<]
TUDelft

Delft University of Technology

Visualizing code and coverage changes for code review

Oosterwaal, Sebastiaan; Van Deursen, Arie; De Souza Coelho, Roberta; Sawant, Anand Ashok; Bacchelli,
Alberto

DOI
10.1145/2950290.2983929

Publication date
2016

Document Version
Accepted author manuscript

Published in
FSE 2016

Citation (APA)

Oosterwaal, S., Van Deursen, A., De Souza Coelho, R., Sawant, A. A., & Bacchelli, A. (2016). Visualizing
code and coverage changes for code review. In FSE 2016: Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (pp. 1038-1041). Association for
Computing Machinery (ACM). https://doi.org/10.1145/2950290.2983929

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1145/2950290.2983929
https://doi.org/10.1145/2950290.2983929

Visualizing Code and Coverage Changes for Code Review

Sebastiaan Oosterwaal,” Arie van Deursen,” Roberta Coelho™
Anand Ashok Sawant,* Alberto Bacchelli*
*Delft University of Technology, The Netherlands

“Federal University of Rio Grande do Norte, Brazil
sebastiaan.oosterwaal @ gmail.com, Arie.vanDeursen @tudelft.nl, souzacoelho @gmail.com,

A.A.Sawant@tudelft.nl, A.Bacchelli @tudelft.nl

ABSTRACT

One of the tasks of reviewers is to verify that code modifications
are well tested. However, current tools offer little support in un-
derstanding precisely how changes to the code relate to changes
to the tests. In particular, it is hard to see whether (modified)
test code covers the changed code. To mitigate this problem, we
developed OPERIAS, a tool that provides a combined visualiza-
tion of fine-grained source code differences and coverage impact.
OPERIAS works both as a stand-alone tool on specific project ver-
sions and as a service hooked to GitHub. In the latter case, it pro-
vides automated reports for each new pull request, which review-
ers can use to assess the code contribution. OPERIAS works for
any Java project that works with maven and its standard Cober-
tura coverage plugin. We present how OPERIAS could be used
to identity test-related problems in real-world pull requests. OPE-
RIAS is open source and available on GitHub with a demo video:
https://github.com/SERG-Delft/operias

CCS Concepts

eSoftware and its engineering — Software maintenance tools;
Software configuration management and version control sys-
tems; Integrated and visual development environments;

Keywords

code review, software testing, software evolution

1. INTRODUCTION

Code review consists in the manual assessment of source code
changes by developers other than the author and is mainly intended
to identify defects and quality problems before the deployment in a
live environment [9]. Several studies provided evidence that code
review supports software quality and reliability crucially [8, 19].

Modern code reviews (MCR) [9], as currently used in most large
close- and open-source software (OSS) projects, are informal, asyn-
chronous, and supported by tools. Popular examples of code re-
view tools are Microsoft’s CodeFlow [9], Google’s Gerrit [5], and
GitHub’s pull-request (PR) mechanism [4].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.
FSE’16, November 13-18, 2016, Seattle, WA, USA

ACM. 978-1-4503-4218-6/16/11...$15.00
http://dx.doi.org/10.1145/2950290.2983929

Most code review tools offer limited support to help reviewers in
evaluating the quality of a change, other than basic highlighted tex-
tual differencing. Particularly, review tools offer little information
on how a code change affects test coverage, even though develop-
ers reported the lack of testing contributing to faulty changes being
committed to the repository [13] and coverage as one of the most
importance pieces of information they use when assessing a code
change [21]. Changes to existing code requires a retest, since they
could potentially invalidate the test suite [15].

In this paper we present OPERIAS, a tool we devised to try to
mitigate this problem. OPERIAS enriches code review tools with
fine-grained test coverage change information. It comprises two
parts: (1) The core part, which accepts two versions of a software
project, computes the differences in both source code and statement
coverage, and outputs a report in XML and HTML format; and (2)
the code review extension part, which runs the core as a service and
connects it to GitHub, generating a report for every opened PRs to
provide fine-grained test coverage information at review time.

As a preliminary assessment, we use OPERIAS to analyze PRs
from three OSS projects. Results show that OPERIAS provides re-
viewers with new information for 27% to 71% of the PRs and that
it could be useful in different scenarios, e.g., showing that a code
change affects the coverage of a class not modified in the PR.

