 14.5 * Water_XsiOp ^ -4 + 0.17 * Water_XsiOp + 1.27
End Select
Type3a_gt_verh_Bepaal = HsDeltaD_Verh_Onder / HsDeltaD_verh
End Function

2.9 Function Type3a_to_verh_Bepaal(HsDeltaD_verh!, Water_XsiOp!)

, Bekleding_Toplaag_SlibJN As Boolean, Bekleding_BovensteFilterlaag_SlibJN@)
' Bereken de bovengrens van het twijfelachtige gebied:
Dim HsDeltaD_Verh_Boven!
Dim Csibl: Csibl = IIf(Bekleding_Toplaag_SlibJN And Bekleding_BovensteFilterlaag_SlibJN@ = "Ja", 1.5, 1)
Select Case Water_XsiOp
Case Is <= 2.2
 HsDeltaD_Verh_Boven = 7.12 * Csibl * Water_XsiOp ^ -0.539
Case Is > 2.2
 HsDeltaD_Verh_Boven = Csibl * (17.8 * Water_XsiOp ^ -1.5 + 2.54 * Water_XsiOp - 6.32)
End Select
Type3a_to_verh_Bepaal = HsDeltaD_Verh_Boven / HsDeltaD_verh
End Function

2.10 Function Type3b_gt_verh_Bepaal(HsDeltaD_verh!, Water_XsiOp!, Bekleding_Toplaag_Delta!)

, Bekleding_Toplaag_AsfaltJN As Boolean, h_hoogf!, h_iaagf!, Bekleding_HellingTaludf, Bekleding_Toplaag_Dlf)
' Bereken de ondergrens van het twijfelachtige gebied:
Dim HsDeltaD_Verh_Onder!
Select Case Water_XsiOp
Case Is <= 2
 HsDeltaD_Verh_Onder = 4.08 * Water_XsiOp ^ -1.014
Case Is > 2
 HsDeltaD_Verh_Onder = 11 * Water_XsiOp ^ -4 + 0.03 * Water_XsiOp + 1.25
End Select
Dim Dcr
End Function

2.11 Function Type3b_to_verh_Bepaal__

(HsDeltaD_verh!, Water_XsiOp!, Bekleding_Toplaag_SlibJN As Boolean, Bekleding_BovensteFilterlaag_SlibJN@)
' Bereken de bovengrens van het twijfelachtige gebied:
Dim HsDeltaD_Verh_Boven!
Dim Csibl: Csibl = IIf(Bekleding_BovensteFilterlaag_SlibJN@ = "Ja", 1.5, 1)
Select Case Water_XsiOp
Case Is <= 2.1
 HsDeltaD_Verh_Boven = 6.68 * Csibl * Water_XsiOp ^ -0.723
Case Is > 2.1
 HsDeltaD_Verh_Boven = Csibl * (12 * Water_XsiOp ^ -1.5 + 1.5 * Water_XsiOp - 3.12)
End Select
Type3b_to_verh_Bepaal = HsDeltaD_Verh_Boven / HsDeltaD_verh
End Function

2.12 Function Type3c_gt_verh_Bepaal(HsDeltaD_verh!, Water_XsiOp!, Bekleding_Toplaag_Delta!)

, Bekleding_Toplaag_AsfaltJN As Boolean, h_hoogf!, h_iaagf!, Bekleding_HellingTaludf, Bekleding_Toplaag_Dlf)
' Bereken de ondergrens van het twijfelachtige gebied:
Dim HsDeltaD_Verh_Onder!
Select Case Water_XsiOp
Case Is <= 2
 HsDeltaD_Verh_Onder = 3.07 * Water_XsiOp ^ -1.014
Case Is > 2
 HsDeltaD_Verh_Onder = 6.5 * Water_XsiOp ^ -4 + 0.02 * Water_XsiOp + 1.09
End Select
Dim Dcr
If Bekleding_Toplaag_AsfaltJN Then
 Dcr = (h_hoogf - h_iaagf) / (4 * Bekleding_Toplaag_Dlf * Cos(Atn(Bekleding_HellingTaludf)))
Else
 Dcr = 0.01
End If

Function Type5_gtv_Bepaal (HsDeltaD_verh!, Water_XsiOp!)

'Bereken de ondernomen van het twijfelachtige gebied:
Dim HsDeltaD_Verb_Onder!
Select Case Water_XsiOp!
Case Is <= 2.2
 HsDeltaD_Verb_Boven = 6.78 * Water_XsiOp ^ 0.588
Case Is > 2.2
 HsDeltaD_Verb_Boven = 17 * Water_XsiOp ^ -2 + 1.84 * Water_XsiOp - 3.25
End Select!

Type5_to_verb_Bepaal = HsDeltaD_Verb_Boven / HsDeltaD_verh
End Function!

2.18 Function Type6_BepaalSubType$

(Bekleding_Toplaag_DL, Bekleding_Toplaag_OpenOpp_Relatief, Bekleding_BovensteFilterlaag_DL, Bekleding_BovensteFilterlaag_BL, Bekleding_Toplaag_Inwas,JN As Boolean, Bekleding_Toplaag_Asfalt,JN, Bekleding_Toplaag_Waterdicht,JN As Boolean, Bekleding_BovensteFilterlaag_Slib,JN, Bekleding_BovensteFilterlaag_SlibNOJ)

If Bekleding_BovensteFilterlaag_bl / Bekleding_Toplaag_D < 0.5
 And Bekleding_BovensteFilterlaag_DL < 0.01
 And Bekleding_Toplaag_OpenOpp_Relatief > 0.03
 And Bekleding_Toplaag_Inwas,JN
 And Bekleding_Toplaag_Slib,JN
 And Bekleding_BovensteFilterlaag_SlibNOJ = "Ja"
Then

Type6_BepaalSubType = "a"

ElseIf Bekleding_BovensteFilterlaag_Slib,JN = "Ja"
 And Bekleding_Toplaag_Asfalt,JN
 And Bekleding_Toplaag_Waterdicht,JN
 Or (Not Bekleding_Toplaag_Slib,JN And Not Bekleding_Toplaag_Asfalt,JN And Not Bekleding_Toplaag_Waterdicht,JN)
 Then

Type6_BepaalSubType = "b"

Else

Type6_BepaalSubType = "c"

End If!
Module: StabToplaag Function Type6c_to_verh_Bepaal(HsDeltaD_verhl, Water_XsiOp)

And ((Bekleding_BovensteFilterlaag_b / Bekleding_Toplaag_D <= 0.5) _
Or (Bekleding_BovensteFilterlaag_b / Bekleding_Toplaag_D >= 0.5 And
Bekleding_BovensteFilterlaag_d15 < 0.003) _
Or (Bekleding_BovensteFilterlaag_d15 > 0.7 And
Bekleding_Toplaag_oppen = 0.02)) Then
'LET OP MAXIMAAL 10 REGELS IN EXCEL/7
Type6_BepaalSubType = "b"
Else
Type6_BepaalSubType = "c"
End If
End Function

2.19 Function Type6a_gt_verh_Bepaal(HsDeltaD_verh1, Water_XsiOp)

' Bereken de ondergrens van het twijfelachtige gebied:
Dim HsDeltaD_Verh_Onder!
Select Case Water_XsiOp
Case Is <= 2.4
HsDeltaD_Verh_Onder = 5.06 * Water_XsiOp ^ -0.783
Case Is > 2.4
HsDeltaD_Verh_Onder = 23 * Water_XsiOp ^ -4 + 0.33 * Water_XsiOp + 1.1
End Select
Type6a_gt_verh_Bepaal = HsDeltaD_Verh_Onder / HsDeltaD_verh
End Function

2.20 Function Type6a_to_verh_Bepaal(HsDeltaD_verh1, Water_XsiOp)

' Bereken de bovengrens van het twijfelachtige gebied:
Dim HsDeltaD_Verh_Boven!
Select Case Water_XsiOp
Case Is <= 2
HsDeltaD_Verh_Boven = 7.97 * Water_XsiOp ^ -0.435
Case Is > 2
HsDeltaD_Verh_Boven = 30 * Water_XsiOp ^ -0.5 + 4.2 * Water_XsiOp - 23.6
End Select
Type6a_to_verh_Bepaal = HsDeltaD_Verh_Boven / HsDeltaD_verh
End Function

2.21 Function Type6b_gt_verh_Bepaal(HsDeltaD_verh1, Water_XsiOp)

' Bereken de bovengrens van het twijfelachtige gebied:
Dim HsDeltaD_Verh_Onder!
Select Case Water_XsiOp
Case Is <= 2.4
HsDeltaD_Verh_Onder = 4.53 * Water_XsiOp ^ -0.886
Case Is > 2.4
End Select
Type6b_gt_verh_Bepaal = HsDeltaD_Verh_Onder / HsDeltaD_verh
End Function

2.22 Function Type6b_to_verh_Bepaal(HsDeltaD_verh1, Water_XsiOp)

' Bereken de bovengrens van het twijfelachtige gebied:
Dim HsDeltaD_Verh_Boven!
Select Case Water_XsiOp
Case Is <= 2
HsDeltaD_Verh_Boven = 7.3 * Water_XsiOp ^ -0.6
Case Is > 2
HsDeltaD_Verh_Boven = 28 * Water_XsiOp ^ -0.5 + 3.4 * Water_XsiOp - 21.68
End Select
Type6b_to_verh_Bepaal = HsDeltaD_Verh_Boven / HsDeltaD_verh
End Function

2.23 Function Type6c_gt_verh_Bepaal(HsDeltaD_verh1, Water_XsiOp)

' Bereken de ondergrens van het twijfelachtige gebied:
Dim HsDeltaD_Verh_Onder!
Select Case Water_XsiOp
Case Is <= 2.6
HsDeltaD_Verh_Onder = 3.97 * Water_XsiOp ^ -0.96
Case Is > 2.6
HsDeltaD_Verh_Onder = 12 * Water_XsiOp ^ -4 + 0.06 * Water_XsiOp + 1.18
End Select
Type6c_gt_verh_Bepaal = HsDeltaD_Verh_Onder / HsDeltaD_verh
End Function