2. OPERIAS IN A NUTSHELL

OPERIAS is a tool to collect, analyze, and visualize code change
and related test coverage information to support code review.

2.1 Implementation Details

OPERIAS works for Java, builds upon the Maven [1] setup (tests
are executed with the Surefire plugin), and obtains statement and
condition coverage information from the Cobertura plugin.

Given two versions of such a maven project, OPERIAS produces
an XML and a HTML report that provides the combined visualiza-
tion of the changes in the code as well as in the test coverage. The
two versions can be in two separate directories or can be identified
as two commits (or tags) in a git repository. To get the changes
between the two folders, we use Myer’s diff algorithm [16] and
annotate them with test coverage information [17].

OPERIAS can be used in two ways. The first way is as a stan-
dalone tool, whereby a report is generated on a local machine for
two different versions of a project; this standalone version can eas-
ily be converted into a maven plugin to make it part of the standard
build cycle. The second way is as a service hooked to git or GitHub:
With this, when a PR is opened on GitHub, OPERIAS is run to vi-
sualize the changes in code and coverage introduced by the PR; the
service notifies GitHub users by automatically adding a comment
to the PR and providing a link to the visualization (Figure 1).

1038

https://github.com/SERG-Delft/operias

B8 Removed all logging and logback resources
soosterwaal commented on Apr 17, 2014

This pull request will have the following effects on the line and condition coverage of the project:

« The line coverage increased from 38.03% to 38.79%
» The line coverage stayed the same at 30.82%

The following changes were made to the source code of the project:

+ 2(0.11%) (1 relevant) lines were added, which are line covered for 0.0%
« 174 (9.26%) (59 relevant) lines were removed, which were line covered for 25.0%

Click here for a more detailed report for this pull request

Figure 1: An OPERIAS generated comment on GitHub

2.2 Reporting Changes And Test Coverage

OPERIAS generates browsable reports to visualize code changes
together with the corresponding test coverage information. We de-
tail them from the least to the most fine-grained.

Project Overview. The ‘project overview’ is the report (Figure
2) in which all packages are displayed. By clicking on a package,
all changed classes within this package appear. For every class and
package, two bars visualize the status of condition and statements
coverage. These bars use four colors (also used in the ’class view’
with the same semantic): light green indicates parts covered in both
the original and the version, dark green indicates an increase in
coverage in the new version, light red indicates parts covered nei-
ther in the original nor in the new version, and dark red indicates
parts that are no longer covered in the new version. Coverage per-
centage points are visualized in the report.

The ‘project overview’ reports also provides an indication for
deleted and newly created classes. A shaded row means that pack-
age or class was deleted. In that case, the coverage bars indicate
the coverage of the original file by only using the light colors. If a
class is new, the bars consists of only dark red and dark green parts,
which indicate the revised coverage percentage of the class.

Test View. The ‘test view’ report (Figure 3) contains information
on source changes in test classes (coverage does not apply). To
support reviewing tests, we show the outcome of the execution of
the test cases. We show, for both the original and revised versions,
a list of failed or errored test cases. When clicking on a test case in
the list, it shows whether it failed or errored and see the complete
stacktrace generated by the test suite.

Class View. The finest-grained visualization is offered by the
‘class view’ report, which can be accessed by clicking on any class
in the ‘project overview’. In the report, up to four code views are
shown: original file, where the original file is shown with the cov-
erage information for that version of the code (as expected, green
means covered, red means not covered); revised file, which corre-
sponds to the previous view, but showing the new version of the file;
source changes, where only source changes between the versions
(since red and green are used for conveying coverage information,
we use the shaded background to mean that the line was deleted and
a box around a line or a group of lines means that these lines were
inserted in the new version); and combined view, the most char-
acteristic view of OPERIAS, where it shows both source changes
(similarly to the previous view) and coverage information for both
versions (Figure 4) using the four colors that are used to indicate a
change in coverage in the same way as described above, but now
for specific lines of code.

These four views are available for changed files. For added files,
only the revised file view is shown including the coverage informa-
tion, for deleted files, only the original file view is shown. When
opening a changed test file, only the source diff view is viewable
since there is no information about coverage available.

1039

Table 1: Distribution of test coverage change across pull re-
quests

Test coverage across pull requests

Project Stable

Bukkit 38% 29% 33%
JUnit 20% 73% 07%
Wire 25% 35% 40%

3. REAL-WORLD USAGE SCENARIOS

We present real-world usage scenarios to provide initial anec-
dotal evidence on how the support that OPERIAS offers could be
potentially beneficial. We explore three OSS projects (JUnit [6],
Wire [7], and Bukkit [2]) from different application domains and
size, and hosted on the GitHub platform.

Overall applicability. As a first step, we get an indication of
the general applicability of OPERIAS. We check the distribution of
changes in test coverage across all the PRs of the selected project.
We do so by running OPERIAS core on the entire code history and
computing the effects of each single PR on the test coverage of
the overall project. Table 1 summarizes the results, showing the
proportion of PRs in which test coverage decreases, is stable, or
increases. Results show that for JUnit (a well-tested system) only
few PRs increase the coverage, while for Bukkit and Wire (with
less coverage to start with) at least a third of PR increase it. More
extensive metrics and underlying causes are discussed in the ac-
companying thesis [17]; here we note that OPERIAS would provide
previously unavailable test coverage change information on those
PRs for which the coverage has changed, for a minimum of 27%
PRs for JUnit, up to a maximum of 71% PRs for Bukkit.

Potential usefulness. As a second step, we investigate the po-
tential usefulness of OPERIAS for reviewers. To do so, from the
three projects we manually inspect several PRs in which test cover-
age is either increased or decreased. The complete analysis can be
found in the accompanying thesis [17], here we limit ourselves to
interesting PRs from JUnit.

PR/#767: In this PR, a new ‘plugin’ package is added. OPERIAS’
‘project overview’ shows the reviewer that all the newly cre-
ated classes are dark green and fully (100%) tested (figure
omitted for space reasons, available in [17]). Furthermore,
the PR changed another class and the reviewer can see a
small dark red bar, indicating new code that is not tested.
The reviewer is able to click on that class and, with the com-
bined ‘Class View’ (Figure 5), see exactly which lines were
added and where testing is lacking.

PR/#896: In this PR, the contributor makes a 1-line change to one
class and adds 117 test lines for this class. While this sounds
like a good PR, using OPERIAS the reviewer can see (Fig-
ure 6) that the change affects the statement coverage of a
completely different class (‘EachTestNotifier’) reducing its
coverage by 10%. Even though this class is not part of the
original PR, OPERIAS shows it because its coverage is af-
fected by the changes under review. Industrial reviewers re-
ported that knowing which parts of the code are indirectly
affected by a change is crucial to asses its quality [21]; using
OPERIAS indirect changes in coverage are easy to detect.

PR/#646: In this PR, five new test cases added to the project, next
to a few changes in the code. Even if the test cases would
properly test new or existing code, they are not executed be-
cause they are not added to the ‘AllTests’ class; in fact, for a
test case to be successfully executed within the JUnit project,

https://github.com/junit-team/junit/pull/767
https://github.com/junit-team/junit/pull/896
https://github.com/junit-team/junit/pull/646

Name Line coverage # Relevant lines Condition coverage # Conditions Source Changes
orgjunit.experimental categories - +1508% -15(-19.48%) . +14 -5(-18.52%)
Categories 0.0% 0 (0.0%) 0.0% 0 (0.0%) +5 (2.63%) -2 {1.05%
Categories$CategoryFilter 0.0% 0 (0.0%) 0.0% 0 (0.0%) +5 6) -2
% 2 2
orgjunit.rules 0.0% 0 (0.0%) 0.0% 0 (0.0%)
orgjunit.runner 0.0% 0 (0.0%) 0.0% 0 (0.0%)
org junit.runners | +10 (3.89%) | 061% *1(244%)

Figure 2: The ‘project overview’ with package- and class-level information

Test Classes

Name Amount of lines changed

/src/test/java/nl/tudelft/jpacman/LauncherSmokeTestjava +2 (1.85%) -2 (1.85%)

Figure 3: The ‘test view” with data on added/removed test lines

72 |73 private void validateMember (FrameworkMember<?> member, List<Throwable> errors) {