2.24 Function Type6c_to_verh_Bepaal(HsDeltaD_verh1, Water_XsiOp)

' Bereken de bovengrens van het twijfelachtige gebied:
Dim HsDeltaD_Verh_Boven!
Select Case Water_XsiOp
Case Is <= 2
HsDeltaD_Verh_Boven = 6.5 * Water_XsiOp ^ -0.7
Case Is > 2
HsDeltaD_Verh_Boven = 12 * Water_XsiOp ^ -4 + 1.62 * Water_XsiOp - 5.23
End Select
Type6c_to_verh_Bepaal = HsDeltaD_Verh_Boven / HsDeltaD_verh
End Function
Module: StabToplaag Function StabToplaag_ToeTe Score_Bepaal$

2.25 Function StabToplaag_ToeTeE_Score_Bepaal$
StabToplaag_ToeTeE_score_Bepaal$('StabToplaag_ToeTeE_gt_verh, StabToplaag_ToeTeE_to_verh',
, StabToplaag_ToeTeE_type$ _, Bekleding_BovensteFilterlaag_SlibJN As Boolean,
Bekleding_BovensteFilterlaag_SlibJN$ _
, Bekleding_ToeToAfsaltJN As Boolean)
'Gevolgd in verle 2.20 wat betreft uitzonderingen type 3c

Dim score$
If StabToplaag_ToeTeE_type$ = "3c" Then
Score = "n.v.t."$
ElseIf (StabToplaag_ToeTeE_type$ = "3c" Or StabToplaag_ToeTeE_type$ = "6c") Then
And Bekleding_BovensteFilterlaag_SlibJN$ = "Nee" And Bekleding_ToeToAfsaltJN Then
Score = "Geavanceerd"

ElseIf StabToplaag_ToeTeE_to_verh < 1 Then
Score = "Onvoldoende"
ElseIf StabToplaag_ToeTeE_gt_verh > 1 Then
If StabToplaag_ToeTeE_type$ = "3c" Then
If ((Bekleding_BovensteFilterlaag_SlibJN$ = "Nee" And Bekleding_ToeToAfsaltJN) _
Or (Bekleding_BovensteFilterlaag_SlibJN$ = "Nee" And Bekleding_ToeToAfsaltJN)) Then
Score = "Twijfelachtig"
Else
Score = "Goed"
EndIf
Else
Score = "Goed"
EndIf

Else
Score = "Twijfelachtig"
EndIf
StabToplaag_ToeTeE_Score_Bepaal$ = Score
End Function

2.27 Function StabToplaag_ToeTeG_Score_Bepaal$
(StabToplaag_ToeTeG_BelastingEnSterkte_Verh_f1, StabToplaag_ToeTeG_BelastingEnSterkte_Verh_f2 _
, StabToplaag_ToeTeG_BelastingEnSterkte_Verh_f3, StabToplaag_ToeTeG_BelastingEnSterkte_Verh_f4 _
, Bekleding_Type_ToeToa, Bekleding_Type_Filters$, Bekleding_BovensteFilterlaag_bl _
, Bekleding_AlsBermJN As Boolean, HsDelta_Verh, Water_XsiOpf)

Dim score$
Dim TTop: TTop = Bekleding_Type_ToeToa
'1 Let op eerste not
If Not (_
(T10 <= TTop And TTop <= 14) Or TTop = 26 Or TTop = 27b Or TTop = 27.1 Or TTop = 27.2 Or TTop = 27.3 Or TTop = 28 _
Or TTop = 28.2 Or TTop = 28.3 Or TTop = 28.4 Or TTop = 28.5 Or TTop = 29 _
And OneOrMore(Bekleding_Type_Filters$ _
, Bekleding_BovensteFilterlaag_bl _
And Bekleding_AlsBermJN) Then
Score = "n.v.t.");

ElseIf StabToplaag_ToeTeG_BelastingEnSterkte_Verh_f1 >= 1E+30 _
Or StabToplaag_ToeTeG_BelastingEnSterkte_Verh_f2 >= 1E+30 Then
Resultaat = "Niet uitgevoerd"

ElseIf StabToplaag_ToeTeG_BelastingEnSterkte_Verh_f1 <= 1 _
And StabToplaag_ToeTeG_BelastingEnSterkte_Verh_f3 <= 1 Then
Resultaat = "Stabiele"

Else
Resultaat = "Instabiele"
EndIf
StabToplaag_ToeTeG_Resultaat_Bepaal$ = Resultaat
End Function

2.26 Function StabToplaag_ToeTeG_Resultaat_Bepaal$
(StabToplaag_ToeTeG_BelastingEnSterkte_Verh_f1, StabToplaag_ToeTeG_BelastingEnSterkte_Verh_f2 _
, StabToplaag_ToeTeG_BelastingEnSterkte_Verh_f3, StabToplaag_ToeTeG_BelastingEnSterkte_Verh_f4 _
, Bekleding_Type_ToeToa, Bekleding_Type_Filters$, Bekleding_BovensteFilterlaag_bl _
, Bekleding_AlsBermJN As Boolean)

Dim Resultaat$
Dim TTop: TTop = Bekleding_Type_ToeToa
If Not (_
(T10 <= TTop And TTop <= 14) Or TTop = 26 Or TTop = 27b Or TTop = 27.1 Or TTop = 27.2 Or TTop = 27.3 Or TTop = 28 _
Or TTop = 28.2 Or TTop = 28.3 Or TTop = 28.4 Or TTop = 28.5 Or TTop = 29 _
And OneOrMore(Bekleding_Type_Filters$ _
, Bekleding_BovensteFilterlaag_bl _
And Bekleding_AlsBermJN) Then
Score = "n.v.t.");

ElseIf StabToplaag_ToeTeG_BelastingEnSterkte_Verh_f1 >= 1E+30 _
Or StabToplaag_ToeTeG_BelastingEnSterkte_Verh_f2 >= 1E+30 Then
Score = "Niet uitgevoerd"

ElseIf StabToplaag_ToeTeG_BelastingEnSterkte_Verh_f1 <= 1 _
And StabToplaag_ToeTeG_BelastingEnSterkte_Verh_f3 <= 1 And HsDelta_Verh < 6 * Water_XsiOpf ^ (-2 / 3) Then
Score = "Goed"

ElseIf StabToplaag_ToeTeG_BelastingEnSterkte_Verh_f2 > 1 _

Module: StabToplaag Function StabToplaag_ToetsG_Klemfactor_GoedTwijfelen_Bepaal()

Or StabToplaag_ToetsG_BelastingEnSterkte_Verh_4 > Or HsDeltaD_verh > Or Water_XslOp * (-2 / 3)
Then
Score = "Onvoldoende"
Else
Score = "Twijfelachtig"
End If
StabToplaag_ToetsG_Score_Bepaal = Score
End Function

2.28 Function StabToplaag_Score_Bepaal()

(StabToplaag_ToetsE_Score, StabToplaag_ToetsG_Score, HsDeltaD_verh, Water_XslOp, h_laag1, Water_TeTspeil2000)

Dim Score$
If StabToplaag_ToetsE_Score = "Goed" Then
Score = "Goed"
ElseIf StabToplaag_ToetsG_Score <> "Goed" And h_laag > Water_TeTspeil2000 Then
Score = "Geavanceerd"
ElseIf OneOrMore(StabToplaag_ToetsE_Score, "Onvoldoende", "Geavanceerd", "Geavanceerd") Then
Score = StabToplaag_ToetsE_Score
ElseIf OneOrMore(StabToplaag_ToetsG_Score, "Goed", "Onvoldoende") Then
Score = StabToplaag_ToetsG_Score
Else
Score = "Twijfelachtig"
End If
StabToplaag_Score_Bepaal = Score
End Function

2.29 Function StabToplaag_ToetsG_Klemfactor_GoedTwijfelen_Bepaal()

Bekleding_Hellingtalud, Bekleding_Toplaag_D8, Bekleding_Toplaag_Bi, Bekleding_Toplaag_Li,
Bekleding_Toplaag_Spielebreedte, Bekleding_Toplaag_Defal,
Bekleding_BovensteFilterlaag_Bi, Bekleding_BovensteFilterlaag_D15,
Bekleding_BovensteFilterlaag_Porositeit,
Bekleding_TweedeFilterlaag_Bi, Bekleding_TweedeFilterlaag_D15, Bekleding_TweedeFilterlaag_Porositeit
Water_Hs, Water_Tp, row%, Bekleding_AlsBermJN As Boolean,
MeerekeneninvloedsFactorTraagheidEnToestroming.JN As Boolean,
Bekleding_Toplaag_Inwasmateriaal_D15, Bekleding_Toplaag_Inwasmateriaal_Porositeit

Bekleding_Toplaag_Inwasmateriaal_D15 As Boolean, StabToplaag_ToetsG_factor)
Dim l_Inwasmateriaal_D15!
Dim l_Inwasmateriaal_Porositeit!
If Bekleding_Toplaag_Inwasmateriaal_D15 = 0 Then
l_Inwasmateriaal_D15 = 5 / 1000
Else
l_Inwasmateriaal_D15 = Bekleding_Toplaag_Inwasmateriaal_D15
End If
If Bekleding_Toplaag_Inwasmateriaal_Porositeit = 0 Then
l_Inwasmateriaal_Porositeit = 0.5
Else
l_Inwasmateriaal_Porositeit = Bekleding_Toplaag_Inwasmateriaal_Porositeit
End If
Dim Count&
Dim isGoed(1 To 3) As Boolean
Dim Factor(1 To 3)
Factor(1) = 1
Factor(2) = 10
Factor(3) = 20
Dim Index&
Dim BSVerh11, BSVerh3!
While Factor(2) * Factor(1) > 0.5 And Count < 500
For Index = 1 To 3
BSVerh1 = StabToplaag_ToetsG_BelastingEnSterkte_Verh_Bereken(Bekleding_Hellingtalud_,
Bekleding_Toplaag_D8, Bekleding_Toplaag_Bi, Bekleding_Toplaag_Li,
Bekleding_Toplaag_Spielebreedte,
Bekleding_TweedeFilterlaag_D15,
Bekleding_BovensteFilterlaag_Porositeit, Bekleding_TweedeFilterlaag_b,
Bekleding_TweedeFilterlaag_D15,
Bekleding_TweedeFilterlaag_Porositeit, Water_Hs, Water_Tp, row, Bekleding_AlsBermJN,
JN("New") =
Factor(Index), l_Inwasmateriaal_D15, l_Inwasmateriaal_Porositeit,
Bekleding_Toplaag_InwasJN
BSVerh3 = StabToplaag_ToetsG_BelastingEnSterkte_Verh_Bereken(Bekleding_Hellingtalud_,
Bekleding_Toplaag_D8, Bekleding_Toplaag_Bi, Bekleding_Toplaag_Li,
Bekleding_Toplaag_Spielebreedte,
Bekleding_TweedeFilterlaag_D15, Bekleding_TweedeFilterlaag_b,
Bekleding_BovensteFilterlaag_D15, Bekleding_BovensteFilterlaag_Porositeit,
Bekleding_TweedeFilterlaag_b,
Bekleding_TweedeFilterlaag_D15, Bekleding_TweedeFilterlaag_Porositeit, 1.4 * Water_Hs,
Water_Tp, row,
Bekleding_AlsBermJN, JN("Old"), Factor(Index), l_Inwasmateriaal_D15,
Bekleding_Inwasmateriaal_Porositeit, Bekleding_Toplaag_InwasJN)
isGoed(Index) = (BSVerh1 <= 1 And BSVerh3 <= 1)
Next
If isGoed(1) = isGoed(3) Then
2.30 Function StabToplaag_ToesG_Klemfactor_TwijfelOnvoldoende_Bepaal()

BSVerh2 = StabToplaag_ToesG_BelastingEnSterkte_Verh_Berekend(Bekleding_HellingTalud , Bekleding_Toplaag_D, Bekleding_Toplaag_B, Bekleding_Toplaag_L, Bekleding_Toplaag_Spleetbreedte, Bekleding_Toplaag_Delta, Bekleding_BovensteFilterlaag_b, Bekleding_BovensteFilterlaag_D15, Bekleding_BovensteFilterlaag_Porositeit, Bekleding_TweedeleFilterlaag_D15, Bekleding_TweedeleFilterlaag_Porositeit, Water_Hs, Water_Tp, row, Bekleding_AlsBermJN, JN("Nw"), Factor(Index), _Inwasmateriaal_D15, _Inwasmateriaal_Porositeit, Bekleding_Toplaag_Inwasm_JN)

BSVerh3 = StabToplaag_ToesG_BelastingEnSterkte_Verh_Berekend(Bekleding_HellingTalud , Bekleding_Toplaag_D, Bekleding_Toplaag_B, Bekleding_Toplaag_L, Bekleding_Toplaag_Spleetbreedte, Bekleding_Toplaag_Delta, Bekleding_BovensteFilterlaag_b, Bekleding_BovensteFilterlaag_D15, Bekleding_BovensteFilterlaag_Porositeit, Bekleding_TweedeleFilterlaag_D15, Bekleding_TweedeleFilterlaag_Porositeit, Water_Hs, Water_Tp, row, Bekleding_AlsBermJN, JN("Ja"), Factor(Index), _Inwasmateriaal_D15, _Inwasmateriaal_Porositeit, Bekleding_Toplaag_Inwasm_JN)

BSVerh4 = StabToplaag_ToesG_BelastingEnSterkte_Verh_Berekend(Bekleding_HellingTalud, 1.5 * Bekleding_Toplaag_D, Bekleding_Toplaag_B, Bekleding_Toplaag_L, Bekleding_Toplaag_Spleetbreedte, Bekleding_Toplaag_Delta, Bekleding_BovensteFilterlaag_b, Bekleding_BovensteFilterlaag_D15, Bekleding_BovensteFilterlaag_Porositeit, Bekleding_TweedeleFilterlaag_b, Bekleding_TweedeleFilterlaag_D15, Bekleding_TweedeleFilterlaag_Porositeit, 1.4 * Water_Hs, Water_Tp, row, Bekleding_AlsBermJN, JN("Ja"), Factor(Index), _Inwasmateriaal_D15, _Inwasmateriaal_Porositeit, Bekleding_Toplaag_Inwasm_JN)
Module: ANAMOS Function KlemfactorScore$(Bekleding_Topplaag_Inklemfactor|_ _)

 Factor(1) = Factor(2)
 Else
 Factor(3) = Factor(2)
 End If

 Factor(2) = (Factor(1) + Factor(3)) / 2

 Count = Count + 1

 Wend

 StabTopplaag_ToetsG_Klemfactor_TwijfelOnvoldoende_Bepaal = (Factor(1) + Factor(3)) / 2

End Function

2.31 Function KlemfactorScore$(Bekleding_Topplaag_Inklemfactor|_ , StabTopplaag_ToetsG_Klemfactor_TwijfelOnvoldoende) = StabTopplaag_ToetsG_Klemfactor_GoedTwijfel)

 If Bekleding_Topplaag_Inklemfactor >= StabTopplaag_ToetsG_Klemfactor_GoedTwijfel Then
 KlemfactorScore = "Goed"
 ElseIf Bekleding_Topplaag_Inklemfactor < StabTopplaag_ToetsG_Klemfactor_TwijfelOnvoldoende Then
 KlemfactorScore = "Onvoldoende"
 Else
 KlemfactorScore = "Twijfel"
 End If

End Function
3. Module: ANAMOS

'WLDelt Hydraulics +31 15 285 8773
'Project: Steentoes 2.20, H3167
'Versie: 3.20 - november 1999
'Conversie naar Visual Basic door: Onno van den Akker (WL-CSO)
'Ondergetevo: Mark Klein Breteler (WL-MCI)

Option Explicit
Option Compare Text
Const PI = 3.14159265358979

3.1 Sub n()
End Sub

3.2 Function StabToplaag_ToetsG_BelastingEnSterkte_Verh_Berekend()_

(Bekleding_HellingTalud, Bekleding_Toplaag_DL, Bekleding_Toplaag_BI, Bekleding_Toplaag_LI_,
Bekleding_Toplaag_Spleetbreedte, Bekleding_Toplaag_Deltal
-
- Bekleding_BovensteFilterlaag_bl, Bekleding_BovensteFilterlaag_D151,
Bekleding_BovensteFilterlaag_Porositeit
-
- Bekleding_TweedeFilterlaag_bl, Bekleding_TweedeFilterlaag_D151, Bekleding_TweedeFilterlaag_Porositeit
-
-Water_Hsl, Water_Tpl, row%, Bekleding_AlsBermJN As Boolean
-
-MeevrakeneninvloedsFactorTraagheidEnToestroming,JN As Boolean
-
-Bekleding_Toplaag_Inwasmateriaal, Bekleding_Toplaag_Inwasmateriaal_Porositeit
-
-Bekleding_Toplaag_InwasJN As Boolean)

End Function

3.3 Function StabToplaag_ToetsG_Leklengte()

(Bekleding_HellingTalud, Bekleding_Toplaag_DL, Bekleding_Toplaag_BI, Bekleding_Toplaag_LI_,
Bekleding_Toplaag_Spleetbreedte, Bekleding_Toplaag_Deltal
-
- Bekleding_BovensteFilterlaag_bl, Bekleding_BovensteFilterlaag_D151,
Bekleding_BovensteFilterlaag_Porositeit
-
- Bekleding_TweedeFilterlaag_bl, Bekleding_TweedeFilterlaag_D151, Bekleding_TweedeFilterlaag_Porositeit
-
-Water_Hsl, Water_Tpl, row%, Bekleding_AlsBermJN As Boolean
-
-MeevrakeneninvloedsFactorTraagheidEnToestroming,JN As Boolean
-
-Bekleding_Toplaag_Inklmefactor, Bekleding_Toplaag_Inwasmateriaal_D151,
Bekleding_Toplaag_Inwasmateriaal_Porositeit
-
-Bekleding_Toplaag_InwasJN As Boolean)

Dim BelastingEnSterkte_Verhl, Leklengtf, Atl, Bt!

Anamos Bekleding_HellingTalud, Bekleding_Toplaag_DL, Bekleding_Toplaag_BI, Bekleding_Toplaag_LI_,
Bekleding_Toplaag_Spleetbreedte, Bekleding_Toplaag_Delta
-
- Bekleding_BovensteFilterlaag_bl, Bekleding_BovensteFilterlaag_D151,
Bekleding_BovensteFilterlaag_Porositeit
-
- Bekleding_TweedeFilterlaag_bl, Bekleding_TweedeFilterlaag_D151, Bekleding_TweedeFilterlaag_Porositeit
-
-Water_Hsl, Water_Tpl, row%, Bekleding_AlsBermJN
-
-MeevrakeneninvloedsFactorTraagheidEnToestroming,JN As Boolean
-
-Bekleding_Toplaag_Inklmefactor, Bekleding_Toplaag_Inwasmateriaal_D151,
Bekleding_Toplaag_Inwasmateriaal_Porositeit
-
-Bekleding_Toplaag_InwasJN, BelastingEnSterkte_Verhl, Leklengtf, Atl, Bt!

StabToplaag_ToetsG_BelastingEnSterkte_Verh_Berekend = BelastingEnSterkte_Verh
End Function

3.4 Function StabToplaag_ToetsG_Atl()

(Bekleding_HellingTalud, Bekleding_Toplaag_DL, Bekleding_Toplaag_BI, Bekleding_Toplaag_LI_,
Bekleding_Toplaag_Spleetbreedte, Bekleding_Toplaag_Deltal
-
- Bekleding_BovensteFilterlaag_bl, Bekleding_BovensteFilterlaag_D151,
Bekleding_BovensteFilterlaag_Porositeit
-
- Bekleding_TweedeFilterlaag_bl, Bekleding_TweedeFilterlaag_D151, Bekleding_TweedeFilterlaag_Porositeit
-
-Water_Hsl, Water_Tpl, row%, Bekleding_AlsBermJN As Boolean
-
-MeevrakeneninvloedsFactorTraagheidEnToestroming,JN As Boolean
-
-Bekleding_Toplaag_Inklmefactor, Bekleding_Toplaag_Inwasmateriaal_D151,
Bekleding_Toplaag_Inwasmateriaal_Porositeit
-
-Bekleding_Toplaag_InwasJN As Boolean)

Dim BelastingEnSterkte_Verhl, Leklengtf, Atl, Bt!