73 |75 validateStatic(member, errors);
74 (76 validatePublic(member, errors);
75 |77 validateTestRuleOrMethodRule(member, errors);
76 [78 }
79
80 private void validatePublicClass(FrameworkMember<?> member, List<Throwable> errors) {

private void validateStatic(FrameworkMember<?> member, List<Throwable> errors) {

8o [87 if (fStaticMembers && !member.isStatic()) {

81 |88 addError(errors, member, “must be static.");

82 [8g }

83 |go if (!fStaticMembers && member.isStatic()) {

84 o1 addError(errors, member, “must not be static.');
85 (g2 }

86 (93

}
Figure 4: The combined view in the ‘class view’ report

it must be added to this class. Using OPERIAS, the reviewer
can quickly see that the added test code affects neither line
coverage nor condition coverage (Figure 7), thus indicating
that the new tests are not executed and the absence of changes
to the class ‘AllTests’ from the view.

Although anecdotal, these examples of PRs provide initial evi-
dence on the potential of OPERIAS in supporting the code review
process. As a future evaluation, we plan to design and conduct a
controlled experiment to measure the causal effects of OPERIAS on
the code review process, in particular with respect to the reviewing
speed and number of changes suggested by reviewers. Moreover,
an observational study can be conducted to see whether the usage of
OPERIAS has a relation with a reduced number of further changes
needed in code already accepted through PRs. Finally, further work
should be conducted to investigate the (potentially distracting) ef-
fects that visible code coverage information can have on the effec-
tiveness of reviewers and their behavior.

4. RELATED WORK

Previous research on the pull-based development model has high-
lighted the importance of tests in pull requests. First, pull requests
are merged faster in a well-tested system [10]; then integrators, re-
sponsible for merging, indicate that adequate testing is a key quality
factor taken into account when deciding whether or not to accept

73 private Plugin(] constructPlugins(Class<?> klass)
74 throws InitializationError {

String. format(
“"Plugin class %s should have a public constructor with no parameters",

pluginClass.getSinpleNane())) ;

66 102 Z

Figure 5: Effect of PR/#767 on the coverage of a changed class.

a change [12] and contributors behave accordingly [11]. Pham et
al. discuss the testing culture on GitHub projects, and observe that
projects indeed insist on tests in PRs [18].

Although many tools exist to either show differences between
two versions of a piece of code or compute test code coverage
(e.g., [3]), only a few combine both pieces of information in one
view. A promising (yet in early development phase) plugin for
Gerrit shows aggregated coverage information [22], but the most
popular are: Coveralls.io [14] and SonerQube [20].

Coveralls.io [14] analyzes the report created by Cobertura [3]
by comparing the test coverage metrics to a previous report. It
shows an overview with detailed coverage information also show-
ing whether test coverage increased or decreased, at the file level.
Test coverage information is not integrated in the review process
and Coveralls.io does not provide fine-grained information on lines.

SonarQube [20] is an extensive tool to evaluate the quality of a
codebase and its changes; it visualizes information on code dupli-
cation, coverage, code complexity and more. Particularly, it shows
current coverage information of a class and one can filter on se-
lected changes or timeframes, showing lines to cover, branches
to cover, uncovered lines and uncovered branches. Nevertheless,
SonarQube does not provide any comparison view of test coverage
between changes, but only reports on review specific statuses.

S. CONCLUSIONS

We created OPERIAS, a code review support tool that lets re-
viewers visualize fine-grained test coverage information while re-
viewing a code contribution. Through real-world examples we gave
initial evidence of its potential in different review scenarios.

1040

Name Line coverage # Relevant lines Condition coverage # Conditions Source Changes
orgjunitinternal.runners.model l 7 0(0.0%) 0.0% 0 (0.0%)
EachTestNotifier | . 0(00%) 0.0% 0(00%)
orgjunitrunners 0.0% 0(0.0%) 0.0% 0(0.0%)
ParentRunner 0.0% 0(0.0%) 0.0% 0(0.0%) -1(0.22%)
ParentRunner$4 0.0% 0 (0.0%) 0.0% 0 (0.0%)

Test Classes

Name

Amount of lines changed

/src/test/java/org/junit/tests/running/classes/ParentRunnerTest java

Figure 6: Effect of PR/#896 on the coverage of classes, including the rot changed ‘EachTestNotifier’ class.