Anamos Bekleding_HellingTalud, Bekleding_Toplaag_DL, Bekleding_Toplaag_BI, Bekleding_Toplaag_LI_,
Bekleding_Toplaag_Spleetbreedte, Bekleding_Toplaag_Delta
-
- Bekleding_BovensteFilterlaag_bl, Bekleding_BovensteFilterlaag_D151,
Bekleding_BovensteFilterlaag_Porositeit
-
- Bekleding_TweedeFilterlaag_bl, Bekleding_TweedeFilterlaag_D151, Bekleding_TweedeFilterlaag_Porositeit
-
-Water_Hsl, Water_Tpl, row%, Bekleding_AlsBermJN
-
-MeevrakeneninvloedsFactorTraagheidEnToestroming,JN As Boolean
-
-Bekleding_Toplaag_Inklmefactor, Bekleding_Toplaag_Inwasmateriaal_D151,
Module: ANAMOS

Sub Anamos

, Bekleding_Topaag_Inklemfactor, Bekleding_Topaag_Inwasmateriaal_D15I,
, Bekleding_Topaag_Inwasmateriaal_Porosititeit
, Bekleding_Topaag_Inwas, BekastingEnSterkte_Verh, Lekkengat, Atl, Bt!

StabTopaag_ToesG_At = At
End Function

3.5 Function StabTopaag_ToesG_Bt

(Bekleding_HellingTalud, Bekleding_Topaag_Di, Bekleding_Topaag_Bt, Bekleding_Topaag_LI
, Bekleding_Topaag_Spleetbreedte, Bekleding_Topaag_Deltal
, Bekleding_BovensteFilterlaag_bl, Bekleding_BovensteFilterlaag_D15I,
Bekleding_BovensteFilterlaag_Porosititeit
, Bekleding_TweedeFilterlaag_bl, Bekleding_TweedeFilterlaag_D15I, Bekleding_TweedeFilterlaag_Porosititeit!
, Water_Hs, Water_Tp, row%, Bekleding_AlsBermJN As Boolean
, MeerkenenInvoedsFactorTraagheidEnToestromingenJN As Boolean
, Bekleding_Topaag_Inklemfactor, Bekleding_Topaag_Inwasmateriaal_D15I,
Bekleding_Topaag_Inwasmateriaal_Porosititeit!
, Bekleding_Topaag_InwasJN As Boolean)

Dim BelastingEnSterkte_Verh, Lekkengat, Atl, Bt!
Anamos Bekleding_HellingTalud, Bekleding_Topaag_Di, Bekleding_Topaag_Bt, Bekleding_Topaag_LI
, Bekleding_Topaag_Spleetbreedte, Bekleding_Topaag_Deltal
, Bekleding_BovensteFilterlaag_bl, Bekleding_BovensteFilterlaag_D15I,
Bekleding_BovensteFilterlaag_Porosititeit
, Bekleding_TweedeFilterlaag_bl, Bekleding_TweedeFilterlaag_D15I, Bekleding_TweedeFilterlaag_Porosititeit!
, Water_Hs, Water_Tp, row%, Bekleding_AlsBermJN
, MeerkenenInvoedsFactorTraagheidEnToestromingenJN
, Bekleding_Topaag_Inklemfactor, Bekleding_Topaag_Inwasmateriaal_D15I,
Bekleding_Topaag_Inwasmateriaal_Porosititeit!
, Bekleding_Topaag_InwasJN, BelastingEnSterkte_Verh, Lekkengat, Atl, Bt!

StabTopaag_ToesG_Bt = Bt
End Function

3.6 Sub Anamos

(Bekleding_HellingTalud, Bekleding_Topaag_Di, Bekleding_Topaag_Bt, Bekleding_Topaag_LI
, Bekleding_Topaag_Spleetbreedte, Bekleding_Topaag_Deltal
, Bekleding_BovensteFilterlaag_bl, Bekleding_BovensteFilterlaag_D15I,
Bekleding_BovensteFilterlaag_Porosititeit
, Bekleding_TweedeFilterlaag_bl, Bekleding_TweedeFilterlaag_D15I, Bekleding_TweedeFilterlaag_Porosititeit!
, Water_Hs, Water_Tp, row%, Bekleding_AlsBermJN As Boolean
, MeerkenenInvoedsFactorTraagheidEnToestromingenJN As Boolean
, Bekleding_Topaag_Inklemfactor, Bekleding_Topaag_Inwasmateriaal_D15I,
Bekleding_Topaag_Inwasmateriaal_Porosititeit!
, Bekleding_Topaag_InwasJN As Boolean, BelastingEnSterkte_Verh, Lekkengat, Atl, Bt!)

On Error GoTo fout

Dim x
BelastingEnSterkte_Verh = 1E+30
If Bekleding_AlsBermJN Then Exit Sub

If Bekleding_TweedeFilterlaag_D15I = 0 And Bekleding_BovensteFilterlaag_D15I = 0 Then Exit Sub

If Bekleding_BovensteFilterlaag_D15I = 0 And row > 3 Then
MsgBox "Bekleding_BovensteFilterlaag_D15 (t.b.v. ANAMOS) ontbreekt (regel " & row & ")"
x = 1 / 0
End If

If Bekleding_TweedeFilterlaag_D15 = 0 Then Bekleding_TweedeFilterlaag_D15 = 0.01
' ANALYTISCHE STABILITEITSBEREKENING VAN ZETTING EN FILTER
' ANALYTISCHE STABILITEITSBE
'
' !INVOER:
'
Dim c11: c11 = Water_Hs'. Hs [m]
Dim c68: c68 = c11'. H (m)
Dim c52: c52 = c11'. T (s)
Dim c12: c12 = Water_Tp'. Tp [s]
Dim c53: c53 = c12'. D [m]
Dim c52: c52 = c14'. D
Dim c50: c50 = c14'. D (m)
Dim c51: c51 = Bekleding_Topaag_B'. B [m]
Dim c91: c91 = c15'. B (m)
Dim c16: c16 = Bekleding_Topaag_B'. L [m]
Dim c92: c92 = c16'. L (m)
Dim c17: c17 = Bekleding_Topaag_Delta'. Delta
Dim c18: c18 = 0.5'. f (WRIJING)
Dim c19: c19 = 0.7'. Zetta (blok=2.7 zull=0)
Dim c20: c20 = Bekleding_HellingTalud'. Tan (alfa)
Dim c83: c83 = c20'. Tan (alfa)
Dim c51: c51 = c20'. Tan (alfa)
Dim c49: c49 = Atn(c47) * 180 / PI.
Hoek golffront betta.

' Doorlatendheid filter met Forchheimer

' uitvlaag:
a
Dim C128: C128 = 2.2 / (9.81 * C139 ^ 2 * C138).
b
Dim C129: C129 = (-C127 + (C127 ^ 2 + 4 * C128 * 0.3) * 0.5) / (2 * C128) * 1000 / 0.3.
k (secant door i=3mm/s)
Dim c31: c31 = C129 / 1000.

Mijnsteen:
Dim c77: c77 = c31.
Uitvlaag: k (lin.)

' Mijnsteen:
Dim C131: C131 = 160 * C136 / 9.81 * (1 - C142) * 2 / (C142 ^ 3 * C141 ^ 2).
a
Dim C132: C132 = 2.2 / (9.81 * C142 ^ 2 * C141).
b
Dim C133: C133 = (-C131 + (C131 ^ 2 + 4 * C132 * 0.3) * 0.5) / (2 * C132) * 1000 / 0.3.
k (secant door i=3mm/s)
Dim c32: c32 = C133 / 1000.

' k': Berekening van toplaagdoorlatendheid

Dim D15:S, ni

If Bekleding_Toplaag_Inwasmateriaal_D15 = 0 Or Bekleding_Toplaag_Inwasmateriaal_Porositeit = 0 Then
ni = 1
D15S = 1E+08
Else
ni = Bekleding_Toplaag_Inwasmateriaal_Porositeit

D15S = Bekleding_Toplaag_Inwasmateriaal_D15
End If

' INVOER:

Dim c48: c48 = c52 > 0, c23, c26.
n (uitvlaag)
Dim c80t: c80t = c32.
Mijnsteen: k (lin.)

'.

' Doorlatendheid filter met Forchheimer

' uitvlaag:
a
Dim C128: C128 = 2.2 / (9.81 * C139 ^ 2 * C138).
b
Dim C129: C129 = (-C127 + (C127 ^ 2 + 4 * C128 * 0.3) * 0.5) / (2 * C128) * 1000 / 0.3.
k (secant door i=3mm/s)
Dim c31: c31 = C129 / 1000.

Mijnsteen:
Dim c77: c77 = c31.
Uitvlaag: k (lin.)

' Mijnsteen:
Dim C131: C131 = 160 * C136 / 9.81 * (1 - C142) * 2 / (C142 ^ 3 * C141 ^ 2).
a
Dim C132: C132 = 2.2 / (9.81 * C142 ^ 2 * C141).
b
Dim C133: C133 = (-C131 + (C131 ^ 2 + 4 * C132 * 0.3) * 0.5) / (2 * C132) * 1000 / 0.3.
k (secant door i=3mm/s)
Dim c32: c32 = C133 / 1000.

' k': Berekening van toplaagdoorlatendheid

Dim D15:S, ni

If Bekleding_Toplaag_Inwasmateriaal_D15 = 0 Or Bekleding_Toplaag_Inwasmateriaal_Porositeit = 0 Then
ni = 1
D15S = 1E+08
Else
ni = Bekleding_Toplaag_Inwasmateriaal_Porositeit

D15S = Bekleding_Toplaag_Inwasmateriaal_D15
End If

' INVOER:

Dim c48: c48 = c52 > 0, c23, c26.
n (uitvlaag)
Dim c80t: c80t = c32.
Mijnsteen: k (lin.)
1. TUSSENRESULTATEN:

Dim C104t: C104t = Max(0,4 * c93, c95 / 2) ; Rmin (mm)
Dim C105t: C105t = 160 * c96 / 9.81 * (r - c94) * 2 / (c94 + 3 * (c95 / 1000) * 2) ; Forchh.: a
Dim C106t: C106t = 2,2 / (9.81 * c94 * 2 * c95 / 1000) ; b
Dim C107t: C107t = (c91 + C108) / (c91 + c92 + C108) / C108 ; l (m)
Dim C112t: C112t = 18 * Log10(6 * C108 / 0,0009) ; C (Chenza)

Dim Att: At = C107t * a / 2
Dim Bt: Bt = C107t * 2 * b / 2

Dim C113t: C113t = 12 * c96 * C107 / (9.81 * C108 * 2) ; Lin.: Fsa/VVd

Dim C114t: C114t = C108 * C107 * C105 / (Pi * c93) * Ln(C107 * c93 / (Pi * Exp(1) * C104))

Dim C115t: C115t = 2 * C107 / 2 / (C108 / C112 + 2) ; Kwa.; Fsa/Vi²/2D

Dim C118t: C118t = ilf(c94 > 0,8,0,6, c94) ; Kontr. koeff. Mu
Dim C116t: C116t = C110 * C107 / 2 / (c90 * 9.81 * 2) * ((c110 - 1) * 2 + 1) ; Fju

Dim C117t: C117t = C108 * C107 * C106 / (Pi * c93) * (C107 * c93 / (Pi * C104 - 2) - 2) ; Fja

Dim C109t: C109t = C113 + C114 + Att * At (tam Fis)
'A' = C109

Dim C110t: C110t = C116 + C117 + Bt * Bt (tam Fis)
'B' = C110

Dim C111t: C111t = -C109 + (C109 * 2 + 4 * C110) * 0.5 / (2 * C110 + 1000) ; K. (mm/s) (lam Fis)

Dim C120t As Boolean: C120t = C107 * C111 * C108 / 1000 / c96 < 2000 ; Fls laminair?

Dim C99t: C99t = ilf(C120, C109 + 0,00001, C109 - C113 + 0,00001) ; a'

Dim C100t: C100t = ilf(C120, C110, C110 + C115) ; b'

At = C99
Bt = C100

Dim C110t: C101t = -C99 + (C99 * 2 + 4 * C100) * 0.5 / (2 * C100 + 1000) ; K. (mm/s)

Dim C33t: C33t = C101 / 1000 ; k. [ms]
Dim C78t: C78t = C33 ; k.

Dim GelineariseerdeDoorlatendheidToplaag: GelineariseerdeDoorlatendheidToplaag = c78

Dim C119t: C119t = C107 * C101 * C108 / 1000 / c96 ; Re(spleet)

2. RESULTAAT:

3. WURUING: Gamma s1

Dim C41t: C41t = Max(C146, Bekleding_Toplaag_Inkemfactor) ; Gamma s1

Dim C141t: C141t = C148 = c15 ; B
Dim C149t: C149t = C149 = c14 ; D
Dim C150t: C150t = C150 = c20 ; Tan(alfa)
Dim C151t: C151t = C151 = c18 ; f
Dim C152t: C152t = ilf(c19 = 0, 0,00001, c19) ; Zetta
Dim C154t: C154t = (r + C151 * 2 * (C148 / C149) + C150) / (r + C151 * 2 * C152) ;

Dim C155t: C155t = r + C149 + C148 * C150 ; 1+Dis(ay)B
Dim C156t As Boolean: C156t = C152 * C149 / C148 < C150 ; Zetta*DiB < tan(alfa) ?
Dim C157t As Boolean: C157t = C149 / C148 > C151 ; Dis > f ?

Dim C146t: C146t = ilf(C157, r + C151 * C150, ilf(C156, Max(C154, C155), C155)) ; WURUING: Gamma s1

Dim C34t: C34t = c75 ; Lekhoogte (m)
Dim C63t: C63t = c54 ; Lekhoogte (m)

Dim C70t: C70t = c68 / c63 / c64 + 0.5 ; = Yekhoos/qrtan(tan)
Dim C71: C71 = ilf(r+c70 < 50, 0,198 * c70 / 0.75 * c67 + 0.5 + 0,5, (0,198 * c70 / 0.75 * c67 + 0.5 + 0.5) _

' (r - Exp(-0.86 * c70 + 0.75 * c67 + 0.9)) ' / Filaeko
Dim C72t: C72t = c70 + c67 * 2 + Y ; Yekhoosqrtan(tan) *s²/2

Dim C60t: C60t = (c63 / (2 * c64 * c65) * (r - Exp(-c64 * c65 * c66 / c63)) + c63 / 2) * (r - Exp(-2 * c66 / c63))

Dim C71t: C71t = c61 + c63 ; Verschildruk (Wolsink)
Dim C58t: C58t = c58 = c72 < c60, c60, c61) ; Stijghoogteverschil [m]
Module: Invoegen Sub Anamos

Dim c40: c40 = c58 ' Stijghoogteverschil [m]

Dim c35: c35 = c34 / Sin(Atr(c20)) ' LABDA (langs talud)
Dim c42: c42 = c14 * c17 * Cos(Atr(c20)) ' Delta*cos(alfa) [m]

'=================================
'.RESULTAAT:
'.toplaag:

Dim c6: c6 = c56 ' Belasting bij Hs [m]
Dim c7: c7 = c41 * c42 ' Sterkte bij Hs [m]
Dim c8: c8 = c11 / c17 / c14 ' Hs/AD
Dim c5$: c5$ = If(c5 < c7 * 1.001, "stabiel", "INSTABIEL")

Const Valversnelling = 0.81

Dim DuurvandeOverbelasteSituatie: DuurvandeOverbelasteSituatie = 0.25 + Water_Tp / 20
Dim RelatieveBlokBeweging: RelatieveBlokBeweging = 0.1

Dim InvloedsFactorTraagheidBewegendBlok!
InvloedsFactorTraagheidBewegendBlok[] = _

1 + 1.78 * RelatieveBlokBeweging * Bekleding_Toplaag_D * (Bekleding_Toplaag_Delta + 2) _
/ (Valversnelling * Bekleding_Toplaag_Delta * DuurvandeOverbelasteSituatie * 2 *
Cos(Atr(Bekleding_HellingTalud)))

Dim InvloedsFactorVerhinderdeToestroming!
InvloedsFactorVerhinderdeToestroming[] = _

1 + _
RelatieveBlokBeweging * Bekleding_Toplaag_D * (Bekleding_Toplaag_B * Bekleding_Toplaag_L) * 0.5 _
* (0.56 + 0.16 * Ln(Bekleding_Toplaag_B * Bekleding_Toplaag_L) * 0.5 / Leklengte)) _
/ (_
(7.5 * Pi * GelineraiseerdeDoorlatendheidTalud * Leklengte * DuurvandeOverbelasteSituatie _
* Bekleding_Toplaag_Delta + c41 + InvloedsFactorTraagheidBewegendBlok - 1) _
Cos(Atr(Bekleding_HellingTalud)))

If MeerekenInvloedsFactorTraagheidEnToestromingJN Then
 BelastingEnSterkte_Verh! = _
 (c6 / InvloedsFactorVerhinderdeToestroming) / (c42 * (c41 + InvloedsFactorTraagheidBewegendBlok - 1))
Else
 BelastingEnSterkte_Verh = c6 / c7
End If
Exit Sub
fout:
BelastingEnSterkte_Verh = 1E+31
End Sub
Option Explicit
Option Compare Text
Option Base 0
Private m_RowCount&

4.1 Sub ReCalculate()

EmptyBuffer
If ActiveSheet.Name <> "Toetsing" Then Exit Sub

Dim Protect As Boolean: Protect = ActiveSheet.ProtectContents
ActiveSheet.Unprotect

Dim Calculation%: Calculation = Application.Calculation

Dim Hidden As Boolean: Hidden = Range("Formulas"), EntireRow, Hidden = False

Dim Destination As Range

Dim r As Range
Dim emptycount&
Dim Selection As Range

For Each r In intersect(Range("SubVakgrenzen_Van"), EntireColumn, Range("A" & Range("Kop"), row + 1 & ".; Z10000"))
 If Trim(r) = "" Then
 emptycount = emptycount + 1
 Else
 If Selection Is Nothing Then
 Set Selection = r
 Else
 Set Selection = Union(Selection, r)
 End If
 End If
Next

If Selection Is Nothing Then Exit Sub

Range("Formulas"), EntireRow, Copy

For Each r In Selection.Areas
 r.EntireRow, PasteSpecial = xlFormats, SkipBlanks:=False
Next

Range("Formulas"), EntireRow, Hidden = Hidden
If Application.Version < "8.0" Then
 If Application.Calculation <> Calculation Then Application.Calculation = Calculation
 End If
If Protect Then ActiveSheet.Protect
GotoStart
End Sub

4.2 Sub Update_Rows()

EmptyBuffer
If ActiveSheet.Name <> "Toetsing" Then Exit Sub

Dim Protect As Boolean: Protect = ActiveSheet.ProtectContents
ActiveSheet.Unprotect

Dim Calculation%: Calculation = Application.Calculation

Dim Hidden As Boolean: Hidden = Range("Formulas"), EntireRow, Hidden = False

Dim Destination As Range

On Error Resume Next
Set Destination = Intersect(Selection, EntireRow, Range("A$;D10000")), EntireRow
On Error GoTo 0