Name Line coverage # Relevant lines Condition coverage # Conditions Source Changes
orgjunit [| 416 (6.56%) [| 736% *5(1064%)

Assert I +16 (8.99%) W .. sueer 5 (372
Test Classes
Name Amount of lines changed
/src/test/java/org/junit/tests/ utilityclass/MultipleConstructorUtil java 11 (New)
/src/test/java/org/junit/tests/ utilityclass/NonFinalUtiljava 7 (New)
/src/test/java/org/junit/tests/ utilityclass/ProperUtiljava 11 (New)
/src/test/java/org/junit/tests/utilityclass/PublicConstructorUtiljava 12 (New)
/src/test/java/org/junit/tests/ utilityclass/UtilityClassTest java 39 (New)

Figure 7: Effect of PR/#646 on the coverage; since ‘AllTests’ does not include the new tests, there is no positive change in coverage.

6.

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]

(9]

[10]

(11]

(12]

REFERENCES

Apache Maven. https://maven.apache.org/.

Bukkit. http://bukkit.org/.

Cobertura. http://cobertura.github.io/cobertura/.
Collaborative code review. https://github.com/features.
Gerrit code review. https://www.gerritcodereview.com.
Junit. http://junit.org/.

Wire. https://github.com/square/wire.

A. Ackerman, L. Buchwald, and F. Lewski. Software
inspections: an effective verification process. Software,
IEEE, 6(3):31-36, 1989.

A. Bacchelli and C. Bird. Expectations, outcomes, and
challenges of modern code review. In Proceedings of the
2013 International Conference on Software Engineering,
pages 712-721. IEEE Press, 2013.

G. Gousios, M. Pinzger, and A. van Deursen. An exploratory
study of the pull-based software development model. In
ICSE, pages 345-355, 2014.

G. Gousios, M.-A. Storey, and A. Bacchelli. Work practices
and challenges in pull-based development: The contributor’s
perspective. In Proceedings of the 38th International
Conference on Software Engineering, ICSE ’16, pages
285-296. ACM, 2016.

G. Gousios, A. Zaidman, M. Storey, and A. Van Deursen.
Work practices and challenges in pull-based development:
the integrator’s perspective. In Proceedings International
Conference on Software Engineering (ICSE), 2015.

1041

[13]

[14]
[15]

[16]

(17]

(18]

[19]

[20]
[21]

[22]

A. Guzzi, A. bacchelli, Y. Riche, and A. van Deursen.
Supporting developers’ coordination in the IDE. In /8th
ACM conference on Computer-Supported Cooperative Work
and Social Computing, CSCW 2015, pages 518-532, 2015.
L. H. Industries. Coveralls. https://coveralls.io/.

L. Moonen, A. van Deursen, A. Zaidman, and M. Bruntink.
On the interplay between software testing and evolution and
its effect on program comprehension. In Software evolution,
pages 173-202. Springer, 2008.

E. Myers. Ano (nd) difference algorithm and its variations.
Algorithmica, 1(1-4):251-266, 1986.

S. Oosterwaal. Combining source code and test coverage
changes in pull requests. Master’s thesis, Delft University of
Technology, 2015. http://repository.tudelft.nl/.

R. Pham, L. Singer, O. Liskin, K. Schneider, et al. Creating a
shared understanding of testing culture on a social coding
site. In Software Engineering (ICSE), 2013 35th
International Conference on, pages 112-121. IEEE, 2013.

P. Rigby, B. Cleary, F. Painchaud, M. Storey, and D. German.
Open source peer review — lessons and recommendations for
closed source. To appear in IEEE Software, 2012.

S. SA. Sonarqube. http://www.sonarqube.org/.

Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim. How do
software engineers understand code changes?: An
exploratory study in industry. In Proceedings of FSE 2012.
Ullink. Gerrit coverage plugin.
https://github.com/Ullink/gerrit-coverage-plugin.

https://maven.apache.org/
http://bukkit.org/
http://cobertura.github.io/cobertura/
https://github.com/features
https://www.gerritcodereview.com
http://junit.org/
https://github.com/square/wire
https://coveralls.io/
http://repository.tudelft.nl/
http://www.sonarqube.org/
https://github.com/Ullink/gerrit-coverage-plugin

	Introduction
	Operias in a nutshell
	Implementation Details
	Reporting Changes And Test Coverage

	Real-world usage scenarios
	Related Work
	Conclusions
	References