If Destination Is Nothing Then Exit Sub

Range("Formulas"), EntireRow, Copy
Destination, PasteSpecial, SkipBlanks:=True
Range("Formulas"), EntireRow, Copy
Destination, PasteSpecial = xlFormats, SkipBlanks:=False
Range("Formulas"), EntireRow, Hidden = Hidden

If Application.Calculation <> Calculation Then Application.Calculation = Calculation
Destination, Copy
ActiveSheet, Paste Destination:=Destination
If Protect Then ActiveSheet.Protect
End Sub

4.3 Sub Insert_Rows()
Module: Invoegen Sub ToggleEditMode()

If ActiveSheet.Name <> "Tenzing" Then Exit Sub
If ActiveCell.row <= 7 Then Exit Sub
Dim Protect As Boolean: Protect = ActiveSheet.ProtectContents
ActiveSheet.Unprotect
Dim Calculation%: Calculation = Application.Calculation

Dim idx%:
Selection.EntireRow.Insert Range("Formula") Copy
Selection.EntireRow.Hidden = False
Selection.EntireRow.FormulaHidden = True
If Protect Then ActiveSheet.Protect
If Application.Calculation <> Calculation Then Application.Calculation = Calculation
End Sub

4.4 Sub Remove_Rows()

If ActiveSheet.Name <> "Tenzing" Then Exit Sub
If ActiveCell.row <= 7 Then Exit Sub
Dim Protect As Boolean: Protect = ActiveSheet.ProtectContents
ActiveSheet.Unprotect
Dim Calculation%: Calculation = Application.Calculation

Selection.EntireRow.Delete
ActiveCell.EntireRow.Hidden = False
If Protect Then ActiveSheet.Protect
If Application.Calculation <> Calculation Then Application.Calculation = Calculation
End Sub

4.5 Sub Clone_ActiveRow()

Dim l_ActiveRow As Range
l_ActiveRow = ActiveCell.row
If ActiveSheet.Name <> "Tenzing" Then Exit Sub
If ActiveCell.row <= 7 Then Exit Sub
ActiveSheet.Unprotect
ActiveCell.EntireRow.Copy
ActiveCell.EntireRow.Insert
If Range("names").EntireRow.Hidden Then ActiveSheet.Protect
End Sub

4.6 Sub Copy_Rows()

Dim Calculation%: Calculation = Application.Calculation
If Calculation <> xlManual Then Calculation = xlManual

If ActiveSheet.Name <> "Tenzing" Then Exit Sub
If ActiveCell.row <= 7 Then Exit Sub

ActiveSheet.Unprotect
Selection.EntireRow.Copy
' If Application.Calculation <> Calculation Then Application.Calculation = Calculation
End Sub

4.7 Sub Cut_Rows()

' Dim Calculation%: Calculation = Application.Calculation

If ActiveSheet.Name <> "Tenzing" Then Exit Sub
If ActiveCell.row <= 7 Then Exit Sub
ActiveSheet.Unprotect
Selection.EntireRow.Cut
' If Application.Calculation <> Calculation Then Application.Calculation = Calculation
End Sub

4.8 Sub Paste_Rows()

' Dim Calculation%: Calculation = Application.Calculation

If ActiveSheet.Name <> "Tenzing" Then Exit Sub
If ActiveCell.row <= 7 Then Exit Sub
If ActiveSheet.ProtectContents Then Exit Sub
Selection.EntireRow.Insert
If Range("names").EntireRow.Hidden Then ActiveSheet.Protect
' If Application.Calculation <> Calculation Then Application.Calculation = Calculation
End Sub

4.9 Sub ToggleEditMode()

Dim Calculation%: Calculation = Application.Calculation
If Calculation <> xlManual Then Calculation = xlManual

Dim Hidden As Boolean: Hidden = Not Range("Names").EntireRow.Hidden
Sheets("Tenzing").Activate

ActiveSheet.Unprotect

Dim Protect As Boolean: Protect = ActiveSheet.ProtectContents
ActiveSheet.Unprotect

Dim Cell As Range
For Each Cell In Range("K0")
If Cell.Interior.Pattern = xlLightUp Then
End If
Next
Sub Auto_Open()

Range("Names"),EntireRow.Hidden = Hidden
Range("Formulas"),EntireRow.Hidden = Hidden

Dim sheeAs Worksheet

On Error Resume Next
Dim idx%
For idx = 1 To Sheets.Count
Sheets(idx),Unprotect
If Not OneOrMore(Sheets(idx).Name, "Toetsing", "Algemeen", "Golven", "GD Sheet") _
Or Sheets(idx).Name Like "*Vel*") Then
End If
Next
On Error GoTo 0

If Hidden Then
For idx = 1 To Sheets.Count
If OneOrMore(Sheets(idx).Name, "Toetsing", "Algemeen", "Golven") Then Sheets(idx).Protect
Next
End If
Sheets("Toetsing"),Activate
Sheets("restterktekelslaag"),Visible = Not Hidden
If Application.Calculation <> Calculation Then Application.Calculation = Calculation

End Sub

4.10 Sub DeleteMenus()

On Error Resume Next
MenuBars(xlWorksheet).Menus("&Ga Naar"),Delete
MenuBars(xlWorksheet).Menus("Toetsing"),Delete
MenuBars(xlWorksheet).Menus("&Ga Naar"),Delete
MenuBars(xlWorksheet).Menus("Toetsing"),Delete
On Error GoTo 0

End Sub

4.11 Sub CreateMenus()

Sheets("Toetsing"),Activate
MenuBars(xlWorksheet).Menus.Add
Set mi = MenuBars(xlWorksheet).Menus("&Ga Naar"),MenuItems
ml.Add
ml.Add &Vakgrenzen", "GotoVakgrenzen"
ml.Add _"*
ml.Add &Toplaag", "GotoToplaag"
ml.Add &Bovenste Filterlaag", "GotoBovensteFilterlaag"
ml.Add &Tweede &Filterlaag", "GotoTweedeFilterlaag"
ml.Add "Geote&xtle", "GotoGeoTextiel"
ml.Add &Kle", "GotoKlei"
ml.Add &Zand", "GotoZand"
ml.Add &Ervaring", "GotoErvaring"
ml.Add _"*
ml.Add
ml.Add &Golven en water", "GotoGolvenEnWater"
ml.Add &Afschuiving", "GotoAfschuiving"
ml.Add &Materiaal transport", "GotoMateriaalTransport"
ml.Add &Stabiliteit toplaag", "GotoStabiliteitToplaag"
ml.Add &Restterkte", "GotoRestterkte"
ml.Add &Eindscore", "GotoEindscore"

Sheets("Toetsing"),Activate
MenuBars(xlWorksheet).Menus.Add "Toet"&Sing"
Set mi = MenuBars(xlWorksheet).Menus("&Toetsing"),MenuItems
ml.Add &Eindoogen leges regel(s)", "Insert_Rows"
ml.Add "Verwijderen regel(s)", "Remove_Rows"
ml.Add _"*
ml.Add "Invooegen kopie van huidige regel", "Clone_ActiveRow"
ml.Add _"*
ml.Add &Verplaats regel(s) naar klemboord", "Cut_Rows"
ml.Add &Kopieer regel(s) naar klemboord", "Copy_Rows"
ml.Add "Invooegen ®el(s) van klemboord", "Paste_Rows"
ml.Add _"*
ml.Add &Plaats formules op regel(s)", "Update_Rows"
ml.Add &Bereken alles opnieuw", "Recalculate"
ml.Add _"*
ml.Add &GNaar naar het eerst volgende regel met (bovengrens - onderrgrens) > 4 m EN instabiele", "GaNaarEerstVolgendeDijkvakMetInstabieleToplaag"
ml.Add &Bereken de maximale bovengrens waarbij de stabiliteit van de toplaag goed is", "ToonMaximaleBovengrens"
ml.Add _"*
ml.Add &Kopieer van GD shee", "CopyGDSheet"

End Sub

4.12 Sub Auto_Open()

Application,OnKey "+(F12)", "ToggleEditmode"
Application,OnKey "+(HOME)", "GotoStart"

Sheets("Toetsing"),Unprotect
Range("Names"),EntireRow.Hidden = False

Dim Cell As Range
For Each Cell In Range("Kop")
If Cell.Interior.Pattern = xlLightUp Then
End If
Next

Range("Names"),EntireRow.Hidden = True
Range("Formulas"),EntireRow.Hidden = True
Module: Invoegen Sub GotoReststerkte()

On Error Resume Next
Dim idx%

For idx = 1 To Sheets.Count
 If Not (OneOrMoreSheets(idx).Name = "Toetsing", "Algemeen", "Golven", "GO Sheet") Then
 Or Sheets(idx).Name Like "bled" Or Sheets(idx).Name = "ToetsingAlg" Then
 If Sheets(idx).Visible Then Sheets(idx).Visible = False
 End If
 Next
On Error GoTo 0

DeleteMenus
Worksheets("Toetsing").OnSheetActivate = "CreateMenus"
Worksheets("Toetsing").OnSheetDeactivate = "DeleteMenus"
Worksheets("Toetsing").Activate
Sheets("Toetsing").Protect
End Sub

4.13 Sub GotoVakgrenzen()

GaNaar "SubVakgrenzen_Van"
End Sub

4.14 Sub GotoBekleding()

GaNaar "Bekleding_Type_Toplaag"
End Sub

4.15 Sub GotoToplaag()

GaNaar "Bekleding_Toplaag_O"
End Sub

4.16 Sub GotoBovensteFilterlaag()

GaNaar "Bekleding_BovensteFilterlaag_b_Invoer"
End Sub

4.17 Sub GotoTweedeFilterlaag()

GaNaar "Bekleding_TweedeFilterlaag_b_Invoer"
End Sub

4.18 Sub GotoGeoTextiel2()

GaNaar "Bekleding_GeoTextiel2_O80_Invoer"
End Sub

4.19 Sub GotoKlei()

GaNaar "Bekleding_Klei_b"
End Sub

4.20 Sub GotoZand()

GaNaar "Bekleding_Ondergrond_D15_Invoer"
End Sub

4.21 Sub GotoErvaring()

GaNaar "Afschuiving_Ervaring"
End Sub

4.22 Sub GotoGolvenEnWater()

GaNaar "Water_Stormduur_Invoer"
End Sub

4.23 Sub GotoAfschuiving()

GaNaar "Afschuiving_A"
End Sub

4.24 Sub GotoMateriaalTransport()

GaNaar "MatTransp_Score"
End Sub

4.25 Sub GotoStabiliteitToplaag()

GaNaar "HsDeltaD_verh"
End Sub

4.26 Sub GotoReststerkte()

GaNaar "Reststerkte_Filterlaag"
End Sub
Sub GotoEindscor()
 GaNaar "Eindscor"
End Sub

Sub GaNaar(n$)
 Worksheets("Toetsing"), Activate
 Worksheets("Toetsing"), Cells(ActiveCell.row, Range(n$).Column).Activate
End Sub

Sub GaN()
 Worksheets("Toetsing"), Cells(ActiveCell.row, Range("Reststerkte_Filterlaag").Column).Activate
End Sub

Sub ShowFormule()
 Dim Protect As Boolean: Protect = ActiveSheet.ProtectContents
 If Protect Then ActiveSheet.Protect
End Sub

Sub GotoStart()
 On Error Resume Next
 If ActiveSheet.Name <> "Toetsing" Then
 Application.GoTo ActiveSheet.Range("A1"), True
 Else
 ActiveSheet.Range("A" & Range("Kop"), Row + 1)(1).Activate
 End If
 On Error GoTo 0
End Sub

Sub CopyFromGDSheet(ColumnS$, ColumnName$)
 Dim GDSheet As Worksheet: Set GDSheet = Worksheets("GD Sheet")
 Dim Source As Range
 Set Source = GDSheet.Range(ColumnS & "\$" & ColumnName & m_RowCount + 4)
 Source.Copy
 Worksheets("Toetsing"), Cells(c, Range(ColumnS, ColumnName), Column).PasteSpecial
 Dim c$ = Range(ColumnS, ColumnName$).Address(, Local)
 c = Mid(c, 2)
 c = Left(c): InStr(c, "$") - 1)
 Worksheets("Toetsing"), Range(c & \\
 End Sub

Sub CopyGDSheet()

Dim Cell As Range: Dim s$, Index$, Pos$

Sheets("Toetsing").Unprotect

Dim Calculation%: Calculation = Application.Calculation

Dim GDSheet As Worksheet: Set GDSheet = Worksheets("GD Sheet")

m_RowCount = 0
 If Trim(Cell) = "" Then Exit For
 m_RowCount = m_RowCount + 1
Next
If m_RowCount = 0 Then Exit Sub

CopyFromGDSheet "A", "VolgNr"
Update_Rows

CopyFromGDSheet "A", "VolgNr"
CopyFromGDSheet "B", "DijwvakNaam"
CopyFromGDSheet "C", "SubVakGrenzen_Van"
CopyFromGDSheet "D", "SubVakGrenzen_Tot"
CopyFromGDSheet "E", "Bekleding_Aanleg_Jaar"
CopyFromGDSheet "F", "Bekleding_Schadeln_Jaar"
CopyFromGDSheet "G", "h_leag"
CopyFromGDSheet "H", "h_hoog"
CopyFromGDSheet "I", "Bekleding_Hellingstaal_Invoer"
CopyFromGDSheet "O", "Bekleding_Toplaag_0"
For Each Cell In Selection
 s = Cell
 For Index = 1 To Len(s)
 If Mid(s, Index, 1) = " " Then Mid(s, Index, 1) = ""
 Next
 For Index = 1 To Len(s)
 If Mid(s, Index, 1) Like ".-" Then Mid(s, Index, 1) = ""
 Next
 For Index = 1 To Len(s)
 If InStr(s, ",") + InStr(s, ",") = Len(s) Then s = VBA.Left(s, Len(s) - 1)
 Next
 Next
CopyFromGDSheet "AO", "Bekleding_Geotextiel2_Coll_Invoer"
Index = 0
For Each Cell In Selection
 If Trim(Cell) = " " Or InStr(Cell, ",") > 0 Then Cell = GDSheet.Range("A", Index + 1)
Next
Update_Rows
If Application.Calculation <> Application.Calculation Then Application.Calculation = Calculation
End Sub

4.34 Function BerekenMaximaleBovengrens()
While (Max - Min) > 0.1
 ActieveCellColumn("h_hoog") = Value
 ActieveCell.EntireRow.Calculate
 ActieveCell.EntireRow.Calculate
 isGoed = (ActieveCellColumn("StabToplaag_Score") = "Goed")
 If isGoed Then Min = Value Else Max = Value
 Value = (Max + Min) / 2
Wend
BerekenMaximaleBovengrens = Min
End If

restore:
 ActieveCellColumn("h_hoog") = OldValue
 ActieveCell.EntireRow.Calculate
 ActieveCell.EntireRow.Calculate
End Function

4.35 Function ActieveCellColumn(FieldName$) As Range
 Set ActieveCellColumn = CellColumn(FieldName, ActieveCell.Row)
End Function

4.36 Function CellColumn(FieldName$, RowIndex&) As Range
 Dim ColumnIndex&
 With Range(FieldName)
 ColumnIndex = .Column
 Set CelleColumn = .Worksheet.Cells(RowIndex, ColumnIndex)
 End With
End Function

4.37 Sub GaNaarEerstVolgendeDijkvakMetInstabieleToplaag()
 Dim _RowIndex&
 Dim _EmptyRowCount&
 Dim _StabToplaag$
 Dim _Hight!

 _RowIndex = ActieveCell.row
 If _RowIndex < 8 Then _RowIndex = 8
While _EmptyRowCount < 20
 If CellColumn("SubVetgrenzen_Van", _RowIndex) = "" Then
 _EmptyRowCount = _EmptyRowCount + 1
 Else
 On Error Resume Next
 _Height = CellColumn("h_hoog", _RowIndex) - CellColumn("h_laag", _RowIndex)
 On Error GoTo 0
 If _Height > 4 Then
 _StabToplaag = ""
 End If
 On Error Resume Next
 On Error GoTo 0
 _StabToplaag = CelleColumn("StabToplaag_Score", _RowIndex)
 On Error Resume Next
 If _StabToplaag = "Onvoorbereide" Or _StabToplaag = "Twijfelachtig" Then
 Worksheets("Toetsing").Cells(_RowIndex, ActieveCell.Column).Activate
 AskForInsertRow()
5. 'Module: ExcelFunctiesAlg

5.1 Sub EmptyBuffer()

5.2 Function MatchX%(Param$, ValueL, lookup_array As Range, match_type%) 16-03-0015:05 34/38
'MATCH finds the smallest value that is greater than or equal to lookup_value
' nicht >= zo worden twee waarden gevonden
If (ValueFound < ValueU) And (ValueFound > Value) Then
 ValueU = ValueFound
 idxU = ctr
End If
End If

' Ga er vanuit dat na 20 lege cellen het einde van de sheet is bereikt
If Cell.Value = "" Then
 EmptyCellCtr = EmptyCellCtr + 1
 If EmptyCellCtr > 20 Then Exit For
Else
 EmptyCellCtr = 0
End If
Next

' Plaats gevonden waarden in buffer
' Zorg er voor dat de bufferpointer naar een plaats in de buffer wijst
If BufIdx < LBound(ParamA$) Or BufIdx > UBound(ParamA$) Then BufIdx = LBound(ParamA$)
ParamA$(BufIdx) = Param
ValueUAI(BufIdx) = ValueU!
ValueUAI(BufIdx) = ValueU!
lookup_rangenameA$(BufIdx) = lookup_rangename$
IdxLAI(BufIdx) = idxL,
IdxLAI(BufIdx) = idxL,
IdxUAI(BufIdx) = idxU,
Idx = BufIdx
BufIdx = BufIdx + 1 'Verhoog pointer in buffer
If BufIdx >= BufLen Then BufIdx = 0
If BufIdx > BufCount - 1 Then BufCount = BufIdx + 1
End If

' Bepaal MatchX
If IdxX = -1 Then
 MatchX = -1
End If
If ValueUAI(IdxX) = ValueU Then
 MatchX = idxUAI(IdxX)
End If
End Function

End If
Select Case match_type
Case 0
 MatchX = -1
Case 1
 MatchX = idxLAI(idx)
Case -1
 MatchX = idxUAI(idx)
End Select
Exit Function
hand:
MsgBox "error"
Resume Next
End Function

5.3 Function Tabel_Value_Gett(Parameter$, ValueU, Range As Range, Idx%) 16-03-0015:05 35/38
Tabel_Value_Gett = 1E+30
Dim idx1%, idx2%
Idx1 = MatchX(Parameter, Value, Range, 1)
Idx2 = MatchX(Parameter, Value, Range, -1)
If Idx1 <= 0 Or Idx2 <= 0 Then Exit Function
Dim Worksheet As Worksheet
Set Worksheet = Range.Worksheet
Dim Value11, Value21, ParamValueStr1$, ParamValueStr2$
If Range(1).Column = Range(2).Column Then
 Vertical = True
 Value1 = Worksheet.Cells(RowIndex=Idx1, ColumnIndex=IdxX)
 Value2 = Worksheet.Cells(RowIndex=Idx2, ColumnIndex=IdxX)
 ParamValueStr1 = Range.Cells(RowIndex=Idx1, ColumnIndex=Idx2)
 ParamValueStr2 = Range.Cells(RowIndex=Idx2, ColumnIndex=Idx2)
End If
If Dims $1%: p1 = InStr(ParamValueStr1, ",")
Dim p2%: p2 = InStr(ParamValueStr2, ",")
Dim ParamValue11:
If p1 >= 1 Then
 ParamValue11 = Val(Mid(ParamValueStr1, p1 + 2))
Else

5.4 Function Tabel2D_ValueGet(RowParameter$, RowValue$, RowRange As Range)
 Dim Tabel2D_ValueGet = 1='30
 Dim Rowdx1%, Rowdx2%
 Rowdx1 = MatchX(ColumnParameter, ColumnValue, ColumnRange, 1)
 Rowdx2 = MatchX(ColumnParameter, ColumnValue, ColumnRange, -1)
 If Rowdx1 < 1 Or Rowdx2 < 1 Then Exit Function
 Dim Worksheet As Worksheet
 Set Worksheet = RowRange.Worksheet
 Dim Value1: Value1 = Tabel_Value_Get(RowParameter, RowValue, RowRange, Rowdx1)
 Dim Value2: Value2 = Tabel_Value_Get(RowParameter, RowValue, RowRange, Rowdx2)
 Dim ParamValueStr1$: ParamValueStr1 = ColumnRange.Cells(Rowdx1)
 Dim ParamValueStr2$: ParamValueStr2 = ColumnRange.Cells(Rowdx2)
 Dim p1%: p1 = InStr(ParamValueStr1$, "...")
 Dim p2%: p2 = InStr(ParamValueStr2$, "...")
 Dim ParamValue11:
 If p1 >= 1 Then
 ParamValue11 = Val(Mid$(ParamValueStr1, p1 + 2))
 Else
 ParamValue11 = Val(ParamValueStr1$)
 End If
 Dim ParamValue21:
 If p2 >= 1 Then
 ParamValue21 = Val(Mid$(ParamValueStr2, p2 + 2))
 Else
 ParamValue21 = Val(ParamValueStr2)
 End If
 Dim ParamStep: ParamStep = ParamValue2 - ParamValue1
 Dim Value Get!
 If ParamStep = 0 Then
 Value_Get = Value1
 Else
 Value_Get = Value1 + (Value2 - Value1) * (Value - ParamValue1) / ParamStep
 End If
 Tabel2D_ValueGet = Value
End Function

5.5 Function JNI(B)
 Select Case Trim(LCase(B))
 Case "true", "yes", "waar", "ja", "ja", "goed"
 JN = -1
 Case "false", "no", "onwaar", "nee", "n", "fout", "nee"
 JN = 0
 Case Else
 If B <> "" Then MsgBox Chr(Quote) & B & Chr(Quote) & " wordt niet begrepen (ja / nee)"
 JN = 110
 End Select
End Function

5.6 Function JNS$(B)
 Select Case Trim(LCase(B))
 Case "true", "yes", "waar", "ja", "j", "goed"
 JNO = "Ja"
 Case "false", "no", "onwaar", "nee", "n", "fout", "nee"
 JNO = "Nee"
 Case "", "0", "onbekend", "", "", "", ""
 JNO = "??"
 Case Else
 If B <> "" Then MsgBox Chr(Quote) & B & Chr(Quote) & " wordt niet begrepen (ja / nee / ??)"
 Dim x: x = 110
 End Select
End Function

5.7 Function isLeeg(B) As Boolean
 Dim a$: a$ = B
 isLeeg = (Trim(a$) = "")
Function ColumnName$(a, Shownames As Boolean) 8-03-0015:05 37/38
End Function

5.8 Function ColumnName$(a, Shownames As Boolean)
Dim aname
ColumnName = "7"
If Not Shownames Then Exit Function
For Each aname In Worksheets("Toetsing").Names
 For Each aname In Application.Names
 On Error Resume Next
 Dim Column%: Column = 0: Column = Range(aname, RefersTo).Column
 Dim RefersTo$: RefersTo$ = "": RefersTo = aname, RefersTo
 Dim WorksheetName$: WorksheetName$ = "": WorksheetName = Range(RefersTo).Worksheet.Name
 On Error GoTo 0
 Dim Pos%: Pos = InStr(RefersTo, ""
 If WorksheetName = a.Worksheet.Name And Not (RefersTo Like "":"") And Pos < Len(RefersTo) Then
 If Not(Mid$(RefersTo, Pos + 1) Like "":") Then
 If Column = a.Column Then
 ColumnName = aname.Name
 Exit Function
 End If
 End If
 End If
 Next
End Function
6. 'Module: VBasicFunctiesAlg

' WLDelft Hydraulics +31 15 285 8773
' Project: Steentufts 2.20, H3167
' Versie: 3.20 - november 1999
' Auteur: Onno van den Akker (WLC-SO)

' Projectleider: Ir. Mark Klein Breteler (WLC-MCI)
' Opdrachtgever: Rijkswaterstaat, Dienst Weg- en Waterbouwkunde, ir L. van Asperen

Option Explicit : Explicitie declaratie van variabelen. Hierdoor kunnen alleen variabelen
 gebruikt worden die bestaan. Bij typefouten ontstaat hierdoor een
 foutmelding in plaats van de waarde 0 of "".

Option Compare Text : Maak geen onderscheid tussen kleine en grote letters

' Betekenis achtervolgels in basic
' xxxx% geheel getal tussen -30000 en +30000
' xxxx& geheel getal tussen -2 miljard en + 2 miljard
' xxxx! getal met in totaal maximaal 7 cijfers(cijfers voor en achter
' het decimaateken)
' xxxx# idem, maar nu met 15 cijfers

Public Const PI2 = 3.14159265358979
Public Const Quote = "#"

6.1 Function OneOrMore(Sstr$, ParamArray a() As Variant) As Boolean

Dim B As Boolean: B = False
Dim ctr% For ctr = LBound(a) To UBound(a)
 If InStr(1, Str(ctr), ")") > 0 Then B = True
 Exit For
End If
Next
OneOrMore = B
End Function

6.2 Function Max(ParamArray a())

Dim B, c #: B = -1E+30
For Each c In a
 If c > B Then B = c
Next
Max = B
End Function

6.3 Function Min(ParamArray a())

Dim B, c #: B = 1E+30
For Each c In a
 If c < B Then B = c
Next
Min = B
End Function

6.4 Function Ifc(c As Boolean, a, B)

If c Then Ifc = a Else Ifc = B
End Function

6.5 Function Log10(x)

Log10 = Log(x) / Log(10#)
End Function

6.6 Function Ln(x)

Ln = Log(x)
End Function

6.7 Function valll(ByVal s$) 16-03-0015:05 38/38

If InStr(s, ",") > 0 Then Mid(s, InStr(s, ",")" = ","
valll = Val(s)
End Function

D Testprocedure

De testprocedure van het programma is gestart met het grondig nalopen van alle formules en aspecten die in hoofdstuk 4 van deze documentatie staan. Alles is vergeleken met de Leidraad Toetsen op Veiligheid, groene versie van augustus 1996, waarbij tevens rekening gehouden is met de wijzigingen die gepubliceerd zijn in het bulletin ‘Toetsen’ tot en met eind 1998. Daar waar onduidelijkheden of onjuistheden zijn ontdekt, is overleg gevoerd met de DWW en is een oplossing gekozen. Dit alles is vooral vastgelegd in hoofdstuk 4 van deze documentatie.

Vervolgens is grondig getest of het programma precies overeenkomt met de in deze documentatie vastgelegde formules en of het overeenkomt met het programma ANAMOS 2.21. Bij het testen is allereerst een inventarisatie van de vertakkingen en formules gemaakt. Voor elk van deze vertakkingen en formules zijn testsommen met de hand nagerekend. Op deze wijze zijn er honderden gevallen nagerekend.

Vervolgens zijn 5 cases geheel en al met de hand nagerekend. Deze cases zijn te vinden in bijlage B.

Tot slot zijn voorlopige versies grondig beproefd door mensen buiten WL. Zij hebben een aantal fouten en tekortkomingen geconstateerd, die in de versie 2.11 zijn verbeterd. Daarna hebben drie potentiële gebruikers versie 2.11 getest, maar hebben geen fouten meer ontdekt. Wel zijn er naar aanleiding van hun bevindingen een aantal wijzigingen doorgevoerd, omdat er onvolkomenheden in de Leidraad bleken te zitten en omdat de aansluiting op de praktijkbehoefte beter kon. Dit leidde tot versie 2.20. Ook die laatste wijzigingen zijn getest door de 5 cases te controleren en alle gewijzigde formules en vertakkingen met de hand na te rekenen.

Later zijn toch enkele fouten in versie 2.20 ontdekt en bovendien zijn enkele wijzigingen aangebracht, zoals de wijze waarop type 3b en 6b wordt vastgesteld en verder wordt de reststerkte niet meer meegeteld in de eindexamen. De versie 2.30 is weer zeer grondig getest door 75 cases door te rekenen en daarna breed verspreid in Nederland.

Naar aanleiding van kleine verschillen met ANAMOS 2.10, die vooral een gevolg waren van fouten in ANAMOS, zijn vervolgens STEENTOETS 3.00 en ANAMOS 2.21 gemaakt. Daarin is de invloed van de invassing van de toplaag en de klemfactor geïntroduceerd.

Vervolgens zijn nog enkele zaken gewijzigd (zoals de klemfactor bij goed of slecht geklemde zettingen) en is versie 3.10 opgeleverd. Die versie is grondig getest door ruim 90 testcases door te rekenen en te controleren. Later is echter nog een fout gevonden die optreedt als de maatgevende golfhoogte lager is dan de minimumgolfhoogte. Deze is verholpen en bovendien is de controle toegevoegd of de ondergrens hoger ligt dan het toetspeil. Die leverde versie 3.20, die grondig is getest door ongeveer 100 testcases door te rekenen en te controleren.

Helaas is het niet doenlijk om alle mogelijke combinaties van invoer en uitvoer te testen, want dat zijn er meer dan een miljard. Daarom moet gesteld worden dat een foutloos
programma helaas onhaalbaar is. Al het redelijke is gedaan om het aantal fouten tot een minimum te beperken.
wl | delft hydraulics

Rotterdamseweg 185
postbus 177
2600 MH Delft
telefoon 015 285 85 85
telefax 015 285 85 82
e-mail info@wldeft.nl
internet www.wldeft.nl

Rotterdamseweg 185
p.o. box 177
2600 MH Delft
The Netherlands
telephone +31 15 285 85 85
telefax +31 15 285 85 82
e-mail info@wldeft.nl
internet www.wldeft.nl